
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Causal invariance guides inference of empirical integration rules

Permalink
https://escholarship.org/uc/item/1hn843hr

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Bye, Jeffrey K.
Cheng, Patricia

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hn843hr
https://escholarship.org
http://www.cdlib.org/


Causal Invariance Guides Inference of Empirical Integration Rules 

Jeffrey K. Bye (jbye@umn.edu) 
Department of Educational Psychology, 56 E. River Road 

Minneapolis, MN 55455 USA 

Patricia W. Cheng (cheng@lifesci.ucla.edu) 
Department of Psychology, 1285 Franz Hall 

Los Angeles, CA 90095 USA 
 
 

Abstract 
The present paper reports an experiment (N=254) testing two 
views of how reasoners learn and generalize potentially 
complex causal knowledge. Previous work has focused on 
reasoners’ ability to learn rules describing how pre-defined 
candidate causes combine, potentially interactively, to produce 
an outcome in a domain. This empirical-function learning view 
predicts that reasoners would generalize an acquired 
combination rule based on similarity to stimuli they 
experienced in the domain. An alternative causal-invariance 
view goes beyond empirical learning: it allows for the 
possibility that one’s current representation may not yield 
useable (i.e., invariant) causal knowledge –– knowledge that 
holds true when applied. Accordingly, because useable causal 
knowledge is the evident aspiration of causal induction, this 
view  posits that deviation from causal invariance is a criterion 
for knowledge revision. The criterion shapes the empirical 
functions learned and retained. A discriminating test is whether 
reasoners would re-represent interacting causes as a whole 
cause that does not interact with other causes, even when in 
their relevant experience all (pre-defined) causes in the domain 
interact. Our results favor the causal-invariance view. 

Keywords: Causal induction; causal invariance; integration 
functions; empirical learning; analytic knowledge. 

Introduction 
In the final paragraph of Thomas Kuhn’s (1962/2012) book, 
The Structure of Scientific Revolutions, he asks, “What must 
nature, including [we humans], be like in order that science 
be possible at all? … What must the world be like in order 
that [humans] may know it?” (p. 172). The cognitive-science 
side of that question is, “What must we humans assume the 
world be like, in order that we may know it?”  

The present paper addresses this question with respect to 
the causal world. In particular, we experimentally test the 
causal-invariance hypothesis (Cheng & Lu, 2017), that 
reasoners a) assume there are such things as causes –– 
potentially consisting of multiple interacting components –– 
that produce effects (Kant, 1781/1965), and b) (implicitly) 
aspire to formulate knowledge such that causes are invariant, 
in other words, do not interact with other causes –– and 
therefore this knowledge is “useable” in the sense that 
inferences from prior experiences hold in new situations with 
unknown other causes. 

An example from science may serve to illustrate the 
hypothesis. For the reason that the process involved is basic 

to cognition itself, the causal-invariance hypothesis should 
apply to both intuitive and scientific reasoning. A causal-
invariance assumption is embedded in Isaac Newton’s 
(1687/1713) law of universal gravitation. The law states that 
the gravitational force between any two bodies is 
proportional to the product of their masses and inversely 
proportional to the square of the distance between them.  For 
any pair of objects, the gravitational pull between them is 
governed by, and only by, this inverse-square law, regardless 
of the existence and motion of all other objects. This 
invariance property enables the motion of any object due to 
gravity to be predicted by the vector sum (the causal-
invariance combination rule for vectors) of the gravitational 
pull on it from all other objects. Not all theories result in 
having this property that enables accurate prediction across 
different contexts, and theories that are more invariant are 
favored (Kuhn, 1962/2012; Woodward, 2000, 2010). 
Reasoners appear to aspire to maximize invariance. By 
different contexts with respect to an outcome, we mean 
situations that differ in the states of causes of the outcome 
that are present.  

