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Abstract

Objective.—Deep brain stimulation (DBS) programming for movement disorders requires 

systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while 

avoiding side effects. DBS programming can be a time-consuming process and requires clinical 

expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe 

and evaluate an automated, closed-loop, and patient-specific framework for DBS programming 

that measures tremor using a smartwatch and automatically changes DBS parameters based on 

the recommendations from a closed-loop optimization algorithm thus eliminating the need for an 

expert clinician.

Approach.—Bayesian optimization which is a sample-efficient global optimization method was 

used as the core of this DBS programming framework to adaptively learn each patient’s response 

to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially 

to define a maximum safe amplitude, but we also implemented ‘safe Bayesian optimization’ to 

automatically discover tolerable exploration boundaries.
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Main results.—We tested the system in 15 patients (nine with Parkinson’s disease and six with 

essential tremor). Tremor suppression at best automated settings was statistically comparable to 

previously established clinical settings. The optimization algorithm converged after testing 15.1 ± 

0.7 settings when maximum safe exploration boundaries were predefined, and 17.7 ± 4.9 when the 

algorithm itself determined safe exploration boundaries.

Significance.—We demonstrate that fully automated DBS programming framework for 

treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by 

expert clinicians.

Keywords

closed-loop DBS; Bayesian optimization; intelligent systems; neuromodulation; wearable sensors

1. Introduction

Deep brain stimulation (DBS) surgery has become a standard treatment for neurological 

disorders such as Parkinson’s disease (PD) and essential tremor (ET), to ameliorate 

tremor when medications are insufficient. DBS significantly improves both symptoms and 

quality of life, however to achieve therapeutic benefit, stimulation often requires time 

consuming programming by an expert [1]. DBS devices enable considerable customization 

of stimulation parameters including contact configuration (cathode and anode selections), 

current amplitude, pulse width and frequency allowing for customization of stimulation to 

account for variations in electrode placement, differences in local anatomy, symptom type, 

and severity [2]. Typically, a programming session involves a trial-and-error evaluation of 

therapeutic response (clinical benefit and unwanted side effects) at numerous stimulation 

settings. This is often performed over several sessions, which can be a challenge for patients 

who live far away from specialty care. In addition, evaluation of clinical response can be 

challenging given the subjective nature of visual observation to determine if tremor and 

other motor symptoms are responding to stimulation. Therefore, designing objective markers 

of therapeutic response to DBS is needed. Recently DBS device innovations (eight-contact 

electrodes, current fractionation, widened pulse width range and anodic stimulation) have 

significantly expanded the parameter space making programming even more complex [3]. 

These limitations suggest a need for an automated and patient-specific DBS programming 

framework that facilitates DBS programming without requiring an expert clinician.

We previously presented an automated DBS programming framework using an exhaustive 

grid search-based sampling strategy that mimics heuristic clinical DBS programming [4]. 

Although this automated framework was effective in programming DBS devices, sampling 

similar settings for all patients using a grid-search sampling method is a suboptimal 

approach since each patient responds to DBS differently [5]. Moreover, the number of 

required samples to converge to an optimal DBS setting was high, and we hypothesize 

that more advanced sampling and optimization techniques could improve the process. 

Two recent studies have assessed the efficacy of a closed-loop optimization algorithm 

for DBS programming using external motion sensor-based motor assessments in patients 

with PD [6, 7]. The details of the proprietary algorithm have not been published and 

the system required presence of a clinician to manually change the DBS settings based 
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on algorithm recommendations and if side effects occur. In addition, the algorithm-based 

DBS suggestions have only been tested with monopolar stimulation settings which may be 

suboptimal for some patients.

In this study, we combined the knowledge from clinical decision-making strategies with 

Bayesian optimization, to develop an automated real-time DBS programming framework 

that enables sample-efficient and patient-specific DBS programming to simultaneously 

ameliorate tremor and avoid side effects. Bayesian optimization has been successfully 

adopted for developing closed-loop neuromodulation applications in the context of 

optimizing the experimental design with closed-loop real-time functional magnetic 

resonance imaging (fMRI) [8], optimizing electrical stimulation for seizure control [9], 

searching through a large transcranial alternating current stimulation parameter space based 

on relative judgment [10], and for predicting optimal DBS parameters using fMRI data for 

PD patients [11]. The authors in [12] introduced a semi-automated approach to optimize 

DBS parameters in PD patients for minimizing rigidity and provided preliminary evidence 

on the utility of using Bayesian optimization in determining optimal DBS parameters. In 

addition, Bayesian preference learning was used in [13] for identifying personalized optimal 

stimulation patterns based on the participant’s expressed preference for stimulation settings. 

The authors in [14] introduced a Bayesian adaptive dual control in a computational model of 

PD to reduce the beta power.

In addition, several recent studies explored DBS programming in closed-loop paradigm 

using tremor measurements. The authors in [15] investigated the use of isostable amplitude 

using computational models of ET patients to optimize DBS. Another study modeled the 

dynamics of patient tremor and their phase response curve to investigate the effect of phase-

locked DBS in tremor suppression and proposed a closed-loop phase tracking stimulation 

regimens [16]. Several studies explored the utility of surface electromyography (EMG) and 

acceleration in tremor prediction and the design of a simple on-off DBS controller in closed-

loop [17–21]. The authors in [22] used electrocorticography for sensing movement intention 

alongside with worn accelerometers and EMG sensors to deliver responsive closed-loop 

stimulation to treat tremor in a closed-loop fashion.

To the best of our knowledge Bayesian optimization with safety constraints has not been 

tested in the context of clinical DBS programming for tremor suppression. We hypothesized 

that implementation of a Bayesian optimization [23] algorithm for DBS programming for 

tremor suppression would have high efficiency (fewer samples than the grid search) and 

that safe programming (avoidance of uncomfortable side effects) can be achieved in an 

automated system using safe Bayesian optimization algorithm. We further provided clinical 

assessment of the closed-loop DBS programming framework in a cohort of 15 PD and ET 

patients.

2. Methods

2.1. Patient selection criteria and clinical experiment procedure

Patients with ET or tremor-dominant PD were recruited from a large academic movement 

disorders clinic. Patients had been implanted with Medtronic Activa neurostimulator systems 
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for at least 6 months and had DBS settings optimized during standard clinical programming 

visits prior to study enrollment. The Emory University Institutional Review Board approved 

the study and all patients signed written informed consent.

