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The development of biological markers of aging has primarily fo-
cused on adult samples. Epigenetic clocks are a promising tool for
measuring biological age that show impressive accuracy across
most tissues and age ranges. In adults, deviations from the DNA
methylation (DNAm) age prediction are correlated with several age-
related phenotypes, such as mortality and frailty. In children,
however, fewer such associations have been made, possibly because
DNAm changes are more dynamic in pediatric populations as
compared to adults. To address this gap, we aimed to develop a
highly accurate, noninvasive, biological measure of age specific
to pediatric samples using buccal epithelial cell DNAm. We
gathered 1,721 genome-wide DNAm profiles from 11 different
cohorts of typically developing individuals aged 0 to 20 y old.
Elastic net penalized regression was used to select 94 CpG sites
from a training dataset (n = 1,032), with performance assessed
in a separate test dataset (n = 689). DNAm at these 94 CpG sites
was highly predictive of age in the test cohort (median absolute
error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was
characterized in additional cohorts, showcasing the accuracy in
longitudinal data, the performance in nonbuccal tissues and adult
age ranges, and the association with obstetric outcomes. The PedBE
tool for measuring biological age in children might help in un-
derstanding the environmental and contextual factors that shape
the DNA methylome during child development, and how it, in
turn, might relate to child health and disease.

DNA methylation | age | development | epigenetic clock | adolescence

Epigenetic age, based on CpG methylation and often referred
to as DNA methylation (DNAm) age, has emerged as a

highly accurate estimator of chronological age (1). A widely used
pan-tissue age estimator based on 353 CpG sites (hereon referred to
as the pan-tissue Horvath DNAm clock) was developed on DNAm

data of over 8,000 samples from 51 healthy tissues (1). This epigenetic
clock has been applied to many independent datasets, each
showing strong correlations with chronological age. Deviations
between DNAm age and chronological age, referred to as DNAm
age acceleration, are associated with several age-related health
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variables, with higher epigenetic age associated with an increase in
mortality, cognitive decline, and a decrease in time until death (2).
Although correlations between chronological age and DNAm

age, as measured by the Horvath clock, have been reported in
pediatric samples, a high degree of variability from chronological
age has been observed (3). The inaccuracy in predicting age in
pediatric versus adult populations is not surprising, as challenges
have been reported when extrapolating several adult-based bio-
markers to children (4). Furthermore, the rate of DNAm change
is greater in the pediatric age range compared to adulthood (5).
Thus, there is a need for an epigenetic predictor of age, specific
to pediatrics, to accurately detect deviations across populations
that may reflect developmental trajectories, risk for pediatric
disease, or certain environmental conditions that may accelerate
or decelerate biological development in children.
Taking advantage of a large collection of pediatric DNAm

profiles from buccal epithelial cells (BECs), we generated a tool
to estimate age using DNAm at 94 CpG sites specific to pedi-
atric buccal swab samples, referred to as the Pediatric-Buccal-
Epigenetic (PedBE) clock. As a predictor of age, we focused on
BECs because collection of this tissue is noninvasive, and thus
more feasible in pediatric populations, contains less cellular het-
erogeneity as compared to other accessible tissues, such as blood,
and has a high degree of DNAm stability (6–8). The utility of this
highly precise pediatric molecular biomarker has yet to be fully
explored; however, we anticipate deviations between pediatric
DNAm age and chronological age to be representative of devel-
opmental processes and/or other pediatric diseases, as they are
in adults.

Methods
Cohort Descriptions. Training and test dataset inclusion criteria consisted of
BEC Illumina Infinium450 (450K) or BEC Illumina InfiniumEPIC (EPIC) micro-
array DNAm data derived from typically developing individuals ranging
from birth to 20 y old. For the training and test datasets, samples were ex-
cluded if exact age in days (collection date − date of birth) was not available
or if predicted biological sex did not match with reported sex. We obtained
DNAm profiles of 2,778 samples from 16 independent cohorts for our
analyses (SI Appendix, Table S1); samples for datasets 1–8, 10–12, 15, and 16
were collected by our group, whereas datasets 9, 13, and 14 (9–25) were
downloaded from the Gene Expression Omnibus (GEO) online database (26).
All experimental procedures were conducted in accordance with institutional
review board policies at the University of British Columbia and Children’s &
Women’s Health Centre of British Columbia Research Ethics Board. Written
informed consent was obtained from a parent/legal guardian and assent,
where possible, was obtained from each child before study participation.
Further details regarding each cohort’s ethics, informed consent, and sample
processing can be found in SI Appendix.

