Title
High power high linearity waveguide photodiodes: measurement, modeling, and characterization for analog optical links

Permalink
https://escholarship.org/uc/item/1ht7k0kv

Author
Draa, Meredith Nicole

Publication Date
2010-01-01

Peer reviewed|Thesis/dissertation
High Power High Linearity Waveguide Photodiodes: Measurement, Modeling, and Characterization for Analog Optical Links

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Photonics) by Meredith Nicole Draa

Committee in Charge:

Professor Paul K. L. Yu, Chair
Professor William S. Chang
Professor Richard K. Herz
Professor William Hodgkiss
Professor Yu-Hwa Lo

2010
The Dissertation of Meredith Nicole Draa is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2010
Dedication

This dissertation is dedicated to my husband, David, for all his love, understanding, and support throughout all these years. He has remained ever willing to sacrifice and adapt to career moves that I have been lucky enough to be offered in pursuit of my Ph. D. For this, I am eternally grateful.
Table of Contents

Signature Page ... iii
Dedication .. iv
Table of Contents .. v
List of Figures .. viii
List of Tables ... xii
Acknowledgements ... xiii
Vita .. xvi
Abstract of the Dissertation ... xviii

Chapter 1 Introduction ... 1

1.1 "About light, I am in the dark" .. 1
1.2 Why Analog Optical Systems? .. 2
 1.2.1 Overview ... 2
 1.2.2 Electronic Versus Photonic ... 2
 1.2.3 Figures of Merit ... 3
1.3 Photodiode Background and Needs ... 5
 1.3.1 PIN Photodiodes .. 5
 1.3.2 State of PIN Photodiodes ... 8
 1.3.3 Uni-traveling Carrier Photodiodes ... 9
 1.3.4 Design and Considerations ... 14
1.4 Motivation .. 20
1.5 Scope of Dissertation .. 21
1.6 References ... 24

Chapter 2 Nonlinearity and Measurement Systems .. 30

2.1 Introduction ... 30
2.2 Background and Motivation .. 31
 2.2.1 Introduction to IP3 ... 31
 2.2.2 Importance of IP3 to Modulation Systems ... 32
2.3 Measurement Schemes .. 33
 2.3.1 Two-Tone Heterodyne Setup ... 33
 2.3.2 Two-Tone Mach-Zehnder Modulator (MZM) Setup ... 34
Chapter 3 Nonlinearity Modeling

3.5 Nonlinearity Modeling by Equivalent Circuit Analysis .. 98
3.6 Conclusion ... 102
3.7 Acknowledgements ... 103
3.8 References .. 105

Chapter 4 Uni-Traveling Carrier Directional Coupler Photodiode

4.1 Introduction .. 107
4.2 Device Design ... 109
4.3 Baseline Device ... 113
 4.3.1 Electrical and Thermal Simulation ... 113
 4.3.2 Responsivity Measurement ... 119
 4.3.3 Bandwidth Measurement ... 121
 4.3.4 Nonlinearity Measurement .. 122
4.4 Device Variations .. 129
 4.4.1 Variation Designs ... 129
 4.4.2 Thermal Simulation .. 129
 4.4.3 Responsivity Measurement .. 132
 4.4.4 Bandwidth Measurement ... 135
 4.4.5 Voltage-Dependent Nonlinearities ... 136
4.5 Conclusion .. 142
4.6 Acknowledgements ... 145
4.7 References .. 146

Chapter 5 Conclusion and Future Work

5.1 Summary .. 149
5.2 Future Work .. 153
 5.2.1 Nonlinearity Investigations ... 153
 5.2.2 Nonlinearity Modeling ... 154
 5.2.3 Redesigning the UTC DCPD .. 156
5.3 Conclusion .. 158
5.4 Acknowledgements ... 159
5.5 References .. 160

Appendices

Appendix A .. 161
Appendix B .. 164
Figure 1.1.	(a) Electronic transmitter and (b) equivalent photonic transmitter	3
Figure 1.2.	Reverse biased PIN photodiode	6
Figure 1.3.	IV curve for photodiode with increasing photocurrent	6
Figure 1.4.	Spectral responsivity for AlGaN-p/GaN-p-i-n photodetector (solid), compared to that for homogeneous GaN-p-i-n photodetector (dotted)	9
Figure 1.5.	Bandgap structure of a UTC photodiode	10
Figure 1.6.	InGaAs-InP MUTC photodiode structure	11
Figure 1.7.	Micrograph of the fabricated UTC-PD with an integrated matching circuit	12
Figure 1.8.	OIP3 as a function of the dc photocurrent for PD A and PD B at -5V bias	13
Figure 1.9.	Schematic cross-sectional view of RFPD	14
Figure 1.10.	Dependence of three tone IP3 for pin-RFPD and UTC-RFPD on average photocurrent at 3V bias	14
Figure 1.11.	Schematic of velocity matched PD showing passive optical waveguide, active PIN PDs and microwave transmission line	16
Figure 1.12.	(a) Three-tone IMD3 measurement at 60mA (b) Comparison of Two-Tone and Three-Tone OIP3 (with 3dB correction factor)	17
Figure 1.13.	Calculated space-charge electric field in the intrinsic region at currents of 0.1 (solid) and 1 (dashed) mA, with simulated spot size of 7µm	19
Figure 1.14.	Measured second harmonic power of the 0.95µm PD showing the regimes of importance for the dominating nonlinear mechanisms	19
Figure 2.1.	RF output representation of optical signal components for a two-tone input to a photodiode, showing fundamentals (black), harmonic distortions (red) and intermodulation distortions (blue)	32
Figure 2.2.	Fundamental and IMD3 as a function of input RF power	32
Figure 2.3.	An intensity modulated direct detection link	32
Figure 2.4.	Five laser heterodyne nonlinearity setup	34
Figure 2.5.	Two laser two-tone MZM nonlinearity setup	35
Figure 2.6.	Three laser IP3 measurement setup	37
Figure 2.7.	Four laser three-tone MZM nonlinearity setup	38
Figure 2.8.	Measurement of OIP2 showing IMD contribution from MZM and DUT distinguished by fitted curves showing appropriate slopes for each	40
Figure 2.9.	Measurement showing variation of input RF power to the MZM	42
Figure 2.10.	Effects on IMD3 for MZM biasing test with varying amounts of HD2 suppression	43
Figure 2.11.	Maximum allowed \(\nu_m \) versus photocurrent for various values of \(\Delta \)	50
Figure 2.12.	OIP3 limit due to higher order nonlinearities versus output photocurrent	51
Figure 2.13.	OIP2 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups	60
Figure 2.14.	OIP3 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups	60
Figure 2.15.	OIP3 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups	62
Figure 2.16. Graphs of the electric field vs. time for one-tone (top), two-tone (middle) and three-tone (bottom) measurements... 63
Figure 2.17. Fundamental and selected second and third order distortion power versus modulation depth at 2.5V bias for a PD3000 photodiode................................. 64
Figure 2.18. Fundamental and selected second order distortion power versus modulation depth at 8.0V bias for a PD3000 photodiode.. 65
Figure 2.19. Fundamental and selected third order distortion power versus modulation depth at 8.0V bias for a PD3000 photodiode.. 65
Figure 2.20. OIP2 versus bias voltage at 10mA for the case with a 50/50 coupler and PBC.. 68
Figure 2.21. OIP3 versus bias voltage at 10mA for the case with a 50/50 coupler and PBC at 2*F2+F1.. 69
Figure 2.22. Difference in measured OIP3 between PBC and coupler for all intermodulation frequencies versus bias voltage at 10mA photocurrent............................ 70
Figure 3.1. (a) PIN photodiode band diagram and (b) electric field of reverse biased PIN photodiode ... 79
Figure 3.2. Surface normal photodiode.. 79
Figure 3.3. Waveguide photodiode where the light is coupled to a mode profile determined by the waveguiding layers of the structure.. 81
Figure 3.4. Simulation of DC responsivity for device A and B.. 87
Figure 3.5. Electric field at various levels of photocurrent for device A without a load...... 87
Figure 3.6. Electric field at various levels of photocurrent for device B without a load.... 88
Figure 3.7. Simulation of heating in device A and B at -4V bias.................................... 89
Figure 3.8. Device A heating at 100mW input power and -4V bias................................. 90
Figure 3.9. Normalized frequency response of device A up to 50GHz......................... 91
Figure 3.10. Normalized frequency response of device B up to 50GHz....................... 91
Figure 3.11. DC saturation measurement and simulation (black) for device A(blue) and device B (red) at -2V bias... 93
Figure 3.12. IMD3 for device A and B with -4V bias.. 94
Figure 3.13. OIP3 for device A and B with -4V bias at 1GHz....................................... 95
Figure 3.14. OIP3 for device A and B at 15mA and 20mA at 1GHz.............................. 96
Figure 3.15. OIP3 for device A and B at 25mA and -4V bias versus frequency........... 97
Figure 3.16. Photodiode circuit model diagram.. 99
Figure 3.17. Effect on OIP3 for increasing (a) C0(fF) with values 200, 400, 600, 800, and 1000 and (b) C1(fF/mA) with values of 6, 8, 10, 12, and 14......................... 100
Figure 3.18. Effect on OIP3 for increasing (a) R0(kΩ) with values of 125, 145, 165, 185 and 205 and (b) R1(kΩ) with values of 33, 35, 37, 39 and 41.............................. 101
Figure 4.1. (a) DCPD device and (b) layer structure.. 110
Figure 4.2. Simulated DCPD and WGPD power absorption along device.................. 113
Figure 4.3. DC responsivity for DCPD compared to devices A and B (with no load). The devices are biased at 4V which creates an electric field of 83kV/cm for the UTC SN, 100kV/cm for the DCPD and 125kV/cm for devices A and B......... 115
Figure 4.4. Electric field at various photocurrents for DCPD at 4V bias voltage (with no load)... .. 116
Figure 4.5. Heating profile of UTC-DCPD at 100mA output photocurrent (max. temperature 368K) .. 118
Figure 4.6. Maximum device temperature vs. output photocurrent for UTC-DCPD compared with devices A and B.. 118
Figure 4.7. Normalized responsivity versus electric field (converted from bias voltage) at various photocurrents and dark current versus bias (inset)................................. 120
Figure 4.8. Normalized frequency response for DCPD from 0-30GHz... 122
Figure 4.9. OIP3 versus photocurrent at 4V bias.. 123
Figure 4.10. OIP3 versus bias voltage at various photocurrent for 1GHz and 1.1GHz input tones .. 124
Figure 4.11. 3dB bandwidth as a function of photocurrent density for DCPD at 4V bias (with no load) ... 125
Figure 4.12. Maximum device temperature vs. output photocurrent for DCPD as designed and with 0.5µm undercut (with no load)... 125
Figure 4.13. Images of catastrophic failure for (a) 5µm by 55µm PIN WGPD and (b) UTC-DCPD, note that zoom levels are not equal.. 127
Figure 4.14. OIP3 versus frequency at 20mA and 4V bias voltage with modeled OIP3 curve (black) based on C(V) measurement at 5MHz (inset)... 130
Figure 4.15. Thermal simulation of maximum device temperature vs. output photocurrent for varying MMI widths at 4V bias with no load .. 130
Figure 4.16. Thermal simulation of maximum device temperature vs. output photocurrent for varying PD widths at 4V bias with no load.. 131
Figure 4.17. Top down view at 150mA output photocurrent for varying PD width at 4V bias with no load.. 132
Figure 4.18. Responsivity versus bias voltage at 20mA photocurrent for DCPD devices with varying MMI widths, and a fixed MMI delay length..................................... 133
Figure 4.19. Responsivity versus bias voltage at 20mA photocurrent for DCPD devices with varying PD (p-mesa) widths.. 134
Figure 4.20. 3dB bandwidth versus MMI coupler width for DCPD devices.. 135
Figure 4.21. 3dB bandwidth versus PD width for DCPD devices... 136
Figure 4.22. Output fundamental RF power and third order distortion RF power versus output fundamental RF power for the DCPD device with 6µm wide MMI at 4V bias and 20mA photocurrent.. 138
Figure 4.23. Extracted c1 and c3 parameters versus MMI width from Figure 4.18............................ 139
Figure 4.24. OIP3 (measured: solid, calculated: open) versus MMI width at 20mA and 4V bias.. 140
Figure 4.25. Extracted c1 and c3 parameters versus photodiode width from Figure 4.19........... 141
Figure 4.26. OIP3 (measured: solid, calculated: open) versus photodiode width at 20mA and 4V bias.. 142
Figure 5.1. Simulated DCPD power absorption along length of the device with polynomial fit (black).. 155
Figure 5.2. Photo of device A before failure (a) and after catastrophic failure (b).............. 156
Figure 5.3. Bandgap diagram of layer structure for PDA style photodiode with bias applied across i-InGaAs. Horizontal is the layer thickness and vertical is the bandgap (not to scale).
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Table showing mean slopes for data in area A (2.5V) and B (8V) of Figures 2.17-2.19</td>
<td>68</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>PIN waveguide layer structure with bandgap wavelengths in parenthesis</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Device design parameters</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Extracted values for circuit parameters that match OIP3 data from device A.</td>
<td>103</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to first and foremost thank my advisor, Professor Paul Yu, for all his guidance and support. His knowledge gave me a wonderful foundation to begin and explore the areas of research I found most interesting. His confidence and challenges for me allowed me to grow as a research scientist.