At the beginning of each experimental session, DBS was turned off, and clinical setting 

stimulation effects washed out for 10 min. Patients were asked to hold their tremor or 

PD medications for at least 12 h prior to testing to avoid medication fluctuations during 

optimization. DBS optimization was performed in one lead for each patient, contralateral 

to the arm with more severe tremor. The non-tested lead was kept off during optimization 

unless rest tremor was too bothersome to sit comfortably. DBS implantable pulse generator 

(IPG) was reprogrammed to create four groups (four contact configurations with amplitude 

control) that the optimization algorithm could explore (at the beginning of the experiment, 

the four groups are set as monopolar contact configuration, where the IPG case is set as an 

anode and each of the four contacts are set as a cathode, and if ‘advanced’ stimulation 

was needed based on algorithm’s decision scheme, we set the four groups as bipolar 

or multipolar contact configurations). Stimulation pulse width and frequency were not 

changed during optimization and were the same as the patient’s clinical setting. For phase 

I experiments, clinician determined maximum allowable amplitude for each stimulation 

group that could be safely sampled by the automated optimization algorithm (to prevent the 

automated system from inducing severe side effects). In phase II experiments, the maximum 

allowable amplitude was set to 5 V for all groups, and the safe Bayesian optimization 

algorithm was utilized to avoid inducing severe side effects (additional safety feature 

allowed rapid stimulation shut off if necessary).

During optimization, two standard clinical motor tasks were performed at each stimulation 

setting to assess tremor, depending on each patient’s tremor profile (rest, arms extended, 

arms flexed, or finger-nose motion). A commercial smartwatch (LG-W100) worn on 

patient’s wrist was used to determine a tremor score using a previously validated classifier 

[4] and this score was used as input into the optimization algorithm (figure 1(a)). A 

clinician blinded to the stimulation setting also scored the tremor during optimization using 

Fahn–Tolosa–Marín (FTM) rating scale [24] to further assess previously validated tremor 

classifier [4]. At each stimulation setting, the patient reported stimulation-induced side 

effects (typically tingling or muscle contractions in the face, arm or leg) and rated them on a 

scale from 0 to 3 (none, transient or mild, moderate, severe). At the end of the optimization 

session, DBS IPG was set to the best ‘automated setting’ and a clinical tremor exam and 

objective watch tremor measurement were performed after a 5 min wash-in (examiner and 

patient were aware of the stimulation condition). Clinical tremor exam for both PD and 

ET patients was a subset of FTMscale and included rest, postural, and action arm and leg 

tremor contralateral to DBS lead, handwriting (if dominant hand tested) and spiral and 

line drawings. DBS IPG was then set to patient’s ‘clinical setting’ and after another 5 

min wash-in period, tremor was reassessed by exam and watch (for the first two patients, 

tremor assessment at clinical setting was done at the beginning of the visit, but protocol 

was changed for subsequent subjects to facilitate direct comparison between automated and 

clinical settings).
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2.2. Automated DBS programming framework: software design

We performed these automated DBS programming experiments using a custom software 

application developed for a Windows PC (figure 1(b)). This application collected patient-

reported side effect data and inertial measurement unit (IMU) data from the smartwatch. 

Side effects were entered through a user interface and constituted a total of 13 common 

acute side effects of DBS therapy and included reports of magnitude (‘0: none’, ‘1: 

mild’, ‘2: moderate’, ‘3: severe’), type (‘paraesthesia’, ‘muscle spasm’, ‘speech’, ‘vision’, 

‘dizziness’, ‘dyskinesia’), and body location (‘head’, ‘arm’, ‘leg’, ‘torso’). IMU data, 

constituting three dimensions each of accelerometer and gyroscope data for a total of six 

channels, was streamed to the study PC via Bluetooth at 100 Hz for processing and feature 

extraction. All data was logged on receipt in comma-separated values (CSV) format, as were 

DBS stimulation parameters.

The software application made use of a previously developed C# application programming 

interface [25–27] for interfacing with the Nexus-D, a Medtronic research communication 

bridge that allows an application to update IPG stimulation parameters. IMU data collection 

and interfacing with the DBS device through the Nexus-D was conducted through this 

application. Time-series IMU data review and side effect inputs were conducted using an 

application written in Python to take advantage of superior data processing and capacity 

to deploy advanced machine learning and optimization techniques. Lab streaming layer, a 

publicly available library for cross-platform port handling and communication of time-series 

data in research applications, formed the interface between these applications.

Using this combination of side effect data and tremor severity estimate, a quantitative 

therapeutic value was derived for each DBS setting using Python. The details of this 

derivation are described in more detail in the following sections. Updated settings were 

forwarded to the C# application. Both the therapeutic value of the preceding DBS settings 

and the recommended next settings were recorded at this point. Following a brief final 

review and safety check, these settings were then communicated via USB connection to the 

Nexus-D. The C# application was also capable of manual override in case of emergency.

2.3. GPR modeling of the effect of DBS settings using a quantified objective measure

Gaussian process regression [28] is a nonparametric, Bayesian regression approach, which is 

well-suited for small datasets and provides the measurement uncertainty for the predictions. 

In this study, the patient-specific GPR models used the Matern kernel function [23] and 

were trained using the cumulatively collected samples D = {(xi, yi) |i = 1, … , n} from each 

patient, where xi were stimulation parameters, i.e. stimulation amplitude and stimulation 

contact configuration and yi represented the corresponding combined objective measure as 

defined in equation (4). A gaussian process (GP) is a nonparametric model that is fully 

characterized by its mean and covariance function as following

f(x) GP m(x), K x, x′ , (1)

where we can define the mean function as m(x) = E[f(x)] and the covariance function as 

K(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))]. Here, we used Matern kernel function as in
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KMATERN 3 x, x′
= σf

2exp( − 3r(1 + 3r)) + σn2I, (2)

where r2 = (x − x′)TΛ(x − x′) and Λ is the diagonal matrix of squared length scales. 

