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ABSTRACT

We are developing an acoustic habitat-monitoring sensor network
that recognizes and locates specific animal calls in real time. In this
paper, we investigate the system requirements of such a real-time
acoustic monitoring network. We propose a system architecture
and a set of lightweight collaborative signal processing algorithms
that achieve real-time behavior while minimizing inter-node com-
munication to extend the system lifetime. In particular, the target
classification is based on spectrogram pattern matching while the
target localization is based on beamforming using Time Difference
Of Arrival (TDOA). We describe our preliminary implementation
on a Commercial Off The Shelf (COTS) testbed and present its
performance based on testbed measurements.

1. INTRODUCTION

Recent developments in integrated circuit, wireless communica-
tion and Micro Electro-Mechanical System (MEMS) technology
have allowed the construction of low-cost low-power small sensor
nodes with signal processing and wireless communication capabil-
ities [1]. These nodes can form distributed wireless sensor network
systems that could revolutionize diverse sensing applications. The
untethered densely distributed sensor network systems could en-
able non-intrusive micro-scale habitat monitoring that is hard to
realize through traditional instrumentation [2]. In this paper, we
describe the design and implementation of a wireless sensor net-
work that recognizes a specified type of animal calls and then lo-
cates the calling animals.

The fundamental task of our habitat monitoring system has
two parts. The first part is to determine whether observed animal
calls are of the specified type using their spectrograms. Each type
of animal call has its own characteristic spectrogram which is input
to the system. The classification of an observed acoustic signal is
determined by the maximum cross-correlation coefficient between
its spectrogram and the specified characteristic spectrogram [3].
The second part is to locate the calling animal when its call is
recognized. The system determines the target location by TDOA-
based beamforming [4]. Cross-correlation between waveforms of
the same signal recorded by two different sensors indicates TDOA
between those sensors. Given locations of multiple sensors and
TDOAs among them, the target location can be estimated using
least square method.

Besides the fundamental task of classification and localization,
the system has a goal of real-time in-network signal processing.
Observed acoustic signals are processed inside the network. High-
level information about target type and location becomes available
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for queries in a short time. Because communication is the primary
energy consumer in wireless sensor networks, in-network process-
ing is much more energy-efficient than transmitting all raw data to
a central node for off-line processing. In addition, we also try to
minimize the inter-node data transmission by data reduction and
compression.

The rest of the paper is organized as follows. Section 2 identi-
fies challenges of such a system and introduces tentative solutions.
Section 3 presents detailed system design. Section 4 describes ini-
tial implementation on a COTS testbed and its performance. Sec-
tion 5 discusses related work. Section 6 describes future work and
concludes this paper.

2. CHALLENGES

We face several challenges in constructing such a system.

The first challenge is the fine-grained time synchronization
across audio codecs of sensor nodes. In order to locate a target with
an error less than 3 cm, synchronization must be at least within 100
ps because the speed of sound is about 345 m/s. It is hard for a
traditional Internet time synchronization protocol such as NTP to
achieve such an accuracy in the wireless sensor network context.
We choose Reference Broadcast Synchronization (RBS) described
in [5]. Briefly, RBS synchronizes a set of receivers of a reference
broadcast, in contrast to traditional protocols in which a receiver
synchronizes with a sender. RBS achieves significantly better pre-
cision than traditional protocols. In our testbed, neighboring nodes
can be synchronized within 1.5 ps.

The second challenge is the real-time processing. Acoustic
signals are sampled at a rate of several KHz. Therefore it is too
time-consuming to conduct target classification and localization
whenever a new sample is obtained. We introduce staged event-
driven processing in order to achieve real-time behavior. Acoustic
data are processed in stages, starting with the most lightweight
stage. Data are moved to the next stage for more heavyweight
processing only when they pass the current stage of processing.

The third challenge is extending the lifetime of the battery-
powered system. Although in-network processing has avoided
transmitting raw data to a central database by processing data lo-
cally, the beamforming node still needs waveform data transmitted
from multiple sensor nodes. We apply data reduction and com-
pression before waveform data are transmitted to a beamforming
node. Data reduction lowers data volume by discarding irrelevant
information in the waveform data. Data compression encodes the
reduced waveform data in a more compact format.



3. SYSTEM DESIGN

This section describes the design details about the system architec-
ture, staged event-driven processing, and data reduction and com-
pression.

3.1. System architecture

All nodes have integrated capabilities of sensing, processing, and
communication. During the system initialization, nodes are orga-
nized into clusters. Clustering can be achieved automatically by
self-assembly [6]. The cluster head is for collaboration and central
data processing. All other nodes are for distributed sensing and
data preprocessing. Because the cluster head is much more heav-
ily loaded with data processing tasks than ordinary sensor nodes,
it makes sense for the cluster head to have more computational re-
source than ordinary sensor nodes. In addition, GPS is also useful
for the cluster head to provide time and location reference to the
rest of the network. Location of other nodes can be determined
iteratively given a group of reference nodes’ locations [7, 8]. The
automatic clustering and localization of nodes are currently not
implemented in our testbed.