I would also like to thank Professor William Chang. His continued dedication and support of research at UCSD has been very beneficial to me. He has spent countless hours talking and helping with problems throughout my time at school. His experience, advice and tough criticism has helped me better present and defend my work.

I would also like to thank Dr. Keith Williams. He has provided support, expertise and a great environment for me to finish my final year of work. His patience and help in finishing the finals parts of my thesis are greatly appreciated. Additionally, I'd like to thank Dr. Don Kimball at Calit2 for helpful discussion and the loan of equipment. Finally, I would like to extend my gratitude to the rest of Professor Paul Yu's research group for their help and advice each week in our group meetings.

I am extremely grateful for the financial support I have received throughout my time at UCSD. The research in this thesis was supported by the Chang Fellowship and through DARPA under ULTRA, STTR, and TROPHY and DARPA/SPAWAR under program N66001-03-8939, as well as support from Global Defense Technology and Systems Inc.

Portions of Chapter 3 appear in "Behaviors of the Third Order Intercept Point for PIN Waveguide Photodiodes," published in Optics Express, vol. 17, no. 16, pp. 14389-14394 (2009), Meredith N. Draa, J. Bloch, D. C. Scott, N. Chen, S. B. Chen, W. S. Chang, and P. K. L. Yu and "Frequency behaviors of the third order intercept point for a waveguide photodiode using three laser two-tone setup," published in IEEE Lasers and Electro-Optics Society (LEOS 2008), Meredith N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. L. Yu. Contribution from co-author Dr. David C. Scott is greatly appreciated for the fabrication of the devices and RF response measurements. The author would also like to thank Jeff Bloch for his contributions to the device designs. The author would also like to acknowledge the insight and guidance provided by Professors Paul Yu and William Chang as well as funding support through DARPA from both Dr. Steve Pappert and Dr. Ron Esman. The author of this thesis was the primary author of this work.

Coupler Photodiodes" accepted to the 2010 IEEE International Topical Meeting on Microwave Photonics (2010), Meredith N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, N. Chen S. Chen, and K. J. Williams. The contributions to the DCPD design, including the directional coupled waveguide and CPW design, by Jeffrey Bloch, Dingbo Chen and Xuecai Yu are greatly appreciated. Contribution from co-authors Dr. David C. Scott is greatly appreciated for the fabrication of the devices and RF response measurements. The author would also like to acknowledge the insight and guidance provided by Professors Paul Yu, William Chang and Dr. Keith Williams as well as funding support through DARPA from both Dr. Steve Pappert and Dr. Ron Esman. The author of this thesis was the primary author of this work.

In Chapter 5, the photos in Figure 5.3 were provided by Dr. David Scott at Archcom Technology, Inc. Additionally, Figure 5.2 is a repeat of the data presented in Chapter 4 provided by Jeff Bloch.
Vita

2001-2005 Research Intern
U. S. Army Research Laboratory in Adelphi, MD

2005 Bachelor of Science, Electrical Engineering
University of Maryland, College Park

2007 Master of Science, Electrical Engineering (Photonics)
University of California, San Diego

2008 Electrical Engineering Intern
L-3 Communications in Carlsbad, CA

2009-2010 Electrical Engineer
Global Defense Technology & Systems Inc. in Crofton, MD

2010 Doctor of Philosophy, Electrical Engineering (Photonics)
University of California, San Diego

Publications

Conferences

ABSTRACT OF THE DISSERTATION

High Power High Linearity Waveguide Photodiodes: Measurement, Modeling and Characterization for Analog Optical Links

by

Meredith Nicole Draa

Doctor of Philosophy in Electrical Engineering (Photonics)

University of California, San Diego, 2010

Professor Paul K. L. Yu, Chair

As analog optical links continue to mature and fulfill communication needs, the requirements for output power and linearity continue to be a main focus. The receiver end of a link is a limiting factor for such applications, and therefore photodiode research continues to be at the forefront of these issues. In order to compete, photodiodes need to be able to maintain high bandwidth, high power and high linearity simultaneously.

The study of photodiodes for analog links has focused on linearity, in particular the third order intermodulation distortions (IMD3), which occur near the fundamental signal. Although the output third order intercept point (OIP3) is an important figure of merit, there are still many questions about how OIP3 is measured. The goal of this thesis is to assess the systems used to measure OIP3, in order to develop a better understanding of nonlinearity allowing us to perform
accurate modeling and design for waveguide style photodiodes that require high power and high linearity.

First, the different measurement systems are discussed. A three laser two-tone setup is demonstrated as an alternative to the two laser two-tone setup, which suffers from link component nonlinearities. The setup is experimentally and analytically characterized. Next the one- and two-tone heterodyne setups and a four laser three-tone setup are compared using mathematical relationships to equate the results.

