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Abstract

We report here an assessment of the model refinement category of the 14th round of Critical 

Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five ranked 

refinements, along with associated residue-level error estimates, for targets that had a wide range 

of starting quality. The ability of groups to accurately rank their submissions and to predict 

coordinate error varied widely. Overall only four groups out-performed a “naïve predictor” 

corresponding to resubmission of the starting model. Among the top groups there are interesting 

differences of approach and in the spread of improvements seen: some methods are more 

conservative, others more adventurous. Some targets were “double-barrelled” for which predictors 

were offered a high-quality AlphaFold 2 (AF2)-derived prediction alongside another of lower 

quality. The AF2-derived models were largely unimprovable, many of their apparent errors being 

found to reside at domain and, especially, crystal lattice contacts. Refinement is shown to have 

a mixed impact overall on structure-based function annotation methods to predict nucleic acid 

binding, spot catalytic sites and dock protein structures.

1. Introduction

The Critical Assessment of Structure Prediction (CASP) refinement category ran for the 

first time at CASP8 in 2008 1. The aim was to systematically test methods that could push 

initial structure predictions, initially deriving from template-based modelling alone, closer 

to the native structure. At the time it was particularly envisaged that Molecular Dynamics 

(MD)-based methods could have a significant role. At CASP9, refinement was found to have 

a distinct beneficial effect on model geometry 2, although coordinate refinement remained 

modest and sporadic. As recognised from the beginning 1, such geometric improvement 

and elimination of atomic clashes is easier than systematic improvement of coordinate 

accuracy: the former can be achieved by local conformational sampling, while larger-scale 

shifts require an algorithm that can avoid trapping in local energy minima and distinguish 
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the correct direction of travel from the much larger number of ways in which a model 

structure can be degraded. Nevertheless, impressive results by the FEIG group at CASP10 

demonstrated that most models could be systematically improved by restrained MD 3. In 

more recent CASPs, such MD_based approaches have been profitably adopted and adapted 

by other groups (eg 4), sometimes with a specific focus such as loops 5 and alternative 

approaches, most notably from the BAKER group 6, have emerged as rivals.

It is recognised that the refinement category is something of a special case in CASP 

by taking as targets selected products of another category, namely the primary structure 

prediction exercise. This means that as the original prediction algorithms improve, including 

by harnessing explicit refinement steps, refinement groups need to improve every time 

merely to stand still in terms of the headline statistics 7. Targets have also been observed 

to differ in their refinability 7 so the obviously different selections made for each exercise 

might influence difficulty in unappreciated ways. Here in CASP14, AlphaFold 2 (AF2)

derived refinement targets, selected alongside poorer quality models as “double-barrelled” 

targets, proved to be a special case. Even the best methods failed to drive them closer 

to the experimental structures, but detailed analysis suggests they were, to a large extent, 

not meaningfully improvable since their deviations lay mainly at crystal lattice contacts 

where the experimental structure is potentially unrepresentative of biologically relevant 

conformations. . As with other CASP categories, accurate model quality assessment is 

fundamental here since alternative strategies can be employed for higher- or lower-quality 

models (eg 6) and refinement effort can be productively focussed on areas that are predicted 

to be inaccurately modelled. Here we show, however, that groups still differ widely in their 

ability to rank submissions by overall quality and to predict local coordinate error at a 

residue level.

It is important to remember that the value of a model, refined or otherwise, lies not only in 

the overall fold and what that may reveal about evolution and function, but also in its use, 

for example, for more detailed structure-based function prediction 8, for structure-based in 
silico ligand screening and as a search model in Molecular Replacement (MR) eg 9, 10. Here 

we show that refinement affects - often positively but not exclusively so - the readout of 

catalytic site recognition and prediction of nucleic acid binding ability. A similarly mixed 

picture is obtained from comparing the protein-protein docking of unrefined and refined 

models with that of the experimental structures. Less ambivalently, we show elsewhere in 

this issue 11 that refinement often significantly improves performance in MR, frequently 

converting an unsuccessful starting model into a structure that succeeds.

2. Materials and Methods

2.1 Target selection and characteristics

Refinement targets were selected on a continuous basis during the CASP experiment. When 

a target closed for regular prediction, consideration was given to whether a submission (or 

occasionally two - see “double-barrelled” targets below) might be suitable. This decision 

factored in its size (a target should be tractable for even compute-intensive methods based 

on MD) and quality (it should be neither irredeemably poor or so good that significant 

improvement would be difficult). In addition to available quantitative measures of coordinate 
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quality, potential targets were examined visually to be sure that their errors were plausibly 

refinable and, in particular, did not lie predominantly at interfaces between domains or 

chains. This latter selection was designed to address the previous observation (CASP13 

paper) that missing structural context hampers refinement. Table 1 indicates characteristics 

of the final set of refinement targets.

Compared to previous CASPs, two different classes of refinement target were introduced. 

With the first, indicated in Table 1, groups were allowed six weeks for refinement rather 

than the usual three weeks. The six week extended versions bore names such as R1034×1, 

the regular three week submissions being R1034 etc. The second innovation was what we 

refer to as double-barrelled targets. As CASP14 progressed it became obvious that one 

group, ultimately revealed to be AlphaFold 2 (AF2), performed significantly better than 

all others. Although the AF2 submissions typically had less, and sometimes very little, 

room for improvement, we considered that perfecting them further represented an interesting 

and potentially important challenge. Certain proteins, the “double-barrelled” targets were 

therefore represented by both an AF2 prediction and a prediction from another group. There 

were seven targets of this type and they were named, for example, R1074v1 and R1074v2, 

the labelling as v1 or v2 being random between targets. As an unforeseen consequence of 

this, for three targets one group submitted (unpublished communications) derivatives of the 

AF2 models as ‘refinements’ of the non-AF2 target. In certain places indicated below we 

chose to exclude these points from our analysis.

Table 2 compares sizes and categories of the CASP14 refinement targets to those of CASP13 

while Figure 1 illustrates their range of quality, expressed as GDT_HA (or GDTHA), with 

the previous two CASPs. In terms of quality, this set of refinement targets is comparable 

to those of previous CASPs, but clearly the mean size of target has crept up from 134 to 

149 since CASP13. There has also been a change of distribution between Template-Based 

Modelling (TBM) and Free Modelling (FM) categories with a shift towards more difficult 

targets: the latter outnumbered the former around 2:1 in CASP14, a reversal of the CASP13 

distribution.