The causal-invariance hypothesis is an extension of causal 
learning models that make the causal-invariance assumption 
(e.g., Cheng, 1997; Lu et al., 2008). The assumption takes the 
form of a function that decomposes the observed outcome 
(e.g., the orbit of the Moon) into inherently unobservable 
contributions from all its causes (e.g., the Earth, the Sun, 
etc.), each with an independent influence on the outcome, an 
influence that does not change depending on the influences 
of other contributing causes. Functions that specify how 
causes contribute to an observed outcome are often termed 
decomposition or integration functions. Numerous studies 
have shown that intuitive causal judgments involving causes 
of binary outcomes conform to models that make the causal-
invariance assumption better than those that do not (Cheng et 
al., in press; Griffiths & Tenenbaum, 2005; Park et al., 2022; 
see Lu et al., 2008 for a review). 

However, reasoners frequently encounter causes that show 
a deviation from expectation assuming invariance. Causes 
may interact to produce an outcome (e.g., two medicines 
interact to cause a side effect). We report an experiment 
showing that, to reconcile aspiration with reality — “causal 
invariance as ideal” with “causal invariance as fallible default 
assumption” — reasoners apply the causal-invariance 
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assumption to interacting causes as a single unit, shifting the 
level of representation to a “whole cause” to preserve the 
aspiration toward useable causal knowledge.  
 
The causal-invariance view  
A basic tenet of cognitive science is that our perceptions and 
conceptions of reality are our representations, formulated in 
an infinite search space of possible representations (Fodor & 
Pylyshyn, 1981; Kant, 1781/1965; Kuhn, 1962/2012). The 
issue of under-determination pervades cognition (Atlas, 
2005): in causal inference, multiple causal hypotheses can 
explain any observed pattern of events.  Cheng and Lu (2017) 
proposed that searching in an infinite space with a necessarily 
limited set of candidate hypotheses requires a signal to know 
when to look outside one’s current candidate set, to formulate 
or reformulate concepts and variables. 

Because unknown or unobserved background causes of an 
outcome can occur, and may do so differently across 
contexts, this view posits that one such signal would be 
deviation from causal invariance --the unchanging operation 
of a causal mechanism -- when one applies causal knowledge. 
Because contexts may differ in background causes, a reasoner 
who applies causal knowledge inherently assumes as a 
default that a cause inferred from a learning context is 
invariant across the learning and application contexts.   

If invariance is a default assumption of transfer, then 
reasoners must also have means of detecting deviation from 
invariance, as a signal to revise. This signal requires 
knowledge of causal-invariance functions, that is, knowledge 
of how causes of an outcome would combine their influences  
if each causal mechanism operates unchanged in the 
presence of other causes: One cannot know whether an 
observed outcome indicates a causal interaction unless one 
first knows what outcome would mean “no interaction”. Such 
knowledge is analytic rather than empirical (cf. Hume’s, 
1739, “relation between ideas” and “matters of fact”; cf. 
Shepard’s, 2008, distinction between logic and mathematics 
on one hand and empirical science on the other). Experience 
tells us how specific forces do combine their influences, but 
not how their influences would combine if the causes operate 
invariantly. Analytic knowledge is justified by reason: in the 
case of causal-invariance functions, by what logically follows 
from the “sameness of the causal influences” across contexts 
(for examples of work on probabilistic causal-invariance 
functions, see Cheng, 1997; Cheng et al., in press; Park et al., 
2022). Empirical knowledge, by contrast, is justified by 
experience/observations, and transfer based on empirical 
knowledge is justified by similarity between the 
observations. 

The causal invariance view also incorporates a part-whole 
distinction for the level of variable representation. The 
reasoner’s aspiration is to formulate a “whole” cause 
variable that is assumed to apply invariantly from the learning 
to application context. Whole causes may be elemental or 
complex. Complex causes consisting of interactive 

components/parts (Novick & Cheng, 2004) are common. 
Playing a guitar chord, for example, requires a conjunction of 
finger placements and strumming. The components are 
individually insufficient but necessary parts of a collectively 
sufficient “whole” cause of the outcome (cf. Mackie’s, 1974, 
INUS condition).  