We divided these data into a training dataset (datasets 1 through 7, n =
1,032, age range = 0.17 to 19.47 y) to generate the PedBE model and an

independent test dataset (datasets 8 through 11, n = 689, age range = 0.01
to 19.96 y) in order to report unbiased performance metrics. Dataset 9B was
an autism spectrum disorder (ASD) cohort and was used to evaluate whether
deviations from the predicted age may associate with a pediatric disorder,
and therefore these data were processed independently. We also included 3
non-BEC datasets, none of which were in the training or test data, to assess
the predictor accuracy in saliva (dataset 12, n = 65) and blood (datasets 13
and 14, n = 134 and n = 19, respectively). Finally, 2 datasets, not included in
our training or test analyses, were used to examine: 1) the accuracy of the
pedBE clock in adults (dataset 15, n = 248, age range = 25.5 to 51.4 y), and 2)
the association between obstetric outcomes and PedBE age acceleration in
infancy (dataset 16, n = 510, age range = 2.8 to 10.3 mo). Further dataset
specific details, including genomic DNA extraction methods, are provided in
SI Appendix.

DNA Methylation Data Processing. For all datasets, approximately 750 ng of
genomic DNA was bisulfite converted using the EZ DNA Methylation Kit
(Zymo Research, Irvine, CA). Next, ∼160 ng of bisulfite converted DNA was
processed using the 450K or EPIC array, according to manufacturer’s instruc-
tions (Illumina). Beta values (ranging from 0 to 1) were background subtracted
and color corrected using GenomeStudio software. Data were subsequently
processed using R statistical software (version 3.2.3). Cross-hybridizing probes,
probes that target polymorphic CpGs, and XY probes were removed (27, 28).
Additionally, we reduced our dataset to only probes that are represented on
both the 450K and EPIC array. Probes with a bead count of <3 in 5% of
samples as well as probes having a detection P value greater than 0.01 in
1% of samples were removed. Nonvariable probes, defined as those with
an interquantile range of ≤0.05, were also removed (29). Missing DNAm
data were imputed for remaining missing beta values (<1% of probes)
with the “impute.knn” function based on nearest neighbor averaging (30).
Data were normalized using a modified beta-mixture quantile (BMIQ)
method to adjust for the microarray probe-type design differences (1, 31).
We estimated BEC proportions using a previously described DNAm-
based method (7). For blood-derived DNAm datasets (datasets 13 and 14),
cell proportions were accounted for by predicting proportions using a com-
monly applied reference-based method (32, 33), where the top principal
components of these estimates were regressed out from the DNAm data. For
both the training and test data, ethnicity was not controlled for as availability
of this variable was limited; however, for datasets 9B and 16, genotyping
information were available and used to control for genetic differences in the
ASD and obstetric longitudinal analyses, respectively (see SI Appendix for
additional information).

Pan-Tissue Horvath DNAm Age. For all test (datasets 8 through 11) and non-
BEC datasets (datasets 12 through 14), data were processed using methods
as described above. The previously established pan-tissue Horvath DNAm
clock was performed using R statistical software with code supplied from
https://dnamage.genetics.ucla.edu/home.

PedBE Clock.Methods similar to the development of the Horvath DNAm clock
were used to create the PedBE clock (1). We employed an elastic net approach
with 10-fold cross-validation in the training dataset to empirically select
age-informative CpG sites. An independent test dataset was used to evaluate
and report accuracy metrics of the selected model. R code to generate PedBE
age is available online: https://github.com/kobor-lab/Public-Scripts/.

