
UC Irvine
UC Irvine Previously Published Works

Title
Measurement invariance explains the universal law of generalization for psychological 
perception

Permalink
https://escholarship.org/uc/item/1hp1b9j9

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
115(39)

ISSN
0027-8424

Author
Frank, Steven A

Publication Date
2018-09-25

DOI
10.1073/pnas.1809787115
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hp1b9j9
https://escholarship.org
http://www.cdlib.org/


PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Measurement invariance explains the universal law of
generalization for psychological perception
Steven A. Franka,1

aDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525

Edited by Günter P. Wagner, Yale University, New Haven, CT, and approved August 15, 2018 (received for review June 7, 2018)

The universal law of generalization describes how animals dis-
criminate between alternative sensory stimuli. On an appropriate
perceptual scale, the probability that an organism perceives two
stimuli as similar typically declines exponentially with the differ-
ence on the perceptual scale. Exceptions often follow a Gaussian
probability pattern rather than an exponential pattern. Previous
explanations have been based on underlying theoretical frame-
works such as information theory, Kolmogorov complexity, or
empirical multidimensional scaling. This article shows that the
few inevitable invariances that must apply to any reasonable
perceptual scale provide a sufficient explanation for the univer-
sal exponential law of generalization. In particular, reasonable
measurement scales of perception must be invariant to shift by
a constant value, which by itself leads to the exponential form.
Similarly, reasonable measurement scales of perception must be
invariant to multiplication, or stretch, by a constant value, which
leads to the conservation of the slope of discrimination with per-
ceptual difference. In some cases, an additional assumption about
exchangeability or rotation of underlying perceptual dimensions
leads to a Gaussian pattern of discrimination, which can be under-
stood as a special case of the more general exponential form. The
three measurement invariances of shift, stretch, and rotation pro-
vide a sufficient explanation for the universally observed patterns
of perceptual generalization. All of the additional assumptions
and language associated with information, complexity, and empir-
ical scaling are superfluous with regard to the broad patterns of
perception.

scaling patterns | categorization | sensory information | animal behavior |
probability theory

The probability that an organism perceives two stimuli as sim-
ilar typically decays exponentially with separation between

the stimuli. The exponential decay in perceptual similarity is
often referred to as the universal law of generalization (1, 2).

“Generalization” arises because perceived similarity may de-
scribe recognition of a general category. For example, two
circles may have different sizes, colors, and shadings. Perceived
similarity arises from the generalized perception of “circle” as a
category.

“Universal law” arises because many empirical observations
fit the pattern for diverse sensory modalities across differ-
ent species. Typical exceptions take on a Gaussian probability
pattern for perceived separation (3).

Both theory and empirical analysis depend on the definition
of the perceptual scale. How does one translate the perceived
differences between two circles with different properties into a
quantitative measurement scale?

There are many different suggestions in the literature for how
to define a perceptual scale. Each of those suggestions develop
very specific notions of measurement based, for example, on infor-
mation theory, Kolmogorov complexity theory, or multidimen-
sional scaling descriptions derived from observations (1, 2, 4).

I focus on the minimal properties that any reasonable per-
ceptual measurement scale must have rather than on detailed
assumptions motivated by external theories of information, com-
plexity, or empirical scaling. I express the minimal properties as
simple invariances.

I show that a few inevitable invariances of any reasonable
perceptual scale determine the exponential form for the univer-
sal law of generalization in perception. All of the other details
of information, complexity, and empirical scaling are superflu-
ous with respect to understanding why the universal law of
generalization has the exponential form.

I also show that, when the separation between stimuli depends
on various underlying perceptional dimensions, it sometimes
makes sense to assume that the perceptual scale will also
obey exchangeability or rotational invariance. When that addi-
tional invariance holds, the universal law takes on the Gaussian
form, which I show to be a special case of the general expo-
nential form.

Basic Problem and Notation
Chater and Vitányi (ref. 2, p. 346) state the law as “the prob-
ability of perceiving similarity or analogy between two items, a
and b, is a negative exponential function of the distance d(a, b)
between them in an internal psychological space.”

Let the notation P(Rb |Sa) describe the probability of a pos-
itive response, Rb , to the event b, given an initial stimulus, Sa ,
by the event a . A positive response expresses the perceived sim-
ilarity of b to a , which may also be thought of as expressing the
generalization that b and a belong to the same category.

The goal here is to understand how the perceived similar-
ity of b to a , observed as Rb |Sa , translates into a continuous
psychological measurement scale, Tb|a , so that

P(Rb |Sa)≡ f (Tb|a) [1]

for a suitably defined mapping Rb |Sa 7→Tb|a and probability dis-
tribution function, f . We seek the characteristics of the mapping
and the associated function, f .