Second, two PIN waveguide photodiodes are presented with similar layer structures. The diodes are characterized for bandwidth, DC responsivity, and OIP3. The devices are also modeled electrically with Silvaco and thermally with Comsol. The results are used to discuss the benefits for certain design tradeoffs, such as bandwidth and responsivity, as it pertains to power and linearity.

Finally, a uni-traveling carrier style waveguide photodiode with a directional coupler is presented. The directional coupled waveguide controls the optical absorption profile along the length of the device, so that the front facet does not have high current density. The device is characterized for responsivity, bandwidth, and OIP3, as well as modeled electrically and thermally. Additionally, variations of the device, including the coupler width, photodiode width, and photodiode length, are characterized and modeled.
Chapter 1
Introduction

1.1 "About light, I am in the dark"

Those words spoke by Benjamin Franklin in the late 18th century illicit how little we know about light scientifically. Franklin's study of electricity led to many inventions and contributions to the scientific community. He was also one of the few who supported the wave theory of light proposed by Christiaan Huygen [1]. Fast forward two hundred years and despite many scientific advances, the use of light instead of electricity for communication and technology has proved useful, but continues to suffer in certain metrics. Technology for electronic components and links has moved forward at an incredible pace, evidenced with Gordon Moore's famous prediction that the cost and size of the transistor will halve every two years [2]. Despite electrical dominance, the area of photonics has become a highly demanding and expansive field. Although Franklin might not have anticipated communication by means of light in the capacity that has developed today, he understood it's unknown properties would eventually lead to great advances.

Today photonics is making some serious moves to compete with electronic systems. Fiber optic communications are desirable for their low loss, weight and immunity to electromagnetic radiation. The current photonic links are lacking in areas including power/linearity tradeoffs, noise and efficiency. As breakthroughs are made to develop photonic technologies, more migration from electronics will continue as optical links provide inherent benefits unachievable in electronics.
1.2 Why Analog Optical Systems?

1.2.1 Overview

A majority of today's fiber optic links are used for digital applications, including telecommunications and data networks [3]. Despite the large amount of needs in the digital world, analog optical links are seeing a growing number of applications, including cable-TV video distribution [4], optical signal processing [5], antenna remoting [6], and optical analog-to-digital conversion [7, 8]. The main goal of an analog optical system is to reproduce the input signal at the output as close to identical as possible, where the noise and distortion, which will be unavoidable in the link, present a significant design challenge [4]. Because of the very low loss capable with optical links, a primary use is in distribution of microwave signals in place of purely electronic links, which exhibit rapid loss increases as the frequency of the signal increases, specifically at millimeter wave range [9].

1.2.2 Electronic Versus Photonic

Figure 1.1b shows a typical photonic microwave transmitter, which operates much like its conventional microwave transmitter, depicted in Figure 1.1a. The photonic link contains a laser input to a modulator, which is fed with an RF signal, transmitted over optical fiber, detected at the photodiode and transmitted via an antenna. In contrast, the electronic link contains an RF signal fed to a high power amplifier (HPA) and transmitter via an antenna.

Photonic links provide a multitude of advantages when compared to electronic links, including low size, weight and cost, immunity to electromagnetic radiation, low loss and dispersion, as well as high bandwidth capability [10-14]. Despite these benefits, photonic links still have a long way to go in order to be competitive with electronics, with limitations including
efficiency, spurious free dynamic range (SFDR), gain, saturation, noise figure, and power delivery capability [15-17].

![Figure 1.1. (a) Electronic transmitter and (b) equivalent photonic transmitter.](image)

1.2.3 Figures of Merit

The figures of merit for an optical link are similar to those of an electrical link. First, we will discuss gain and the frequency response. The linear RF gain of the link is the ratio of RF power delivered to a matched load at the photodetector output to the available RF power at the input to the modulation device [9]. Gain is often less than 1, in which case it represents the link loss. Since the RF gain is frequency dependent, it is important to discuss the causes. The frequency response for a typical diode laser peaks at the upper end of the range, which is referred to as the relaxation resonance, and then decreases rapidly with frequency above the peak [3]. The laser's frequency response is dependent on carrier lifetime, photon lifetime, bias current and slope efficiency [3]. Additionally, the modulator exhibits a frequency response. Here we will discuss the Mach-Zehnder modulator (MZM), since it is the most commonly used. The frequency
response is primarily determined by the ratio of the optical transit time past the electrode relative to the modulation period of the maximum modulation frequency [3]. Due to the tradeoffs between gain and bandwidth, alternative electrodes such as traveling wave [18-19] are used to increase the limit of the gain-bandwidth product. The final link component that exhibits frequency response is the receiver or photodiode which will be discussed more in depth in section 1.3.3.

Secondly, noise plays a large role in the link by contributing to the maximum SFDR as well as the minimum signal transmitted. The SFDR and its relevance to photonic links will be discussed more in Chapter 2. Noise is generally described by noise figure (NF) which relates the noise power at the output to the noise power at the input [9]:

\[NF = 10 \log \left(\frac{n_{out}}{n_{in}} \right) \]

(1.1)

The three dominant noise sources include thermal, shot, and relative intensity noise, which are all independent of each other. Thermal noise, or Johnson noise, is independent of frequency and dependent on temperature and the resistive part of the device impedance. Shot noise is the main source of noise in photodiodes from random thermal generations of electron hole pairs in the depletion region [20]. Relative intensity noise is due to random spontaneous emission that cause laser intensity fluctuations and varies over frequencies of interest [3].

Finally, distortion provides extraneous signals in links. For the scope of this dissertation our main focus will be on distortion, in particular photodiode distortion. In any photonic link there will be nonlinear distortion on the fundamental signal, which will create limits at which the link can operate in the case of linear applications. Because of the relationship between distortion and the fundamental signal, the unwanted signal at the harmonic frequencies will increase faster than the fundamental. Eventually the distortion will be greater than the noise limit, causing a reduction in the SFDR. The SFDR of an intensity modulated direct detection (IMDD) link can be written as [21]:
where OIP is the output intercept point, \(n \) is the order of the distortion, \(B_e \) is the electrical bandwidth, and \(N_{out} \) is the noise-power spectral density at 1Hz bandwidth at the output. Depending on the link application both second and third order distortions can negatively affect the SFDR of the link. Assuming the link is limited by third order distortion, the shot-noise limited SFDR can be calculated as [21]:

\[
SFDR_{3,\text{shot}} = \left(\frac{2I_{dc}}{qB_e} \right)^{2/3},
\]

where \(I_{dc} \) is the DC photocurrent, and \(q \) is the charge of an electron.

Together gain, frequency response, noise and distortion provide many aspects to consider when designing links and components for specific applications. From this brief overview, we find that photodiodes play an important role in link metrics and they will be described in more detail next.

1.3 Photodiode Background and Needs

1.3.1 PIN Photodiodes

The positive-intrinsic-negative (PIN) photodiode is one of most common photodetectors in use for analog optical links. A diagram of a reversed biased PIN photodiode is shown in Figure 1.2. Most of the voltage drop will occur across the i-region, which is the absorption region. The high field separates the photogenerated electrons and holes, allowing the device to have a fast response and low noise. The PIN photodiode operates in the third
quadrant of the IV curve where the current is essentially independent of the voltages, but proportional to the optical generation rate. This behavior can be seen in Figure 1.3, where an example IV curve is shown with increasing photocurrent. The dark current can be defined by the diode equation as:

\[I = I_0 \left(\frac{qV}{e^{k_bT}} - 1 \right), \tag{1.4} \]

where \(V \) is the bias voltage, \(k_b \) is Boltzmann's constant, and \(T \) is temperature. The photocurrent can be defined as [22]:
where η is the quantum efficiency, \hbar is the reduced Planck's constant, ω is the frequency, and P_{opt} is the input optical power. The quantum efficiency will be dependent on the absorption method, with two general cases for surface normal and waveguide presented below:

$$\eta_{SN} = \eta_i (1 - R)(1 - e^{-\alpha d}), \quad \eta_{WG} = \eta_i (1 - R)(1 - e^{-\Gamma L}),$$

where η_i is the internal quantum efficiency, R is the reflectivity, α is the absorption coefficient, d is the absorption layer thickness for the surface normal device, Γ and L are the confinement factor and length of the waveguide device respectively. The quantum efficiency includes all the losses associated with the photon-to-electron conversion process [3]. The responsivity, which is defined as the slope of the current versus optical power curve, is often quoted and can be related to quantum efficiency as follows:

$$\Re = \eta \frac{q}{\hbar \nu}.$$

For the scope of this dissertation, we will primarily look at waveguide style devices, and also introduce a new structure that does not behave according to the equation in 1.6b, which will be described in Chapter 4.