2.2 Evaluation

2.2.1 Overall ranking—In order to allow ready comparisons with other CASPs, we used 

the CASP12 refinement ranking score. This score was derived using a machine learning 

approach to reproduce automatically the expertly assigned scores of four independent 

assessors 12. For a single target it is given by

SCASP12 = 0.46 zRMS_CA+0.17 zGDT_HA+0.2zSG+0.15zQCS+0.02zMP

It includes five weighted z-scores (standard deviations above the mean of all submissions). 

Three of these assess atomic positional accuracy:RMS_CA is the local-global alignment 

(LGA; 13) sequence-dependent calculation of root-mean-square deviation between the 

superposed model and target, GDT_HA is the high-accuracy variant of the GDT score 13, 

SG is the SphereGrinder score that captures the local similarity of model and target at each 

residue within a sphere of 6Å 14. The Quality Control Score (QCS) assesses the correctness 
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of secondary structure elements and their relative arrangements 15 while the Molprobity 

score assesses stereochemical parameters of backbone and side chains, as well as measuring 

atomic clashes 16. For overall group rankings SCASP12 scores are summed across all targets 

after discarding outliers (see 12 for details)..

2.2.2 Refinability—We wished to investigate properties of refinement targets that made 

them more (in)tractable. For this purpose we devised a simple refinability metric for each 

target as ∑ΔGDT_HA where ΔGDT_HA is the improvement (positive values) or worsening 

(negative) of the GDT_HA value from the starting refinement model to the particular refined 

version. We considered six variant scores differing combinatorially: firstly in whether for 

a target the sum was over all groups or only the top four groups; and secondly in which 

submissions were considered - only the group’s self-defined top prediction (model_1), the 

actual best prediction or all predictions (models 1 to 5, if available).

2.2.3 Assessing refinement groups’ self-assessments—Groups were asked to 

submit what they consider to be their best model as number 1, their next best as 2 and so 

on. We assessed their performance here by measuring a Spearman’s correlation coefficient 

between the submission order and the actual ranking of model accuracy expressed as 

GDT_HA. We additionally recorded for each group the % of targets where model_1 was 

indeed the highest accuracy model submitted.

Groups are also asked to include per-residue error estimates in the B-factor column of their 

submissions. These are scored at the CASP website using the ASE (Accuracy Self Estimate) 

score, which captures in a single value between 0-100 how well the error estimates and 

actual errors align in a given prediction. It should be mentioned though, that ASE score can 

be considered only as a supplementary measure as a good ASE score can correspond to a 

very poor structural model, for which authors ‘correctly predicted’ large local deviations for 

the vast majority of atoms.

2.2.4 Function prediction—In order to assess the impact of refinement on readout of 

structure-based function prediction methods, targets that were enzymes and/or nucleic acid 

binding proteins were identified. Catalytic sites from the Catalytic Site Atlas (CSA; 17) were 

then sought using the 3D-motif matching methods implemented at CatsId 18 and ProFunc 19. 

Nucleic acid binding capacity was predicted with the structure-based methods DNA_bind 20 

and BindUP 21.

2.2.5 Docking assessment for function prediction—In order to assess the impact 

of model refinement on the ability to predict protein-protein interactions, ClusPro 22 was 

used to dock the subunits of targets involved in this kind of interactions. In those cases 

where pre-existing mutagenesis evidence implicating specific residues on the interaction was 

available, contact restraints were provided as they could be inferred from these experimental 

data. All other parameters were left at their default values. The quality of the resulting 

docked subunits was then assessed using PPDbench 23, which was used to calculate the 

fraction of native contacts (Fnat), ligand RMSD (L-RMSD) and interface RMSD (I-RMSD) 

between the docked pose obtained with ClusPro and the ground truth as observed on the 
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crystal structures. These values were then used to determine the quality of the docking, using 

the CAPRI assessment protocol (Supplementary Table 1; 24)

2.2.6 Assessment of proximity of modelling errors and interfaces—In order to 

assess whether error regions present in the AF2 models selected for refinement were located 

in the vicinity of intermolecular interfaces that were not considered during the refinement 

stage and therefore could preclude successful refinement of such local errors, they were 

analysed as follows. Error regions were defined as comprising at least three consecutive 

residues with a five residue-window rolling average LGA distance (between target and 

experimental structure superimposed using the sequence-dependent algorithm) of at least 

3Å. If the residues within this error region had an average of at least 0.5 residues originating 

in a symmetry mate, another chain or a different domain within a radius of 10Å -measured 

between Cα; the error region was then defined as neighbouring an unmodelled portion in 

one of these three categories, according to the predominant kind of contact observed.

3. Results and Discussion

3.1 Overall group rankings

For comparability with previous CASP rounds we employed the CASP12 scoring for 

overall ranking of groups (see Materials and Methods). This score was derived using a 

machine learning approach to reproduce automatically the expertly assigned scores of four 

independent assessors 12. It includes (see Materials and Methods) five weighted terms, 

three of which assess Cα positional accuracy, the Quality Control Score 15 which assesses 

secondary structure elements and the Molprobity score 16 for stereochemical analysis. Since 

the CASP12 score terms are Z-scores and more groups degrade model quality overall than 

improve it, then it is useful to compare the overall ΣSCASP12 score of each group with a 

“naïve predictor” corresponding simply to resubmission of the starting structures.

Figure 2A shows that, across all regular targets only four groups out-performed the “naïve 

predictor” : the human FEIG and its server equivalent FEIG-S, the overall top-scoring group 

BAKER, and the DellaCorteLab. This, along with the observation that only the FEIG group 

managed to improve more than half the targets (Figure 2B), is testimony to the continuing 

difficulty in consistently refining target structures. Quite distinct methods lie behind the 

most successful approaches. The FEIG and FEIG-S approaches are based on MD with flat

bottom harmonic restraints. New for CASP14 was additional sampling by the generation of 

multiple alternative initial models using Modeller 25 and templates identified by HHsearch 
26. The DellaCorteLab uses a modified version of the FEIG group MD-based approach from 

CASP13, differing in details of salt concentration, equilibration and restraint application. 

