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Abstract

In games with strict strategic complementarities, properly mixed Nash equilibria—equilibria

that are not in pure strategies—are unstable for a broad class of learning dynamics.

r 2003 Published by Elsevier Inc.
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1. Introduction

Consider a market with n firms in price competition, selling imperfect
substitutes—a very common market structure. Economists normally analyze this
market by characterizing its Nash equilibria. Tirole [20], for example, proceeds by
assuming that firms’ payoff functions are smooth, and by using the first-order
conditions of firms’ maximization programs, to characterize the Nash equilibria of
the model.
What about properly mixed-strategy Nash equilibria (mixed-strategy equilibria

that are not in pure strategies, PMNE hereafter)? Tirole—and everyone else—
ignores PMNE in models like the one described. Tirole ignores PMNE because he
does not have methods for analyzing them, not because he knows that these
equilibria are bad predictions. Vives’s [24] recent textbook analyzes the price-

ARTICLE IN PRESS

�Corresponding author.

E-mail addresses: fede@hss.caltech.edu (F. Echenique), edlin@econ.berkeley.edu (A. Edlin).

0022-0531/$ - see front matter r 2003 Published by Elsevier Inc.

doi:10.1016/j.jet.2003.10.004



competition model using the newer ‘‘lattice programming’’ methods—but Vives also
ignores PMNE.
In this paper, we show that PMNE are bad predictions in games of strict strategic

complements: we show that PMNE are unstable under a broad class of learning
dynamics. The pricing game described is—under quite natural assumptions—a game
of strict strategic complements [24]. Games of strategic complements were
introduced by Topkis [21] and Vives [23].
There are many economic models that can be formalized as games of strict

strategic complements (see [22,24] for examples). Thus, we believe that our result is
useful for economists.
Crawford [3–5] was the first to study the stability of PMNE. He was followed by

Fudenberg and Kreps [8], Benaim and Hirsch [2], Kaniovski and Young [14], Ellison
and Fudenberg [7], and Hofbauer and Hopkins [12]. Except for Crawford’s and
Hofbauer and Hopkins’s papers, the literature has focused mostly on 2� 2 and 3� 3
games. Hofbauer and Hopkins’s is the paper closest to ours; they prove that PMNE
are unstable in two-player finite games of identical interests. Crawford proves that
PMNE are always unstable under gradient dynamics in finite games. We shall show
in Section 5 that our result is different from Crawfords’ in important ways.
The more general games to which our instability results apply are of considerable

economic interest. For example, unlike with the prior literature, games of Bertrand
pricing competition among imperfect substitutes with arbitrary numbers of players
and infinite dimensional strategy spaces fall into our framework. So too do games of
Cournot duopoly, Bulow Geanakoplos and Klemperer’s (1985) model of multi-
market oligopoly, and macroeconomic games of coordination failures (Cooper,
1999). The textbooks by Topkis [22] and Vives [23] provide still other examples.
The literature on learning PMNE has studied particular learning dynamics. Our

result, on the other hand, only imposes two assumptions on learning dynamics, and
lets the dynamics be otherwise arbitrary. We require players to be myopic—they best
respond to current beliefs—and that their beliefs are monotone—they believe that
higher play (e.g. higher prices) are more likely after observing higher play.
We shall give a flavor of our results using the ‘‘Battle of the Sexes’’ game in Fig. 1.

Players 1 and 2 each simultaneously choose an element from fO;Bg: Payoffs are
specified in the bimatrix to the left. Let pi be the probability with which player i

selects O: The best responses are shown in Fig. 1 below. When 2 plays O with
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Fig. 1. Battle of the sexes.
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probability smaller than 2=3; 1 sets p1 ¼ 0; when p2 equals 2=3 player 1 is indifferent
between O and B; so any choice of p1 is a best response; when 2 sets p2 larger than
2=3; 1 will optimally respond by choosing p1 ¼ 1: There are three Nash equilibria of
this game, indicated by the three points where the best-response functions intersect:
they are ð0; 0Þ; ð1=3; 2=3Þ and ð1; 1Þ:
Battle of the Sexes is a game of strict strategic complements. To

check for complementarities we need an order on players’ strategies: say
that O is ‘‘larger’’ than B: Then the players’ best responses are monotone
increasing. For example, if 1 increases her strategy from B to O then 2
increases her best response from B to O: That best responses are increasing is only
necessary for the game to have strict strategic complementarities, but for now it will
suffice.
Suppose that our prediction of play for Battle of the Sexes is the PMNE ðp1; p2Þ ¼

ð1=3; 2=3Þ; but suppose that the players’ beliefs about their opponent’s play are
slightly wrong. In particular, suppose 1 believes 2 will select the larger action ðOÞ
with probability 2=3þ e and that 2 believes 1 will select the larger action with
probability 1=3þ e: By choosing e40 small enough, these perturbed beliefs are
arbitrarily close to the equilibrium beliefs. Now, as can be seen from the best-
response functions in Fig. 1, given these beliefs both players will select O with
probability 1.
We shall now argue that, if the players repeatedly play Battle of the Sexes,

each time best responding (myopically) to their beliefs, they will move away
from our original prediction. Both players observed their opponent choosing O;
so they might infer that they were right in giving O larger weight than
what ð1=3; 2=3Þ does. They might ‘‘update’’ their beliefs and give the larger
action, O; more weight after observing larger play (we will say that beliefs
are monotone if they behave in this way). Suppose that the game is repeated. Given
these new beliefs, with O receiving yet higher weight, play will still be ðO;OÞ: It is
easy to see that repeated play of Battle of the Sexes will then always reinforce the
initial deviation from the Nash equilibrium beliefs ð1=3; 2=3Þ—so ð1=3; 2=3Þ is
unstable.
Note that there is nothing non-generic or knife-edge about the perturbations we

consider, it is plausible that players would end up with perturbed beliefs like those
above. As players start myopically playing the PMNE, they will play ðO;OÞ with
probability 2=9; and any finite sequence of ðO;OÞ play has positive probability. It is
plausible that, after observing several rounds of ðO;OÞ; players change their beliefs
in the direction of giving ‘‘my opponent plays O’’ larger probability. Our point is
that deviations like these will, under our assumptions, not be corrected by
subsequent play.
The paper is organized as follows. In Section 2 we give some basic

definitions. In Section 3 we describe the learning model that we will use.
Section 4 contains the main result, and gives some intuition for its proof. In
Section 5 we consider purified mixed-strategy equilibria. In Section 6 we
justify the assumption of weakly monotone beliefs. In Section 7 we prove
Theorems 1 and 2.