Results
Cohort Characteristics. We separated the 1,721 samples into 2
datasets: 1) a training dataset (n = 1,032, age range = 0.17 to 19.47
y), containing DNA profiles derived from BECs of typically de-
veloping individuals, evenly distributed across our selected age
range of 0 to 20 y old; and 2) a test dataset (n = 689, age range =
0.01 to 19.96 y) also including typically developing individuals,
constructed for the purpose of independently validating the pre-
dictor (SI Appendix, Table S1). We had a balanced sample of males
and females in both datasets (training: 48% male, test: 53.3%
male) but we note that due to a lack of appropriate information,
we were not able to account for possible ethnic differences. The
training and test datasets, along with all subsequently analyzed
datasets, were processed independently during all quality control,
filtering, and normalization steps.

Significance

DNA methylation is the most studied modification in human
population epigenetics. Its information content can be ex-
plored in 2 principal ways—epigenome-wide association studies
and epigenetic age. The latter likely reflects cellular/biological
age and works with impressive accuracy across most tissues. In
adults, it associates with various environments and health.
However, current epigenetic clocks are not very accurate in the
pediatric age range perhaps because DNA methylation changes
much faster in children. Addressing this crucial gap, we cre-
ated a precise tool to estimate DNA methylation age specific to
pediatric buccal epithelial cells. This tool has the potential to
become the standard reference for epigenetic studies broadly
relevant to child development across the spectrum from health
to disease.
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A Precise Tool to Measure Pediatric DNAm Age in BECs: The PedBE
Clock. Using the training dataset, we generated an unbiased
measure of pediatric DNAm age using elastic net regression,
which empirically selected 94 informative age-related CpG sites
(the PedBE clock). To validate this tool, we applied the PedBE
clock to the test dataset, revealing a correlation between chro-
nological age and pediatric DNAm age of r = 0.98 (P value ≤
2.2 × 10−16), with a test error (defined as median absolute
difference between DNAm age and chronological age) of 0.35 y
(Fig. 1). The difference between PedBE age and chronological
age in the test dataset was significantly correlated with that of
the pan-tissue Horvath DNAm age difference (r = 0.54,
P value ≤ 2.2 × 10−16); however, the PedBE clock had reduced
variation as compared to the Horvath clock (Horvath DNAm
age − age, median absolute difference = 1.73 y) (SI Appendix,
Fig. S1). Of the 94 CpGs, DNAm at 50 CpG sites increased and
44 decreased with chronological age. We found that CpGs in-
cluded in the PedBE clock were significantly depleted in open
sea regions of the genome (Monte Carlo simulations, false
discovery rate [FDR] ≤ 0.01), trended nonsignificantly toward
enrichment in CpG islands (Monte Carlo simulations, FDR =
0.17), and showed no significant enrichment in other annotated
gene features (SI Appendix, Fig. S2).
Notably, it was possible to obtain an equally performing pre-

dictor based on an entirely different set of CpGs in these data;
for example, by using the same elastic-net feature selection
approach as above, we found that a set of 392 CpG sites (none
of which overlapped with the 94 CpGs of the PedBE clock) to
have comparable accuracy in the test dataset (test error = 0.36,
r = 0.98; SI Appendix, Fig. S3A). Furthermore, the 392 CpG
sites were not found to be significantly enriched in any geno-
mic features tested; however, there was a trend toward de-
pletion in open sea regions (FDR = 0.12), similar to what we
observed for the PedBE model, as well as a slight trend toward
enrichment for intragenic regions (FDR = 0.18) (SI Appendix,
Fig. S3B).

PedBE Clock Age Prediction Was Highly Accurate across Longitudinal
Sampling. To further investigate the accuracy of the PedBE clock,
we took advantage of the longitudinal nature of test datasets 10
and 11, which had repeated measures separated by 6 mo to 2 y,
depending on the individual and study. As expected, after pre-
dicting PedBE age at each time point, all samples at time point 2
were estimated as being older than at time point 1. Additionally,
when estimating Horvath DNAm age in these samples, a larger
error was observed across both time points compared to the

PedBE clock (dataset 10: PedBE clock error = 0.43 y, Horvath
DNAm clock error = 3.8 y; dataset 11: PedBE clock error = 0.20 y,
Horvath DNAm clock error = 0.66 y), highlighting the precision of
the PedBE clock for the pediatric age range tested here (Fig. 2).