The output variance σf
2, the length-scales, and the noise variance σn2 are hyperparameters 

of the covariance function. By incorporating the knowledge from the training data (prior 

distribution in equation (1)), we can make predictions at any new test point (x∗, f∗), where f∗ 
= f(x∗). The predictive conditional distribution of f∗ given the training data and test input is 

calculated as in

f* ∣ X, y, X* N f*, cov f* , (3)

where f* = E f* ∣ X, y, X* = K X*, X K(X, X) + σn2I −1y, 

cov f* = K X*, X* − K X*, X K(X, X) + σn2I −1K X, X* , and σn2 denotes the noise variance.

This GPR modeling technique is used as a surrogate model for Bayesian optimization 

described in the following section. We employed the GPflow library [29] for implementing 

GPR models. We defined a combined quantitative measure of clinical efficacy consisting of 

a quantitative objective tremor score, measured by the smartwatch IMU and patient-reported 

side-effects, with the goal of maximizing tremor improvement and minimizing side-effects. 

The quantification measure of DBS setting value, JDBSi, is calculated based on the results 

of the tremor assessment tests while the patient’s IPG was active in a particular DBS setting 

DBSi as in

JDBSi = Jtremori + JSE . (4)

Each DBS setting DBSi is evaluated based on the tremor score improvement, Jtremori, which 

is a baseline subtracted tremor severity score as in equation (5), and JSE which is the 

patient-reported side effect severity scores defined as in equation (6).

A predictive model of clinical tremor assessment from IMU data was trained and validated 

in a previous study [4], where features from accelerometer and gyroscope data were used to 

train an ordinal multinomial logistic regression classifier based on the neurologist’s provided 

tremor ratings [4]. To directly compare the performance of our Bayesian automated DBS 

optimization framework with the state-of-the-art automated DBS programming framework 

introduced in [4], which uses a grid-based search approach, we used the same classifier [4] 

in order to avoid introducing new parameters to the system. The output of this classifier was 

used to calculate the tremor score improvement, Jtremori, as in equation (5).

The term tremorDBSi  in equation (5) is the average watch tremor severity score (predicted 

from the classifier) over the selected tasks while the patient’s IPG was active with the ith 

DBS setting DBSi. The term tremor0 is the average watch tremor severity scores (predicted 
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from the classifier) over all selected tasks with inactive IPG that reflects patients’ baseline 

tremor score obtained at the beginning of optimization session:

Jtremori = tremorDBSi − tremor0 . (5)

The magnitude of the overall baseline subtracted tremor score Jtremori  shows the level of 

change in the average tremor score comparing to the baseline and a negative sign reflects 

tremor improvement compared to the baseline. The lower the Jtremori, the more clinical 

benefit the DBSi setting provides.

In addition, each DBS setting DBSi is penalized by the patient-reported side effect severity 

scores. We defined the term JSE in equation (4) as follows based on patients’ reports:

JSE =

0 if no SE
1 if mild SE
4 if moderate SE
inf(5 in practice ) if severe SE.

(6)

Watch tremor severity scores are on a scale of 0–4, so the Jtremori term could get any 

value in the [−4, 4] interval depending on the baseline score and the tremor score in the 

DBSi setting. Specifically, Jtremori = 0 means no tremor improvement, Jtremori < 0 reflects 

a tremor score improvements compared to baseline, and Jtremori > 0 corresponds to cases 

where the watch tremor score is worse than the watch tremor score at baseline. If the patient 

experiences some level of side effect, we penalize Jtremori by adding a positive value to it. 

If the side effect is mild, we penalize it by 1, meaning that a DBS setting with a score of 1 

for tremor improvement with mild side effect will have a total score 0 which is similar to a 

setting with no improvement and no side effects. If the side effect is moderate, we penalized 

it by 4 because any amount of tremor improvement with moderate SE will be considered as 

untenable for clinical use (resulting in a non-negative JDBSi score). If the SE is severe, we 

penalize it even more to prevent the optimizer from testing that area again.

The quantified objective measure in equation (4) was calculated for each DBS setting tested 

on the patients and the cumulatively collected samples were used to train a GPR model 

that models patients’ response to DBS. The mean surfaces of GPR models of the combined 

objective measure defined in equation (4) capture both the effect of baseline-subtracted 

watch tremor score and the side effect severity scores simultaneously and justifies the use 

of the combined objective measure for Bayesian optimization to ameliorate tremor while 

avoiding side effects (figure 2). Furthermore, the mean surface of the GPR model varies 

across patients (figure 2). Specifically, the general shape of the surface, the location of 

the optima, and the maximum tolerable boundaries vary between individuals reflecting 

their unique response to stimulation profile. These variations are partly due to disease 

type and tremor severity, DBS lead position (which varies even for patients with the same 

target nucleus), and individual anatomy. This subject variability necessitates designing a 

Sarikhani et al. Page 7

J Neural Eng. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patient-specific DBS optimization framework with an adaptive sampling strategy, while still 

remaining sample-efficient. Due to variability in patients’ responses, a grid search-based 

approach with 1 V amplitude increments for each contact configuration that was utilized in 

a previous similar study [4] was hypothesized to be inefficient (figure 2(a)). The Bayesian 

optimization which we have utilized in this study evaluates more samples in areas with 

greater chance of tremor improvement and searches for the optimal point with a finer 

resolution of 0.2 V increments in amplitude for each contact configuration (figure 2(b)).

2.4. Bayesian optimization

We formulated the automated DBS programming as a global optimization problem over the 

stimulation parameter space, D, as in:

min
x ∈ D

f(x), (7)

where f(x) was the objective measure that represented the desired clinical outcome, and 

D is the two-dimensional space of the DBS parameters including stimulation amplitudes 

and contact configurations. One of the main challenges in solving this problem was that 

the functional relationship between the DBS parameter space and clinical outcome was 

not known. Bayesian optimization is a non-parametric global optimization approach that 

is suitable for optimizing black-box objective functions that are unknown or expensive to 

evaluate.

The objective function f(x), which represents a mapping between the DBS parameters 

and the clinical outcome, is unknown and does not have a closed form. Although f(x) is 

unknown at every x ∈ D, we can observe its measurements at sampled DBS settings (the 

objective measure as described in equation (4) is a measurement of f(x) at the suggested 

DBS settings DBSi by the optimizer). Bayesian optimization proceeds by maintaining a 

probabilistic belief over f(x) by building a GPR surrogate model as described in section 

2.3 using the cumulatively collected data from each patient. The GPR model prescribe a 

prior belief over the possible objective functions given the cumulatively collected data. In 

a previous study we characterized the functional relationship between the clinical outcome 

and DBS parameters using the GPR modeling approach [5].