Now that we know the efficiency for both surface normal and waveguide photodiodes we can look at the bandwidth efficiency products for each. In the case of a surface normal diode for a thin absorbing layer and transit time limited response the bandwidth is approximated by [23]:

$$f_T = \frac{3.5 \bar{v}}{2\pi d},$$

where \bar{v} is the saturation hole velocity, and d is the intrinsic layer thickness. Equation (1.8) will also dictate the transit time limited response for a waveguide photodiode. Another factor that limits bandwidth is the junction capacitance charging time constant, which can be expressed by
the RC bandwidth. The RC bandwidth expresses how rapidly the junction capacitance of the photodiode can be charged and discharged through the effective load resistance, which is approximately the sum of the internal series resistance, R_s, and the external load resistance, R_L [23]. The RC limited bandwidth is given by [23]:

$$f_{RC} = \frac{1}{2\pi C_{PD}(R_L + R_s)}$$

(1.9)

where C_{PD} is the junction capacitance. The total bandwidth can be related by using (1.8) and (1.9) [23]:

$$\frac{1}{f_{3dB}^2} = \frac{1}{f_T^2} + \frac{1}{f_{RC}^2}$$

(1.10)

In the case of a waveguide photodiode, the bandwidth efficiency trade-off can overcome this limitation. For a waveguide photodiode dictated by (1.6b) the photons and photo-generated carriers travel in the orthogonal directions so that the optical path length, L, and the electrical transit length, d, are decoupled [23]. In this case, the design for high efficiency can be achieved without the bandwidth limitation incurred by a surface normal photodiode where the transit time and optical path length are the same.

1.3.2 State of PIN Photodiodes

A large majority of PIN photodiodes used for analog optical links use InGaAs, with bandgap energy corresponding to 1.6µm waveguides, for absorption which is suitable for 1.3µm and 1.5µm wavelength bands. Currently, InGaAs PIN photodiodes are the most popular and are available commercially. Germanium has a similar bandgap energy but suffers from higher dark current, and therefore is not used as extensively. For links that operate around 0.85µm, silicon provides a good bandgap energy for these applications [24-25]. Recently GaN has been a material of interest to photodiodes due its high thermal conductivity (1.3W/cm/K) [26], wide direct bandgap for UV applications, and high breakdown fields [27]. With the advances in GaN growth,
p-i-n structures have been demonstrated in order to increase speed and sensitivity [28-29]. Displayed in Figure 1.4 is the increased responsivity achieved by Xu et al. by using a heterojunction type GaN structure [28]. Similarly, the waveguide photodiodes we will present use a combination of quaternary materials in order to tailor the device to our specific needs. We will focus on photodiodes that utilize InGaAs as the absorbing material.

![Figure 1.4](image)

Figure 1.4. Spectral responsivity for AlGaN-p/GaN p-i-n photodetector (solid), compared to that for homogeneous GaN p-i-n photodetector (dotted) [28].

1.3.3 Uni-traveling Carrier Photodiodes

Due to the tradeoff of speed and responsivity with the thickness of the intrinsic layer for a PIN photodiode, another photodiode was developed to avoid this problem. In the uni-traveling carrier (UTC) photodiode the absorbing material is p-doped. The benefits of this design include the fact that intrinsic thickness is no longer subject to the needs of the absorption layer (i.e. it can be thin and maintain high responsivity) and since the absorption is in the p-region, electrons are the primary carrier in the devices. Electrons have a much higher drift velocity than holes, 6.5×10^6 cm/s as opposed to 4.8×10^6 cm/s [30], and thus the device can exhibit much higher bandwidths.
and delay the onset of the space charge effect. An example bandgap structure is shown in Figure 1.5. There is a high doped p-layer with a larger bandgap that acts as a diffusion blocker for electrons, the p-doped InGaAs absorber, depletion region and the n-layer. The electron holes pairs are created in the p-absorber, where the holes are majority carriers, and the electrons diffuse to the i-region, where they are swept across by the high electric field.

Figure 1.5. Bandgap structure of a UTC photodiode.

A photodetector with an undepleted InGaAs absorber was first introduced by Davis et al. in 1996, with a RC-limited bandwidth of 295MHz and small-signal saturation current of 150mA at 1319µm [31]. Soon after, Ishibashi et al. demonstrated high speed and high saturation current for this type of photodetector with proper layer structure design [32-33]. Since then, many advances have been made utilizing the benefits of the UTC structure. Frequency responses up to 457GHz have been shown by using a traveling-wave UTC design [34]. The UTC photodiodes have been able to reduce carrier transit time by exploiting the velocity overshoot of electrons [35]. The UTC is also a good candidate for low bias voltage operation as electrons maintain high velocity at relatively low electric fields [36]. The carrier transit time in UTC PDs can be reduced by using the velocity overshoot of electrons in the depletion layer [37]. Wu et al. demonstrated a near ballistic UTC PD with an extracted overshoot drift velocity of electrons of \(\sim 5 \times 10^7 \) cm/s,
which relaxes the burden of downscaling the active area and thickness of the depletion region [38].

![InGaAs-InP MUTC photodiode structure](image)

Figure 1.6. InGaAs-InP MUTC photodiode structure [40].

By adding an undoped InGaAs layer between the drift-layer and the p-absorption layer, higher responsivity and bandwidth can be achieved with optimized design [39]. The device, described as a modified UTC photodiode (MUTC-PD) was demonstrated by Wang et al., to also achieve high saturation characteristics. The layer structure is shown in Figure 1.6. The MUTC-PD achieves higher responsivity and bandwidth with the addition of this layer and the use of graded doping in the p-absorber region to induce an electric field that aids the sweeping of electrons into the i-region [40].
UTC photodiodes have also been developed for high output power and wide bandwidths. Ito et. al used the discrete UTC photodiode shown in Figure 1.7 with a resonating matching circuit integrated to record 17mW of millimeter-wave output power at 120GHz [41]. The purpose of using a matching microwave transmission line is to increase optical to electrical conversion efficiency and reduce the RC bandwidth limitation of the photodiode. In [41] the authors show an improved relative response with a peak that is three times higher than the discrete UTC-PD due to the lower influence of the junction capacitance with the use of the matching circuit. Additionally, UTC structures have been incorporated into waveguide style photodiodes. The UTC photodiode also demonstrated high linearity (>40dBm OIP3) for a waveguide photodiode. The results are shown in Figure 1.8, where the two devices showed a peak output third order intercept point (OIP3) of 42dBm near 20mA [42]. Photodiode linearity presents an important figure of merit that we will focus on for a large part of this dissertation.
A refracting facet photodiode has been used to increase absorption length, allowing for a thinner intrinsic region without sacrificing responsivity for traditional surface normal structures. Figure 1.9 shows a schematic, where the incident light is refracted by an inwardly angled facet so that it reflects off the p-metal and creates an absorption length that is twice as long. The design allows for a thin absorber, which reduces space charge, but still maintains high responsivity [43]. Using a refractive facet photodiode, Ohno demonstrated linearity improvement for a UTC photodiode [44]. The results are seen in Figure 1.10, where both PIN and UTC style devices were used with a refracting facet design. The authors attribute the increase in IP3 for the UTC photodiode to the self-induced electric field [45], where the RF response is improved with increasing amplitude of the fundamental input at low input levels [44].
1.3.4 Design and Considerations

Now that we have briefly discussed photodiode types and some of their characteristics, we will outline the general considerations we will focus on for our design. One tradeoff in photodiode design is bandwidth and responsivity. The device transit time, the time it takes a
carrier to cross the depletion layer, is related to the depletion width, W, and carrier velocity, v_{carrier}, for a typical PIN photodiode via [3]:

\[t_W = \frac{W}{v_{\text{carrier}}} \quad (1.11) \]

Competing with this process is the capacitance, which can be described by [46]:

\[C = \frac{\varepsilon A}{W} \quad (1.12) \]

where ε is the dielectric constant and A is the device area. From (1.11) and (1.12) and the fact that responsivity is related to the depletion volume for a surface normal device, we are presented with a number of tradeoffs.

Despite the bandwidth, transit-time and efficiency tradeoff, device miniaturization and improvements in layer structures have allowed high speed surface normal diodes with good responsivity. A 3dB bandwidth of 110GHz with a back illuminated PIN PD was achieved by using a matched resistor to reduce the effective load to 2Ω, which increased the RC-bandwidth [47]. Another solution is to use a resonant cavity enhanced structure, where mirrors are at the top and bottom of the structure to create multi-pass absorption and increase quantum efficiency [48]. This technique is similar to the refracting facet structure detailed in 1.3.3 where the light is reflected off the p-metal so that the absorption length is increased [49].

A traveling wave photodetector (TWPD) may be used to synchronize the phase of photocurrents generated at different location so that they add in phase [50-55]. The TWPD is a distributed structure in that the photogenerated electrical signal propagates along the electrical contacts, where the characteristic impedance is matched to the external microwave circuit [56]. The benefit of this device is that the TWPD can be long in order to obtain high efficiency without significantly compromising bandwidth [51]. The TWPD design can be applied to discrete detectors that are surface normal or waveguide photodiodes, however waveguide photodiodes are used more frequently since the design is easier to implement. A similar type of structure uses
several photodiodes on an optical waveguide with careful design of the geometry and distance between the PDs to match the characteristic impedance of the TWPD to the external load. The result of is a phase match between the optical and electrical signals [57-59]. A example structure showing the velocity matched TWPD is shown in Figure 1.11.