PedBE Age Deviation Associated with Obstetric Outcomes. The
PedBE clock was trained and tested on typically developing
children to best represent general developmental patterns. As
such, we expected that deviations from this estimate might serve
as a biomarker for altered developmental trajectories. Similar to
how the Horvath epigenetic clock has been investigated in adult
samples, we extracted the residuals from a linear model of PedBE
age regressed on chronological age to obtain the “age acceleration
residual” (referred to here as “PedBE age deviation”). In dataset
16 (n = 339, a longitudinal cohort with sampling at 3 mo and
9 mo), which was not included in either the training or test
datasets, we assessed whether PedBE age deviation was associated
with obstetric outcomes, including gestational age and birth-
weight adjusted for gestational age. We had a similar observa-
tion to longitudinal test dataset 10, where the PedBE clock was
more accurate than the Horvath clock in reflecting differences in
chronological time between the sampling intervals (SI Appendix,
Fig. S5). We found a significant positive association between
length of gestation and age deviation at 3 mo (Pearson’s r = 0.29,
P value = 4.0 × 10−5), which was relatively unchanged following
adjustment for estimated BEC proportions, biological sex, and
a composite score for genetic background represented by the
top 2 principal components of the same samples run on the
OmniExpress genotyping array (P value = 3.6 × 10−5) (Fig. 3 A,
Left). Furthermore, this effect was also observed at 9 mo, al-
though to a lesser extent and only statistically significant when
controlling for the covariates (P value = 0.006, r = 0.04) (Fig. 3 B,
Right). A similar, yet much weaker trend was observed using the
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Additionally, for dataset 10, individuals at time point one varied in age between
4 and 12 y. PedBE age was calculated for each individual at both time points.
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pan-tissue Horvath DNAm clock at 3 mo (Pearson’s r = 0.14,
P value = 0.05) but not 9 mo (Pearson’s r = 0.08, P value = 0.10).
We also tested whether birthweight (adjusted for gestational

age) was associated with PedBE age deviation but did not find
any significant associations at either 3 mo (Pearson’s r = 0.05,
P value = 0.50) or 9 mo (Pearson’s r = 0.11, P value = 0.07), and
neither association was significant following adjustment for
covariates.

Positive PedBE Age Deviation Was Associated with Autism Spectrum
Disorder.While the focus of this work was on developing a tool to
carefully assess BEC DNAm age in children, we also wanted to
begin exploring whether childhood disorders might associate
with deviations in pediatric DNAm age. Unfortunately, public
availability of BEC DNAm data for these valuable cohorts is
rare. However, dataset 9 is one such cohort that has publicly
available BEC DNAm from children affected with ASD. This
cohort included individuals with ASD and their non-ASD af-
fected siblings as controls (9). ASD has been characterized as a
pediatric disorder with an altered development trajectory and
has also been shown to have differential DNAm patterns as
compared to the typically developing group (TD) individuals.
We tested whether PedBE age differed in ASD-affected children
as compared to TD children in dataset 9B (subset of GSE50759,
age range: 1.2 to 20 y) (26). We assessed PedBE age deviation in
a cohort of 47 ASD cases and 34 TD individuals (dataset 9B)
while controlling for self-reported ethnicity, experimental batch,
and estimated cell proportions (7). We observed a significant
difference in PedBE age between ASD and controls (P value =
0.01), with ASD cases having a mean deviation of 0.37 y higher
than the TD group (Fig. 3B). We performed a sensitivity analysis
by retesting this association after removing the outlier in the TD
group and observed a stronger association in the same direction
(P value = 0.005, mean deviation = 0.38 y; SI Appendix, Fig. S5).
To further verify this association, we employed a nonparametric
propensity score-matching method (34) to attempt to reduce
any bias by ensuring the groups were balanced in terms of
covariate measures; specifically, estimated buccal cell proportion,