ARTICLE IN PRESS
F. Echenique, A. Edlin / Journal of Economic Theory 118 (2004) 61–79 63



2. Preliminaries

2.1. Lattice-theoretic definitions

The definitions in this subsection, and the application of lattice theory to game
theory and economics, is discussed at length in Topkis [22] and Vives [24]. A set X

with a transitive, reflexive, antisymmetric binary relation % is a lattice if whenever
x; yAX ; both x4y ¼ inffx; yg and x3y ¼ supfx; yg exist in X : It is complete if for
every non-empty subset A of X ; infA; sup A exist in X : Note that any finite lattice is
complete. A non-empty subset A of X is a sublattice if for all x; yAA;
x4X y; x3X yAA; where x4X y and x3X y are obtained taking the infimum and
supremum as elements of X (as opposed to using the relative order on A). A non-

empty subset ADX is subcomplete if BDA; Ba| implies infX B; supX BAA; again
taking inf and sup of B as a subset of X : An interval ½x; y
 is the set of zAX such that
x%z%y: The order-interval topology on a lattice is the topology obtained by taking
the closed order intervals as a sub-basis of the closed sets. In Euclidean spaces the
order-interval topology coincides with the usual topology. A lattice is complete if
and only if it is compact in its order-interval topology.
Let X be a lattice and T a partially ordered set; f : X-R is supermodular if, for all

x; yAX f ðxÞ þ f ðyÞpf ðx4yÞ þ f ðx3yÞ; f :;X � T-R has increasing differences in
ðx; tÞ if, whenever xox0; tot0; f ðx0; tÞ � f ðx; tÞpf ðx0; t0Þ � f ðx; t0Þ; f : X � T-R has
strictly increasing differences in ðx; tÞ if xox0; tot0; then f ðx0; tÞ � f ðx; tÞof ðx0; t0Þ �
f ðx; t0Þ; f : X � T-R satisfies the strict single-crossing property in ðx; tÞ if xox0;
tot0; and 0pf ðx0; tÞ � f ðx; tÞ implies 0of ðx0; t0Þ � f ðx; t0Þ:
For any EDX ; we shall denote its complement, X \E; by Ec: Further, in any

partially ordered set X ; x!y if x%y and xay:

2.2. Probability measures and first-order stochastic dominance

Let X be a lattice endowed with a topology finer than its order-interval topology.1

Let PðXÞ denote the set of (Borel) probability measures over X : A subset ADX is
increasing if, for all xAA; yAX and x%y imply yAA: For example, if XDR; and R

has the usual order, A is increasing if and only if it is an open or closed half-interval,
i.e. either of the form ½x;NÞ or ðx;NÞ: For m; nAPðXÞ; m is smaller than n in the
first-order stochastic dominance order (denoted mpstn) if, for all increasing sets
ADX ; mðAÞpnðAÞ:
Let X be a complete lattice. The support of mAPðX Þ is the intersection of all closed

probability-one events; it is denoted suppðmÞ:2 For any xAX ; the singleton fxg is
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1To check that a topology t is finer than the order-interval topology it is sufficient to prove that closed

intervals are closed under t—the order-interval topology is the coarsest topology for which order intervals

are closed. For example, if PðXÞ is ordered by first-order stochastic dominance it is easy to show that its

order-interval topology is coarser than its weak topology, see the remark below.
2Defined in this way, every measure has a non-empty support, in contrast with other definitions of

support, see e.g. [18].
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measurable, as it is a closed order interval, and thus closed in the order-interval
topology. Let dxAPðX Þ denote the degenerate probability measure that gives
probability one to x: A probability measure mAPðX Þ is properly mixed if suppðmÞ is
not a singleton.

Remark. If PðX Þ is ordered by first-order stochastic dominance, closed order
intervals are weakly closed. That is, for any m; m0APðXÞ; ½m; m0
 is weakly closed. Let
A be the collection of all increasing subsets of X : Then, the order interval ½m; m0
 is:

½m; n
 ¼
\

fEAAg
ðfpAPðXÞ : mðEÞppðEÞg-fpAPðX Þ : pðEÞpm0ðEÞgÞ:

But for all x; fpAPðXÞ : mðEÞppðEÞg and fpAPðXÞ : pðEÞpm0ðEÞg are weakly
closed sets ([1] Theorem 14.6). Then, order intervals are weakly closed.

2.3. Complementarities, strategies and beliefs

A game in normal form is described by ðN; fðSi; uiÞ : iANgÞ; where N is a finite set
of players, and each player iAN is endowed with a strategy space Si and a payoff
function ui : S ¼ �iANSi-R: Let n be the number of players in N:

Definition 1. A normal-form game G ¼ ðN; fðSi; uiÞ : iANgÞ is a game of strategic
complementarities ðGSCÞ if, for all iAN;

1. Si is a complete lattice;
2. ui is bounded, si/uiðsi; s�iÞ is supermodular for all s�iAS�i; ðsi; s�iÞ/uiðsi; s�iÞ

has increasing differences, and
3. si/uiðsi; s�iÞ is upper semicontinuous for all s�iAS�i:

G is a game of strict strategic complementarities ðGSSCÞ if it is a GSC and, in
addition, ðsi; s�iÞ/uiðsi; s�iÞ has strictly increasing differences.