Whole causes—whether elemental or complex—are 
assumed to apply invariantly, until a deviation from the 
expected invariance prompts a need for knowledge revision.  
Revision involves changing the representation (see examples 
discussed in Cheng & Lu, 2017; Cheng et al., in press; Lien 
& Cheng, 2000; Park et al., 2022). A musician would 
typically play the F major chord on multiple guitars using the 
same configuration of finger placements for that chord (the 
interactive components represented as a complex whole that 
is denoted by a single variable, ‘F major scale’), and assume 
that the configuration would produce the same set of musical 
notes across guitars. A flat note, however, a deviation from 
this default, provides a signal to revise the whole cause to 
include standard tuning as an additional component.  

Generalization of integration functions: A test of 
two hypotheses  
Previous research that studied integration functions has 
focused on the role of experience at two levels: fitting an 
adopted function to data and learning a function based on data 
(i.e., empirically). At the former level, the function is fixed 
and only weights can be learned based on data (e.g., the 
additive function in Rescorla & Wagner, 1972; the logistic 
function in logistic regression; the noisy-OR/causal-
invariance function in Buehner et al., 2003). At the latter 
level, reasoners induce from data various empirical 
integration functions that describe how given causal 
variables combine to produce an outcome (e.g., Beckers et 
al., 2005; Lovibond et al., 2003; Melchers et al., 2004). Work 
at this level assumes fixed, pre-defined variables as input to 
the learning system, with the goal of learning an integration 
function that minimizes prediction error in terms of these 
variables, and notably does not include any analytical notion 
of causal invariance. 

The causal-invariance view incorporates empirical 
learning but proposes a third, hierarchically higher level, at 
which analytic knowledge of causal-invariance functions is 
applied to whole causes. The empirical-function learning 
system works well to fit a function to the observed data –– 
but without the analytic level, when faced with new 
combinations of stimuli, this system would have to base 
generalization on the acquired empirical function and 
similarity between test and familiar stimuli.  

To test the empirical-function learning hypothesis against 
the causal-invariance hypothesis, we designed an experiment 
requiring reasoners to spontaneously distinguish between 
analytic and empirical knowledge of integration functions, 
with the goal of testing whether they apply the respective 
functions appropriately to their encoded whole causes and 
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interactive parts. Participants observed episodes in a fictitious 
scenario involving candidate causal stimuli, some of which 
were paired with the target binary outcome.  

The experiment manipulated the integration function 
generating the outcome-frequency patterns: the scenario 
contained candidate causes that either 1) produce the 
outcome only by interacting with another candidate (the 
Conjunctive condition implementing a conjunctive-
integration function) or 2) always independently produce the 
outcome, that is, are causally invariant across the presence or 
absence of other candidate causes (the Elemental condition 
implementing a disjunctive-integration function). (See Figure 
1 for trials in the two conditions.)  We measured transfer of 
the respective empirically learned integration functions to 
combinations of novel stimuli and to novel combinations of 
old stimuli, all within the familiar learning domain.   

Both the empirical-function learning and causal-invariance 
hypotheses predict that participants will empirically learn 
whether causes obey conjunctive- or disjunctive-integration 
functions, depending on their condition’s learning data. 
However, the two views differ in their predictions for novel 
combinations involving conjunctive causes. 

Importantly, the previous literature embodying the 
empirical-function learning view (e.g., Beckers et al., 2005; 
Lovibond et al., 2003; Melchers et al., 2004) does not make 
explicit predictions for combinations involving conjunctive 
causes, as they do not test or address such a scenario. If 
predictions are based solely on the learned empirical 
functions, without causal invariance as an aspiration, then 
reasoners would continue to apply the empirically-learned 
function (conjunction) if they generalize that function; and if 
it does not, then it could either withhold judgment or resort to 
the base rate of the outcome. This ambiguity in prediction is 
implicit in the literature, and we return to this below. 