![Figure 1.11. Schematic of velocity matched PD showing passive optical waveguide, active PIN PDs and microwave transmission line [58].](image)

Additionally, linearity is important for large SFDR. Many setups have been used to measure nonlinearity, including a one-tone heterodyne [60], two-tone heterodyne [61], two laser two-tone Mach-Zehnder modulator (MZM) [62-63], and four laser three-tone MZM setup [64]. Each of these setups will be discussed in more detail in Chapter 2. A new technique has been implemented using a combination of optical combs and optical filtering for two-tone excitation, without the challenges of frequency drift and modulator bias control [65]. Additionally, a three laser two-tone setup will be presented and discussed in Chapter 2. The analyses of each system is important for sorting out the measurement quality and feasibility of cross comparing data from various systems.
Figure 1.12. (a) Three-tone IMD3 measurement at 60mA (b) Comparison of Two-Tone and Three-Tone OIP3 (with 3dB correction factor) [66].
Ramaswamy et al. used both a two-tone and three-tone system to characterize different diodes. Their analysis looked at two UTC photodiodes, where one is designed to reduce front-end saturation and increase linearity using a tapered structure. From Figure 1.12 we can see the results. The original device which has OIP3 ~39dBm has good agreement between the two systems. In the case of the second device, with the tapered structure, the OIP3 is 2-3dB less for the two-tone setup, after the mathematical corrections are made, leaving them to conclude the three-tone setup is essential in certain situations for measuring OIP3 [66].

There are many device mechanisms that contribute to nonlinearity. Williams et al. pointed out that at high power conditions, carrier velocities and diffusion constants are functions of the carrier densities. These parameters will be functions of the carrier densities that are influenced by space-charge fields, the flow of current in the p-contact modifying the carrier velocities, scattering, potential drops in the photodiode due to current flow in the external load resistance, saturation of trap sites, carrier bleaching and carrier density dependent changes to the carrier acceleration and scattering times [67]. In the case of space-charge induced nonlinearities, if the dark electric field in the intrinsic region is not high enough over the entire region to saturate hole and electron velocities, a photogenerated space-charge field will induce carrier velocity variations. In Figure 1.13, a PIN diode was simulated with constant light equivalent to 1mA and 100μA and the resulted space-charge fields are plotted [67]. Additionally, the second harmonic power was analyzed over bias voltage to separate the different nonlinear mechanisms. Figure 1.14 shows the result, where at low bias, space-charge dominates (due to the low dark electric field) and as bias crosses 10V the p-region absorption dominates. The p-region absorption is due to additional electrons that live long enough in the p-region to enter the intrinsic region. The nonlinearity is a function of low field carrier mobility, lifetime in the doped material, physical dimensions, and the p-region doping level [67].
Figure 1.13. Calculated space-charge electric field in the intrinsic region at currents of 0.1 (solid) and 1 (dashed) mA, with simulated spot size of 7µm [67].

Figure 1.14. Measured second harmonic power of the 0.95µm PD showing the regimes of importance for the dominating nonlinear mechanisms [67].

Under saturation the space-charge electric field redistributes the applied field, causing collapse [68]. In order to avoid this we can adjust the design so as to uniformly illuminate the
absorber [69]. One method to accomplish this is by expanding the Gaussian beam so that a small portion of the light misses the absorbing region, but that the overall profile is more uniform. The results of this show that compression current can be doubled for the same applied voltage [31]. When the electric field collapses, the field only decreases or increases in certain areas [70]. One method to relieve this issue and avoid space-charge screening is to use charge compensation so that a non-uniform electric field is created to counteract the charge-screening [70]. Other mechanisms that contribute to saturation include thermal [71] and series resistance [72]. Li et al. showed that for a front illuminated device the lateral resistance dominates saturation, where as for the backside case the response is determined by space-charge effect, with a saturation current >400mA for a 100µm diameter partially depleted absorber (PDA) device [73].

Thermal considerations are an important factor when considering photodiode design. Frequently, thermal failure is observed before current saturation [56]. InP has a fairly low thermal conductivity (0.68 W/cm/K) and InGaAs is even worse (0.05W/cm/K) [73]. If other materials could be used in place of InP substrate, such as Si (1.3W/cm/K), SiC (3.6-4.9W/cm/K) [73], or even diamond, the heat conduction through the substrate can be improved [56]. InGaAs photodiodes have been transferred to Si substrates using direct semiconductor-to-semiconductor wafer bonding [74].

1.4 Motivation

The motivation for this work is twofold: first analyze and design a system for measurement of harmonic and intermodulation distortion; second use the system to characterize photodiodes in order to better understand how to design high linearity and high power photodiodes. As can been seen for section 1.3.3, numerous methods have been used to measure nonlinear distortion in photodiodes. There has been some work that has analyzed these systems
[66], but there are still many unanswered questions about how accurately these systems measure the photodiode nonlinearity and whether data from each can be compared. Once we have a better understanding of the measurement system and its limitations, we can use this information to investigate nonlinearity in photodiodes to improve device design for high power high linearity analog optical links.

Practically, we would like to be able to definitively determine the photodiode distortion so that we can model the physical mechanisms that are responsible. If our system is measuring some other distortion, such as from the electrical spectrum analyzer (ESA) or the MZM, we will not be able to model the photodiode behavior and understand the root causes of the distortion. As photodiodes push the boundaries for linearity and power, the measurement systems used will near their limitations due to link component limitations, leaving our knowledge of the photodiode in question. If we can accurately measure photodiode linearity and model its behavior using a well understood system, we can continue moving photodiode technology forward in the quest to rival electronic components.

1.5 Scope of Dissertation

This dissertation is broken down into two main sections: the linearity measurement system and device designs for use in high power and high linearity analog optical links. As the need increases for photodiodes to be more linear, the system on which we measure them becomes strained at high powers. In order to address the design issues, we must first look at our measurement system in order to determine if we have the capability to accurately measure the device metrics (namely OIP3) of our photodiodes. Chapter 2 focuses on an introduction to photodiode linearity and the various measurement systems used. A new system, a three-laser two tone setup, is proposed, which successfully calibrates out unwanted MZM nonlinearities. The
three-laser two-tone setup is then experimentally and analytically characterized. Since there is more than one way to measure nonlinearity, it is important to look at alternative measurement systems. A four-laser three-tone setup and one and two-tone heterodyne setups are experimentally compared, using mathematical relationships to determine whether the setups can be used to compare OIP3 data between one another. Although we may have a useful measurement setup, it is important to identify any discrepancies that may occur between setups that are used to measure photodiodes in the research field.

Chapter 3 focuses on the study of two PIN waveguide photodiodes. The diodes have almost identical structures including intrinsic layer thickness, but different absorber thicknesses and lengths. The purpose of this study is to look at two PIN WGPD in order to investigate the tradeoffs between bandwidth, power handling capability, and linearity. The original device is designed for 20GHz bandwidth, while the second is designed for half the bandwidth but higher power dissipation capability and a more uniform absorption distribution. Specifically, we analyze both diodes using thermal and electrical device simulation to look at saturation and heating properties. Additionally, the bandwidth, saturation, linearity and power dissipation are experimentally measured. The devices are compared and contrasted to understand the benefits from reducing the optical overlap factor and lengthening the device, with the tradeoff of a lower bandwidth. Finally, an analytic model first used in [74] is used to characterize one of the devices and look at what the approximate values of each circuit component need to be in order to improve OIP3 for future devices.

Chapter 4 presents a novel photodiode structure. The device combines a modified UTC layer structure with a directional coupled waveguide photodiode in an effort to alleviate the large current densities inherent in waveguide style photodiodes. The baseline device is characterized through thermal and electrical simulation and then experimentally. Additional devices were also produced with variations on the MMI and device width. We will look at the measured and
expected bandwidth and thermally model the devices to look at their power handling capabilities based on the device geometry. We will also look at responsivity and OIP3, using an analytical model to show the relationship between the two for each variation at low frequency.

Finally, Chapter 5 summarizes the key contributions from each of the previous chapters and presents future work.
1.6 References

Chapter 2

Nonlinearity and Measurement Systems

2.1 Introduction

The spurious free dynamic range of analog fiber-optic links is closely tied to the linearity of the transmitter and the photodiode. As power increases, the linearity performance of the photodiode progressively becomes a limitation. When two RF tones coming from two modulated optical signals are input into the detector many spurious signals arise. Particularly third-order intermodulation distortions (IMD3) are important due to the fact that they appear very close to the fundamental signals and cannot be easily removed by filters [1]. The measurement of IMD3 and the third-order intercept point (IP3) are essential to understanding the nonlinearities caused by photodiodes. IP3 is the intersection of the extrapolation of IMD3 and output fundamental RF power, P_f. Additionally the mixing of the two tones will create second order intermodulation distortion (IMD2) that is also of interest. The second order intercept (IP2) limits broad-band dynamic range in the same way IP3 limits narrow-band dynamic range [2]. As the need for detectors with higher linearity increases with the desire for larger link spurious-free dynamic range, the need for more accurate and larger measurement range is essential to meeting this goal. In order to accurately perform the measurement all other nonlinearities contributed by equipment must be minimized or calibrated out.