Significance

When an animal is presented with two stimuli, it may consider
them similar or different. Similarity often expresses a general-
ized notion of a category, such as two circles with different
sizes, shadings, and colors both being circles. In many studies,
perception of similarity declines exponentially with the mea-
sure of separation, a pattern often called the universal law of
generalization. This article shows that the universal exponen-
tial law can be explained by simple properties any reasonable
perceptual scale must have. A shift of the scale by a con-
stant amount, or a stretch by a constant amount, should not
change the animal’s ability to perceive generalities or differ-
ences. Those invariant measurement properties by themselves
explain why perceived generalization follows an exponential
pattern.
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Invariant Properties of Measurement
There are many different suggestions in the literature for how
to define a perceptual scale, Tb|a (1, 2, 4). I focus on the min-
imal properties that any reasonable measurement scale must
have, rather than on detailed assumptions motivated by exter-
nal theories (5–7). I express the minimal properties as simple
invariances. Before listing the invariances, consider two simple
examples.

First, suppose we wish to analyze the perception of tempera-
ture for event b, given that event a is at the freezing point for
water. If we choose to measure the temperature on the Cel-
sius scale, then Ta|a = 0 and Tb|a =C . It would make sense to
assume that perceptual generalization would be identical if we
assigned numerical values on a Fahrenheit scale, T̃ , which we
obtain by T̃b|a = 32 + 1.8Tb|a .

Second, suppose we wish to measure the perception of sep-
aration between two potentially dangerous prey items, such as
noxious butterflies (4, 8). We begin by exposing a noxious but-
terfly, a , to a predator. After the predator tastes butterfly a , we
then expose butterfly b to the same predator. For the exposure to
b, we measure the tendency for the predator to attack the poten-
tial prey item. Data may include the directions of movements
relative to the butterfly, attacks per minute, or the probabil-
ity of attack over repeated experiments. We now wish to find
a scale, Tb|a , that is a function of the data we have for the
response to various butterflies, b, relative to an initial stimulus
butterfly, a .

However we choose that scale, it makes sense to suppose that
the information in Tb|a about the perceptual separation between
b and a is the same as the information in α+βTb|a for some
constants α and β. If that were not so, it would be equivalent to
saying that the analogs of Celsius and Fahrenheit scalings would
provide different information about the perceptual separation
between the two butterflies.

For example, we may wish to set Ta|a = 0 to describe a zero
separation between identical butterflies, or we may wish to let
Ta|a express the amount of the baseline predator perception of
the separation between identical stimuli. In either case, our scale
T should contain the same information with respect to the prob-
abilities of response given in Eq. 1. Here, similarity associates
with the probability of avoidance response. We may also wish to
express our scale standardized with respect to a unit response,
Tb∗|a , to b∗, or with respect to a unit response, Tb†|a , to b†. The
constant multiplications required to transform between units of
measure should not alter the information in the perceptual scale,
T , about the probabilities of response.

Affine and Rotational Invariance
In other words, the way in which we measure perceptual distance
between two stimuli should be independent of a shift and stretch
of the scale by constant values. Formally, the scale should be shift
invariant with respect to any constant, α, such that

f (Tb|a) = kαf (Tb|a +α) [2]

for some constant of proportionality, kα. The scale should also
be stretch invariant to any constant, β, such that

f (λTb|a) = f (λββTb|a), [3]

for which I show below that λ=λββ is an invariant constant that
is conserved in any particular application, set by the fact that 1/λ
is the average value on the perceptual scale for positive responses
to varying events b for a given stimulus a .

Thus, the scale Tb|a has the property that the associated prob-
ability pattern is invariant to the affine transformation of shift
and stretch, Tb|a 7→α+βTb|a . I will show that affine invariance

by itself determines the exponential form for the universal law of
generalization in perception.

In some cases, it makes sense to assume that the percep-
tual scale should also obey rotational invariance, such that the
Pythagorean partition

Tb|a = y2
1 (θ) + y2

2 (θ) [4]

splits the measurement into components that add invariantly to
Tb|a for any value of the parameter θ. The invariant quantity
Tb|a defines a circle in the (y1, y2) plane with a conserved radius
Rb|a =

√
Tb|a that is invariant to θ, the angle of rotation around

the circle, circumscribing a conserved area πR2
b|a =πTb|a .