The Bayesian optimization algorithm is based on a sequential decision-making process 

to search for the optimal stimulation parameters in two steps. First, it builds a surrogate 

probabilistic model of the latent objective function f(x) based on the available data at each 

iteration and sequentially retrain the model as more data is observed. Second, it proposes the 

next DBS setting to be evaluated by optimizing a surrogate-dependent acquisition function. 

The acquisition function assesses the utility and the informativeness of the candidate points 

for the next evaluation of the objective measure (f(x)) by leveraging the uncertainty in the 

posterior to guide exploration [23].

During the burn-in phase of Bayesian optimization, the objective function was evaluated 

at predefined stimulation settings in a randomized order (at 40% and 80% of maximum 

amplitude for each contact configuration). Then, a GPR prior based on these initial 

evaluations of the burn-in phase was employed. Thereafter, a new stimulation setting was 
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sequentially selected by optimizing the acquisition function to be evaluated at next iteration. 

At each iteration, we augmented the dataset, updated the surrogate GPR prior, and optimized 

the updated surrogate-dependent acquisition function to suggest the next samples to be 

tested in the patient until convergence. Our stopping criteria is explained in section 2.6. 

For the first round of experiments, with amplitude limits determined by a clinician, we 

used the expected improvement (EI) acquisition function [30] which automatically balanced 

exploration versus exploitation. The EI acquisition function calculates the expectation of 

improvement over the current best observation with respect to the predictive distribution of 

the surrogate model and is defined as in:

EI(x) = E max fmin − m(x), 0
= fmin − m(x) Φ(z) + σ(x)ϕ(z), (8)

where ϕ(·) and Φ(·) are the standard normal density and distribution functions, respectively. 

In equation (8), z =
fmin − m(x)

σ(x) , m(x) is the predictive mean and σ(x) is the predictive 

standard deviation of a point x ∈ D and fmin is the optimum observed value. We 

implemented the EI acquisition function using the GPflowOpt library [31].

The global optimization problem defined in equation (7) is straightforward to solve 

using Bayesian optimization algorithm if the parameter space is fully defined. To show 

the feasibility of Bayesian optimization as the core of the automated DBS optimization 

framework during the first phase of the experiments, the maximum amplitude for each 

contact configuration is defined at the beginning of the experiment by the expert neurologist 

and will stay fixed during the experiment as shown in red dashed boundaries in figure 

3. The minimum exploration boundary of stimulation amplitude in the parameter space is 

set to 0.5 V (that is the dashed horizontal red line at 0.5 V in figure 3); meaning that 

the optimizer will not explore the effect of DBS settings with amplitudes smaller than 0.5 

V. With more samples being collected at each iteration, the underlying GPR model gets 

updated. At each iteration, the updated GPR model is used to build the acquisition function 

and get the next DBS setting suggestions to be evaluated at the next iteration. DBS settings 

are adaptively sampled during the DBS optimization session based on patient’s response in a 

patient-specific manner (figure 3).

Since the objective function f(x) is unknown, our Bayesian optimization algorithm does not 

assume convexity. As a result, if multiple optima are found, the setting with the lowest 

amplitude was selected as the optimum automated setting to ensure lower power is used 

when possible.

2.5. Safe Bayesian optimization

The DBS optimization problem is safety-critical, as there is a safety constraint for each 

DBS setting. The safety constraints are defined by the side effects that patients may 

experience for each DBS setting. In the second phase of the experiments, instead of using 

the clinician-defined safe exploration boundaries, we modified the problem statement as a 

global optimization problem with safety constraint as in:
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min
x ∈ D

f(x); Such that gi(x) < 3 for i = 1, 2, 3, 4, (9)

where gi(x) is the magnitude of patient-reported side effect for each DBS setting x and i is 

the contact configuration number. Since the safety boundaries for each contact configuration 

are different, a separate GP model was trained for each contact configuration based on the 

patient-reported side-effects. To solve the above constraint optimization problem, we used 

safe Bayesian optimization [32, 33] which is an extension of regular Bayesian optimization. 

We used the GPflow [29] and GPflowOpt [31] libraries for our implementation of the 

algorithm.

Safe Bayesian optimization combines a GP model of the safety constraints with 

discretization of the parameter space to define a set of DBS parameters Sn, called the 

safe set, with a high probability to satisfy the safety constraints [32]. The safe set was 

defined by the upper bound of the safety GP models (gi(x)) and contained the points 

where the GP upper bound was smaller than the safety threshold. Our parameter space 

for the DBS programming was discrete, with four contact configurations and stimulation 

amplitudes with 0.2 V increments. The safe Bayesian optimization algorithm defined two 

sets of parameters within the safe set called potential minimizers and expanders. The set 

Mn ⊆ Sn contains potential minimizers that is the parameters that could potentially obtain 

the minimum within the current safe set. The minimizers set (Mn) was defined by the mean 

and confidence interval of the GPR model of the objective measure, f(x), and contained the 

subset of safe parameters in which the lower confidence bound of the GPR model was lower 

than the upper confidence bound at the best measurement at each iteration. The expander 

set Gn ⊆ Sn is considered to be the points that if tested, their measurements would lead 

to values in the lower confidence bound and hence potentially expand the safe set [33]. 

In this paper, we directly used the confidence bounds of the GPR models to define the 

aforementioned sets, which is mainly used in practice with limited prior knowledge of the 

underlying objective and safety models (considers the Lipschitz constant to be infinity). 

This modified version has been shown to be more aggressive in expanding the safe set 

[33]. Hence, to further ensure safety, we considered the maximum allowable amplitude 

expansions based on the maximum severity of the patient-reported side effects for each 

contact configuration. The safe set would only expand by the minimum of the safe set 

suggested by the safe Bayesian optimization algorithm and the maximum allowable constant 

defined as follows. In general, the lesser the reported side effect, the more the parameter 

space could expand. In other words, the expanded space gets closer to the safety boundaries 

as the patient begins to experience mild side effects by increasing the stimulation amplitude. 