We intend to investigate various nonlinearity measurement setups for this chapter. First, we need to assess the current output third order intercept point setup. The two-laser two-tone setup will be described in detail as well as the problems we face when making photodiode measurements. Next a new three-laser two-tone setup will be presented as a solution to the issues
faced with the original setup. Our main goal is to understand the new setup by experimentally and analytically finding its limitations for measuring OIP3. Finally, we will discuss two other types of setups that have been used to measure OIP3: one and two-tone heterodyne and the four-laser three-tone Mach-Zehnder setups. The purpose of analyzing these setups is to investigate whether these setups can be used interchangeably, namely do they give the same OIP3 for the same photodiode based on the accepted mathematical relationships.

2.2 Background and Motivation

2.2.1 Introduction to IP3

First we will discuss the creation of nonlinearities in a photodiode. Figure 2.1 shows the radio frequency (RF) output representation of the optical signal components for a two tone input. Assuming we have two input tones \(f_1 \) and \(f_2 \) implanted on a continuous wave (CW) optical signal, the output will contain the two fundamental tones, shown in black in Figure 2.1, but additional spurious (red) and intermodulation (blue) tones will also arise due to the inherent nonlinearities of the photodiode. The second order spurious tones will arise at \(2f_1 \) and \(2f_2 \), while the second order intermodulation distortion tones will occur at \(f_1 + f_2 \). The third order harmonic distortion tones will occur at \(3f_1 \) and \(3f_2 \), while the third order intermodulation will occur at \(2f_1 \pm f_2 \) and \(2f_2 \pm f_1 \). The intermodulation tones that appear close to the fundamental are important due to the fact that they cannot be filtered out [1]. The IMD3 is due to the mixing of two times one fundamental minus the other and has a slope of three in the log-log scale shown in Figure 2.2.
2.2.2 Importance of IP3 to Modulation Systems

Chapter 1 briefly outlined spurious free dynamic range (SFDR) for an intensity modulated direct detection (IMDD) link, shown in Figure 2.3. The system consists of a CW laser input to a Mach-Zehnder modulator (MZM), which is bias controlled and fed with a RF signal. The output of the MZM is input to the photodiode, which is reverse biased, and the electrical output is measured on an electrical spectrum analyzer (ESA).
SFDR is the ratio of the power of the fundamental signal to the power of the largest spurious component in a certain frequency range [3]. The modulator limited signal free dynamic range \((SFDR_{\text{MOD}})\) can be described by:

\[
SFDR_{\text{MOD}} = \frac{2}{3} (IP3_{\text{MOD}} - N_{\text{OUT}})
\]

where \(IP3_{\text{MOD}}\) is the modulator IP3 and \(N_{\text{OUT}}\) is the output noise power. Since the SFDR is not always limited by the modulator, the degradation of SFDR due to the photodiode can be calculated as:

\[
\Delta SFDR = \frac{2}{3} 10 \log \left[1 + 10^{-\frac{\Delta IP3}{10}} \right]
\]

where \(\Delta IP3\) is the difference between the IP3 of the modulator and the photodiode. We now see that if the photodiode nonlinearity is greater than the modulator nonlinearity the SFDR of the link will be reduced, thereby demonstrating the need to effectively measure photodiode IP3, characterize nonlinearities, and develop new designs for high linearity photodiodes.

\section*{2.3 Measurement Schemes}

\subsection*{2.3.1 Two-Tone Heterodyne Setup}

The five-laser heterodyne setup can be seen in Figure 2.4. The setup consists of two pairs of lasers, where the optical offset frequency for each pair is stabilized by mixing the resulting RF intermodulation tone \((\lambda_{1/3} - \lambda_{2/4})\) with an RF reference signal and running the mixed signal through a phase-locked loop (PLL) circuit back into the wavelength control for one of the lasers, where the second laser is at a fixed wavelength. Each output is fed into an optical attenuator and then combined using a 50/50 optical coupler and combined with a 5th laser used for controlling the DC
PD current. The device under test (DUT) is illuminated with the resulting signal and the RF output signal is measured by an ESA. The modulation index is changed by attenuating each pair of heterodyned lasers, and adjusting the power of the DC laser \((\lambda_5)\) to compensate. In this setup, the wavelengths of the lasers must be carefully controlled so that all unwanted optical intermodulation tones in the RF frequency domain fall outside the bandwidth of the photodiode under test. The entire setup is fiber spliced where polarization maintaining (PM) fiber is used throughout to control the polarization. Although a heterodyne setup has been used by [4, 5], it can be more complicated to work with in order to get the proper fundamental tones. This scheme does not depend on the linearity of any RF source, but does require the lasers to operate with high wavelength stability up to high power. Additionally, each pair of lasers need to be closely matched in wavelength and immune to drifts, while the lasers in each pair are locked to each other [6]

![Five laser heterodyne nonlinearity setup.](image)

2.3.2 Two-Tone Mach-Zehnder Modulator (MZM) setup

A simpler and more widely used measurement system is the two-tone MZM setup [1,7]. The setup consists of two of two lasers input into their respective MZM. Two synthesizers
provide the RF input to each MZM. The output is combined in a 50/50 coupler and detected at the DUT. The modulation depth is controlled by increasing or decreasing the RF input to the MZMs. The setup typically biases the MZM at the quadrature point to minimize HD2 which contributes to the IMD3 when mixed inside the detector. Additionally, polarizers before the MZMs and erbium doped fiber amplifiers (EDFA) can be added to boost the optical power input to the device.

Although biasing at the quadrature reduces the HD2 signal, we cannot be sure the MZM is not contributing significantly to the IMD3 measured. The quadrature point of the MZM also changes as a function of time and temperature due to DC bias drift [8]. One of the main issues with this setup is that the modulators have inherent nonlinearities, in particular, the second order harmonics (HD2) from the first laser beam, that can mix in the detector with the fundamental RF tone detected from the second signal and contribute to IMD3. Using this method does not allow us to distinguish between the nonlinearity created by the MZM and that created by the photodiode, leaving the IP3 measurement uncertain. To accurately measure the IP3 we will need to show that the IMD3 due to the MZM (IMD3MZM) can be removed and that the biasing of the MZM is stable enough to record consistent measurements. In typical setups a polarization controller is inserted after one of the MZMs in order to control the orthogonality of the laser beams.

![Figure 2.5. Two laser two-tone MZM nonlinearity setup.](image-url)
2.3.3 Three-Laser Two-Tone MZM Setup

An alternative to the two-tone setup presented in 2.3.2 is a three laser two-tone MZM setup. The setup we present incorporates the technique used in the previous two laser setup [1], as depicted in Figure 2.6. Two external cavity lasers (ECL) at wavelengths of 1541nm and 1549nm are input into their respective MZM. A polarization rotator is inserted in front of the MZM to properly rotate the beam for minimum loss. Two synthesizers shown in Figure 2.6 along with their respective driver are used to provide the input RF power (RF_{in}) to their respective MZM. A bandpass filter is placed just before the MZM to ensure no second order signals are contributed by the synthesizers. The output of the MZM is amplified by an EDFA shown in yellow in Figure 2.6. Following the EDFAs are variable optical attenuators (VOA) that will be used to control the input optical modulation depth to the photodiode (MD_{in}). Since both DC power and MD_{in} will be attenuated with the VOA, a third ECL is needed to maintain the constant input optical power to the photodiode. The MD_{in} corresponds to the fundamental output power (P_f) seen at the ESA from the photodiode. The two modulated lasers are combined using a polarizing beam combiner (PBC) and appropriate polarization rotators to ensure the beams are orthogonal. The purpose of the PBC is to ensure there will be no optical mixing before combining in the photodiode. The third ECL also uses an EDFA and VOA for amplification and control of the DC optical power. The combined first two lasers are coupled with the third using a wavelength division multiplexor (WDM), “D”, as shown in Figure 2.6. The use of the WDM allows us to combine the DC laser at a wavelength that is slightly off the first two so that there is not mixing between the lasers.
Figure 2.6. Three laser IP3 measurement setup. “A” is a polarization rotator, “B” is an EDFA, “C” is a band pass filter, and “D” is a wavelength division multiplexor (WDM). ECL stands for external cavity laser, DVR for driver, PM for optical power meter, VOA for variable optical attenuator, PBC for polarizing beam combiner, DUT for device under test and ESA for electrical spectrum analyzer.

