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Abstract 

The predictive performance equation (PPE) is a mathematical 
model of learning and retention that attempts to capitalize on the 
regularities seen in human learning to predict future performance. 
To generate predictions, PPE’s free parameters must be calibrated 
to a minimum amount of historical performance data, leaving PPE 
unable to generate valid predictions for initial learning events. We 
examined the feasibility of using the data from other individuals, 
who performed the same task in the past, to inform PPE’s free 
parameters for new individuals (prior-informed predictions). This 
approach could enable earlier and more accurate performance 
predictions. To assess the predictive validity of this methodology, 
the accuracy of PPE’s individualized and prior-informed 
predictions before the point in time where PPE can be fully 
calibrated using an individual’s unique performance history. Our 
results show that the prior data can be used to inform PPE’s free 
parameters, allowing earlier performance predictions to be made.  

Keywords: Mathematical model; Performance predictions; Skill 
learning; Parameter generalization; Educational data mining 

Introduction 

A common characteristic of training and education 

programs is that instructors have little or no information 

about the ability of specific students arriving to a particular 

class. Without information, instructors must wait until a 

certain amount of the curriculum has been completed before 

they can identify who possesses adequate or inadequate 

knowledge about a given topic, and before they can 

administer informed training interventions (e.g., removing 

or adding requirements for additional practice). To make 

more effective decisions about adaptive education or  

training interventions, instructors must anticipate the likely 

effects of specific actions. This would be enabled by models 

that can predict future performance if a particular training 

intervention were to be implemented. 

In the field of cognitive science, mathematical models of 

learning and retention have been developed to predict 

individuals’ future performance in a variety of different 

domains (Anderson & Schunn, 2000; Jastrzembski, Gluck, 

& Gunzelmann, 2006; Pavlik, & Anderson, 2008). These 

models can potentially be applied to education and training 

situations to support more accurate predictions of students’ 

future performance. 

One such model is the Predictive Performance Equation 

(PPE). PPE has been used to predict aggregate group 

performance and the performance of individuals on 

declarative (know-what) and procedural (know-how) tasks 

(Jastrzembski et al., 2006). Prior research has validated PPE 

with performance data collected in laboratory settings 

(Jastrzembski et al. 2006), training settings such as Air 

Force F–16 pilot testbeds (Jastrzembski et al. 2010), and 

educational settings involving classroom learning and 

tutoring systems (Collins, Gluck, & Jastrzembski, 2015). 

The Predictive Performance Equation  

PPE is a model of learning and retention that predicts future 

performance on the basis of three factors: (1) total amount 

of practice; (2) elapsed time since practice occurred; and (3) 

how practice was distributed across time. In general, 

performance increases with amount of practice (Factor 1), 

and decreases with elapsed time since practice occurred 

(Factor 2)(Anderson, 1995). The third factor, distribution of 

practice over time, is central to research on the spacing 

effect (for a review, see Cepeda, Vul, Wixted, & Rohrer, 

2006). This research has shown that separating practice 

repetitions by a delay (i.e. spacing) slows acquisition but 

enhances retention. The spacing effect is one of the most 

widely replicated results in psychology research, and its 

potential implications for education and training are 

substantial. 
PPE has three free parameters that are calibrated based on 

historical performance data (Equation 1).  

 

Performance = S * St * N 
c
 * T 

–d
 (1) 

 

The three free model parameters are S (scalar), used to 

accommodate the performance measure of interest (e.g., 
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error rate, percent correct, response time, etc.), c (learning 

rate), and d (decay rate). The model’s fixed parameters are 

determined by the timing and frequency of events in the 

protocol, such as T, the amount of time passed since the 

onset of training, and N, the number of training events that 

occurred in the training period. St (Equation 2) is the 

stability term that “captures the effects of spacing, by 

calibrating experience amassed as a function of temporal 

training distribution and true time passed” (Jastrzembski, 

Addis, Krusmark, Gluck, & Rodgers, 2010, p. 110). 

 

   
      

      
                    (2) 

 

St is 1 for the first event and is calculated for all other events 

based on the elapsed time between the current and previous 

events (      ), the total amassed practice time (PTi) and the 

elapsed time between the current event and the first event 

(Ti). 