experimental batch, biological sex, and percent HapMap Central
European ancestry (see original paper for details) (26). Using this
approach, a sample of 17 ASD cases and 22 TD cases was
obtained and the difference remained significant (P value = 0.02,
mean deviation = 0.56 y). Furthermore, to address any concern
that familial status was influencing this result, we randomly re-
moved 1 individual from each sibling pair from our analyses.
The ASD and TD groups remained significantly different in terms
of age deviation (P value = 0.03, ASD = 47, TD = 21, median
deviation = 0.40 y). To account for unbalanced sample sizes be-
tween ASD and TD, we again performed propensity score
matching on this subset and observed a moderate difference be-
tween ASD and TD age deviation (P value = 0.04, ASD = 12,
TD = 16, median deviation = 0.56 y). Given the small group sizes
of these analyses, we emphasize cautionary interpretation of this
result and present these findings as strictly exploratory re-
quiring independent validation in additional samples.

PedBE Clock Age Prediction in Saliva, Blood, and Adult BECs. Al-
though we trained the PedBE clock in samples obtained exclusively
from BECs, we explored the performance in saliva and blood, both
of which are minimally invasive, commonly used tissues for epi-
genetic interrogations in human populations.
Saliva is a heterogeneous mixture of varying proportions of

BECs, white blood cells, amongst other cell types (7). We
assessed PedBE age in saliva samples from dataset 12 (n = 65,
age range = 6 to 13 y), which resulted in a moderate association
between predicted age using the PedBE clock and chronolog-
ical age (r = 0.50, error = 1.31 y, P value = 2.0 × 10−5; SI
Appendix, Fig. S6). However, it should be noted that these data
reported age in years rather than days, therefore reported
predictor performance was not as precise, potentially deviating
by up to 1 y.
In 2 (datasets 13 and 14) publicly available blood DNAm

datasets we assessed the performance of the PedBE clock with
and without correcting for blood cell type heterogeneity. In
dataset 13 (n = 134, age range = 1 to 17 y restricted to data from
control TD individuals 20 y and younger), PedBE age without
correcting for blood cell type variance led to a correlation of r =
0.79 and a median absolute error of 3.26 y, which was much
larger than the test BEC datasets. After statistically regressing
out the variance associated with blood cell type heterogeneity,
the correlation between predicted age and chronological age
was lower with a comparable degree of error (r = 0.60, error =
3.02) (SI Appendix, Fig. S7 A and C). In dataset 14 (n = 19, age
range = 2.3 to 10.8 y), the PedBE clock correlated strongly with
age on uncorrected data (r = 0.88, error = 1.89 y), but when
applied to cell type corrected DNAm data the correlation was
considerably lower (r = −0.27, error = 2.82 y; SI Appendix, Fig.
S8 A and C). Collectively, these findings suggested that DNAm
variance associated with blood cell type proportions improved
the accuracy of the PedBE clock when used in blood. For both
blood datasets 13 and 14, the pan-tissue Horvath DNAm clock
performed well (r = 0.96, error = 0.57 y; r = 0.95, error = 1.66 y,
respectively) on data prior to cell composition adjustment (SI
Appendix, Figs. S7B and S8B); however, similar to the PedBE
clock, a reduction in accuracy was observed when the pan-tissue
Horvath DNAm clock was applied after cell type correction
(dataset 13: r = 0.82, error = 1.29 y; dataset 14: r = −0.23, error =
5.69 y; SI Appendix, Figs. S7D and S8D). These observations
highlighted the effect of blood cellular heterogeneity on age
prediction in both the pan-tissue Horvath DNAm clock and
PedBE clock.
We also assessed the performance of the PedBE clock in adult