By contrast, causal invariance predicts that a conjunctive 
cause would combine invariantly (disjunctively) with non-
causes or other whole causes. In other words, the ‘whole 

cause’ representation, consisting of interacting parts, is 
assumed to obey invariance at the whole-cause level. 
Reasoners would thus apply the disjunctive-integration 
function to a conjunctive cause in combination  with other 
whole causes and/or non-causes, even though in their 
experience all causes in that domain are conjunctive, not 
disjunctive. This transition away from the empirically-
learned conjunction to disjunction highlights the role of 
analytic knowledge (justified by reason rather than 
experience).  

Method 
Participants  
Participants were recruited through Prolific (in the US) and 
paid $8 USD for participation (approx. 40 mins). We 
estimated our targeted sample size in a preregistered power 
analysis (https://osf.io/35z4c) used for our previous study 
with similar measures (Bye et al., 2021). Of the participants 
based on our preregistered target, 254 passed cover-story 
comprehension checks and were randomly assigned to either 
the Conjunctive or Elemental condition. 

Materials 
The experiment was conducted using a Qualtrics online 
survey with a cover story, learning trials, attention checks, 
memory checks, and transfer questions. 
 
Cover Story Participants were told to play the role of a 
medical researcher trying to determine whether or not their 
company’s mineral supplements cause stomachaches as a 
side effect. The instructions clarified that the outcome was 
probabilistic, to appear realistic in order to engage intuitive 
reasoning: when a supplement intake (an individual 
supplement or a combination of supplements) causes a 
stomachache, then at least 85% of patients show the effect, 
but when it does not cause a stomachache, none of the 
patients do. After reading the description, participants were 

Figure 1. Summary of all 31 learning trials for each condition. The dashed boxes highlight the intended ‘whole causes’, which 
were not differentially labeled or indicated in the experiment itself. 
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given 5 true-or-false questions to ensure they comprehended 
the key elements. For example, a true item was: supplements 
were taken either individually or in combination. A false item 
stated that the survey is a game (included to reinforce that 
participants should not suspend their intuitive reasoning). 
Only participants who passed the comprehension check were 
allowed to continue.  

Learning Stimuli and Attention Checks In both conditions, 
participants observed a total of 31 learning trials, one at a 
time, with each trial consisting of all patients taking either a 
single supplement or a combination of supplements, paired 
with the outcome. Stimuli were represented as a diagram with 
a corresponding verbal description of the trial, e.g., “Most 
patients got a stomachache after each intake of supplement 
M” (which we denote in-text as {M+}, where ‘+’ indicates 
the presence of stomachache) and “The patients did not get a 
stomachache after any intake of supplement O” (denoted 
{O-} where ‘–’ indicates the absence of stomachache). All 
diagrams contained pill-shaped supplement(s) with 
randomly-assigned colors and letter labels, accompanied by 
either a yellow “happy” face (no stomachache) or green 
“sick” face (stomachache). The supplement sets were 
identical across conditions (see all 31 trials in Figure 1). 

To demonstrate the different intended integration functions 
for each condition, the identical supplement sets yielded 
different patterns of outcomes (Figure 1). Specifically, in the 
Elemental condition, taking two non-causal supplements 
together was never paired with a stomachache, and any 
supplement set that included at least one causal individual 
supplement would be paired with stomachache. (i.e., 
disjunction). The Conjunctive condition was identical to 
Elemental except that supplements combine their effects in 
an interactive manner to bring about the outcome: no 
individual candidate cause on its own was paired with the 
outcome, and only specific combinations of two supplements 
were paired with the outcome. For example, when taken 
individually, supplements M and O were not paired with 
stomachache {M–, O–}; taking them in combination, 
however, was paired with stomachache {MO+}. Crucially, 
the interactive combinations were never paired during 
learning with any other stimuli, so participants received no 
empirical evidence for how complex causes combine, leaving 
this entirely open to participants’ own assumptions. 