In contrast, the BAKER group carries out all-atom refinement in Rosetta using information 

from a deep learning framework that estimates per-residue accuracy and residue-residue 

distances.

While bearing in mind that the sample size is relatively small, some differences in 

performance on different groups of targets can be tentatively proposed. Figure 3 shows, 

unsurprisingly, that more groups perform well with smaller proteins, where conformational 

sampling is more tractable, than with larger targets. Ten groups, including the four overall 
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top performers, outperform the “naïve predictor” on the four small targets with fewer than 

100 residues. With these small targets the DellaCorteLab performs best, followed by FEIG 

and FEIG-S, similarly based on MD. The overall winner, the BAKER group, ranks only 8th 

for these targets. On the other hand, only the BAKER group beats the “naïve predictor” for 

the eight targets longer than 200 residues. DellaCorteLab, FEIG and FEIG-S rank 9, 12 and 

7 on these largest targets. Overall, the results suggest that MD-based approaches, at least as 

currently configured, perform best on the smallest targets, but for larger targets their relative 

performance drops and the BAKER group approach would be preferred.

Figure 4 illustrates group rankings on targets classified by quality, as measured by their 

starting GDT_HA. While again remembering the rather small numbers in each category, 

there appears to be an overall trend in the number of groups out-performing the “naïve 

predictor” from seven for the lowest-quality starting structures to none where the targets 

were already of reasonable quality with GDT_HA > 70: evidently gross errors are generally 

easier to correct than the final incorrect details. Viewed by target starting quality there does 

not seem to be any observable overall difference among the top four performers between the 

MD-based methods and the BAKER group results. Interestingly, the JLU_Comp_Struct_Bio 

submission performs best in both 60 < Starting GDT_HA <=70 and Starting GDT_HA 

>70 categories. It employs a neural network implementation of generalized solvation free 

energy 27 to allow rapid structure refinement by differentiation rather than more expensive 

conformational sampling 28.

Figure 5 shows the distribution of ΔGDT_HA and ΔRMS_CA values for submissions 

by refinement groups, positive and negative respectively being refinements towards the 

experimental structure. The overall percentages of improved models are no better, or even 

somewhat worse than in recent CASP experiments. However, the AF2-derived refinement 

targets had some special properties that materially influence these numbers as discussed 

later. Figure 5 shows that the overall picture clearly improves when AF2 targets are 

excluded, but it remains the case that overall performance - in terms of the percentage 

of models with improved GDT_HA or RMS_CA - is comparable or still slightly down on 

previous CASPs. As commented by previous assessors, comparisons between CASPs are 

difficult as the targets are, by definition, different each time. Furthermore, initial predictive 

pipelines increasingly incorporate refinement steps, potentially reducing the scope for the 

separate refinement step assessed here. When considering why, despite the intense effort, 

refinement results seemingly show little if any progress, it is worth remembering that the 

mean target size this time at 149 residues is distinctly longer than at CASP13 (134), a factor 

that will likely depress the performance of MD-based refinement methods.

The distributions of ΔGDT_HA values for the best-performing four methods and the 

BAKER-experimental group, who produced a number of very large improvements, are 

shown in Figures 6 and 7. For example, the GDT_HA value of R1085-D1 increased from 

42.5 to 73.1 after refinement by the BAKER-experimental group. Interestingly, Figure 7 

suggests it is possible to distinguish between the more conservative MD-based methods 

and the more expansive protocols from the Baker group. The DellaCorteLab submissions 

are quite narrowly distributed about ΔGDT_HA of −0.3 indicating that the maximum 

improvement to be expected is relatively modest but, similarly, a model is unlikely to be 
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significantly degraded in quality. The FEIG and FEIG-S distributions, in comparison, are 

flattened somewhat so that bigger improvements are sometimes seen but, at the same time, 

other models are more significantly degraded in quality. An example of a FEIG-S refinement 

is shown in Figure 8. The BAKER and, especially, the BAKER-experimental protocols 

broaden the distributions further so that occasional large improvements are accompanied by 

sometimes much larger worsening of quality.

These characteristics can be related to the details of the protocols. Restrained MD lies at 

the heart of the DellaCorteLab and FEIG submissions. Restraints have been found to be 

necessary for avoiding model degradation but, naturally, limit the conformational space that 

can be sampled. The greater breadth of the FEIG and FEIG-S distributions compared to 

DellaCorteLab may be due to the innovation of the FEIG lab in sampling from alternative 

initial template-based models, as well as from the CASP refinement target. The Rosetta 

protocols behind the BAKER submissions can sample conformational space more broadly. 

This effect is enhanced in the BAKER-experimental protocol where deep learning-guided 

fragment insertion and rigid body movements form part of the procedure.

3.2 Refinability

Since even the best performing groups clearly struggle with some targets, we thought 

it interesting to study which kinds of targets could be refined, and which consistently 

confounded the refinement groups. We therefore devised a simple metric of refinability (see 

Material and Methods) which sums the improvements (or deteriorations) seen on a per-target 

basis. The basic refinability scoring concept can be applied to selected or all groups and 

selected or all submissions.

Analysis (Supplementary Figure 1) shows that the six variant scores we trialled (all groups 

or only the top four; model_1, or model_1 to model_5, or highest quality model) correlated 

quite well with each other. We therefore looked first at target refinability for all groups and 

all submissions, then for the least correlated variant - top groups, best submission.

The per-target refinability scores for all groups and all submissions show that percentage 

regular secondary structure is not significantly correlated with refinability and target size is 

only weakly correlated (Figure 9). Thus, targets containing less regular secondary structure 

are no harder to refine (expressed as improvement in GDT_HA value) than other structures, 

and the effect of length is only weak, at least within the ranges sampled by the target 

selection. However, there is a significant negative correlation between the starting GDT_HA 

value of a target and its refinability: higher quality starting models are harder to improve. 

Interestingly, Figure 9 also highlights that across all groups and all submissions only a single 

target - R1030-D2 a helical domain of a bacterial adhesin - has a positive refinability value.

In comparison, the refinability values calculated just from the top four groups’ best 

submissions show a much weaker association with starting model quality (Figure 9). 