2.3.4 Four-Laser Three-Tone MZM Setup

The final setup that has also been used [6, 9, 10], is a three-tone setup. The setup, shown in Figure 2.7, is similar to that described in 2.3.3, but adds an additional ECL and MZM to the setup. The purpose of this setup is to measure the IMD3 resulting from the combination of three different input tones \((f_1, f_2, f_3)\), which gives third order intermodulation distortion at \((f_1 + f_2 - f_3)\), \((f_1 - f_2 + f_3)\), \((f_2 + f_3 - f_1)\), and \((f_1 + f_2 + f_3)\), where the first three are close to the fundamental. By measuring the IMD3 as a function of three different input tones, the second order nonlinearity due to the MZM is completely removed [6]. The three-tone case is not equivalent to the two-tone case, therefore a mathematical relationship is usually used to compare measurements between devices [9]. The relationship between these setups will be described later in detail.
2.4 Three-Laser Two-Tone System

2.4.1 Introduction

The purpose of this section is to experimentally and analytically characterize the setup described in 2.3.3. The three laser two-tone nonlinearity setup will first be used to measure the second and third order intercept points. Next the MZM nonlinearities will be investigated. Finally, the setup will be mathematically analyzed and the limits will be discussed.

2.4.2 Experiment 1: Second and Third Order Intercept Measurement

Initially the measurement was designed to include a fair amount of modulator nonlinearity in order to distinguish the different IMD3 tones. To do this we used a large value for RF_{in} at the synthesizers. For a given value of RF_{in} the RF component of the intensity modulated output of the MZM in log scale is:

$$RF_{out}^{MZM} = A_x(f_x) + B_x(2f_x) + C_x(3f_x) \ldots \quad (2.3)$$

where x denotes the first or second input frequency. When the VOA is used to attenuate the MD_{in} by a factor of Δ the value of each coefficient (A, B, C...) will decrease at the same factor. The
HD2 due to the MZM of f_1 will mix with the fundamental of f_2 inside the photodiode to generate IMD3MZM. The change in IMD3MZM in log scale will be:

$$\Delta \text{IMD3}_{MZM} = [B_1 - (B_1 - \Delta)] + [A_2 - (A_2 - \Delta)] = 2\Delta.$$ \hfill (2.4)

Equation (2.4) shows that with a decrease in fundamental RF power by the amount of Δ, the contribution of IMD3 due to the MZMs should change with a slope of two with respect to fundamental RF power, P_f, in the log scale.

As the measurement is made the results should contain both contributions. Hayes et al. determined the slope of IMD3 due to the photodiode should be three [11]. For instance, for the IMD3 term $2f_1 - f_2$ due to mixing of f_1 and f_2 tones at the photodiode, as each tone is reduced by 1dB, the IMD3 will be reduced by 3dB (2dB from f_1 tone and 1 dB from f_2 tone). In the beginning, when the measured RF fundamental tone, P_f, is small, the IMD3MZM (slope = 2) dominates; as P_f increases, the IMD3 from the photodiode (IMD3PD) will dominate because it is increasing at a faster rate than IMD3MZM. Therefore, the IMD3 curve should indicate a knee point at which IMD3 will change from a slope of two to a slope of three as P_f is increased. After the two regimes have been distinguished, the IMD3PD, with a slope of three, can be extrapolated with P_f to find the intercept and determine the IP3 as in previous measurements [1]. The output IP3 (OIP3) which is the value of output power at the intercept can be calculated as according to [12]:

$$\text{OIP3} = \frac{3P_f - \text{IMD3}}{2}.$$ \hfill (2.5)

Additionally, the second order intermodulation (IMD2) will be measured at $f_1 + f_2$, where we will expect a slope of two. The IMD2 will not contain contributions from the modulators since there is no mixing of the signals prior to the photodiode and only f_1 and f_2 are of concern. The IMD2 can then be extrapolated with the fundamental to give a value for the output second order intercept point (OIP2) and is calculated according to:
A PIN InGaAs/InP waveguide photodiode (PD) was used for the measurement test. The PD was a 5 µm width by 55 µm length device with a 0.32 µm intrinsic region. The PD has a maximum responsivity around 0.9 A/W but was measured at about half the maximum responsivity for ease of measurement and to ensure stable current throughout the measurement. The measurement was made at frequencies 1.1 GHz and 1.2 GHz for \(f_1 \) and \(f_2 \) respectively, with 10 dBm \(RF_{in} \), 11.5 dBm total input optical power, with bias voltage \((V_b) \) of 4 V, and 5.8 mA photocurrent.

\[
OIP2 = 2P_f - IMD2_{PD}
\]
(2.6)

The results in Figure 2.8 indicate a knee point in the IMD3 data that corresponds to the change in slope from two to three; a slope of two is measured for IMD2. In the Figure 2.8 we can see that as predicted the slope at lower input RF values is due to the intermodulation from the MZM, but that as \(P_f \) increases, the slope shifts to three for IMD3 as the photodiode nonlinearity.

Figure 2.8. Measurement of OIP2 and OIP3 showing IMD contributions from MZM and DUT distinguished by fitted curves showing appropriate slopes for each.
begins to dominate. On the upper end, the IMD3 measurement is limited by a number of factors that will be discussed next.

2.4.3 Experiment II: Investigating the MZM Nonlinearity

The second experiment investigates the nonlinearities contributed by the MZM to IMD3. The purpose of this is to analyze how the MZM imposes limitations on the dynamic range. Looking at the intrinsic properties of a single modulator and starting with a two-tone input as in [10]:

\[V(t) = V_b + V_{RF}[\sin(\omega_1 t) + \sin(\omega_2 t)], \] (2.7)

the transfer function can be expanded into a Taylor series:

\[T(V) = T(V_b) + \sum_{n=1}^{\infty} \frac{1}{n!} (T^n)(V - V_b)^n, \] (2.8)

where \(T^n \) is the \(n^{th} \) derivative of \(T \) at \(V = V_b \) and \(V_{RF} \) is the input RF voltage that can be related to \(RF_{in} \). The IMD3\(_{MZM} \) in equation (2.4) can be related to the power of the intermodulation term which is a function of \(V_{RF} \) and is defined as [13]:

\[T_{IM}(V) = \frac{1}{8} T^3 V_{RF}^3 + \frac{5}{192} T^5 V_{RF}^5. \] (2.9)

Equation (2.9) shows that as \(RF_{in} \) increases the resulting intermodulation also increases which means so does IMD3\(_{MZM} \). We measure IMD3 as a function of \(P_f \) for different values of \(RF_{in} \) to determine where the MZM must be operated so that the IMD3\(_{MZM} \) is suppressed below the noise floor of the ESA (NF\(_{ESA} \)). In addition, IMD3's are measured at various MZM biasing points, quadrature and off quadrature, to assess the effects of the MZM bias on the IMD3\(_{MZM} \).

The first experiment varies \(RF_{in} \) to the MZM by changing the output at the synthesizer. The \(MD_{in} \) to the MZM corresponds to 16dBm, 10dBm and 7dBm for test 1, test 2 and test 3 respectively. Figure 2.9 shows the results, where the blue data corresponds to the maximum \(RF_{in} \)
and the red to the lowest RF_{in}. We can see that as RF_{in} is decreased the resulting $IMD_{3_{MZM}}$ is reduced. As the $IMD_{3_{MZM}}$ is reduced the IMD due to the device remains along the same trend line as expected. The data allows us to conclude that the RF_{in} to the MZM has no affect on the $IMD_{3_{PD}}$, but does affect the ability to measure lower values for the device by contributing to the $IMD_{3_{MZM}}$ signal. In other words, in previous measurement setups [1] without knowing the exact contribution of $IMD_{3_{MZM}}$ the results may have been affected by this nonlinearity even when employing minimum HD2, by biasing at the quadrature. Now that we have been able to analyze the effects of RF_{in} to the MZM, the next step is to look at the varying of bias to see if biasing at the quadrature also has a significant effect on the results in the present setup.

![Graph showing variation of input RF power to the MZM](image)

Figure 2.9. Measurement showing variation of input RF power to the MZM.
The second investigation we performed explored the effects of modulator bias. If the MZM is not biased at the quadrature point we should expect to see this reflected in the $\text{IMD}^3_{\text{MZM}}$ as previous papers have stated that HD2 due to the MZM contributes to IMD3[1]. In Jiang et al., the MZMs were biased at the quadrature point to minimize HD2. The first test performed biased the MZM at the quadrature point provided 60dB suppression of HD2 below P_f. Figure 2.10 shows the result in red with the contributions to IMD3 from both the PD and the MZM indicated on the graph. The $\text{IMD}^3_{\text{MZM}}$ limits the floor to \sim115dBm. If the argument stated in previous papers holds [1], the biasing of the MZM off the quadrature should increase the contribution of $\text{IMD}^3_{\text{MZM}}$, and thus the measurement floor. The second test allowed for 20dB suppression of HD2 below P_f. The results in blue are reflected in Figure 2.10 Even with a much larger contribution of HD2 the effect on IMD3 is minimal. We conclude that biasing at the quadrature point to achieve large HD2 suppression does not significantly affect the measurement of IMD3. The results from examining the nonlinearities contributed by the MZM and equation (2.9)
suggest that RF_{in} to the MZM has a direct relationship to the measurement of IMD3. On the other hand, biasing the MZM at the quadrature shows little improvement in $IMD3_{MZM}$. Next we characterize the setup analytically.