Both conditions were designed to have 4 “whole causes” 
(see stimuli enclosed by dashed boxes in Figure 1), which we 
define as the minimal (most parsimonious) set of 
supplement(s) that produce a stomachache. For example, in 
the Elemental condition, MO+ does not represent a whole 
cause because it contains O in addition to whole cause M. In 
Conjunctive, the 4 whole causes (e.g., MO+) were the only 
supplement combinations that on their own cause 
stomachaches. To rule out the inference that more 
supplements per se causes stomachaches, both conditions 
presented trials with 3 or 4 supplements and no stomachache 
(each condition’s rightmost column in Figure 1). 

To promote learning, interwoven with the learning stimuli 
in each condition were 11 attention checks asking whether a 
certain supplement set would cause stomachaches if taken 
again by the same patients. To promote generalization of the 
integration function, 4 more attention checks asked 
participants to predict the outcome for 4 novel combinations 
of two individual supplements they had only seen separately 
so far; they were then shown the real outcome for their 
condition. After completing all learning stimuli and attention 
checks, participants were given a memory check. In both 
conditions, the criterion was correctly recalling the outcome 
for the 4 true whole causes and 2 non-causes. All participants 
were allowed up to 8 attempts to pass the memory criterion. 
 
Transfer: double decomposition Our primary transfer trials 
assessed both the learning and transfer of the respective 
empirical causal integration functions in each condition. 
(Additional transfer trials replicated items from Bye et al., 
2021.) Participants were tested with new stimuli similar to 
those in the learning trials (introduced as “new but related 
mineral supplements”) and asked to make predictions. 

The trial (see Figure 2, top) began with a pair of novel 
stimuli (supplements J and K) presented in combination with 
a familiar supplement combination O and P. All participants 
were presented with new clinical results showing that most 
patients had a stomachache after intake of all four 
supplements {OPJK+}. They were also shown that, as would 
be expected based on the learning trials, no stomachache 
followed the OP combination alone {OP–}. To focus on 
inference by removing memory effects, both groups were 
shown a summary of their learning trials (as in Figure 1).  

The first transfer question asked: based on the new clinical 
results {OPJK+, OP–}, would most patients from this study 
get a stomachache if they take supplements J and K together 
(JK?). As in Bye et al. (2021), participants responded first by 
answering either ‘Yes’ or ‘No’, and then indicated their 
confidence in their rating on a 5-point Likert-type item (see 
labels in Figure 3). Following preregistration, primary 

Figure 2. Schematic of the “double decomposition transfer” 
trial with novel supplements J and K. Top: first, participants 
predicted whether most patients would get a stomachache 
after taking the combination of novel supplements J and K 
(JK?). Bottom: after their prediction for JK, they saw the 
novel results {J–, JK+} and predicted whether most patients 
would get a stomachache after taking K alone (K?). 
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analyses treated ratings as dichotomous Yes/No, with 
confidence ratings included for descriptive purposes. 

After participants answered the first transfer question, they 
were then shown the results for that JK combination {JK+} 
as well as J alone {J–}. Analogously, they were then asked to 
predict the outcome for most patients from K by itself (K?), 
with the same response options. This question assessed 
whether the two groups did learn their respective functions. 

These questions, similar to others’ empirical-rule transfer 
questions (Melchers et al., 2004; Bye et al., 2021), both 
assessed how a reasoner decomposes an observed target 
outcome—the “total” outcome (e.g., {JK+} for the second 
transfer question) occurring in the presence of a known non-
cause {J–} and an unknown candidate (K?)—into the inferred 
influences from constituent causes. In essence, the questions 
asked: what explains the occurrence of the outcome? The key 
difference between the questions was whether the unknown 
candidate was, for the Conjunctive group, at the level of a 
hypothesized whole-cause (supplement pair JK) or an 
interactive component (individual supplement K) according 
to the causal invariance view. The Elemental group served as 
a control. The double-decomposition trial thus controlled for 
all extraneous variables, including prior experience, 
uncertainty regarding the novel stimuli, and question format. 