This suggests that the best groups achieve similar performance across the range of target 

difficulties, with better starting structures proving more tractable for them than for other 

groups. By this refinability measure, most targets have positive values showing they can, 
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on average, be improved by the top four groups. Intriguingly, however, AF2-derived targets 

(shown in orange in Figure 9) buck this trend and cannot, on average, be improved.

In order to test the universality of this observation across all groups and submissions, we 

plotted the per-target distributions of ΔGDT_HA (Figure 10a). For an orthogonal view of 

model quality we also performed a similar analysis with respect to FlexE scores (Figure 

10b). FlexE estimates the energy of deformation between the model and the experimental 

structure 29. Negative ΔFlexE values indicate improvements in the native-likeness of the 

protein structure 29. By both measures, AF2-derived targets are anomalous in their near

unrefinability. Across all groups and all submissions, there are very few that improve 

AF2-derived targets, and the improvements are marginal at best.

Since non-AF2-derived targets of similar starting quality can be improved in both GDT_HA 

and FlexE (Figure 10) we sought an explanation for the anomalous behaviour of AF2

derived refinement targets. Visual inspection first suggested that the answer may lie in 

crystal lattice interfaces. Clearly, crystal packing can distort local protein structure from 

its favoured solution structure(s): a correct prediction of the (or a) relevant biological 

conformation could therefore appear to be an error in these circumstances. We therefore 

explored ways to quantify the extent to which error regions in the original AF2-derived 

targets (regions with smoothed LGA residue error of > 3Å over three or more consecutive 

residues) coincided with crystal lattice contacts (see Materials and Methods). (No AF2

derived targets were for structures determined by NMR or Cryo-EM.) For comparison, 

we similarly assessed contacts between the (sub-)structures represented by the AF2-based 

targets and other chains and domains. Since the context provided by other chains or domains 

would not be considered during the refinement exercise, such contacts would provide an 

alternative explanation for the inability of AF2-derived targets to be refined.

Table 3 presents a summary of this analysis. It is evident that the error regions in the initial 

AF2-derived targets are quite commonly found at crystal lattice contacts - eight regions, 64 

residues - and only rarely at interfaces with other domains of the same protein - one region, 

five residues - and not, in this set, at all at interfaces with other chains. The remainder, that 

we term uncomplicated errors, are not in any of these categories, for at least one chain in 

the asymmetric unit: these include five error regions encompassing 35 residues. Some cases 

(italicised in Table 3) place regions at a crystal lattice or domain interface but only for one 

chain: these are counted as uncomplicated errors since the conformation of the region is 

essentially the same in each chain: thus, the interface location of one chain does not appear 

to distort the structure and thereby provide an explanation for the error. Figure 11 illustrates 

the error regions determined for AF2-derived R1067v2 and how they are each positioned 

near a crystal lattice contact. For comparison, we also show a non-AF2 target R1091-D2 

which contains error regions that are uncomplicated by contact with crystal symmetry mates, 

other chains or other domains.

The data appear to show a significant co-location of AF2 target errors and crystal lattice 

contacts: significantly more residues in error regions are found at crystal lattice interfaces 

than not. Remembering the overall extremely high quality of AF2 models in general, the 

question arises as to which of the structures - the AF2 prediction or the crystal structure - 
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should be considered as the more authentic in these cases. Ordinarily, the structure based 

on experimental data would immediately be preferred but at crystal lattice contacts, where 

unnatural distortions can occur, the crystal structure should not necessarily be trusted to the 

same extent. Since crystal lattices take no part in the AF2 calculations (to the best of our 

knowledge), the resulting models do not suffer from this disadvantage. Naturally, they are 

only predictions, yet for the bulk of many targets they are as close a match to the native 

structure as would be another crystal structure of the same protein (see elsewhere in this 

issue). It seems we are forced to consider the prediction as not necessarily less useful or 

authentic than the experimental structure in these regions.

Returning to the question of refinability, overall the results suggest that the apparent 

unrefinability of AF2-derived targets can partly be explained by the fact that many 

remaining small errors lie at crystal lattice contacts. Thus, the ‘correct’, experimental 

structure used as a reference for refinement assessment may not necessarily be fully 

representative of the conformation(s) accessible in solution. This means that parts of the 

reference structure might not be accessible to or targeted by a refinement protocol that seeks 

a global energy minimum and/or a structure that satisfies covariance information deriving 

from residue contact constraints on natural conformations.

3.3 Self-assessments

In addition to submitting coordinates, refinement groups reported their own assessment 

of model accuracy in two ways, firstly at the global level, by ranking models from 1 to 

5 in decreasing order of accuracy. Secondly at local level, groups are asked to submit a 

per-residue error estimate, unit Å, in the B-factor column of the submitted models. For 

different reasons each aspect has real world significance: a user would likely give most 

consideration to the top-ranked model, while per-residue error estimates are very valuable 

for search model weighting and editing when using predictions for Molecular Replacement 
30.

While acknowledging the relatively small number of cases, some tentative conclusions can 

be drawn from Supplementary Table 2 which shows, for all groups that submitted five 

unique models for at least one target (all except five), an assessment of their ability to 

rank their five models. Most groups’ submissions (17 groups including the top four ranking 

overall) had a positive Spearman correlation coefficient between the model submission 

number 1 to 5 and the actual model quality expressed as GDT_HA. Seven groups, however, 

recorded a negative correlation coefficient. The ability of the groups to correctly identity 

their best refined model is arguably most important of all. Here, 17 groups were correct 

20% or more of the time, but nine were below that level. Among the top-performing 

groups, BAKER, BAKER-experimental, FEIG and FEIG-S scored well at 34, 56, 30 and 

50%, respectively, but DellaCorteLab was low at 11%. Some groups, notably Kiharalab, 

pinpointed their best prediction as model_1 very well despite scoring a low Spearman CC. 

This may indicate that some groups place more emphasis on detecting their best model than 

on ordering all five.