3.2. Staged event-driven processing

All nodes continuously sample acoustic signals and buffer the last
several seconds of data. The whole data processing task is divided
into three stages. From the fastest to the slowest, they are sig-
nal intensity monitoring, target classification, and target localiza-
tion. Signal intensity monitoring is fast and runs all the time on the
cluster head. Target classification using spectrograms is triggered
only when the observed signal intensity exceeds the user-specified
threshold. Only when the animal call is classified as the specified
type, the cluster head estimates the target location using TDOA-
based beamforming. Staged event-driven processing saves time
and energy because unnecessary processing of irrelevant acoustic
events are avoided.

3.3. Datareduction

The cluster head uses data from sensor nodes only to compute
TDOAs for beamforming. Thus only time information in the data
is needed. We propose a data reduction scheme that reduces data
volume by discarding irrelevant information while retaining time
information in the data. It is based on the following observation.
Sample signs of a signal identify when the signal crosses zero
point, and thus contain most time information of the data. 1 This
simple scheme can be quite effective for a sufficiently long signal
sequence. Give a waveform a, we reduce it to b as follows:

+1 ifa; >0,
b; = . 1
{—1 otherwise. @

fori =1,2,..., N. Because each sample can be encoded into 1 bit,
a raw waveform with a sample size of n bits is reduced by a factor
of n. In addition, the reduced data can be further compressed us-
ing traditional techniques. We do not discuss data compression in
detail in this paper.

The above data reduction scheme catches zero-crossing infor-
mation of the raw waveform. Thus, the reduced waveform catches

IThiswas originally pointed out by Dr. R.E. Hudson in our discussion

the most significant frequency component in the raw waveform.
As long as the most significant frequency is from the target sig-
nal instead of the noise, the reduced waveform catches the arrival
time information of the target signal instead of the noise. There-
fore, strong noise must be filtered before data reduction is applied.
In our experiments, the TDOA computed using reduced filtered
waveforms and that using filtered waveforms are almost identical,
differing in only 1 sampling interval.

4. IMPLEMENTATION

In order to evaluate the system design, we implemented a proto-
type system on a COTS platform and measured its performance
in an out-door environment. Preliminary results show that staged
event-driven processing and data reduction are effective in realiz-
ing real-time target classification and localization.

4.1. Testbed

We selected COMPAQ iPAQ H3760 Pocket PC as the testbed node.
It has a built-in microphone. Its audio codec supports 8 KHz - 48
KHz sampling in signed 16-bit integer. Its 206 MHz StrongARM-
1110 CPU, 32 MB ROM and 64 MB RAM provide reasonable
resource for signal processing. In addition, we add an 11 Mpbs
orinoco PC card to each iPAQ. Thus each node has integrated sens-
ing, processing and communication capabilities. We chose the FA-
MILIAR distribution of Linux operating system [9] for the testbed.
The combination of COTS hardware and open-source operating
system makes a powerful and convenient development platform.
Unfortunately, iPAQ H3760 has no Floating Point Unit (FPU). All
floating-point computing is performed in software, which is about
10 times slower than in FPU. To overcome this difficulty, we im-
plement the Fast Fourier Transform (FFT) and cross-correlation
calculation completely in fixed-point arithmetic since they are in-
tensively used in classification and TDOA-based beamforming.

4.2, Client server model

A server runs on each sensor node. It continuously samples the
acoustic signal, time-stamps each Direct Memory Access (DMA)
data transfer from the audio codec, and buffers the last few sec-
onds of data using the audio server” technique described in [8].
When the server receives a data request with the specified starting
time and duration from the cluster head, it fetches the data from its
buffer according to the specification, applies filtering and reduc-
tion to the data, and then sends the data back to the cluster head.

A daemon runs on the cluster head. It continuously monitors
the average intensity for each short segment of signal. When signal
intensity exceeds the specified threshold, the daemon temporarily
stops signal intensity monitoring. The daemon then collects data
locally of the duration of the specified type of animal calls for clas-
sification. The classification first analyzes the spectrogram of the
observed waveform and then cross-correlates it with the specified
reference spectrogram. If the maximum cross-correlation coeffi-
cient exceeds a predefined threshold, the observed signal will be
classified as of the specified type, and the daemon will create one
client thread of data request for each sensor node. These threads
run concurrently. When all requested data are available, the dae-
mon locates the target using beamforming and then re-starts the
signal intensity monitoring.
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Fig. 1. (a) Spectrogram of observed frog call. (b) Reference spec-
trogram. (c) Their cross-correlation coefficients

4.3. System performance

We tested these mechanisms in an outdoor environment. To simu-
late the target, We played back several different types of frog calls
from a Harman/Kardon PC speaker. The performance metrics in-
clude the accuracy of classification and localization, the system
response time, and the reduction of data transmission.