For the {J–, JK+, K?} item, both the empirical-function 
learning view and the invariance view predict transfer of each 
group’s respective learned integration rule to the novel 
stimuli. They thus both predict opposite responses for the 
Conjunctive and Elemental groups. Consider participants 
who learned their group’s integration rule and are willing to 
generalize it to novel items. For these Conjunctive 
participants, supplement K would be merely an interactive 
component that does not produce stomachache on its own. 
Both views therefore predict K– for Conjucntive.  In contrast, 
for Elemental participants, supplement K by itself must be a 
whole cause. Thus, both views predict K+ for Elemental. 

The views differ, however, in their predictions for {OP–, 
OPJK+, JK?}. Consider the causal view. Because this view 
predicts that causal invariance would be the default 
decomposition function at the whole-cause level regardless 
of the empirically acquired integration function, it predicts 
that both the Elemental and Conjunctive groups would 
respond that the patients would get a stomachache after 
taking JK by itself, despite their different empirical 
inferences about what constitutes a whole cause (individual 
supplements vs combinations of two supplements). More 
specifically, in order for the Conjunctive group to explain 
{OP–, OPJK+}, decomposition assuming invariance 
(disjunction) predicts that the JK combination must be a 
whole cause of stomachaches. Otherwise, there would be no 
whole causes at all in the OPJK combination to explain the 
occurrence of the outcome. The Elemental group would 
likewise use invariance as their decomposition function: 
based on their experience, they would infer that at least one 
of J or K (individually) is a whole cause of stomachache. 

By contrast, while the empirical-function learning view 
(like the causal-invariance view) predicts that Elemental 
participants would predict JK+ for the first transfer question 
(since JK must contain at least one elemental whole cause, 
namely, J, K, or both), this view predicts that Conjunctive 
participants would either generalize their conjunction rule (in 
which case {OPJK+} decomposes into conjuncts {OP–} and 
{JK–}), withhold judgment, or resort to the base rate of the 
outcome (most supplement pairs are non-causal). Thus, 
lacking the use of analytic causal invariance at the whole- 
cause level, this view predicts that Conjunctive participants 
will answer JK– (by either conjunctive decomposition or base 
rate) or not at all. Put another way: no purely empirically-
based view of causal induction would predict that the 
Conjunctive group would apply different decomposition 
functions in reply to the two transfer questions. Both 
questions concern decomposition involving  the same two 
novel supplements J and K, from the same domain, with 
identical relevant prior causal knowledge. It is the causal 
invariance view that explains how and why the Conjunctive 
group would apply disjunction at the whole-cause level (JK+) 
and conjunction at the interacting-parts level (K–). 

Procedure 
Participants were recruited through Prolific and forwarded to 
a Qualtrics survey. Only participants who correctly answered 
cover-story comprehension checks within 2 attempts 
continued to be randomly assigned to a condition. Only those 
who passed memory checks received final transfer questions. 
Participant recruitment was stopped after 254 participants 
had completed the study. 

Results 
All statistical analyses were conducted in R and followed the 
above preregistration, except as clearly noted below. All 
transfer items from Bye et al. (2021) replicated the earlier 
results, so for space we focus here on the novel items. 

For all 254 participants who passed the inclusion criteria, 
we used our preregistered criteria for categorizing 
participants as having inferred the intended integration 
function (disjunction or conjunction) in two ways, one 
stricter than the other. The 3 criteria consisted of 1) 
transferring the intended empirical function to novel items 
within the domain, and 2) agreeing with probe questions  
consistent with the intended empirical function, but 3) 
disagreeing with those consistent with alternative functions. 
Out of 126 Elemental participants, 108 satisfied all 3 criteria, 
and out of 128 Conjunctive participants, only 18 satisfied all 
3 criteria (indicative of the complexity of conjunction). Due 
to the relatively small subset of Conjunctive participants who 
passed all 3 criteria, we analyzed the data in two subsets: 
participants who passed All Criteria (as preregistered) and the 
larger subset who at least passed the most basic criterion of 
transfer. Note this transfer criterion, while less strict, is 
analogous to the criteria from previous studies (e.g., Lucas et 
al., 2014; Melchers et al., 2004). 