Per-residue error estimates are scored at the CASP website using the ASE (Accuracy 

Self Estimate) score (see Methods). The predictions from two groups (AIR and 
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Frustration_Refine) were not accompanied by these error estimates while analysis suggested 

that the submissions from groups Risoluto, Beta and AWSEM_PCA had values in the 

B-factor column in a reversed order i.e. high for more accurate parts of the model. Figure 12 

illustrates the ASE values for all submissions from the remaining groups. Interestingly, the 

overall best-performing groups occupy four of the top seven places showing that their high 

quality predictions are accompanied by high accuracy error estimates.

The ASE values also allow an analysis by target of features that are associated with the 

ability to accurately estimate errors. We found no association between secondary structure 

class (all-α, all-β, mixed), percentage regular structure and number of residues (not shown). 

However, there was a strong correlation between the mean ASE of a target (across all the 

groups shown in Supplementary Figure 2 and for all refinements) and its starting GDT_HA. 

Curiously the AF2-derived targets again performed differently, having lower ASE values 

than other targets of similar starting GDT_HA. Evidently it is harder to predict residue error 

for AF2-derived targets than for other comparable proteins. This is presumably because the 

AF2-derived targets were generally high quality throughout, not following the typical pattern 

of lower accuracy in exposed loops.

3.4 Extended targets

At CASP14, for the first time, for a subset of targets, refinement groups were invited to 

submit results after six weeks of work, in addition to submissions after the usual period 

of three weeks. The rationale was that some refinement methods, especially those based 

on MD, are quite compute-intensive and so can benefit from a longer window, particularly 

when dealing with larger targets.

Supplementary Figure 3A shows the groups ordered by overall performance (Figure 2) 

and illustrates the sum of all improvements made, expressed as sigma ΔGDT_HA, over 

model_1 submissions for all targets. Somewhat surprisingly, it is as common to see 

that the six-week submissions are worse (12 groups) than it is that they are improved 

(also 12). For the remaining three groups (DellaCorteLab, BAKER-experimental and 

MULTICOM_CLUSTER), the three- and six-week scores are identical, reflecting repeat 

submissions. Supplementary Figure 3B shows variation of scores on each of the seven 

extended targets. Again, equal numbers of targets benefit or suffer overall from the 

additional three weeks, while R1029 scores similarly at the two time points. Taken together, 

these results suggest that there is little benefit from the extended submission window of six 

weeks.

3.5 Structure-based function prediction

A major application of protein modelling lies in the better interpretation and prediction of 

function. Function prediction in CASP is a separate category reported elsewhere in this 

issue, but we wished to assess here what impact model refinement had on the ability to 

read out function from protein structure. We focused on servers that are readily accessible 

to the community. Inspection of the information provided to CASP predictors was combined 

with some initial analysis and literature review to identify functions encoded within the 

refinement targets that would be interpretable using structure-based methods. This produced 
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four enzymes (R1053, a PI3 kinase; R1056, a metalloprotease; R1057, a methyltransferase; 

R1067, an LD-transpeptidase) with catalytic sites potentially discoverable by structural 

motif matching in ProFunc 19 or CatsId 18. R1057, along with the non-catalytic R1068 were 

DNA-binding proteins, a function potentially discoverable using DNA_BIND 20 or BindUP 
21. Finally, we identified three targets that contribute to protein-protein interactions and 

considered testing their performance in docking using ClusPro 22.

In order to be able to measure the impact of refinement we required, for at least one 

criterion, that the experimental structure give a positive prediction while the refinement 

target yield a negative result. Any positive impact of the refinement would then be evident 

in the function annotation emerging from the refined version. Unfortunately, only one of the 

four enzymes - R1057, an N4-cytosine methyltransferase - fulfilled these criteria.

Table 4 shows that refinement can make a significant difference to structure-based 

function annotation, albeit the picture is mixed and method-dependent. For example, six 

of the 20 refinements from the top four groups hit a methyltransferase catalytic site 

template in CastID in a way the unrefined target does not. Although it is important to 

note that the submitted structures often matched other templates with similar scores - 

the methyltransferase match was not necessarily top-scoring - depending on the other 

information available regarding a protein of interest (ref for non-homology methods) it 

might still be very relevant to flag a particular activity as a possibility, even among 

a list of candidate activities. By Profunc, the unrefined target already scores almost as 

well as the experimental structure but its score can be increased, sometimes significantly 

after refinement, although it must also be pointed out that the match may also be lost 

on refinement. Unlike CastID, when a methyltransferase hit emerged for a submission to 

ProFunc it was the only hit. For DNA binding, refinement typically improves the unrefined 

target score with DNAbind, in four cases taking it above the threshold for a positive 

prediction. However, the BindUP predictions remain negative for all refinements tested.

Among the targets involved in protein-protein interactions only one ultimately proved 

suitable for us. In the case of T1045, one subunit of the Arabidopsis thaliana PEX4-PEX22 

complex was chosen for refinement. However, even ClusPro docking of the two partners 

from the crystal structure did not identify the native interaction mode in first place. T1055, 

selected for refinement, was a single chain NMR structure of the C-terminal domain of the 

A20 processivity factor but the crystal structure of its known partner vaccinia virus E9 DNA 

polymerase was available in the PDB 31. Unfortunately, even with mutagenesis evidence 

implicating specific residues on each partner in the interaction 31, no plausible binding mode 

between the two structures was obtained.

The refinement targets that could be used were both chains of T1065 which are described 

by the submitters as two subunits of Serratia marcescens N4-cytosine methyltransferase 

(although our own unpublished analysis suggests they may be a toxin-antitoxin pairing). 

We did pairwise docking between crystal structures, unrefined targets and the model_1 

refinements of the top 5 groups, looking at the top predicted binding model in each case. 

We defined the receptor as the larger T1065s1 and the ligand as T1065s2. As Table 5 

and Supplementary Figure 4A show, the crystal structures can be docked by ClusPro to 
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closely capture the native interaction. Replacing the crystal structure of the ligand with the 

refinement target still yields good results (Supplementary Figure 4B), but the refinement 

target version of the receptor is not successfully docked to the ligand crystal structure 

(Supplementary Figure 4C). Nevertheless, the pair of refinement targets dock well. The 

impact of refinement here is again mixed. Positively, refinement of the receptor structure 

prediction by three of the four groups tested improved the results significantly, giving 

native-like poses where the unrefined target did not (eg Supplementary Figure 4D). On the 

other hand, the good quality result between ligand crystal structure and receptor refinement 

target is lost upon any of the tested refinements of the latter.