The individualized approach to using PPE involves 

gathering data from an individual during a series of 

calibration sessions, finding the values of PPE’s free 

parameters that maximize the correspondence between the 

model’s output and the individual’s observed performance 

during the calibration sessions, and using the parameterized 

model to predict the individual’s future performance. The 

basic idea is that although the structure of the model is 

invariant across individuals, cognitive processes and the 

psychological parameters that control them, such as rate of 

learning and rate of forgetting, may vary. Once PPE has 

been calibrated based on an individual’s training history, it 

can be used to make personalized performance predictions 

and training prescriptions (Jastrzembski et al., 2010).  

Motivation for Analyses  

One limitation of PPE is that is has shown to be necessary to 

calibrate to a minimum of three instances of prior 

performance before generating a prediction. A minimum of 

three data points are needed to estimate values for PPE’s 

three free parameters (S, c, d). With fewer than three points, 

parameter estimates for PPE are unlikely to be accurate 

because they are under constrained. Multiple different 

combinations of parameter values may account equally well 

for the existing data. Consequently, out-of-sample 

predictions will be highly uncertain at best, and highly 

inaccurate at worst. 

PPE is moderately complex. When such a model is fit to a 

small number of data points, it is likely to capture the 

structure of data in addition to noise. This causes poor out-

of-sample prediction (i.e., generalization, Geman, 

Bienenstock, & Doursat, 1992). When PPE is fit using too 

few data points, its parameter estimates may reflect 

unrealistic assumptions about psychological processes (e.g., 

complete learning or forgetting), subsequently causing it to 

fail to account for the future performance of a sample.  

 The model’s inability to make valid out-of-sample 

performance predictions after calibrating to fewer than three 

events reduces its utility early in a training regimen. This 

creates a lag period during which students start to complete 

part of the curriculum and personalized performance 

predictions are not available. One source of information that 

can help inform predictions of initial performance is data 

collected from others who performed the same task in the 

past. Indeed, educational data mining (EDM) attempts to 

make use of previously collected student data for exactly 

this purpose. EDM researchers use various data mining 

techniques (e.g., clustering analysis, rule mining, Bayesian 

models) to leverage existing student data to predict the 

future performance of students and to inform educational 

decisions (Romero & Ventura, 2010). Despite the fact that 

EDM and PPE have similar goals, these approaches differ in 

two keys ways. First, EDM seeks to use machine learning 

techniques to discover regularities in new and often large 

datasets. The enterprise is mainly data-driven. PPE, in 

contrast, is based on a psychological model of how various 

factors impact human learning and retention (Bahrick, 

Bahrick, Bahrick, & Bahrick 1993; Newell & Rosenbloom 

1981). Thus, PPE is theory-driven. The insights and 

constraints afforded by a psychological theory may enable 

more effective use of educational data sets (Walsh & Lovett, 

in press).  Second, PPE generates precise point predictions 

of future performance using measurements of accuracy, 

error rate or response time. Little attention in EDM has been 

placed on generating such precise performance predictions. 

Instead, these techniques mainly involve understanding 

existing data, or generating educational predictions at higher 

levels of aggregation (e.g., final grades, test scores).  

Although these approaches may differ, EDM research 

highlights the usefulness of prior data when attempting to 

understand how a particular set of individuals will learn 

over time, based on how others behaved in the past. 

Currently, PPE has no way of incorporating any information 

from prior data into its predictions. However, taking such 

information into account could be useful when there is not 

yet enough historical performance data for calibration.   

In this paper, we report the results of an evaluation of a 

new method for applying PPE to decisions about the timing 

of practice opportunities, using prior data to inform its 

learning and decay parameters when generating predictions 

of initial performance. We call these prior-informed 

predictions to distinguish them from individualized 

predictions based on calibration of PPE to an individual’s 

own data, however sparse. Using real-world tutoring data, 

we compared the accuracy of PPE’s prior-informed and 

individualized predictions of both initial performance (i.e., 

2
nd

 and 3
rd

 event) and the first event after initial performance 

(i.e., 4
th

 event), allowing for a comparison of the two 

methods when given both an inadequate and adequate 

amount of prior data for calibration. 

Method 

All of the data used in this report was obtained from 

Learnlab.com’s DataShop (Koedinger, Baker, Cunningham, 

Skogsholm, Leber, Stamper, 2010), which is an online data 
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repository. Datashop contains a collection of publicly 

available datasets from different math, science, and English 

classroom and tutoring studies. For this paper, the data 

consists of performance measures from homework 

assignments of students from six classes, all from different 

semesters, using the ANDES tutoring system at the United 

State Naval Academy (USNA).
1
 These datasets were chosen 

because they contain the largest number of individuals from 

multiple semesters collected from the same domain 

currently available on Datashop.  