Cross-correlation coefficients between spectrograms are com-
puted only with shifting along the time axis and only within the
bandwidth of the specified type of frog calls. We chose 0.5 as
the threshold for classification. The maximum cross-correlation
coefficient among different types of frog calls is always less than
0.35 in the experiment. With a signal-to-noise ratio (SNR) of 6
dB within the specified bandwidth, the maximum cross-correlation
coefficient between the observed frog calls of the specified type
and the reference spectrogram is at least 0.65. When SNR within
the specified bandwidth is higher than 6 dB, the system recognized
100% of the specified type of frog call and rejected 100% of other
types. Fig. 1 shows an observed spectrogram, the reference spec-
trogram and their cross-correlation coefficients.

When a sensor node receives a data request from the cluster
head, it fetches the requested data from its buffer, filters and re-
duces the data, and then sends them back to the cluster head. Fig.
2 shows filtering and data reduction applied to a raw waveform.
There is a very strong low-frequency noise caused by the wind in
the raw waveform. The noise of the wind is effectively filtered
without changing the waveform’s phase. The filtered data are fur-
ther reduced by a factor of 16 in the experiment because the raw
waveform samples are signed 16-bit integers.

TDOA is indicated by the lag of the maximum of the cross-
correlation between two waveforms. Fig. 3 shows the consis-
tency between TDOA by filtered waveforms and TDOA by re-
duced waveforms. In the experiment, these two TDOAS have a
difference less than 100 us, which corresponds to an error of dis-
tance difference of 3 cm. TDOA of a frog call between two sensor
nodes could be computed using segments of frog call waveforms
instead of using whole-length frog call waveforms. The segments
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Fig. 2. (a) Raw waveform with wind noise. (b) Filtered waveform.
(c) Reduced waveform segment

must be longer than their TDOA because the TDOA is supposed
to be the lag of the maximal cross-correlation of those segments.
We chose the segment length to be two time the maximal possible
TDOA among any sensor nodes in the cluster. The shorter the seg-
ment , the less data sensor nodes need to transmit. In addition, the
cross-correlation computation is faster for shorter segments.

For a system of NV sensor nodes, there are N — 1 non-linear
equations which relate the target location, the sensor locations, the
sound speed, and TDOAs. These equations are linearized using the
method described in [4, 10]. Given the sensor locations, the sound
speed, and TDOAs, the target location can be estimated using the
least square method. We did not use the constraint equation de-
scribed in [10] because we have not found an effective method to
automatically choose a meaningful solution from four roots of the
constraint equation. Instead, we deploy more sensor nodes to make
the least square estimation over-determined. Results of the exper-
iment show the effectiveness of the above beamforming method.
Fig. 4 shows the sensor geometry, three real target locations, and
their estimated locations. The estimation is more accurate when
the target is inside the convex hull of sensor nodes as compared to
other geometric relationships among the target and sensor nodes.

We measured the response time of several operations in the
system. Signal intensity within the bandwidth of the specified type
of frog calls is estimated for each block of 2 ms acoustic data. Sig-
nal intensity monitoring includes data fetching, data filtering and
intensity estimation. One iteration of signal intensity monitoring
takes only 78545 us, much less than 2 ms. Classification includes
spectrogram analysis and cross-correlation. The cross-correlation
is very time consuming. One classification operation takes 361+1
ms. Localization using beamforming includes data transfer from
sensor nodes, computation of TDOAs, and the least square estima-
tion of the target location. Computation of TDOAs is very time
consuming because it uses cross-correlation. One beamforming
operation for a cluster of 5 nodes takes about 500 ms. Therefore,
the type and location information can be available about 1 s after
a frog call occurs.
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Fig. 3. (a) TDOA using filtered waveforms. (b) TDOA using re-
duced waveforms

5. RELATED WORK

A sensor network architecture was proposed in [2] to address re-
quirements of monitoring the micro climate in a habitat. Our sys-
tem emphasizes monitoring animal calls. A method was described
in [3] for animal sound recognition by spectrogram correlation.
We use the same method to classify animal calls. In addition, we
use classification results to trigger localization and filter irrelevant
events. In [10], TDOA based beamforming algorithm was tested
with data collected by a synchronized wireless testbed of iPAQs.
This paper focuses on system design that enables low-power, real-
time realization of such algorithms.

6. CONCLUSION AND FUTURE WORK

This paper describes the design and implementation of a habitat
monitoring sensor network that classifies and locates targets in real
time. Experiments with the testbed in an outdoor environment vali-
date the system design. Staged event-driven processing effectively
enables the system to operate in real time. Data reduction effi-
ciently reduces the data volume by a factor of n, where n is the
sample size of raw waveforms.

Our next step is to test these mechanisms on a tiered platform
and directly measure energy saving of data reduction. We also
plan to investigate multi-target classification and localization in the
future.
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