4. Conclusions

As mentioned earlier, it is hard to compare CASP to CASP performance since the selection 

of targets is necessarily different in each case. Some measures of performance would also be 

influenced by the entry or withdrawal of particularly strong or weak groups. Nevertheless, 

CASP 14 refinement targets seem comparable to those of CASP13, in coordinate quality 

for example, albeit with a somewhat larger mean size. In terms of the proportion of models 

improved, performance is at best maintained compared to previous CASPs: certainly there 

have not been advances of the magnitude of those seen in the initial modelling as a result 

of the deployment of Deep Learning methods. Nevertheless, some evidence of progress 

was suggested by the comparison between the DellaCorteLab and FEIG groups submissions 

since the former employed a protocol largely corresponding to the FEIG group approach 

from CASP13. Although both did well this time, and are in the select number capable of 

beating the naïve predictor, FEIG and FEIG-S clearly did better, validating the innovations 

in extra sampling they introduced this time. Indeed, in their own paper, Feig and co-workers 

demonstrate the superiority of their latest protocol by applying CASP12 and CASP13 

approaches to CASP14 targets 32. Cross-fertilisation between CASP categories is quite 

common: for example, a number of original predictors incorporate elements of refinement 

protocols into their modelling. The top-performing BAKER group illustrate the reverse here: 

their latest refinement protocol 33 incorporates Deep Learning, which has revolutionised 

protein structure prediction in recent years, using it to estimate errors and thereby guide the 

diversification and optimisation of refined derivatives of the refinement target. Also notable 

is the use of a neural network by the JLU_Comp_Struct_Bio 27 which is the best performing 

group for refinement of higher quality starting models with GDT_HA > 60.

The CASP organisers introduced two new features to the refinement challenge this time. 

Some targets were allowed an additional three weeks of time, with submissions at a 

six-week checkpoint in addition to the usual three. Though well-motivated by the compute

intense nature of many refinement protocols, the results were disappointing: the quality 

of the extended target refinements was just as likely to be worse than better, even among 

submissions from the best groups. Also new this year were ‘double-barrelled’ targets where 

groups were challenged to refine lower and higher quality predictions for the same target. 

The higher quality predictions were from a single group, later revealed to be AlphaFold 

2. Despite containing regions differing from the experimental structure these proved to be 

essentially unimprovable by two orthogonal measures of protein quality. Digging deeper, we 

found that a majority of the structural differences to the reference experimental structure lay 
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at crystal lattice interfaces. Bearing in mind the potential distortion introduced by formation 

of the crystal lattice, it seems possible that the failure to ‘improve’ the quality of these error 

regions in the AF2 models may simply reflect that the experimental reference structures 

are in non-natural conformations at these points. The code we developed to categorise error 

regions as lying at lattice or other interfaces may prove useful to future CASP refinement 

assessors for the selection of targets with uncomplicated and improvable errors.

Remembering that structure predictions are frequently used by biologists for interpretation 

or prediction of function, we looked at the impact of refinement on structure-based 

function annotation methods for catalytic sites, nucleic acid binding capacity and protein

protein docking. Although only a small number of refinement targets were suitable, and 

although the picture was mixed, it is clear that refinement can sometimes yield a correct 

structure-based function read-out for a refinement target that did not give a positive result. 

Importantly, the server FEIG-S was among the groups whose refinements behaved in 

this way suggesting that biologists should consider structure-based hypotheses from server

refined models in addition to analysing the original structure predictions. We also looked 

at the impact of refinement on the prospects for use of structure predictions in Molecular 

Replacement (elsewhere in this issue) where the picture was very strongly encouraging: we 

frequently observed success with a refined version where the original prediction failed.

Finally, in the post-AF2 era, it is relevant to consider whether and in what form the 

refinement category should persist in the CASP experiment. Clearly if all structures can 

be computationally predicted by readily available software with the same accuracy as they 

can be experimentally determined then there is no refinement to be done and the category 

dies. However, we are not yet in that position despite the remarkable performance of AF2 

(reported elsewhere in this issue). Firstly, AF2 did produce some lower-quality models for 

which refinement would potentially be of use. Secondly, AF2 is not yet available to the 

community and we have clearly shown the benefits of refinement of others’ models. And 

finally, it is not yet clear that AF2 or any future packages inspired by it perform equally 

well on all molecular architectures of interest. Nevertheless, it is probably fair to say that the 

space available to refinement groups to innovate and have impact is diminishing as the latest 

deep learning-based methods, allied to the ongoing incorporation of refinement protocols 

into the original predictive pipelines, ramp up starting model quality and reduce the potential 

for meaningful refinement. Part of the future may be a reconfiguration of the refinement 

category away from single domain proteins towards more challenging multi-domain proteins 

or multi-chain assemblies. Another trend may be towards refining an initial prediction, not 

against a single, potentially unrepresentative structure, but against the experimental data. 

As noted elsewhere 32, MD-based methods may be particularly well-suited to refining 

against data representing an ensemble of states: future refinement exercises could therefore 

include efforts to produce ensembles that better explain the experimental data than the initial 

submitted structure(s).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of the accuracy of models suggested as starting structures for refinement in 

CASP12-14. The accuracy is expressed in terms of GDT_HA. Box limits indicate upper 

and higher quartiles, whiskers indicate upper and lower bounds and a horizontal line in the 

middle of the box represents the median.
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Figure 2. 
Overall group ranking according to the ΣSCASP12 score (A) and proportion of models 

improved by each group (B). The “naïve predictor” corresponding to resubmission of the 

starting models is shown in pink in A. The data used to generate these figures are from 

the regular refinement targets i.e. excluding the extended targets but including the double

barrelled targets.
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Figure 3. 
Overall group ranking according to the ΣSCASP12 score for targets subdivided according 

to size, from small (top) to large (bottom). The “naïve predictor” corresponding to 

resubmission of the starting models is shown in pink in each panel. The data used to 

generate these figures are from the regular targets i.e. excluding the extended targets but 

including the double-barrelled targets.
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Figure 4. 
Overall group ranking according to the ΣSCASP12 score for targets subdivided according 

to starting quality, from poor (top) to good (bottom). The “naïve predictor” corresponding 

to resubmission of the starting models is shown in pink in each panel. The data used to 

generate these figures are from the regular targets i.e. excluding the extended targets but 

including the double-barrelled targets.
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Figure 5. 
Distribution of ΔGDT_HA (A, C) and ΔRMS_CA (B, D) values for refined submissions 

of all groups. The numbers displayed alongside the chart compare the proportion that were 

improved with values from previous CASP experiments. Panels a and b show submissions 

for all targets, panels c and d illustrate analyses excluding targets based on AF2 modelling. 