A single semester’s worth of data from the USNA on 

DataShop is referred to as a dataset
2
, which is composed of 

a record of the performance of individuals who attempted to 

solve a set of problems in a specific domain during a 

particular period of time. Each dataset contains a record of 

the performance of each individual student across that 

curriculum’s content. The curriculum is made up of 

problems, defined as “a task [attempted by] a student 

usually involving several steps.” An example of a problem 

would be comparing the difference in velocity between 

trains A and B. Successfully solving a problem involves 

completing a series of steps, which are “an observable part 

of a solution to a problem”, such as finding the velocity of 

train A.  

In the analyses presented here, we examined the 

aggregate performance of students as they attempted to 

complete an individual step over the course of the semester 

(i.e., sample). A sample consisted of a selection of two or 

more students from a single dataset who each had a 

minimum of four opportunities to attempt a particular step, 

and had an equivalent sample of students (i.e., two or more) 

from the remaining 5 datasets who also had a minimum of 4 

opportunities to complete the same step. Using these 

criteria, 307 samples were identified and used for this 

analysis. 

We examined the data at a step level for two reasons. First, 

steps were the smallest level of resolution of data available 

on Datashop. Second, each step isolates a particular 

knowledge component. Because learning occurs at the level 

of individual knowledge components (Anderson & Schunn, 

2000), comparing analogous steps across problems is the 

proper way to observe the change in performance over time. 

Procedure 

For the analysis presented here, we systematically 

controlled which of the 5 datasets were used to inform 

predictions made about the performance of samples from 

the 6
th

 datasets, selecting one dataset at a time (prediction 

dataset) and using data from the remaining 5 datasets as 

prior data to inform our prior-informed predictions. Next, 

from the predicted dataset, a single sample of students who 

                                                 
1 The exact studies which were exported from DataShop and used 

in this paper are cited in the acknowledgement section, per the 

guidelines on the Datashop website.  
2 All of the definitions listed in this paper came from the 

DataShop’s online glossary and can be found on 

https://pslcdatashop.web.cmu.edu/help?page=terms  

completed the same step (prediction sample) were chosen. 

Then a second sample of individuals who completed the 

same step from the 5 remaining datasets (prior sample) was 

selected to inform predictions (prior sample) of the 2
nd

, 3
rd

, 

and 4
th

 event. Finally, the error rate (performance measure) 

was calculated, as measured by the percent of incorrect 

attempts on their first opportunity to solve a step during an 

event for both the prediction and prior sample.  

The various timing variables were then calculated for both 

samples based on the observed number and distribution of 

practice repetitions (Equation. 2). PPE then calibrated to the 

prior sample’s performance (i.e., percent incorrect) on the 

first two events, obtaining a set of learning and decay rates 

(cprior and dprior) that were then generalized to the predicted 

sample. By calibrating PPE to the performance of the first 

event of the predicted sample, fixing the learning and decay 

rate to the parameters generated from the prior sample (cprior 

and dprior), allowing only the scalar to fluctuate, a prediction 

of the predicted sample’s performance on the 2
nd

 event was 

obtained.  

This procedure was again repeated to generate predictions 

of performance on the 3
rd

 and 4
th

 event, by increasing the 

number of calibration events PPE used to generate learning 

and decay parameters from the prior sample and the event 

that PPE calibrated its scalar to before predicting the 

sample’s performance on the next event.  

Along with each of PPE’s prior-informed predictions, 

predictions of each sample’s performance on the 2
nd

, 3
rd

 and 

4
th

 event were generated using the individualized PPE 

procedure, calibrating up to the event preceding the one 

being predicted (e.g., if predicting the 3
rd

 event PPE would 

be calibrated using data from up to the 2
nd

 event) and then 

generating a prediction for the remaining events.    

Results 

To evaluate the accuracy of PPE’s predictions, we 

calculated the root mean square deviation (RMSD) between 

the sample’s performance and both PPE’s individualized 

and prior-informed predictions at each event (2
nd

, 3
rd

, and 

4
th

). The R
2
, a common metric for model assessment was 

not computed, because we only examined the prediction 

accuracy of a single event – thus, R
2 

could not be computed. 