The mixed extension of a game G ¼ ðN; fðSi; uiÞ : iANgÞ is the game
ðN; fðPðSiÞ;UiÞ : iANgÞ; where each player i is allowed to choose any mixed
strategy siAPðSiÞ; and where a mixed-strategy profile s ¼ ðs1;y; snÞ gives player i

the payoff UiðsÞ ¼
R

S
uiðsÞ d �iAN siðsiÞ: We shall identify a vector of probability

measures s ¼ ðs1;y; snÞA�n
i¼1 PðSiÞ with the corresponding product measure in

PðSÞ: So, for example, UiðsÞ ¼
R

S
uiðsÞ dsðsÞ:

Player i’s beliefs about her opponents’ play is represented by a probability
distribution miAPðS�iÞ: Belief space is then C ¼ �iANPðS�iÞ: A mixed-strategy
Nash equilibrium s� ¼ ðs�1;y; s�nÞ is a situation where i chooses the strategy s�i
optimally given that her beliefs about opponents’ play is ‘‘right’’, that is i’s belief is
s��iAPðS�iÞ: So there is a natural ‘‘copy’’ of s� in belief space, the vector

ðs��1; s��2;y; s��nÞAC: More generally, to each mixed strategy profile s ¼
ðs1;y; snÞA�n

i¼1 PðSiÞ; there corresponds beliefs s�iAPðS�iÞ for player i: We
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shall denote by c : �n
i¼1 PðSiÞ-C the map from strategy profiles to beliefs: cis 


s�i; and cs 
 ðcisÞiAN ¼ ðs�1; s�2;y; s�nÞ:
The set of player i’s possible beliefsPðS�iÞ is endowed with the weak topology and

the first-order stochastic dominance order. Belief space, C ¼ �iANPðS�iÞ is
endowed with the product topology and the product order.

3. Learning model

Learning takes place through repeated play of a stage game, G ¼
ðN; fðSi; uiÞ : iANgÞ: In each stage, player i observes (privately) a signal oiAOi;
given some probability space ðOi;Fi; piÞ: These signals are not payoff-relevant;
player i uses them as randomization mechanisms, making her choice of a pure
strategy conditional on the realization of the signal. If ðOi;Fi; piÞ is rich enough this
does not restrict her choice of randomization over pure strategies; so for any mixed
strategy siAPðSiÞ there is a map—a random variable—from Oi into Si that has si as
its probability distribution. The set of all signal profiles is O ¼ �iANOi:
At each stage, a pure-strategy profile sAS results from the players’ choices.

Histories of play ðs1;y; stÞ are denoted ht: The set of all histories of length t is

Ht ¼ St and H ¼
S

N

t¼0 Ht is the set of all histories of finite length, including H0 ¼
f|g; the ‘‘null history’’.
Each player i chooses a repeated-game strategy xi :Oi � H-Si; and is endowed

with repeated-game beliefs mi : H-PðS�iÞ: The interpretation is that, at each time t

and history ht; miðhtÞAPðS�iÞ represents i’s assessment of her opponents’ play in
stage t þ 1 of the game. Given this assessment, and the realization of ot; she chooses
a stage-game strategy xiðot; htÞASi: Note that we allow player i to believe that her
opponents’ play is correlated—correlated beliefs arise naturally even if players mix
independently, see e.g. [8].
Let x ¼ ðxiÞiAN be a collection of strategies for all players and m ¼ ðmiÞiAN be a

collection of beliefs. The pair ðx; mÞ is a system of behavior and beliefs: Note that
x :O� H-S and m : H-C:
Player i’s best-response correspondence bi :PðS�iÞ7Si is defined by

biðniÞ ¼ argmaxs̃iASi

Z
S�i

uiðs̃i; s�iÞ dniðs�iÞ:

So, biðniÞ is the set of best responses to beliefs niAPðS�iÞ about opponents’ play. The
set of best responses to strategy s�i is then biðds�i

Þ: The players’ joint best-response
correspondence is b :C7S; defined as bðnÞ ¼ ðbiðniÞÞiAN :

Definition 2. A system of behavior and beliefs ðx; mÞ is myopic if for all iAN; htAH

and oiAOi;

xiðoi; htÞAbiðmiðhtÞÞ ¼ argmaxs̃iASi

Z
S�i

uiðs̃i; s�iÞmiðhtÞðds�iÞ:
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The assumption of myopic behavior is very common in the literature on learning
in games. It is restrictive because it implies that players do not attempt to manipulate
the future behavior of their opponents—they simply maximize current payoffs based
on current beliefs. Myopic behavior is usually justified by assuming that, in each
period of time, players are selected at random from a large population to play the
stage game, so the likelihood that two particular players will meet more than once to
play the stage game is negligible (see chapter 1 of Fudenberg and Levine [9] for a
discussion).
Our results on learning will rely on an important assumption: if a player has a

certain prediction about her opponents’ play, and then observes play that is weakly
larger than any strategy she attached a positive probability to, then she will ‘‘update’’
her beliefs about opponents’ behavior and predict weakly larger play. This
requirement on beliefs we call weak monotonicity. To be precise:

Definition 3. Beliefs m are weakly monotone if, for all iAN; and htAH;

ðsup½supp miðhtÞ
pst�i for t ¼ t þ 1;y;TÞ ) ðmiðhtÞpstmiðhTÞÞ;

where hT is any history that coincides with ht in periods t ¼ 0;y; t and where i’s
opponents play st�i in periods t ¼ t þ 1;y;T :

The idea behind this definition is that, if miðhtÞ gives i’s beliefs at time t þ 1 and
history ht; and if play at times t þ 1; t þ 2;y;T is weakly larger than any play i

believed possible at time t; then i will have weakly larger beliefs at time T :
Weak monotonicity is the only condition we need on beliefs, and it is rather mild.

Beliefs in Cournot best-response dynamics satisfy weak monotonicity. We show in
Section 6 that fictitious-play beliefs, and beliefs updated by Bayes’ rule, satisfy weak
monotonicity (see [9] for definitions and discussion of these learning models). As a
simple justification for weakly monotone beliefs, note that, if beliefs are weakly
monotone then play will, under our assumptions, be monotone, so beliefs are ‘‘right’’
in being weakly monotone. Monotonicity is then, in a sense, self enforcing.
Other results in the literature [6,13] require that any larger play produce larger

beliefs. For example, if ht and ĥt are two time-t histories, and ht is smaller than ĥt

component by component (i.e. it is a smaller vector of play) then miðhtÞpstmiðĥtÞ: We
have used the qualifier ‘‘weak’’ to differentiate our condition from the stronger
requirement. The stronger condition does not arise naturally in standard learning
models.

4. Instability of mixed equilibria

We now prove that, at any PMNE s of a GSSC, there are arbitrarily small
perturbations that set off learning dynamics so that strategies are always outside of a
neighborhood of s: Ours is an instability result: these small perturbations from s are
never ‘‘corrected’’ by subsequent dynamics. The perturbation takes the form of
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slightly wrong beliefs.3 We shall first give a heuristic argument for why the instability
obtains.