The data used to generate these figures are from the regular and extended targets.
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Figure 6. 
Distribution of ΔGDT_HA values for named groups. They are the four overall top

performing groups with the addition of BAKER-experimental which achieved the largest 

single refinement. The data used to generate these figures are from the regular and extended 

targets.
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Figure 7. 
Distribution of ΔGDT_HA values represented as a box and whisker plot for named groups. 

Box limits indicate upper and higher quartiles, whiskers indicate upper and lower bounds, 

circles represent outliers and a horizontal line in the middle of the box represents the 

median, also labelled. The data used to generate these figures are from the regular and 

extended targets.
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Figure 8. 
A typical example of a refinement, here T1090 refined by FEIG-S (ΔGDT_HA = 16.01) - A 

shows a superposition of the starting model (blue) and the crystal structure (grey). B shows a 

superposition of the starting model (blue), the refined model (pink) and the crystal structure 

(grey). C shows a superposition of the refined model (pink) and the crystal structure (grey).
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Figure 9. 
Correlation between target refinability - defined as the sum of the difference of GDT_HA 

before and after refinement - and three different factors: the starting GDT_HA of the 

refinement target, the target’s percentage of regular secondary structure and its total number 

of residues. Top row corresponds with data obtained across all submissions from all groups, 

bottom row with data observed across the top four groups’ best submissions. A linear 

model was fitted into the data displayed at each figure and included in the form of a line, 

together with the R2 value resulting from this model. Shaded bands around the regression 

line depict the 95% confidence interval for the regression estimate. Each point represents 

a different refinement target, those coloured in orange highlight refinement targets derived 

from AF2 modelling results. Only refinement target accuracy is correlated significantly with 

refinability, and the correlation is weaker for the top groups than for all groups.
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Figure 10. 
Distributions of ΔGDT_HA (A) and ΔFlexE (B) scores across all submissions for each 

target. Box limits indicate upper and higher quartiles, whiskers indicate upper and lower 

bounds and a horizontal line in the middle of the box represents the median. Model 

improvement corresponds to positive ΔGDT_HA and negative ΔFlexE values. The vertical 

dotted lines are drawn at zero - no change in model quality after refinement. Outliers 

are depicted as a rhombi in figure A but, for clarity, are omitted in figure B where they 

all had values above 0. Targets are ordered by their starting GDT_HA value from high 

(better model) at the top to low (poorer model) at the bottom. Targets deriving from AF2 

predictions are coloured orange. Three submissions for double-barrelled targets involving 

cross submission of AF2-derived predictions (see Materials and Methods) are not shown.
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Figure 11. 
Comparison of error regions in (A) R1067v2, an AlphaFold 2-derived target with a starting 

GDT_HA of 79 and (B) R1091-D2, deriving from a tFold-IDT prediction with a starting 

GDT_HA of 61. Error regions are coloured according to whether they are at lattice 

contacts (red), or not (green).The remainder of the refinement target is coloured in cyan 

and is superimposed on the complete chain of the experimental structure (dark blue) with 

symmetry mates shown in grey.
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Figure 12. 
Distribution of the ASE values across all the submissions made by the refinement groups. 

Box limits indicate upper and higher quartiles, whiskers indicate upper and lower bounds 

and a horizontal line in the middle of the box represents the median. Outliers are depicted as 

a rhombi. Groups were ordered by descending median of their ASE values.
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Table 1.

Features of the selected refinement targets

TARGET ID(S) 
AT 
REFINEMENT 
PHASE…

ID OF 
EXTENDED 
REFINEMENT 
TARGET, 
WHERE 
APPLICABLE

RESIDUES INCLUDED RESIDUES IN 
REFINEMENT 
TARGET

CLASSIFICATION STARTING 
MODEL

REFINEMENT 
TARGET 
STARTING 
GHT_HA

EXPERIMENTAL 
STRUCTURE IS 
NMR OR CRYO
EM?

R1029 R1027x1 1-125 125 FM TS364_4 27.6 NMR

R1030-D2 155-273 119 TBM-hard TS362_5-
D2 40.34

R1031 1-95 95 FM TS042_1 52.11

R1033 1-100 100 FM TS376_1 37.75

R1034 R1034x1 1-156 156 TBM-easy TS070_1 70.03

R1035 1-102 102 FM/TBM TS031_2 69.12

R1038-D2 123-198 76 FM/TBM TS326_5-
D2 56.58

R1039 1-161 161 FM TS031_1 36.022

R1040V1 1-130 130 FM TS427_1 v1-53.84

R1040V2 TS435_2 v2-30.96

R1041V1 1-242 242 FM TS427_5 v1-70.25

R1041V2 TS031_1 v2-42.35

R1042V1 1-276 276 FM TS403_1 v1-34.69

R1042V2 TS427_1 v2-65.58

R1043V1 1-148 148 FM TS403_1 v1-43.41

R1043V2 TS427_1 v2-65.37

R1045S2 8-173 166 TBM-hard TS238_1 61.6

R1049 1-134 134 FM TS351_1 50.93

R1052-D2 540-588,669-832 213 TBM-easy TS209_1-
D2

57.98

R1053V1 407-577 171 FM/TBM TS042_5-
D2 v1-53.07

R1053V2 TS427_4-
D2 v2-80.12

R1055 R1055x1 3-124 122 FM/TBM TS013_2 59.22 NMR

R1056 R1056x1 13-181 169 TBM-hard TS183_2 49.7

R1057 1-121,127-184,200-241,255-279 246 TBM-easy TS209_2 64.4
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TARGET ID(S) 
AT 
REFINEMENT 
PHASE…

ID OF 
EXTENDED 
REFINEMENT 
TARGET, 
WHERE 
APPLICABLE

RESIDUES INCLUDED RESIDUES IN 
REFINEMENT 
TARGET

CLASSIFICATION STARTING 
MODEL

REFINEMENT 
TARGET 
STARTING 
GHT_HA

EXPERIMENTAL 
STRUCTURE IS 
NMR OR CRYO
EM?