buccal samples. In dataset 15 (adult females, age range: 25.5 to
51.4 y), we observed a significant correlation between PedBE age
and chronological age (r = 0.72, P value < 2.0 × 10−16) with a
median absolute error of 1.40 y (SI Appendix, Fig. S9A). In
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Fig. 3. PedBE deviation was associated with gestational age at 3 and 9 mo
and individuals diagnosed with ASD in independent cohorts. (A) Dataset 16
is a longitudinal cohort with sampling at 3 mo (Left) and 9 mo (Right) of age
in the same individuals. (B) In dataset 9B (n = 81), PedBE age deviation equals
PedBE regressed onto chronological age, while controlling for sex, batch,
predicted buccal proportion, and ethnicity. A nonparametric propensity
score-matching method was applied to ensure the groups were balanced
regarding covariate measures.
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contrast, the pan-tissue Horvath clock consistently underestimated
DNAm age, as compared to chronological age, but had a similar
correlation value with chronological age (r = 0.66, P value < 2.0 ×
10−16) with a higher median absolute error (3.10 y) (SI Appendix,
Fig. S9B). Finally, the estimated PedBE ages and Horvath
DNAm ages were significantly correlated (r = 0.44, P value =
2 × 10−13; SI Appendix, Fig. S9C).

A Pediatric BEC DNAm Predictor Generated from All Available
Samples. Following a recently suggested approach to increase
the rigor of epigenetic clocks (35), we also investigated a model
based on the entirety of our samples (n = 1,721) (SI Appendix,
Fig. S10A). The correlation between the “all data model” and
the PedBE clock model was very high (r > 0.99; SI Appendix, Fig.
S10B). With this approach, we cannot report test accuracy but
aimed to compare the PedBE clock to a model established on all
samples to ensure our predictor was not compromised by the
reduced training dataset sample size. We employed the same
parameters as the initial predictor from the n = 1,032 training
data, but with all 1,721 samples included, and the number of
probes in this model was also 94 CpGs (SI Appendix, Table S2);
however, the overlap with this predictor and the PedBE clock
was only 64 CpGs (SI Appendix, Table S3 and Fig. S10C). The
genomic enrichment of the 94 CpG sites based on all data did
not perfectly reflect the enrichment of the PedBE sites: the 94
CpGs (all) were not significantly enriched or depleted for most
annotated gene features except for a nonsignificant trend toward
enrichment in north shores (SI Appendix, Fig. S10D).
Lastly, we examined whether the association between gesta-

tional age and PedBE age deviation was robust in the “all-sample”
94-CpG model. We observed nearly identical results as the
training model, where we found a significant association between
gestational age and PedBE age deviation at 3 mo (r = 0.27, P
value of correlation test: 1.0 × 10−4, P value obtained from linear
model while adjusting for covariates = 1.4 × 10−4) and a moderate
association at 9 mo (r = 0.08, P value of correlation test: 0.2, P
value obtained from linear model while adjusting for covariates =
6.2 × 10−4). Additionally, no significant association was observed
with birthweight adjusted for gestational age.

Discussion
Birth to late adolescence is a tremendously dynamic period of
development and growth, and an accurate molecular marker of
development or age, specific to this age, range has yet to be
established. We assessed DNAm profiles in BECs from 1,721
healthy individuals, ranging in age from 0 to 20 y old, and gener-
ated a predictor of age, specific to pediatric populations, using
weighted DNAm values at 94 CpG sites (the PedBE clock). We
characterized the PedBE clock in longitudinal data, different tis-
sues, an adult cohort, and importantly, in the context of obstetric
outcomes, finding that infants with a higher gestational age had
an older PedBE age. We also assessed PedBE age in children with
a neurodevelopmental disorder, ASD, which showed a higher
PedBE age than those considered to be typically developing.
Although in adults, positive DNAm age acceleration from the