After the RMSD was calculated between each prediction 

and the sample’s performance on each event, the average 

RMSD between the sample’s performance and PPE’s 

individualized and prior-informed predictions was computed 

(Figure 1). 

Comparing the average RMSD between each of the 

model’s predictions and the samples’ performance on each 

event, we observe that there was little difference in the 

accuracy between individualized and prior-informed 

predictions on the 3
rd

 and 4
th

 event. A difference in the 

accuracy between the two methods of predictions emerges 

when predicting the performance of the 2
nd

 event given the 
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Figure 1.  The average RMSD and plus and minus the standard error of the mean of the mean (SEM) between the 

samples’ performance and the prediction of both PPE’s individualized  and prior-informed predictions.   

 

performance of the first event (Figure 1). The average 

RMSD of PPE’s individualized predictions increases 

dramatically, because calibrating to only the first event 

does not offer any information about the learning and 

decay rate of a sample. In comparison, the average RMSD 

of PPE’s prior-informed prediction of the 2
nd 

event 

increases only slightly, because it uses learning and decay 

rates informed by the prior data, allowing it to make an 

initial assumption based on prior data about the rate at 

which the sample will learn over time (Figure 2).  

Calibrations Given Inadequate Prior Data 

The first key question was whether PPE’s prior-informed 

predictions were as accurate as the predictions generated 

by PPE’s individualized approach when it had the 

opportunity to calibrate to three events before generating 

a prediction. To evaluate this question, we applied a 

paired t-test between the RMSD of each of PPE’s 

individualized predictions and the sample’s performance 

on the 4th event and the RMSD of each of PPE’s prior-

informed prediction and the sample’s performance on the 

3rd event.
3
 We then applied the same test using PPE’s 

individualized predictions and the sample’s performance 

on the 4th event and the RMSD of each of PPE’s prior-

informed prediction and the sample’s performance on the 

2nd event. Both t-tests found that the predictions of the 

sample’s performance on the 4
th

 event, generated using 

PPE’s individualized method, came from a different 

distribution than PPE’s prior-informed predictions of both 

the 3
rd

 (t(306) = -1.91, p < .05) and 2
nd

 (t(306) = -3.23, p 

< .001) event (Figure 1).  

                                                 
3
 All results were obtained using a Kolmogorov-Smirnov 

test, because the RMSDs were not normally distributed. 

These results reveal that PPE’s prior-informed 

predictions of the 2
nd

 and 3
rd

 events were less accurate 

than when PPE calibrated to the performance of three 

events before generating a prediction. As predictions are 

generated earlier and earlier a loss of some prediction 

accuracy is expected and although PPE’s prior-informed 

predictions were found to be less accurate as PPE’s 

individualized predictions of the 4
th

 event, the mean 

differences between the average RMSD between PPE’s 

prior-informed and individualized predictions was not 

found to be extremely large. 

Calibrations Given Adequate Prior Data 

Finally, another paired t-test was run between the RMSD 

of the two methods when predicting a sample’s 

performance on the 4
th

 event. No significant difference 

was observed between the accuracy of these two 

predictions when predicting the sample’s performance on 

the 4
th

 event (p > .05). This result is not surprising in light 

of the overall average of PPE’s free parameters used by 

these two methods as more data became available (Table 

1). As PPE calibrates to additional data, the differences 

between parameters used by the individualized and prior-

informed predictions begins to decrease.  

Discussion 

Our goal was to develop a method for PPE that could be 

used to generate predictions of a sample’s initial 

performance when little historical performance data is 

available to calibrate the model. We accomplished this by 

calibrating PPE to a sample of individuals who performed  
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Figure 2: Predicted error rates based on prior-informed and individualized parameter estimates of a single sample from 

the USNA Dataset. Using the first event to predict the second event (Cal1Pred 2 – red line), two events to predict the 

third event (Cal2Pred3 – green line) and three events to predict the fourth event (Cal3Pred4 – blue line). 

 

Table 1. The mean and standard deviation of the free parameters used to generate PPE’s prior-informed and 

individualized predictions of each event.  

 

a particular task and then generalizing the estimated 

learning and decay rates to a different sample of 

individuals who performed the same task. This method 

allows for performance predictions to be made earlier, 

which may be needed in some training and education 

scenarios, if waiting until data is available to fully 

calibrate the model is not practical, such as when 

educational opportunities are spaced far apart or only a 

few educational events will be completed.   