4.1. Intuition for the instability result

Let ðf1; 2g; fðSi; uiÞ : i ¼ 1; 2gÞ be a two-player GSSC. If each strategy space is a

subset of R; we can represent the joint strategy spaces in R2—see the drawing above
in Fig. 2. Let s be a PMNE where both players select a properly mixed strategy. The
set of pure-strategy best responses to s; bðcsÞ; is a subcomplete sublattice [22], for
example the rectangle in Fig. 2. The support of s must lie in bðcsÞ; and likewise
sup bðcsÞAbðcsÞ:
Lets perturb beliefs in the direction of the largest element in bðcsÞ: Consider

beliefs m0 ¼ ð1� eÞcsþ ecdsup bðcsÞ: With beliefs m0; player i mixes equilibrium

beliefs cis with degenerate beliefs that i’s opponent will play their largest best
responses to their equilibrium beliefs. This was the perturbation we used in ‘‘Battle
of the Sexes’’ in the Introduction.

Observe that csostm0; and that, by choosing e40 small enough, m0 can be taken

arbitrarily close to cs: The support of m0 lies in bðcsÞ; which is crucial for our results.
On the left is the strategy space, where any best response to m0 must lie to the north-
east of sup bðcsÞ: On the right is belief space, C—we represent C as a subset of the
plane, which is inaccurate and just a means of visualizing the ideas behind our results.

Consider any learning dynamics that starts off at the perturbed beliefs m0: Because
complementarities are strict, any best response to perturbed beliefs m0 is (weakly)
larger than any best response to cs: In particular, then, play is weakly larger than

any element in the support of m0: Then, if beliefs are monotone, ‘‘updated’’ beliefs,
after observing first-period play, are weakly larger than m0: Now the argument
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3As an alternative, we could perturb behavior. It seems that, of the two equilibrium assumptions, that

behavior is rational given beliefs and that beliefs are ‘‘correct’’, it is the second that most of the non-

equilibrium literature seeks to weaken. In any case, we obtain the same results if we perturb behavior

instead of beliefs.
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follows by induction: if play in all periods 1; 2;y; t � 1 is larger than sup bðcsÞ; then
period t beliefs must be weakly larger than m0; and period t play must be weakly

larger than sup bðcsÞ: So, mt ¼ mðhtÞ is always to the north-east of m0; and therefore
beliefs never approach cs:
If the perturbation m0 ¼ ð1� eÞcsþ ecdsup bðcsÞ seems arbitrary, note that any

beliefs in the interval ½m0;cdsup bðcsÞ
 would work; the reason is that dynamics

starting at m0 bound all dynamics starting at any point in ½m0;cdsup bðcsÞ
:
The crucial components of our argument are then:

1. Because s is properly mixed, there is space in bðcsÞ so we can find perturbed

beliefs m0 that are larger than cs; while still having support in bðcsÞ: These
perturbed beliefs can be taken arbitrarily close to cs:

2. Strict complementarities between players’ choices implies that any best

response to m0 is larger than sup bðcsÞ: This ‘‘overshooting’’—the response
to the deviation is larger than the deviation—is crucial in any proof of
instability.

3. By monotone beliefs, the initial deviation toward larger play is reinforced.
But note that the monotonicity used is weak; since play is weakly larger than

any element in the support of m0; beliefs in each moment t must be weakly

larger than m0:

4.2. Main result

Here we formalize the heuristic argument just given, but we defer the proof to
Section 7.

Definition 4. Let ðNfðSi; uiÞ : iANgÞ be a game. A mixed-strategy profile s is unstable
if, for every weak neighborhood V of cs in C; there is m0AV such that any myopic

system of behavior and beliefs ðm; xÞ with weakly monotone beliefs and m0 ¼ m0;
remains outside of a neighborhood of cs: That is, there is a neighborhood W of cs
such that, for all tX1; mðhtÞeW :

That s is unstable means that there are arbitrarily close perturbed beliefs m0

such that, if learning starts at these perturbed beliefs, then beliefs never approach
cs: The definition of unstable equilibrium is an adaptation to the present
context of the definition of asymptotic instability used in the dynamical systems
literature [11].

Theorem 1. Let G be a GSSC, and s be a Nash Equilibrium of the mixed

extension of G: If at least two players’ strategies in s are properly mixed, then s is

unstable.

Proof. See Section 7.
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Remarks.

1. The set of perturbations that give us instability is not small, it contains a non-
empty open interval. If the Si are finite, for any open neighborhood V of cs;
ðm; xÞ starting at m0AV-ðcs;cdsup bðcsÞÞ does not approach cs:4

2. In finite games, for generic payoffs, there are no PMNE where only one player
selects a properly mixed strategy (because best responses to pure strategies are
generically unique). In many non-finite games, it is not hard to rule out that only
one player selects a properly mixed strategy.

Theorem 1 has a simple consequence for 2� 2 games. For generic payoffs,
2� 2 games either have a unique Nash equilibrium, or two pure equilibria and
one PMNE. In this last case, it is easy to order strategies so that the game is a
GSSC. Thus:

Corollary 1. For generic payoffs, PMNE in 2� 2 games are either unique or unstable.

Generically, then, a 2� 2 game is either isomorphic to Matching Pennies or its
mixed equilibrium is unstable.5 For 2� 2 games, Fudenberg and Kreps [8] show
that, when the PMNE is the unique equilibrium, it is globally stable. This paper
completes the picture for all other 2� 2 games.

5. Purified mixed equilibria

A textbook criticism of PMNE goes like this (see e.g. [17]): In a PMNE, each
player i is required to randomize in exactly the way that leaves the other players
indifferent between the elements in the support of their equilibrium strategies. But i

has no reason to randomize in this way, precisely because i too is indifferent between
the elements in the support of her equilibrium strategies. The standard response to
this criticism is Harsanyi’s Purification Theorem—if we introduce a small amount of
incomplete information, then pure-strategy equilibrium behavior can resemble the
original PMNE.
In this section we show that ‘‘purified’’ PMNE in GSSC are also unstable, with the

qualification that the size of the perturbation must be large in relation to the amount
of incomplete information introduced. First we explain the result using a simple
example, then we state the result, and finally we discuss our result in the context of
related literature.
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4 In non-finite games, the same is true for m0AV-
S

eAð0;1Þ ðmðeÞ;cdsup bðcsÞÞ; where mðeÞ ¼ ð1� eÞcsþ
ecdsup bðcsÞ:

5For generic payoffs, if a 2� 2 game has a unique equilibrium, and this equilibrium is a PMNE, then

there is a re-labeling of each player’s strategies into fHeads;Tailsg so that the resulting preferences over

fHeads;Tailsg equal the Matching Pennies preferences (i.e. one player wants to match and the other wants

to mis-match). This re-labeling is an isomorphism.