Rotational invariance partitions a conserved quantity into
additive components, for which the order may be exchanged
without altering the invariant quantity. When rotational invari-
ance holds, the universal law takes on a Gaussian form, which we
will see to be a special case of the general exponential form.

The following sections develop the three invariances of shift,
stretch, and rotation. I show that essentially all of the common
properties of perceptual generalization follow from these invari-
ances. The analysis here briefly summarizes the detailed devel-
opment described in Frank (9). The novelty in this article con-
cerns the simple understanding of widely observed psychological
patterns.

Shift Invariance Implies the Exponential Form
To simplify notation, denote the perceptual scale by x ≡Tb|a and
the associated probability distribution by f (x )≡ f (Tb|a). If we
assume that the functional form for the probability distribution,
f , is invariant to a constant shift of the perceptual scale, x +α,
then by the conservation of total probability∫

k0f (x ) dx =

∫
kαf (x +α) dx = 1 [5]

holds for any magnitude of the shift, α, in which the proportion-
ality constant, kα, changes with the magnitude of the shift, α,
independently of the value of x , to satisfy the conservation of
total probability.

From this equality for total probability, which holds for any
shift α by adjustment of the constant, kα, the condition for x ≡
Tb|a to be a shift-invariant scale is equivalent to

f (x +α) =καf (x ), [6]

in which κα depends only on α and is independent of x . Because
the invariance holds for any shift, α, it must hold for an infinites-
imal shift, α= ε. We can write the Taylor series expansion for an
infinitesimal shift as

f (x + ε) = f (x ) + εf ′(x ) =κεf (x ),

with κε = 1−λε, because ε is small and independent of x , and
κ0 = 1. Thus,

f ′(x ) =−λf (x )

is a differential equation with solution

f (x ) = ke−λx , [7]

in which k is determined by the conservation of total probabil-
ity. When the perceptual scale ranges over positive values, x > 0,
then k =λ.

The assumption that a perceptual scale must be shift invari-
ant is, by itself, sufficient to explain the exponential form of the
universal law of generalization.

9804 | www.pnas.org/cgi/doi/10.1073/pnas.1809787115 Frank

http://www.pnas.org/cgi/doi/10.1073/pnas.1809787115


PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

The Exponential Form Implies Shift Invariance
The previous section showed that if the perceptual scale, x , is
shift invariant, then the exponential form of the universal law
of generalization follows. This section shows that if the univer-
sal law of generalization takes on the exponential form, then
the underlying perceptual scale must be shift invariant. Thus,
shift invariance is necessary and sufficient for the exponen-
tial form. Any assumptions about the perceptual scale beyond
shift invariance must be superfluous with respect to the expo-
nential form.

Begin with the assumption of the exponential form in Eq. 7
and write the consequence of a shift of the scale x by α as

f (x +α) = kαe
−λ(x+α)

= kαe
−λαe−λx

= ke−λx

in which kα = keλα because the constant multiplier of the expo-
nential must be chosen to satisfy the conservation of total prob-
ability, in other words, to normalize the total probability to be
one. Thus, the exponential form implies shift invariance of the
perceptual scale, x .

Stretch Invariance and Rate of Perceptual Change
If we assume that the perceptual scale is defined for positive
values, x > 0, then the average value of λx is always one, because∫ ∞

0

λxf (x )dx =λ

∫ ∞
0

λxe−λxdx = 1.

Thus, for average value, x̄ , the value of λ is 1/x̄ . We can think of
x̄ as the average discrimination of various events, b, relative to
an initial stimulus, a , in which the set of events b corresponds to
a uniform continuum along the perceptual scale, x .

It makes sense to assume that the average discrimination
would not change if we arbitrarily multiplied our numerical scale
for perception, x , by a constant, β. The conservation of average
value and stretch invariance are equivalent, because

λ

∫ ∞
0

λββxe
−λββxdx = 1

when we allow λβ to adjust to satisfy the conservation of aver-
age value so that λ=λββ or, equivalently, we assume stretch
invariance of the scale, x ≡Tb|a .

The constant λ= 1/x̄ can be thought of as the slope or rate of
change in the logarithm of discrimination, because

log f (x ) =−λx .

Stretch invariance, or the conservation of average value, is suffi-
cient to set the rate of change in the logarithm of discrimination.
The average value of − log f (x ) is a common definition of infor-
mation or entropy and is related to many interpretations in terms
of information theory (4, 10).

Rotational Invariance and Gaussian Patterns
The scale, x , measures the perceptual difference between two
entities or events. In some cases, the total difference, x , depends
on the perceived differences along several distinct underlying
dimensions. With two underlying dimensions, we may write

x = z1(θ) + z2(θ).