Horvath pan-tissue clock has been associated with increased risk
for certain diseases, mortality, frailty, and other negative out-
comes (2, 36, 37), DNAm age acceleration in children may not
follow a similar pattern, in that accelerated age deviation could
potentially reflect positive outcomes. While definite evaluation
of these relationships awaits larger surveys, it is tempting to
speculate that age acceleration in pediatric samples may be an
indicator of progressive development through milestones, whereas
deceleration might be an indicator of delays in maturation.
The previously established pan-tissue Horvath DNAm clock

was created from prenatal samples to supercentenarians (1).
However, the variation in age estimates makes its application to
pediatric populations somewhat challenging. More accurate age

estimators can be constructed by focusing on a more limited
age range. For example, more accurate epigenetic age estimators
have been developed for gestational age based on cord blood
samples (38, 39). Our study similarly demonstrated that the
PedBE clock easily outperforms the pan-tissue estimator in BEC
samples from a pediatric population. It is not surprising that
previous predictors of age do not perform exceptionally well in
children, as this is a unique period of rapid change in DNAm
that is unlikely to mimic adult methylome dynamics (5). Given
the differences in the pace of developmental and age-related
changes across the life course, applying adult-based markers to
pediatric populations may not be an appropriate approach.
In addition, the Horvath DNAm clock is agnostic to tissue

type, which inevitably sacrifices some precision when estimating
age within any single tissue. Part of the reason for the increased
accuracy of the PedBE clock stems from building the predictor in
a single target tissue within a focused age range of 0 to 20 y old.
The specificity of the sample target may be viewed as a limita-
tion, as we have shown, making the predictor less robust to other
tissues. However, the loss of applicability to other tissues was
necessary as it allowed our predictor to reach the highest accu-
racy of any epigenetic clock to date. We believe that since age-
related DNAm has differential rates across tissues, the focus of a
single tissue type is needed for obtaining the highest estimate
accuracy possible. Additionally, BECs are very commonly used in
pediatric biomarker research, as well as populations from remote
communities, due to the fact that they can be obtained by a
noninvasive collection protocol (40, 41). Furthermore, BEC swabs
are less heterogeneous in terms of cell type population as com-
pared to saliva (6), further illustrating their utility as a tissue of
choice for pediatric DNAm studies.
Heterogeneous tissues, such as blood, can change in cell pro-

portion with age (42) and focusing on a more homogeneous
tissue, such as BECs, would reduce this source of confounding
when constructing a DNAm-based age predictor. The associa-
tion between PedBE age and chronological age was considerably
lower in the blood test datasets, understandably so, as this epi-
genetic clock was trained specifically on BEC samples. Interest-
ingly, when blood cell type composition was adjusted for in the
DNAm data prior to calculating PedBE age, the accuracy was
considerably lower than estimated age on cell type uncorrected
data for both the PedBE clock and the pan-tissue Horvath DNAm
clock. This is most likely because cell type proportions change over
time and therefore this variance is captured by the DNAm-based
age clocks, underscoring the intended purposes of the present tool
to be primarily applied in BEC samples.
Having established an epigenetic clock with great accuracy for

the pediatric age range from a single tissue, it will be interesting
to compare its associations with chronological age, environmental
variables, and developmental outcomes to that of epigenetic
clocks derived for the same age range from other single tissues.
We note that it is not only feasible that different tissues age at
different rates in children, but also that unaccounted factors likely
unrelated to the developmental process might contribute noise to
such predictors.
We also investigated the PedBE clock in adult BEC samples

and found that the PedBE clock and pan-tissue clock had similar
correlation values with age; however, the PedBE clock had a
lower median absolute error. Perhaps not unexpectedly, this
finding suggests that tissue-specific epigenetic clocks might have
a higher overall accuracy for the tissue they were trained in than
clocks trained on a tissue compendium, even if the training was
done for a different stage of the human life course. In our case,
even though the PedBE model was only trained on pediatric BEC
samples, it was still able to predict age in adult BEC samples with
a lower error than the pan-tissue Horvath DNAm clock.
As DNAm is strongly associated with age and tissue type, it

is not surprising that we note the overlap of only 1 CpG site
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(cg06144905) when comparing the Horvath pan-tissue clock sites
and the CpG sites used in the PedBE clock. This CpG site is
within the promoter region of the PIPOX gene which encodes an
enzyme that metabolizes sarcosine, L-pipecolic acid, and L-proline;
interestingly, circulating sarcosine decreases with age and is in-
creased with dietary restriction (43).
Since this epigenetic clock is unique to children, and the pan-