R1061-D3 736-838 103 TBM-easy TS277_3-
D3 58.25 CRYO-EM

R1065S1 6-124 119 TBM-hard TS351_4 73.32

R1065S2 1-98 98 FM/TBM TS209_1 74.75

R1067V1 R1067x1 44-264 221 TBM-hard TS473_3 v1-46.27

R1067V2 TS427_1 v2-79.08

R1068 R1068x1 13-203 191 TBM-hard TS238_1 40.64

R1074V1 71-202 132 FM TS427_1 v1-78.41

R1074V2 R1074x2 TS140_5 v2-35.61

R1078 3-131 129 TBM-hard TS226_2 69.69

R1082 23-97 75 FM/TBM TS042_1 52.66

R1085-D1 173-339 167 TBM-hard TS468_1-
D1 42.5

R1090 2-192 191 FM TS351_1 44.44

R1091-D2 498-604 107 TBM-easy TS351_3-
D2 60.75
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Table 2.

Number of CASP14 targets in Template-Based Modelling (TBM) and Free Modelling (FM) categories and 

size measurements. Numbers in parentheses indicate values from CASP13. Extended and “double-barrelled” 

targets (see main text) are counted once here.

Target class Number of targets Size in residues

minimum maximum mean

TBM-easy 5 (13) 103 246 165 (132)

TBM-hard 8 (5) 119 221 160 (130)

FM/TBM 6 (5) 75 171 107 (142)

FM 11 (6) 95 276 157 (137)

all 30 (29) 75 (77) 276 (204) 149 (134)
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Table 3

Analysis of the neighbourhoods of error regions in the AF2 models (see Materials and Methods for 

definitions). Error regions are classified (for each chain where appropriate) according to whether they 

predominantly lie near other symmetry mates in the crystal lattice, other domains in the native protein 

containing the refinement target sequence, or neither. We considered the possibility of contacts with other 

chains in the asymmetric unit but there were no cases like this. Each cell contains ranges of residues 

considered as error regions in the AF2-based refinement target. Numbers in parentheses correspond with the 

average number of contacting residues (in a symmetry mate or another domain) for residues in the error 

region. Where a region is categorised differently in different chains (italicised) it is excluded from the lattice 

contact and domain contact totals but included in the uncomplicated error column.

Target Chain Errors near lattice contacts Errors near domain contacts Uncomplicated errors

1040

A 35-51 (1.9)
97-99 (3.3) 70-74 (0)

B 35-51 (1.6)
97-99 (4) 70-74 (0)

1041
A 191-200 (1.7) 18-22 (6.6)

B 18-22 (7.2) 191-200 (0.2)

1042

A 150-154 (1.2)
273-275 (1)

96-101 (5.6)
*

247-250 (0.5)
*

B 150-154 (1)
273-275 (1.6)

96-101 (0.3)
*

247-250 (0)
*

1043

A 134-137 (3.25) 25-34 (0.1)
115-119 (0.2)

B
25-34 (0.8)

115-119 (1.4)
134-137 (0.75)

1053

A 68-72 (0)

B 68-72 (0)

C 68-72 (0.8)

D 68-72 (0)

1067 79-97 (3.9)

1074 21-27 (0.5)
83-88 (0.85)

Total number of error regions 8 1 5

Total number of residues in error regions 64 5 35

*
These two error regions have residues missing in chain B. Thus, it is not clear whether they should be classified as a domain contact or as 

uncomplicated: they are therefore exclude from the counts
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Table 5

Results obtained using ClusPro to dock the two subunits of target T1065. Different combinations of structures 

were tested using, for each subunit; the crystal structure, the structure provided to the groups as the refinement 

target, and the model_1 submitted by each of the top four refinement groups. These top predictions are 

indicated simply by the refinement group name in the Table. For each docking exercise, the ClusPro cluster 

size and lowest energy reported were recorded. Additionally, the top cluster was selected for further docking 

quality assessment, where the fraction of native contacts (Fnat), ligand RMSD (L-RMSD) and the interface 

RMSD (I-RMSD) were recorded and used to estimate the docking quality based on the CAPRI assessment 

protocol - see Materials and Methods and Supplementary Table 1.

‘Receptor’ 
(R1065s1) ‘Ligand’ (R1065s2)

ClusPro 
Cluster Size

ClusPro 
Lowest 
Energy Fnat

L-RMSD 
(Å)

I-RMSD 
(Å)

CAPRI 
Assessment

Crystal Crystal 126 −878.6 0.7 2.39 3.11 Medium

Crystal Refinement target 108 −616.1 0.7 4.91 4.84 Medium

Crystal BAKER 159 −713.2 0.08 31.61 29.25 Incorrect

Crystal FEIG 169 −743.4 0.09 24.93 23.89 Incorrect

Crystal FEIG-S 80 −676.8 0.1 26.36 25.08 Incorrect

Crystal DellaCorteLab 173 −752.9 0.07 32.76 30.62 Incorrect

Refinement target Crystal 119 −574.2 0.13 24.37 22.79 Incorrect

BAKER Crystal 99 −591.9 0.09 31.59 28.41 Incorrect

FEIG Crystal 152 −629.1 0.84 1.82 1.89 Medium

FEIG-S Crystal 150 −630.5 0.84 3.78 3.08 Medium

DellaCorteLab Crystal 108 −535.5 0.62 22.83 6.06 Medium

Refinement target Refinement target 215 −640.4 0.47 9.61 9.1 Acceptable

BAKER BAKER 113 −650.3 0.28 15.84 13.79 Incorrect

FEIG FEIG 146 −590.9 0.1 25.4 24.04 Incorrect

FEIG-S FEIG-S 127 −623 0.1 34.52 31.73 Incorrect

DellaCorteLab DellaCorteLab 123 −627.4 0.08 26.91 25.69 Incorrect
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