Hence, the expansion should be done with more caution. Another consideration in selection 

of the constant was that patients were more likely to experience more severe side effects 

during the monopolar stimulation settings than advanced stimulation settings. Therefore, 

the constant during the monopolar stimulation was selected to be smaller. If the patient 

experienced no side effects for a particular contact configuration, then the constant was 

set to 1 V for monopolar stimulation and 1.5 V for the advanced stimulation settings, 

respectively; these amplitudes represent the maximum allowed jump in the stimulation 

amplitude for each contact configuration. If the maximum side effect severity level was 
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mild, then the constant was set to 0.5 V for monopolar stimulation and 0 V for advanced 

stimulation settings (zero because we aimed for no side effects at optimal stimulation setting 

during advanced stimulation; during monopolar stimulation mild side effects were tolerated 

during optimization as results were informative for selection of advanced stimulation 

configurations). If the patient experienced moderate or severe side effects either during 

the monopolar or advanced stimulation, the constant was 0 V and the expansion of the 

stimulation amplitude was stopped for the corresponding contact configuration.

Safe Bayesian optimization starts with evaluating a set of initial parameters that is known 

to be safe, which defines the initial safe parameter space. Here, we started with testing 

1 V for each of the four contact configurations as the initial safe set of parameters (Sn). 

The initial evaluations were used to train GP models on the safety constraints which were 

used to safely expand the parameter space at each iteration. After the safe expansion of 

the parameter space, the next DBS settings to be tested were suggested by optimizing the 

surrogate-dependent acquisition function at each iteration. As mentioned above, we used 

GPR modeling technique to model the constraint/safety functions. A common assumption 

in training GPR models is that a GP prior is zero-mean. However, this assumption did 

not apply to the DBS programming problem since the side effect severity report was 

a monotonically increasing function of stimulation amplitude. Hence, we fitted a second-

degree polynomial function of the collected samples and used that as the prior mean 

of the safety GP models. In addition, in phase II of the experiments, we changed the 

acquisition function to minvalue entropy search [34] as it was more sample efficient and had 

a more exploratory behavior that is required given the nature of safe Bayesian optimization 

algorithm with gradual expansion of the parameter space.

A visual representation of the sampling behavior and safe exploration boundary expansion 

of the automated framework is presented for some sample iterations in figure 4 for patient 

14. Each figure shows the mean surface of the GPR model that gets updated as we collect 

more data at each iteration. Note that the safe boundaries shown in dashed red line are 

updated after evaluating the suggested DBS setting at each iteration.

In both phases of the experiments, we considered some modifications of the regular (safe) 

Bayesian optimization algorithm to account for the requirements of the automated DBS 

programming in practice. First, we considered a discrete parameter space including four 

contact configurations and stimulation amplitude with 0.2 V. The optimization of the 

acquisition function is performed by evaluating the acquisition function at every setting in 

the parameter space at each iteration and the next best sample is selected using the selection 

of the best strategy. One challenge in designing Bayesian optimization in discrete parameter 

spaces is the suggestion of repeated samples. In order to avoid suggesting repeated samples, 

we used a rank and select strategy; that is if the best sample suggested by optimizing the 

acquisition function is already sampled, the next best sample will be suggested.

2.6. Stopping criteria and advanced optimization

Our automated programming framework combined prior knowledge from standard clinical 

DBS programming approaches with Bayesian optimization. Clinical DBS programming is 

guided by clinical decision-making strategies to maximize stimulation benefit and minimize 
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side effects [35]. During clinical DBS programming sessions, the clinician often performs 

a monopolar screening, where each of the four electrode contacts are set as cathode 

and IPG case as anode. Clinicians evaluate the tremor suppression benefits and side 

effects by incrementally increasing the amplitude for each of the four monopolar contact 

configurations. If a monopolar configuration leads to a satisfactory tremor suppression 

without side effects, this setting is chosen for chronic stimulation. If not, contact 

configuration may be changed to one of the advanced optimization settings (bipolar, double-

monopolar, and double-bipolar) based on patients’ responses to monopolar stimulation 

(figure 5).

Similar to the standard clinical approaches, the proposed automated DBS programming 

framework started with the monopolar screening with four different contact configurations. 

The monopolar optimization was terminated either once the stopping criteria was satisfied or 

the predefined budget of maximum 30 iteration was exhausted (to avoid patient fatigue). The 

stopping criterion was defined as no objective score improvement of 0.3 or greater for five 

consecutive iterations. The threshold of 0.3 was defined by our expert movement disorder 

neurologist that reflected a clinically meaningful score improvement.

After completing the monopolar stimulation trials, the advanced stimulation module used 

the data that was collected during the monopolar stimulation to determine if advanced 

stimulation was necessary, and which contact configurations should be utilized (figure 5). 

If there was at least one DBS setting with sufficient therapeutic effect and without any 

side effect (acceptable monopolar setting), then the monopolar setting with the lowest 

average tremor score was selected as the optimized setting. Otherwise, if there was sufficient 

therapeutic effect with the presence of side effects, then bipolar stimulation was suggested. 

The sufficient therapeutic effect was dependent on the baseline score. If the average 

baseline tremor score was less than 1, then sufficient therapeutic effect was defined as 

50% improvement in watch tremor score. Otherwise, having a watch tremor score of less 

than 1 for all of the tremor assessment task was considered as having sufficient therapeutic 

effect. In cases where there was no setting with sufficient therapeutic effect and no side 

effect for amplitudes less than 4 V, then double-monopolar stimulation was suggested. If 

there was no setting with sufficient therapeutic effect and side effects at less than 4 V 

were present, double-bipolar stimulation was suggested. If no acceptable monopolar setting 

was identified, the advanced stimulation suggestion script (darker gray area in figure 5) 

provided four advanced contact configurations based on clinical heuristics. Since the number 

of possible advanced stimulation settings is high and due to the limitations of the Medtronic 

research communication bridge, we could only test four contact configurations at each round 

of automated DBS programming. We used the advanced stimulation suggestion script to use 

the clinical heuristics and narrow down the number of advanced settings to 4 best settings to 

be tested (as depicted in the blue box in figure 5). Testing new settings continued until either 

the stopping criteria was satisfied, or the maximum number of iterations was reached.

3. Results

We recruited 15 patients (nine with tremor-dominant PD and six with ET) with the average 

age of 70 ± 9 years (range 57 − 85) to undergo the automated DBS optimization. All ET 
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patients and one PD patient had leads implanted in ventral intermediate nucleus of thalamus 

(VIM), while the remaining PD patients had leads implanted in subthalamic nucleus (STN). 