tissue Horvath clock has been extensively correlated to later life
age-related measures, we expect the PedBE clock may be cap-
turing developmental phenotypes related to growth. Furthermore,
we note that the performance of both the pan-tissue Horvath and
PedBE clock was more accurate closer to birth than in adoles-
cence. While it is possible that this feature was due to slight im-
balances in the adolescent age range in our datasets, it is tempting
to speculate that in part, it might be due to the dynamic nature of
the developing DNA methylome during adolescent stages, em-
phasizing the unique relationship between DNAm and development
over childhood.
The post hoc investigation into whether the PedBE CpGs

were of unique importance as compared to the remaining CpG
sites measured, was particularly interesting as we were able to
generate an equally accurate clock using 392 CpGs of which
none overlapped with the PedBE 94 sites. With this distinct 392-
CpG model, we also observed less accurate estimates in the ad-
olescent age range, perhaps suggesting that interindividual dif-
ferences in DNAm age may become more pronounced as children
get older; however, the smaller sample size in this age range is an
important limitation to note and additional cohorts are required to
further explore this. Nonetheless, the lack of the overlap in CpG
sites between the 392 model and the PedBE clock was insightful,
highlighting that the age-associated nature of the DNAmethylome
across sets of CpGs is sufficient to accurately predict age. We note
that both models had significant or close-to significant depletion
in open sea genomic areas but no strong significant enrichment
in any particular CpG-island features. Future work comparing the
specific nature of these CpGs and other epigenetic clocks would
be important for gaining a comprehensive understanding of the
methylome landscape in the context of the human life course.
Our results investigating the ASD cohort suggested that de-

viations between PedBE age and chronological age might be
associated with altered developmental trajectories and poten-
tially pediatric disorders. ASD is associated with altered de-
velopmentally related phenotypes, such as increased body
growth, head growth, and body weight, as well as accelerated
postnatal cortical development (44). We showed that individuals
with ASD had increased PedBE age deviation compared to con-
trols, consistent with advanced biological development. While the
exact mechanisms underlying this “acceleration” remain to be
determined, previous research indicates DNAm differences in

individuals affected by ASD (26, 45, 46), thus further emphasizing
the potential utility for DNAm as a biomarker in ASD. We note
that while we would have preferred to add additional in-
dependently ascertained datasets and conditions to our analysis,
the vast majority of published BEC association studies are not
publicly accessible, which constitutes a major limitation in the
field (47).
The association between PedBE age deviation with gestational

age was of interest, as it might intersect with other long-term
measures of child development. Length of gestation is a well-
established predictor of a range of child health outcomes, in-
cluding structural variation in the neonatal brain (48). Gestational
age was positively associated with PedBE age acceleration making
it tempting to speculate that this is related to positive association
between gestational age and brain maturation previously reported
for this cohort (dataset 16), that was independent of neonatal
birthweight. Thus, our study further supported the role of the length
of gestation in shaping variation in the neonatal DNA methylome
(39). In contrast, perhaps somewhat unexpectedly, birthweight
was not consistently associated with PedBE age deviation. Our
findings thus strongly hinted at a specificity of the PedBE clock,
which may reflect the distinct genetic and environmental factors
that influence gestational age and birthweight (49).
In conclusion, this study described a highly accurate molecular

measure of chronological age using DNAm obtained from BECs
in pediatric samples. To maximize the rigor, accuracy, and
objectivity of this tool we followed recent recommendations (35)
and compared a model based on all available data with the
PedBE clock. Overall, we found significant correlations between
the estimates, and demonstrated that both predictors had an
association with gestational age in a completely separate cohort
not contained in our test sample. While the utility of this tool as a
developmental metric remains to be explored, we envision that
by testing additional pediatric datasets, as they become available,
this tool will become important for evaluating the environmental
and contextual factors shaping child development, chiefly through
the DNA methylome, and how this in turn associates with health
and disease.
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