F. Echenique, A. Edlin / Journal of Economic Theory 118 (2004) 61–7970



Consider the Battle of the Sexes game from the Introduction, and let s be its
PMNE.We shall first introduce incomplete information and ‘‘purify’’ s: Let each player
i receive a payoff-relevant signal oi: The signals are independently uniformly distributed
on ½0; 1
: The players’ payoffs are in Fig. 3; Z40 is the parameter that controls the
importance of the signals, we shall call the game in Fig. 3 the Z-augmented game.
It is easy to see that the pair of (pure) strategies ðs1; s2Þ;

s1ðo1Þ ¼
O if o1p2=3;

B if o142=3;

�
s2ðo2Þ ¼

O if o242=3;

B if o2p2=3

�

is a Nash equilibrium of the augmented game, no matter the value of Z: Note that,
for almost all oi; player i is selecting a strict best response to s�i:
The distribution of ðs1ðo1Þ; s2ðo2ÞÞ is the same as the PMNE distribution in the

original Battle of the Sexes. This is a particularly nice example of a purification; we
can be as close as we want to the original game by taking Z small enough, get the
same prediction as the PMNE, and avoid assuming that players select arbitrarily
among a set of indifferent strategies.

Now, given e40; consider a perturbation m0 ¼ ð1� eÞcsþ ecdðO;OÞ: Doing some

algebra, it turns out that, if

Zomin
2e

2þ e
;
9e

1� e

� �
;

then, no matter the value of oi; player i’s best response to beliefs m0i is to play O: We

can then repeat the argument in the Introduction (and in Section 4.1) that play only
reinforces the initial perturbed beliefs. So if behavior is myopic and beliefs are
weakly monotone, the purified equilibrium is unstable.

In this example, for each of our perturbations m0 ¼ ð1� eÞcsþ ecdsup bðcsÞ; there

is
%
Z such that if Zo

%
Z then the purified equilibrium in the Z-augmented game is unstable

to the m0 perturbation. Note that the order of limits matters: we do not say that, for Z
small enough, the purified equilibrium is unstable to arbitrarily small perturbations.6

Now we present a general result for purified PMNE. For simplicity, we assume
finite strategy spaces. The setup is from Fudenberg and Tirole’s [10] presentation of

Harsanyi’s Purification Theorem. Let G0 ¼ ðN; fðSi; giÞ : iANgÞ be a finite game. For
Z40; GZ ¼ ðN; fðSi; u

Z
i Þ : iANgÞ is the g-augmented game; where each player i is

endowed with type space Oi ¼ ½�1; 1
#Si and selects a strategy s :Oi-Si: Types

ARTICLE IN PRESS

Fig. 3. Augmented battle of the sexes.

6This may be due to our brute-force approach to dealing with randomizations—we control best

responses at all values of oi: It may be possible to do better with more sophisticated methods.

F. Echenique, A. Edlin / Journal of Economic Theory 118 (2004) 61–79 71



oiAOi are drawn independently according to probability distribution pi: Payoffs are

u
Z
i ðsi; s�i;oiÞ ¼ giðsi; s�iÞ þ ZoiðsiÞ:
Harsanyi’s Purification Theorem says that, in generic finite games, for any PMNE

s of G0; there is a collection ðsZÞZ40 such that: (a) for all Z; sZ is a (pure) equilibrium
of GZ; (b) the distributions of sZðoÞ converge to s as Z-0:We shall call ðGZ; sZÞZ40 a

purification sequence of s:
We need to control the relative sizes of the perturbations in beliefs and the

augmentation of G0: The following definition helps us do that.

Definition 5. Let ðNfðSi; uiÞ : iANgÞ be a game. A mixed-strategy profile s is
unstable to an e-perturbation for e40 if there is a strategy profile s0 such that any
myopic system of behavior and beliefs ðm; xÞ with weakly monotone beliefs and

m0 ¼ ð1� eÞcsþ ecs0 remains outside of a neighborhood of cs: That is, there is a
neighborhood W of cs in C such that, for every t; mðhtÞeW :

Theorem 2. Let G0 be a finite GSSC, and s be a Nash Equilibrium of the mixed

extension of G0 such that at least two players’ strategies in s are properly mixed. Let

ðGZ; sZÞ be a purification sequence of s: For any e40; there is
%
Z40 such that if Zo

%
Z

then sZ is unstable to an e-perturbation.

Proof. See Section 7.

The relative sizes of the perturbations in beliefs ðeÞ and the augmentation of G0 ðZÞ
matters. The purpose of Harsanyi purification is to approximate the PMNE. So, given
a source of perturbations (for example, the sequences of ðO;OÞ mentioned in the
introduction), any purification that is close enough to the PMNE will not survive.
A number of papers on learning mixed strategy equilibria have focused on purified

mixed strategies, see for example [7,8,19]. Sandholm [19] also find that the order of
limits matters; using best-response dynamics, they show that PMNE in symmetric
two-player games are stable when e is small relative to Z:
Crawford [3–5] proves that PMNE are unstable in all finite games—under a class

of gradient dynamics. Crawford’s result depends crucially on players’ indifference
between the elements in the support of their equilibrium strategies. Crawford’s result
does not survive in the context of purified mixed strategies—see for example [8], who
prove that PMNE in some of the games studied by Crawford are stable once they are
purified. Theorem 2 thus points out an important difference between Crawfords’
results and ours.