The average time since DBS lead implantation was 52 ± 19 months (range 30–105 months). 

We evaluated the performance of the automated DBS optimization framework in two phases. 

In the first phase, the software used the clinician-defined maximum tolerable amplitudes for 

each contact configuration to define the safe boundaries of the parameter space. The main 

goal of the first phase of the experiments was to evaluate the performance of the automated 

framework in finding the optimized settings using Bayesian optimization algorithm. Data 

from ten patients (five PD and five ET) were acquired for the first phase (table 1). We further 

expanded the work and used safe Bayesian optimization to gradually expand the parameter 

space and automatically discover a safe and tolerable parameter thus avoiding severe side 

effects as reported by the patient. Seven patients (five PD and two ET; two from phase 1) 

underwent the automated DBS optimization in the second phase of experiments (table 2).

3.1. Quantifying tremor response to stimulation

The automated DBS optimization framework automatically quantifies and calculates the 

target objective measure that includes tremor scores and side effects (figure 1(a)). We 

confirmed that the tremor classifier [4] performed well in this cohort of patients and 

its estimated tremor scores matched well with clinician scores (r2 = 0.69; figure 6). 

The clinician tremor score includes only tremor assessment tasks during the automated 

programming sessions and was used to further validate watch tremor classifier. The clinician 

administered FTM tremor scale is a more comprehensive examination consisting of a 

subset of FTM scale items used to evaluate tremor severity before and after automated 

programming session. Only the automated classifier tremor scores were used as the input 

into the optimization algorithm.

3.2. Comparison of the clinical settings and the automated settings

There was a statistically significant improvement in tremor scores from baseline (no 

stimulation) to the best automated setting, using both the objective watch scores and blinded 

clinician scores during both phases of the experiment (figure 7) (the clinician tremor score 

is the score for selected tremor assessment tasks during the experiment where the clinician 

was blinded to the DBS settings). The patients also underwent a comprehensive tremor 

assessment exam at baseline (no stimulation), best automated setting, and their chronic 

clinical settings (tables 1, 2 and figure 8). We demonstrate that best automated setting and 

clinical setting significantly reduce the tremor to the same extent (in other words, residual 

tremor at automated setting was comparable to tremor at clinical setting) (figure 8).

In phase I experiments with the clinician-defined safe and tolerable exploration boundaries, 

two patients preferred the automated setting, five had no preference, and three preferred their 

clinical settings. In phase II experiments with automated discovery of the safe exploration 

boundaries, three patients preferred the automated setting, three had no preference, and one 

preferred the clinical setting.
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3.3. Speed of convergence of the automated DBS programming system

We hypothesized that our Bayesian DBS programming framework would improve sample 

efficiency compared to the grid search-based method in terms of the number of stimulation 

settings had to be tested to arrive at the optimal solution (not in terms of the required 

time). The grid-search approach closely resembled clinical monopolar mapping (testing all 

contacts and amplitudes, 0–5 V, in 1 V increments). We could not compare the current 

algorithm directly against clinical monopolar mapping in terms of time since these patients 

had already been clinically optimized. In order to provide a fair comparison between the 

two approaches, we only considered the number of required samples during the monopolar 

programming. Grid search algorithm tested in a prior study (in a different cohort of patients) 

required 25.2 ± 4.8 samples on average [4], while Bayesian automated programming in this 

study used 15.1 ± 0.7 (phase I), and 17.7 ± 4.9 samples (phase II).

4. Discussion

In this pilot study, we describe and evaluate an automated and patient-specific DBS 

programming framework for tremor treatment in 15 patients with PD or ET. A 

fully automated system with the Nexus-D communication bridge was developed that 

automatically activates the patients’ IPG with the optimizer recommended DBS settings. 

We showed that DBS programming framework using Bayesian optimization was able 

to find DBS settings that were comparable in efficacy to clinical settings (previously 

determined by expert clinician programmers). Bayesian optimization was more efficient 

than previously tested grid-search method. We also describe how to use safe Bayesian 

optimization to automatically find safe stimulation boundaries. Finally, by incorporating 

the information from monopolar stimulation and clinical heuristics, we were able to 

add advanced DBS contact configurations (bipolar, double monopolar) that some patients 

require for optimal therapy into the automated DBS programming workflow and perform 

further optimization using four advanced DBS contact configurations. These developments 

may reduce the need for an expert clinician programmer to be present at the DBS 

programming session to perform DBS device control, symptom and side effect assessment, 

DBS programming decision making, and defining the safe and tolerable amplitudes for each 

contact configuration.

A physician can manually explore any number of settings; they are limited by the time 

available for a clinical visit and the patient’s ability to actively participate. The purpose 

of the algorithm was to test only the settings most likely to yield the optimal solution. 

Because of the type of DBS device that the patients were implanted, the algorithm was 

limited to amplitude changes in four contact configurations during each optimization, so 

we tested four configurations during monopolar stimulation, and additional four during 

advanced stimulation if monopolar did not yield the optimal setting. Future DBS devices 

may provide more flexible interfaces for automated stimulation adjustments allowing wider 

parameter exploration.

Bayesian optimization has unique properties that make it a suitable choice to be employed at 

the core of an automated DBS optimization framework. Bayesian optimization is a sample-

efficient and global optimization algorithm that is suitable for cases where the objective 
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function is unknown or expensive to evaluate (the patients’ response to DBS settings are 

unknown prior to testing and evaluating patients’ responses to DBS settings is expensive 

from optimization standpoint as prolonged sessions are fatiguing which may compromise 

the accuracy with which tremor is assessed during testing). We confirmed our hypothesis 

that Bayesian optimization was more sample-efficient than the state-of-the-art grid-search 

sampling strategy introduced in [4] which closely resembled clinical monopolar mapping 

and directly compared the results in terms of the number of required samples to be tested 

to arrive at the optimal solution. Other recent studies investigated the utility of developing 

an objective measure for the automated selection of DBS parameters [36] and introduced 

a computer-guided DBS programming framework that is designed based on the clinical 

DBS programming strategies for the monopolar survey [37] using a grid-search approach 

resembling the standard clinical approaches. Their sampling strategy was a grid-search 

approach with 0.5 V and 0.3 V amplitude increments, respectively, leading to an even 

larger number of required samples to be tested compared to the grid-search approach with 