We analyzed the double-decomposition trials among the 
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All Criteria and Criterion 1 subsets (Figure 3). For each 
condition, the proportion of participants predicting a 
stomachache for supplement combination JK after observing 
{OP–, OPJK+} are shown in the top bar for the condition. 
Consonant with the “whole cause” prediction according to 
the causal-invariance view, participants meeting All Criteria 
(left side of figure) reliably predicted a stomachache for JK 
in both conditions (top and bottom of figure), with 77.8% of 
Conjunctive participants (binomial p = .031) and 100% of 
Elemental participants (p < .001). Similar results were found 
for the larger subset passing at least Criterion 1 (both 
binomial p’s < .001).  

The proportion of participants predicting a stomachache 
for K alone after being told that JK did lead to a stomachache 
but J alone did not {JK+, J–} are shown in the bottom bar for 
each condition in Figure 3. Here, strongly in support of the 
transfer of each group’s acquired integration function, 
participants qualitatively differed by condition: among those 
meeting All Criteria, 99.1% of Elemental participants 
predicted a stomachache for K alone (p < .001), while only 
5.6% of Conjunctive participants did (p < .001), which was a 
significant difference between conditions (Fisher’s exact test, 
p < .001, OR = 1132.62). (A similar difference between 
conditions was found for the Criterion 1 subset, p < .001, OR 
= 317.63.) 

For the Conjunctive condition, participants were 
significantly more likely to predict a stomachache for JK than 
for K alone (McNemar’s p’s < .001 for both subsets). By 
contrast, for the Elemental condition, there was no difference 
between participants’ predictions for JK and K (McNemar’s 
ps = 1 for both subsets). The switching of decomposition 
functions from disjunction at the whole-cause level (JK) to 
conjunction for interactive components (K) in the 
Conjunctive group but not the Elemental group is just as 

predicted by the causal invariance view, but not explained by 
any purely empirically-based view. 

Discussion 
Our results provide support for the causal invariance view, 
suggesting that the goal of constructing useable causal 
knowledge constrains human causal induction. Participants 
generalized empirical integration functions to novel stimuli 
in the same domain, yet they spontaneously defaulted to 
using causal invariance functions at their “whole cause” 
level, supporting a role for analytic knowledge as a guide in 
causal learning over and above empirical learning. 
Specifically, the Conjunctive group generalized the empirical 
conjunctive rule involving interactive components to 
decompose a novel supplement pair at the component 
(individual supplement) level––yet they applied invariance 
(i.e., disjunction) to decompose a novel four-supplement 
combination at the whole cause (supplement pair) level. This 
pattern of response is inexplicable by merely applying an 
empirical function with no distinction between the two levels 
(empirical-only view). Uncertainty due to lack of experience 
cannot explain why Conjunctive participants switched from 
generalizing their empirical function to applying invariance 
for the same supplement set featuring novel items. Our results 
corroborate our previous findings (Bye et al., 2021). 

In our view, the causal induction process that navigates the 
vast search space of representations is guided by analytic 
knowledge of causal invariance functions. This process 
embodies a rational solution to the causal-induction problem 
that humans face: in order that we may know how nature 
works, our induction process assumes that the causal world is 
composed of invariant causes, and its aspiration is to 
construct representations of such causes. 

Figure 3. Stacked Likert plots for percent of participants’ responses in each condition to the double-decomposition 
transfer items (Figure 2). The width of each colored bar represents the percentage of participants who answered Yes 

(purple) or No (orange), with the color intensity representing their confidence rating. The more purple (and the more the 
bars are shifted to the right), the higher the proportion predicting a stomachache, as represented by the x-axis labels. 
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