6. Justifying weakly monotone beliefs

We show that, in two specifications that are common in learning models, beliefs
are weakly monotone. In particular, we show in (1) that fictitious-play beliefs are
weakly monotone, and in (2) that beliefs in Bayesian learning are weakly monotone.
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(1) We shall first describe a model of fictitious play following Chapter 2 in [9]. Let

ðN; fðSi; uiÞ : iANgÞ be a normal-form game. Fix a player i: Let k0i : S�i-Rþ be an

exogenous ‘‘initial weight function’’ that is not identically zero. Player i’s weight

function is updated each period tX1: So, if play in t � 1 is ŝ t�1
�i ; then the period-t

weight function is

kt
iðs�iÞ ¼ kt�1

i ðs�iÞ þ wfs�i¼ŝt�1
�i

gðs�iÞ: ð1Þ

The function wfs�i¼ŝ t�1
�i

g takes the value 1 if s�i ¼ ŝ t�1
�i and 0 if s�iaŝ t�1

�i :

Now we can define fictitious play beliefs. Player i’s beliefs at the null history are

miðh0Þðs�iÞ ¼
k0i ðs�iÞP

s�iAS�i
k0i ðs�iÞ

and, after history ht ¼ ððs1i ; s1�iÞ; ðs2i ; s2�iÞyðst
i ; st

�iÞÞ;

miðhtÞðs�iÞ ¼
kt

iðs�iÞP
s�iAS�i

kt
iðs�iÞ

;

where we get the kt
i weight function recursively from k0i and ht by formula I.

Proposition 1. Let ðN; fðSi; uiÞ : iANgÞ be a game where each Si is a finite lattice.

Fictitious play beliefs in this game are weakly monotone.

Proof. Let ht be a history, and sup½supp mðhtÞ
pst; for t ¼ t þ 1;y;T : Fix a player i:
For each subset A of S�i; let kt

iðAÞ ¼
P

s�iAAk
t
iðs�iÞ:

Let EDS�i be an increasing set.

Case 1. If E-supp mðhtÞ ¼ | then mðhtÞðEÞ ¼ 0pmðhtÞ:
Case 2. If E-supp mðhtÞa| then, because E is increasing, sup½supp mðhtÞ
AE:

Then, also because E is increasing, stAE; for t ¼ t þ 1;y;T : Then kTi ðEÞ ¼
ðT � tÞ þ kt

iðEÞ; so

mðhTÞðEÞ ¼ kTi ðEÞ
kTi ðS�iÞ

¼ ðT � tÞ þ kt
iðEÞ

ðT � tÞ þ kt
iðS�iÞ

X
kt

iðEÞ
kt

iðS�iÞ
¼ mðhtÞðEÞ

the inequality is because x/ða þ xÞ=ðb þ xÞ is a monotone increasing function when
apb: We have shown that mðhtÞðEÞpmðhTÞðEÞ for every increasing set E; so

mðhtÞpstmðhTÞ:
(2) Now we show that Bayesian updating respects weak monotonicity. Let

PiDPðS�iÞ be a set of possible (correlated) strategies by i’s opponents. Suppose that
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i has beliefs miAPðS�iÞ that she obtains from some prior distribution Zi over Pi: So,

ZiAPðPiÞ and miðBÞ ¼
R
Pi
pðBÞdZiðpÞ for all events BDS�i:

We shall suppose that P is totally ordered. So i has a ranking of possible
opponents in terms of how large strategies they will potentially play.
Suppose that, after an event EDS�i occurs, i updates her beliefs by Bayes’ rule.

The updated posterior ZijEAPðPiÞ is

ZjEðBÞ ¼
R

B
pðEÞ dZiðpÞR

Pi
pðEÞ dZiðpÞ

;

whenever
R
Pi
pðEÞ dZiðpÞ40: The resulting updated beliefs mijEAPðS�iÞ are defined

by mijEðBÞ ¼
R
Pi
pðBÞ dZijEðpÞ: When

R
Pi
pðEÞ dZiðpÞ ¼ 0; mijE is arbitrary.

Theorem 3. Let S�i be a complete lattice, and let ED½sup supp mi; sup S�i
: If Pi is

totally ordered by first-order stochastic dominance, then mipstmijE :

Proof. We shall drop the i-subindexes to simplify. Only if
R
P pðEÞ dZðpÞ40 is there

something to prove. First we shall prove that ZpstZjE :
Let D ¼ ½sup supp m; sup S�i
: Let BDP be an increasing, measurable set. Because

P is a chain under first-order stochastic dominance, and D is an increasing set,
pðDÞp #pðDÞ for all pABc; #pAB (since ppst #p). Then, integrating over #pAB on both

sides,
R

B
pðDÞ dZð #pÞ ¼ pðDÞ

R
B

dZð #pÞp
R

B
#pðDÞ dZð #pÞ; so pðDÞZðBÞp

R
B
#pðDÞ dZð #pÞ

for any pABc: Similarly, ZðBÞ
R

Bc pðDÞ dZðpÞpZðBcÞ
R

B
#pðDÞ dZð #pÞ:

Now, mðEÞ ¼
R
P pðEÞ dZðpÞ40 implies that

R
P pðEÞ dZðpÞ ¼

R
P pðDÞ dZðpÞ; or we

would not get
R
P pð½infS�i; sup supp m
Þ dZðpÞ ¼ mð½inf S�i; sup supp m
Þ ¼ 1: So,

ZðBÞ
R

Bc pðEÞ dZðpÞpZðBcÞ
R

B
#pðEÞ dZð #pÞ: Then,

ZðBÞ
R

Bc pðEÞ dZðpÞR
P pðEÞ dZðpÞpZðBcÞ

R
B
#pðEÞ dZð #pÞR

P pðEÞ dZðpÞ;

which implies that ZðBÞZjEðBcÞpZðBcÞZjEðBÞ: But ZjEðBÞ þ ZjEðBcÞ ¼ ZðBÞ þ
ZðBcÞ ¼ 1; so ZðBÞpZjEðBÞ: The increasing event B is arbitrary, so ZðBÞpstZjEðBÞ:
Let F be an increasing event in S�i; then the map p/pðFÞ is monotone

increasing, as P is ordered by first-order stochastic dominance. Then, ZpstZjE
implies that

R
P pðFÞ dZðpÞp

R
P pðFÞ dZjEðpÞ: By the definition of the player’s beliefs

over S�i; then, mðFÞpmjEðFÞ: So, mpmjE :
The requirement that Pi is totally ordered does not imply that the resulting beliefs

are totally ordered, only that all priors are ranked according to the ‘‘aggressiveness’’
of the potential strategies.
The problem with the strong monotonicity condition ‘‘any larger play produce

larger beliefs’’ [13] is that it will not hold under Bayesian updating unless priors are
ordered according to monotone likelihood ratio [15].
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7. Proofs

The proof of Theorem 1 requires two preliminary lemmas. Lemma 2 is of some
interest independent of Theorem 1. Both lemmas are used in the proof of Theorem 2
as well.