1 V increment introduced in [4]. Two recent clinical papers compared their proprietary 

algorithms with the standard of care (SoC) DBS programming in terms of the number 

of steps (stimulation settings) required to be tested to arrive at an optimal solution [6, 

7]. The SoC was designed to be similar to the grid-search based approach. However, 

we could not conduct a direct and fair comparison with approaches used in [6, 7] since 

their parameter space was different (eight monopolar contact configurations and stimulation 

current (mA)). Due to very different workflows in SoC and the proposed closed-loop 

algorithm, the authors did not perform significance testing between the two programming 

modalities for time consumption. Here, we could not compare the current algorithm directly 

against clinical monopolar mapping in terms of time since these patients had already been 

clinically optimized. Another recent work [38] used Bayesian optimization to develop a 

semi-automated approach for optimizing DBS parameters and provided preliminary data 

that shows the efficacy of Bayesian optimization in DBS programming. Here, we presented 

and evaluated the utility of Bayesian optimization in a fully automated DBS programming 

framework for tremor in a cohort of 15 PD and ET patients.

We further showed that employing safe Bayesian optimization algorithm enables 

unsupervised determination of safe stimulation parameters. Safe Bayesian optimization is 

less sample efficient in nature than the regular Bayesian optimization as it gradually expands 

the parameter space. To improve the sample efficiency, we used ideas from [33] to balance 

the tradeoff between exploring, expanding, and optimizing in addition to using a more 

efficient acquisition function (min-value entropy search). We showed that although safe 

Bayesian optimization in phase II experiments required more samples to converge than the 

regular Bayesian optimization in phase I, it is still more sample-efficient than the grid-search 

approach.

Incorporating clinical heuristic into the optimization pipeline allowed us to efficiently 

explore advanced contact configurations (bipolar, double monopolar). The number of 

possible contact configurations beyond simple monopolar is very large and we could only 

test a relatively small number given that patients fatigue after prolonged and repetitive 

testing. As a result, we used information obtained from monopolar stimulation to determine 

which contact configurations should be tested during advanced stimulation using clinical 
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guidelines programmed into the programming platform rather than allowing the optimizer to 

make this decision. Integrating other algorithms that are more efficient for high-dimensional 

parameter spaces or other methods such as image-guided programming [38] to more 

efficiently reduce the dimensionality of the parameter space before performing the DBS 

optimization is a promising approach for future applications.

Our DBS programming framework relied on automated tremor detection using a wrist-

worn sensor which has challenges [39], but we demonstrate that some of the issues can 

be overcome through GPR modeling. Tremor assessment tasks need to be synchronized 

with IMU recordings during the assigned tasks so patients need to be instructed to start 

and stop at appropriate times. Furthermore, artifact and voluntary movements unrelated 

to assigned tasks are often included in raw IMU data which affects the prediction of 

watch tremor scores, while an expert clinician programmer could detect those unrelated 

movements and ignore them while making judgment about the tremor severity scores. 

In this study, we monitored the patients and gave instructions to minimize the unrelated 

movements (including repeating a task if performed incorrectly), however variability in 

task performance (e.g. speed of movement) particularly during kinetic tremor assessment 

led to score predictions that were at times inconsistent with clinical scoring. Another 

challenge with automated tremor detection is that tremor severity can change depending on 

patient’s internal state; for example, there can be less tremor when relaxed, and more tremor 

when nervous or talking, regardless of DBS settings. For example, tremor intensity during 

the optimization session varied significantly in patients 03 and 09 regardless of applied 

stimulation. A clinician can easily incorporate this information into clinical decision-making 

however an external sensor is agnostic to patient’s internal state. To compensate for 

imperfections with tremor scoring, we employed the GPR model as the surrogate model 

of Bayesian optimization which is robust to noise of observations. Our results confirmed 

that the automated DBS programming method could identify effective DBS settings even in 

the presence of the measurement and prediction (i.e. classifier) noise. GPR model takes the 

uncertainty of observations into account and the model can be trained in a patient-specific 

manner which makes it suitable for the DBS optimization application.

The GPR modeling could be integrated in clinical decision-making process as a visualization 

technique that provides insight into the patient’s response to DBS even without utilizing the 

fully automated platform. This would be particularly useful when addressing symptoms 

other than tremor which are even harder to quantify using sensors (e.g. bradykinesia 

or rigidity in PD). This visualization technique could provide insight into the spatial 

information (location of the active contacts) for clinicians that may not be straightforward 

to capture using the traditional clinical programming approaches. There have been attempts 

to improve visualization of DBS programming outcomes for clinicians especially with more 

complex segmented electrodes (e.g. [40]). We propose that GPR models could be used to not 

only track clinical responses but also provide suggestions for the clinicians for further DBS 

parameter exploration.

The success of the optimization algorithm will also depend on the choice of tremor 

assessment tests which are performed at each stimulation setting. In this study, we used 

two out of four available tremor tests (rest, postural extended, postural flexed, and kinetic) 
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that were integrated into the automated programming software system, based on patient’s 

clinical presentation. Although the limited set of tremor assessment tests was sufficient to 

evaluate DBS response in majority of patients, some patients may require other types of tests 

including spiral and line drawing or handwriting tests to effectively find an optimal DBS 

setting. For example, patients 04 and 07 had worse tremor control on automated setting than 

on clinical setting, likely because they had more tremor on handwriting and spiral drawing 

tasks, which were not tested during automated programming session.

The automated system relied on patient reports of side effect severity as part of the 

combined objective measure for Bayesian optimization. Although this approach has been 

effective in avoiding parameters that lead to side effects in our study, this is a potential 

limitation since some patients find it difficult to give a score to the side effects that they 

experience. Developing automated side effect detection techniques could be possible for 

certain types of side effects (e.g. muscle contractions measured by EMG [41] or stimulation 

outside DBS target volume estimated by computational DBS activation models [38]), and 

could further streamline implementation of automated programming.

The objective measure defined in this study is based on aggregation of two terms including 

the baseline subtracted tremor score and patient-reported side effect severity score. This 

works since the two aggregated terms are in a comparable range. If another out of range term 

needs to be added to the objective measure, methods like adding a multiplier should be used 

to map the new term to the same range. Moreover, the work in this study can be extended to 

multi-objective optimization to incorporate more advanced objective measures of the clinical 

outcomes.