For a particular value of x , the parameter θ describes all of the
combinations of the two underlying dimensions that add invari-

antly to x . If we let x = r2 and let the dependence of z on θ be
implicit, we can write the prior expression equivalently as

x = r2 =
√
z1

2
+
√
z2

2
,

which defines a circle with coordinates along the positive and
negative values of (

√
z1,
√
z2), with a constant radius r that is

rotationally invariant with respect to the parametric angle, θ.
Traditionally, one uses yi =

√
zi , so that the radius, r , of a sphere

has the familiar definition of a Euclidean distance

r2 =
∑

y2
i .

For each radial value, r =
√
x , we can write {yi(θ)} as the sets

indexed by the parameter θ for which the individual dimensional
measures combine to the same invariant radius. If the angles of
rotation with equivalent radius occur with equal probability or
without prior bias, then radial values are rotationally invariant
with respect to probability or prior likelihood.

I now show that rotational invariance leads to the Gaussian
pattern as a special case of the general exponential form. In the
exponential form derived in earlier sections, λx described the
stretch-invariant perceptual scale. To express that scale in terms
of a rotationally invariant radial measure, r , we note that x =
r2 and we let λ=πv2. Thus, we can write the stretch-invariant
incremental perceptual measure as

λdx =πv2dr2 = 2πv2rdr .

The general exponential form is

f (x ) dx =λe−λxdx = 2πv2re−πv2r2dr .

At a given radius, vr , if, by rotational invariance, all combi-
nations of values for the underlying measurement dimensions
occur without bias or prior information, then the total proba-
bility in a radial increment, vdr , is spread uniformly over the
circumferential path with length 2πvr .

A radial vector intersects a fraction of the total probability
density in the circumferential path in proportion to 1/2πvr .
Thus, the probability along an increment vdr of the radial
vector is

(1/2πvr)f (x )dx = ve−πv2r2dr = ve−λr2dr ,

invariantly with respect to the angle of orientation of the radial
vector. This expression is the Gaussian distribution, with r2 as
the squared deviation from the mean or central location and with
parameters commonly written as λ= 1/2σ2 and v = 1/

√
2πσ2

for variance σ2. The variance is simply the average value of the
squared radial deviations, r2 = x .

We can also write the Gaussian in terms of the standard
perceptual scale, x , as

g(x )d
√
x = ve−λxd

√
x .

When we consider the standard perceptual scale, x , with respect
to the incremental square-root scale, d

√
x , we obtain a Gaus-

sian. The incremental square-root scale makes sense when we
consider x as an aggregate measure of the sum of underly-
ing perceptual dimensions. Each dimension naturally takes on
a square-root scaling relative to the invariant total distance,
because of the Euclidean measure of squared distance as the sum
of squares along each dimension.

Discussion
Any reasonable perceptual scale must satisfy the simple affine
invariances of shift and stretch. I have shown that those invari-
ances are sufficient to explain the exponential form of the uni-
versal law of generalization. I have also shown that an additional

Frank PNAS | September 25, 2018 | vol. 115 | no. 39 | 9805



common invariance of rotation explains why some observed
patterns of generalization follow a Gaussian rather than an expo-
nential pattern. The Gaussian pattern is, in fact, a special case
of exponential scaling, when the scale is a squared Euclidean
distance over several underlying dimensions.

Previous explanations also generate the exponential pattern of
the universal law (1, 2, 4). The reason those explanations succeed
is that they include assumptions about shift invariance, which by
itself generates an exponential pattern. All of the other assump-
tions and language associated with those prior explanations
are superfluous with respect to the exponential form. Conclu-
sions about rate of change in discrimination typically associate
with an assumption about stretch invariance or, equivalently,
conservation of average value.

It is certainly true that additional assumptions will lead to
more precise predictions, which may then be tested to rule out
particular mechanisms. But those additional assumptions and
tests do not directly bear on the general exponential form itself.

I do not know of explicit prior explanations that unify the
Gaussian pattern with the universal exponential law. Such expla-
nations, if they exist, will generally reduce to the assumption
of rotational invariance. Again, additional assumptions or argu-
ments about particular underlying mechanisms are superfluous
with regard to the general pattern.

It is, of course, interesting to consider what underlying
perceptual mechanisms lead to the universal law. However,
almost certainly, there is no single mechanism that could
explain such a widely observed pattern. General patterns
require general explanations that apply broadly. The simple
invariances of meaningful measurement scales provide that
general explanation for the observed patterns of perceptual
scaling.
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