Lemma 1. Let X be a lattice and ADX a subcomplete sublattice. Let pAPðX Þ be

properly mixed, and such that supp pDA: If lAð0; 1Þ then postð1� lÞp þ
ldsup Aostdsup A:

Proof. Let E be an increasing subset of X : Since A is a subcomplete sublattice,
sup AAA:

Case 1. If E-A ¼ |; then pðEÞ ¼ dsup AðEÞ ¼ 0; so ½ð1� lÞp þ ldsup A
ðEÞ ¼ 0:

Case 2. If there is xAE-A; then xpsup A; so sup AAE; as E is increasing. Then
dsup AðEÞ ¼ 1; which implies that

pðEÞ ¼ ð1� lÞpðEÞ þ lpðEÞpð1� lÞpðEÞ þ l

¼ð1� lÞpðEÞ þ ldsup AðEÞp1 ¼ dsup AðEÞ:

In either case, then, pðEÞp½ð1� lÞp þ ldsup A
ðEÞpdsup AðEÞ for every increasing set
E; so ppstð1� lÞp þ ldsup Apstdsup A:

Now we show that the inequalities are strict. Let Ẽ ¼ fxAX : sup Apxg: Observe
that sup AAẼ: Since p is properly mixed, pðẼÞ ¼ p½Ẽ-suppðpÞ
ppðfsup AgÞo1:
Then,

pðẼÞ ¼ ð1� lÞpðẼÞ þ lpðẼÞoð1� lÞpðẼÞ þ lo1 ¼ dsup AðẼÞ:

So, postð1� lÞp þ ldsup Aostdsup A: &

Lemma 2. Let G ¼ ðN; fðSi; uiÞ : iANgÞ be a GSC. Suppose s is a PMNE, and that

sup bðcsÞpinf bðð1� eÞcsþ ecdsup bðcsÞÞ ðIIÞ

for some e40; then s is unstable to an e-perturbation.

Proof. Let m0 ¼ ð1� eÞcsþ ecdsup bðcsÞ: Since G is a GSC, b is non-empty-,

subcomplete- and sublattice-valued. Also, the support of s is contained in bðcsÞ:
Then, by Lemma 1, csostm0ostcdsup bðcsÞ:

Let ðm; xÞ be a system of myopic behavior and monotone beliefs, with initial beliefs

m0: Fix a sequence of realizations of type profiles ðo1;o2;yÞ ¼ oNAON: We will

show by induction that, if the sequence fstg with st ¼ xðot; mðht�1ÞÞ is the realized
play, then sup bðcsÞpst and m0pstmt for every t:

First, we will show that sup bðcsÞps1 and that m0pstm1 ¼ mðh1Þ: By hypothesis,

sup bðcsÞps̃ for all s̃Abðm0Þ: Then, sup bðcsÞps1; as behavior is myopic, so

sup supp sps1: Since h1 ¼ ð|; s1Þ; this implies, by monotonicity of beliefs, that

m0pstm1 ¼ mðh1Þ; completing the first step of the proof by induction.
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Second, suppose that for a given tX1; m0pstmt�1 ¼ mðht�1Þ; and sup bðcsÞpst for
t ¼ 1; 2;y; t � 1: G is a GSC, so the map cs/inf bðcsÞ is monotone increasing

(see e.g. [22]). Then, csostm0pstmt�1 implies that

sup bðcsÞpinf bðm0Þpinf bðmt�1Þpxðot; mt�1Þ ¼ st:

This inequality, and the inductive hypothesis, imply that m0pst mtþ1 ¼ mðhtÞ; as
beliefs are weakly monotone. By induction then, for every t; both mt and the copy in

belief space of the distribution of o/xðo; htÞ are larger than m0:
Let W ¼ ½m0;cdsup S
c ¼ fpAC : m0pstpgc: By the remark in Section 2, W is a

weak open neighborhood of cs in C: We have shown that W satisfies the condition
in the definition of unstable to an e-perturbation. &

Remark. If a strategy profile s is unstable to an e-perturbation for all e40; then it is
unstable. To see this, note that ð1� eÞcsþ ecs0-cs as e-0:7 Then, given a

neighborhood V of cs; there is eAð0; 1Þ such that m0 ¼ ð1� eÞcsþ ecs0AV : Hence,

for any neighborhood there is a point m0 such that, if the dynamics start at m0; then
the state of the system never lies in a neighborhood W of cs: Therefore, learning
never approaches cs:8

Proof of Theorem 1. Let e40; and consider any PMNE s in the conditions of the
Theorem. We shall prove that the inequality II in Lemma 2 is satisfied.
Fix iAN and let #mi ¼ ð1� eÞcisþ ecid½sup bðcsÞ
: Since at least two players select a

properly mixed strategy, cis is properly mixed. G is a GSC, so bið #miÞ is a
subcomplete sublattice, and suppðcisÞD½bðcsÞ
�i because s is a Nash equilibrium.

Then, Lemma 1 implies that cisost #mi:

Let T ¼ fcis; #mig; and Ui : Si � T-R be defined by Uiðsi; tÞ ¼R
S�i

uiðsi; s�iÞ dtðs�iÞ: Hence, biðtÞ ¼ argmaxsiASi
Uiðsi; tÞ for tAT :

We claim that Ui satisfies the strict single crossing property in ðsi; tÞ: Let sios0i and
suppose Uiðs0i;cisÞ �Uiðsi;cisÞX0: Since cisost #mi; to show that the strict single-

crossing property holds, we must show that Uiðs0i; #miÞ �Uiðsi; #miÞ40: Denote by

l : S�i-R the function s�i/½uiðs0i; s�iÞ � uiðsi; s�iÞ
: So, for any tAT ;

Uiðs0i; tÞ �Uiðsi; tÞ ¼
Z

S�i

½uiðs0i; s�iÞ � uiðsi; s�iÞ
 dtðs�iÞ ¼
Z

S�i

lðs�iÞ dtðs�iÞ:

Now,

Uiðs0i; #miÞ �Uiðsi; #miÞ ¼ ð1� eÞ
Z

S�i

lðs�iÞ ds�iðs�iÞ

þ e
Z

S�i

lðs�iÞ ddsup bðcsÞ�i
ðs�iÞ

¼ ð1� eÞ½Uiðs0i;cisÞ �Uiðsi;cisÞ
 þ elðsup bðcsÞ�iÞ:
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R

g dsþ e
R

g ds0-
R

g ds:
8 In fact, in our results the copy of the distribution of o/xðo;mðhtÞÞ in belief space is not in W either.
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Suppose, by way of contradiction, that Uiðs0i; #miÞ �Uiðsi; #miÞp0: Then Uiðs0i;cisÞ �
Uiðsi;cisÞX0 implies that lðsup bðcsÞ�iÞp0:

Note that l is strictly increasing because G is a GSSC. Then lðs�iÞo0 for all
s�iAbðcsÞ�i\fsup bðcsÞ�ig; as lðsup bðcsÞ�iÞp0: We claim that

s�iðbðcsÞ�i\fsup bðcsÞ�igÞ ¼ 0:

To see this, note that s�iðbðcsÞ�i\fsup bðcsÞ�igÞ40 and lðs�iÞo0 for all

s�iAbðcsÞ�i\fsup bðcsÞ�ig imply that

04
Z
bðcsÞ�i\fsup bðcsÞ�ig

lðs�iÞ ds�iðs�iÞ

X

Z
S�i

lðs�iÞ ds�iðs�iÞ

¼Uiðs0i;cisÞ �Uiðsi;cisÞ:

The second inequality follows from lðsup bðcsÞ�iÞp0 and supp s�iDbðcsÞ�i:

But this violates that Uiðs0i;cisÞ �Uiðsi;cisÞX0; so it must be that

s�iðbðcsÞ�i\fsup bðcsÞ�igÞ ¼ 0:

But supp s�iDbðcsÞ�i; as s is a Nash equilibrium. Then s�iðsup bðcsÞ�iÞ ¼ 1;

which is a contradiction because s is properly mixed. This shows that Ui satisfies the
strict single-crossing property.
The strict single crossing of Ui implies, by Milgrom and Shannon’s [16] Monotone

Selection Theorem, that xpx0 for every xAbiðcsÞ and x0Abið #mÞ: Thus
sup biðcsÞpinf bið #mÞ: This is true for all i; hence inequality II in Lemma 2 is
satisfied. &

Proof of Theorem 2. In Step 1 we prove a mini-lemma, which we then use in Step 2
to prove the theorem.

Step 1. Let ðmZi ÞZ40 be any collection of beliefs in Ci such that mZi -mi;

for some miACi; as Z-0: We shall first show that there is #Z with the

property that, for all Zo#Z; if si is a best response to mZi in the Z-augmented

game, then siðoiÞAbiðmiÞ for all oi; where biðmiÞDSi is the set of best responses

to mi in G0:
Let

k ¼ inf

Z
S�i

giðs̃i; s�iÞ dmiðs�iÞ �
Z

S�i

giðsi; s�iÞ dmiðs�iÞ : siebiðmiÞ; s̃iAbiðmiÞ
� �

:

Since Si is finite, k40: Let 0oZ0ok=4 and let Z0040 be such that, if 0oZoZ00 then
j
R

S�i
giðsi; s�iÞ dmiðs�iÞ �

R
S�i

giðsi; s�iÞ dmZi ðs�iÞjok=4 for all siASi; which again is

possible because Si is finite. Let #Z ¼ minfZ0; Z00g:
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Let siebiðmiÞ; s̃iAbiðmiÞ; and Zo#Z: The gain to playing s̃i over si in the Z-
augmented game, and in state oi; is

Z
S�i

u
Z
i ðs̃i; s�i;oiÞ dmZi ðs�iÞ �

Z
S�i

u
Z
i ðsi; s�i;oiÞdmZi ðs�iÞ

¼
Z

S�i

giðs̃i; s�iÞ dmZi ðs�iÞ �
Z

S�i

giðsi; s�iÞ dmZi ðs�iÞ þ Z½oiðs̃iÞ � oiðsiÞ


X

Z
S�i

giðs̃i; s�iÞ dmZi ðs�iÞ �
Z

S�i

giðs̃i; s�iÞ dmiðs�iÞ

þ
Z

S�i

giðs̃i; s�iÞ dmiðs�iÞ �
Z

S�i

giðsi; s�iÞ dmiðs�iÞ

þ
Z

S�i

giðsi; s�iÞ dmiðs�iÞ �
Z

S�i

giðsi; s�iÞ dmZi ðs�iÞ � 2Z

4� k=4þ k � k=4� 2k=4 ¼ 0:

The first inequality obtains because oiðsiÞ;oiðs̃iÞA½�1; 1
; the second because Zo#Z:
We have shown that, for all Zo#Z; no matter the value of oi; any ŝiAbiðmiÞ is a

better response to mZi than any siebiðmiÞ: As s
Z
i is a best response to beliefs mZi ; this

implies that s
Z
i ðoiÞAbiðmiÞ for all oi:

Step 2. For each Z; let sZi be the distribution of s
Z
i ðoiÞ: Note that, for all Z; sZi is a

best response to beliefs cis
Z; and s ¼ limZ-0 sZ; as ðGZ; sZÞ is a purification sequence

of s: By Step 1, there is #Z such that, if Zo#Z; then s
Z
i ðoiÞAbiðcisÞ for all oiAOi: In

particular, s
Z
i ðoiÞpsup biðcisÞ for all oiAOi:

Let *s
Z
i be a best response to beliefs n ¼ ð1� eÞcisþ ecidsup bðcsÞ; in the Z-

augmented game. Beliefs n do not depend on Z; so applying Step 1 with mZ ¼ n for all
Z; there is *Z such that, if Zo*Z then *s

Z
i ðoiÞAbiðnÞ for all oi: In particular,

inf biðnÞp*s
Z
i ðoiÞ for all oi:

Let
%
Z ¼ minf#Z; *Zg: Repeating the argument in the proof of Theorem 1, we have

that sup bðcsÞpinf bðnÞ: Then, if Zo
%
Z; for every i and oi; *oiAOi; s

Z
i ðoiÞp*s

Z
i ð *oiÞ: By

Lemma 2, we are done. &
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