Finally, the proposed automated DBS programming framework could be beneficial for 

remote DBS programming for patients with limited access to the clinic. For example, 

a smartwatch could be mailed to the patient prior to a remote programming session or 

patient’s own phone could provide accelerometer signal to quantify tremor. The optimization 

algorithm could be implemented as a standalone system providing guidance to the remote 

programmer, or even incorporated into the remote programming software.

5. Conclusion

This study developed and tested automated and patient-specific closed-loop DBS 

programming framework based on Bayesian optimization. This approach was more efficient 

than grid search method employed in clinical practice, and it yielded comparable clinical 

outcomes for tremor reduction as traditional clinical programming. Using such system 

would eliminate the need for an expert clinician programmer to be present at the DBS 

programming sessions. This would be particularly valuable for patients without easy access 

to DBS center such as those living in remote geographical locations or patients receiving 

care via telemedicine. Automated DBS programming methodologies will be of increasing 

importance as next generation DBS systems expand the number of possible parameters for 

delivering precise, optimized therapy to patients.
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Figure 1. 
Overview of the automated DBS optimization framework for tremor programming. (a) 

After performing the initial baseline tremor evaluation tests without stimulation, at each 

iteration, the software automatically sets the next DBS setting to be tested followed by 10 

s wash-in period, followed by tremor evaluation tests each for 10 s. The recorded inertial 

measurement unit (IMU) data and side-effect reports are used to update the surrogate 

gaussian process regression (GPR) model and optimizer suggests the next best sample to 

be tested. Before evaluating the next suggested DBS setting, the stopping criteria module 

determines whether the optimum has been found or advanced stimulation is needed. (b) A 

detailed schematic demonstrating the software design of the automated DBS programming 

system. The software application receives IMU data over a Bluetooth connection from the 

smartwatch, as well as side effects reported by the patient through a graphical user interface 

and send the information to the Python section of the application. The calculation of the 

objective measure (surrogate function) and choice of the next DBS setting (acquisition 

function) are handled within the Python section. The C# software application receives the 

stimulations settings from the Python application and sends stimulation commands to the 

Nexus-D, which communicates with patient’s implanted Activa IPG.

Sarikhani et al. Page 21

J Neural Eng. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
GPR model mean surface of the combined objective measure (including baseline-subtracted 

watch tremor score and side effect score) varies across patients. (a) Mean surfaces for two 

patients with grid-search sampling strategy from a prior study [4]. The sampling resolution 

is 1 V amplitude increments. (b) Mean surfaces for two patients from the current study 

with sampling using Bayesian optimization that evaluates more samples in areas with greater 

chance of tremor improvement and with a finer resolution (0.2 V amplitude increments). 

The surfaces are color-coded with the value of the combined objective measure where blue 

shows negative objective values reflecting tremor improvement compared to baseline either 

without or with mild side effect and red shows positive values reflecting that DBS settings 

are not effective or side effects are pronounced. The black circles represent sampled DBS 

settings during the automated DBS optimization. The red dashed lines show the clinician-

defined safe exploration boundaries of the parameter space.
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Figure 3. 
Example of patient-specific adaptive sampling of Bayesian optimization (patient 02). Each 

panel shows the mean surface of the GPR model that updates after each iteration. The value 

of the combined objective measure is color-coded. The dashed dark red lines demonstrate 

the clinician-defined maximum tolerable exploration boundaries. The black circles show the 

previously collected samples and the green square show the sample being tested at each 

iteration. The black circle outside the red dashed lines at (0, 0) demonstrates the baseline, 

where the patient’s IPG was inactive. The sample suggestions are automated by the DBS 

optimization framework. Samples are more densely distributed around the more promising 

regions of the parameter space (more tremor improvement with fewer side effects). This 

adaptive behavior of the DBS optimization framework makes it patient-specific; that is the 

samples are adaptively suggested based on the patient’s response at previous iterations.
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Figure 4. 
Safe Bayesian optimization during phase II of the experiments (patient 14). Selected 

iterations during monopolar stimulation. The mean surface of the GPR model and safe 

stimulation exploration boundaries (dashed lines) update as more data are collected at each 

iteration. The value of the combined objective measure is color-coded. The black circles 

represent collected samples and the green square is the current sample being tested at each 

iteration. The black circles outside the red dashed lines at (0, 0) demonstrates the baseline, 

where the patient’s IPG was inactive.
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Figure 5. 
High-level schematic of the decision-making process of the automated DBS optimization 

framework. The darker gray area is the schematic of the advanced optimization suggestion 

algorithm modeled after the clinical decision-making process.
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Figure 6. 
Additional validation of tremor score classifier [4]. Blue dots represent the average watch 

tremor scores plotted against the average clinician tremor score for selected tremor 

assessment tasks (rest, arms extended, arms flexed, finger-to-nose motion). Each dot 

represents one DBS setting that was tested during the experiments. The black solid line 

and the gray shaded area show the mean and standard deviation of the watch tremor scores. 

The red solid line is the line y = x and the r-squared value of the fit to the y = x line is 0.69.
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Figure 7. 
Clinical efficacy of automated DBS programming. Comparison of the patients’ tremor 

severity scores at baseline stimulation off condition and the optimal automated setting 

measured by the watch (left column) and the optimal automated setting scored by a blinded 

clinician (right column). Top row refers to phase I (clinician-defined safe amplitudes), and 

bottom row to phase II (safe Bayesian optimization algorithm) experiments. The asterisk 

shows the conditions with statistically significant difference (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p 
< 0.001). The tremor score is the sum of two tremor assessment tasks utilized during the 

automated DBS optimization session (max 8).
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Figure 8. 
Clinical efficacy of automated DBS programming compared to clinical setting. Comparison 

of the patients’ tremor severity scores at baseline (no stimulation), the best automated 

setting, and previously established best clinical setting during phase I (a) and phase II (b) 

based on the clinician scores during the comprehensive clinical exam. The comprehensive 

exam included the following items from FTM tremor scale: rest, arms extended, arms flexed, 

and finger-to-nose motion arm tremor contralateral to DBS lead, handwriting (if dominant 

hand tested), two spiral drawings, and line drawing. Both the patient and clinician were 

aware of the stimulation condition. The asterisk shows the conditions with statistically 

significant difference ( ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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