In our analyses, we first wanted to compare the 

predictions of initial performance generated using the 

individualized approach and a novel approach informed 

by the data of other students. A comparison of the average 

RMSD of these two methods revealed little difference in 

the performance predictions of the 3
rd

 and 4
th

 events. The 

greatest difference was seen in the accuracy of the 

prediction methods during the 2
nd

 event. Here, the benefit 

of using learning and decay rates from a prior sample was 

apparent.  

We also examined if PPE’s prior-informed predictions 

could maintain the same level of accuracy as those 

generated by the individualized approach on the 4
th

 event, 

after it had calibrated to three previous events. A paired t-

test found that there was a significant difference between 

the accuracy scores generated from PPE’s individualized 

method of the 4
th

 event and PPE’s prior-informed 

predictions of the 3
rd

 and 2
nd

 event. 

A decrease in accuracy of predictions of events early in 

the learning process would be expected, due to the greater 

uncertainty about the parameter values controlling the 

process. Still, the accuracy of PPE’s prior-informed 

predictions of the 2
nd

 event are a large improvement in 

comparison to those generated using PPE’s individualized 

approach.       

Comparing the accuracy of the two methods when 

predicting a sample’s performance on the 4
th

 event, after 

enough data were available for PPE to adequately 

calibrate its parameters, revealed no difference between 

the individualized and prior-informed predictions. As PPE 

calibrated to additional events the difference in the free 

parameters used by individualized and prior-informed 

predictions began to diminish leading to similar 

predictions, and decreasing the need to rely on learning 

and decay parameters generalized from prior data. 

Conclusion 

The notion that prior data can improve a model’s ability 

to make predictions is not a new. However, until now, 

PPE has relied solely on calibrating to historical 

performance data to determine the values for its free 

parameters, which has limitations when little historical 

performance data are available. As shown by the analyses 

presented here, the benefits of using prior data are 

substantial. Using prior data to inform predictions of a 

sample’s performance on the 2
nd

 event improved the 

prediction accuracy by 25% compared to predictions 

generated through PPE’s individualized approach. We 

find that the learning and decay parameters estimated 

using prior data add a significant benefit to the predictive 

ability of PPE, when used under conditions when little 

historical performance data is available and the 

individualized calibration approach is unlikely to find a 

set of parameters that will characterize the future 

performance of a sample. 

  PPE Free Parameters 

Prediction 

Method 

Learning Rate (c) Decay Rate (d) Scalar (S) 

2nd  

Event 

M(SD) 

3rd 

Event 

M(SD) 

4th 

Event 

M(SD) 

2nd  

Event 

M(SD) 

3rd 

Event 

M(SD) 

4th  

Event 

M(SD) 

2nd 

Event 

M(SD) 

3rd 

Event 

M(SD) 

4th 

Event 

M(SD) 

Prior-informed 

Predictions .68(.27) .58(.29) .52(.29) .10(.15) .11(.18) .09(.15) 4.15(4.77) 2.92(3.77) 2.65(3.80) 

Individualized 

Predictions .40(.17) .51(.32) .44(.29) .23(.08) .06(.17) .08(.19) .56(.15) 3.05(4.53) 2.81(4.65) 
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Besides using the only the aggregate learning and decay 

parameters from the prior data other approaches exist for 

combining existing data with an individual’s unique 

performance history in order to better calibrate parameter 

estimates for the individual. The hierarchical Bayesian 

method involves estimating population hyperparameters 

that define the distributions from which an individual’s 

parameters are drawn (MacKay, 2003). For example, 

PPE’s parameters (S, c, and d) may vary across 

individuals, forming normal distributions at the level of 

the sample. The mean and variance of the distribution of 

each parameter are its hyperparameters. This approach 

balances the tension between maximizing the fit of a 

model to an individual’s data, and maximizing the fit to 

the group’s data. The chief advantage of this approach is 

that gradually assigns greater weight to an individual’s 

own performance as more data becomes available. This 

enables a smooth transition from group-based parameter 

estimates to personalized estimates as the length of an 

individual’s training history increases. More work is 

needed in order to compare this to the approach explored 

in this paper. 

     In conclusion, methods which attempt to generate 

earlier performance predictions, such as the one discussed 

here, can provide instructors the ability to better gauge 

what the expected performance of sample might be 

compared to their expected performance given a 

particular training intervention. The ability to make these 

performance comparisons earlier and with less 

performance data from students has the potential to boost 

early learning and improve the overall educational 

outcome. 
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