2.4.4 Analytical Characterization

We will begin with Figure 2.6 in 2.3.3, which is the three laser two-tone nonlinearity measurement setup. In our analysis we will assume the MZMs are almost identical. We define the transfer function of a modulator as:

$$T(V) = \frac{1}{2} \left[1 + \cos \left(\frac{\pi V}{V_\pi} \right) \right]. \quad (2.10)$$

Since the device cannot be guaranteed to be biased at V_π we will define the modulator input as:

$$V = \frac{V_\pi}{2} + \frac{\Delta V_\pi}{2} + v_m \cos(\omega t), \quad (2.11)$$

where the DC bias is off by $\Delta \frac{V_\pi}{2}$ which is a ratio of the offset to V_π. Δ implies that there will be some second order components created in the modulator. Next we expand (2.10) after substituting in (2.11):

$$T(V) = \frac{1}{2} \left[1 - \sin \left(\frac{\pi}{2} \Delta \right) \cos \left(\frac{\pi}{V_\pi} v_m \cos(\omega t) \right) \right]. \quad (2.12)$$

We assume that $\Delta \ll 1, v_m \ll 1$ and use a first order small-signal approximation for sine and cosine functions. Additionally we assume $1 - \Delta \approx 1$, that the 4^{th} and 5^{th} powers are negligible, the fundamental is linear and that the modulator DC output does not depend on v_m. Our modulator output is then:

$$T(v_m, \omega) = \frac{1}{2} \left[1 - \frac{\pi}{V_\pi} v_m \cos(\omega t) + \frac{\pi}{4} \Delta \left(\frac{\pi}{V_\pi} v_m \right)^2 \frac{\cos(\omega t)}{2} + \frac{1}{24} \left(\frac{\pi}{V_\pi} v_m \right)^3 \cos(3\omega t) \right]. \quad (2.13)$$
Next we calculate the total link. In each arm the optical power is:

$$P_{\text{arm}x} = P_{\text{Lx}} t_x T(v_{mx}, \omega_x) g_x \alpha,$$

(2.14)

where $x = 1$ or 2, P_{Lx} is the laser optical power, t_x is the intrinsic insertion loss for the modulator, polarizer, EDFA and optical attenuator and g_x is the gain of the EDFA and α is the optical attenuation set through the optical attenuator. We assume that the gain of the EDFA is held constant and we only change the attenuation through α. The two arms are combined in intensity with a polarizing beam combiner (PBC) to give:

$$P_{\text{PBC}} = t_{\text{PBC}} (P_{\text{arm1}} + P_{\text{arm2}}),$$

(2.15)

where t_{PBC} is the insertion loss of the PBC and we are assuming that there is equal insertion loss to each arm. The third arm consists only of DC optical power and is defined as:

$$P_{\text{arm3}} = P_{\text{L3}} t_3 g_3 \beta,$$

(2.16)

where t_3 is now the insertion loss of the EDFA and the optical attenuator, g_3 is the gain of the EDFA and β is the attenuation of the optical attenuator. Next this can be combined with the previous result using a wavelength division multiplexer (WDM) where the input to the detector becomes:

$$P_{\text{in}} = t_{\text{WDM}} (P_{\text{arm3}} + P_{\text{PBC}}),$$

(2.17)

where t_{WDM} is the insertion loss of the WDM and any additional loss before the detector. In our measurement we maintain a constant DC input power where we assume as g_1 and g_2 are lowered g_3 is increased so that:

$$P_{\text{DC}}(\alpha, \beta) = t_c \left[P_{\text{L3}} g_3 \beta + t_{\text{PBC}} \left(\frac{P_{\text{L1}} t_1 g_1 \alpha}{2} + \frac{P_{\text{L2}} t_2 g_2 \alpha}{2} \right) \right] = \text{constant}. $$

(2.18)
From (2.17) we can calculate our x-axis variable which will be the equivalent input RF power. This variable will be defined by converting the input optical power that is made up of the fundamental frequency modulation and assuming a responsivity of 1A/W. From equation (2.17) we can calculate the photocurrent for the fundamental for a signal ω_x:

$$i_{f_x}^{IN} = t_{WDM} t_{PBC} P_{Lx} t_x g_x \alpha \frac{\pi}{2V_{\pi}} v_m = i_{f_x}^0 \alpha \frac{\pi}{V_{\pi}} v_m,$$

(2.19a)

$$i_{f_x}^0 = \frac{1}{2} t_{WDM} t_{PBC} P_{Lx} t_x g_x,$$

(2.19b)

where $x = 1$ or 2. From (2.19a) we can calculate the equivalent input RF power:

$$P_{f_x}^{IN} = \frac{1}{2} (i_{f_x}^{IN})^2 50.$$

(2.20)

The output fundamental RF photocurrent is related by:

$$i_{f_x}^{OUT} = \eta \frac{q}{h\nu} i_{f_x}^{IN},$$

(2.21)

where η is the device responsivity and $\frac{q}{h\nu}$ is the quantum efficiency. From all of these we can calculate the output fundamental RF power as:

$$P_{f_x}^{OUT} = \frac{1}{2} \left(\eta \frac{q}{h\nu} i_{f_x}^0 \alpha \right)^2 \left(\frac{\pi}{V_{\pi}} v_m \right)^2 50.$$

(2.22)

From (2.22) we can see that the output fundamental RF power is dependent on the square of the attenuation. When we attenuate by 1dBm with the optical attenuator, we will see the output RF power attenuate by 2dBm. For our measurement we are assuming that the fundamental power for both input frequencies is the same, so that:

$$i_0 \equiv i_{f_1}^0 = i_{f_2}^0.$$

(2.23)
Next we solve for the distortion contributions. The second order harmonic term generated for ω_x frequency assuming higher order contributions are negligible is:

$$i_{2f}^{PP} \propto \alpha^2 \left(\frac{\pi}{V_m} \right)^2 \left[1 + \frac{\cos(2\omega_x t)}{2} \right].$$ \hspace{1cm} (2.24)

where we assume the cosine term is negligible. We neglect the $\frac{1}{2}$ term in (2.24) and then calculate the magnitude of the second order harmonic contribution, including the detector responsivity:

$$i_{2f}^{PP} = \eta \frac{q}{h\nu} i_0 \alpha^2 \frac{1}{2} \left(\frac{\pi}{V_m} v_m \right)^2.$$ \hspace{1cm} (2.25)

The second order from the modulator will contain the contribution of $2\omega_x$ that is input into the detector from the modulator output. Assuming that higher order contributions are negligible we have:

$$i_{2f}^{M2M} = \eta \frac{q}{h\nu} i_0 \pi \Delta \left(\frac{\pi}{V_m} v_m \right)^2.$$ \hspace{1cm} (2.26)

Now we calculate the intermodulation terms for each. For the detector we have:

$$i_{2f}^{PD} \propto \frac{1}{4} \alpha^3 \left(\frac{\pi}{V_m} \right)^3 \left[\cos((2\omega_1 - \omega_1)t) + \cos((2\omega_1 + \omega_1)t) \right].$$ \hspace{1cm} (2.27)

We are only concerned with the $2\omega_1 - \omega_1$ term and thus have:

$$i_{2f}^{PD} = \frac{1}{4} \kappa \eta \frac{q}{h\nu} \alpha^3 i_0 \left(\frac{\pi}{V_m} \right)^3,$$ \hspace{1cm} (2.28)

where κ is some unknown constant representing the device nonlinearity due to the third order mixing. Similarly, we will calculate the distortion due to the MZM which is a second order process.
where γ is a constant representing the second order intermodulation mixing. Using (2.28) and (2.29) we can calculate the output power for both.

\[
\begin{align*}
 i_{IMD3}^{M2M} &= \frac{1}{8} \gamma \eta \frac{q}{h\nu} \alpha^2 i_0 \frac{\pi}{2} \Delta \left(\frac{\pi}{V_{\pi}} v_m \right)^3, \\
 p_{IMD3}^{PP} &= \frac{50}{32} \alpha^6 \left(\frac{1}{4} \kappa \eta \frac{q}{h\nu} i_0 \right)^2 \left(\frac{\pi}{V_{\pi}} v_m \right)^6, \\
 p_{IMD3}^{M2M} &= \frac{1}{2} (i_{IMD3}^{M2M})^2 50 = \frac{50}{128} \left(\gamma \eta \frac{q}{h\nu} i_0 \frac{\pi}{2} \Delta \right)^2 \alpha^4 \left(\frac{\pi}{V_{\pi}} v_m \right)^6.
\end{align*}
\] (2.30a)

Next we look at each output power in log-log scale to understand their slope dependence. Starting with the fundamental from (2.22):

\[
P_f^{\text{out}}(dBm) = 2 \cdot 10 \log[\alpha] + 10 \log \left[\frac{50}{2} \left(\eta \frac{q}{h\nu} i_0 \right)^2 \left(\frac{\pi}{V_{\pi}} v_m \right)^2 \cdot 1000 \right], \quad (2.31)
\]

where we see that the fundamental changes by 2 with α. Next we calculate for the detector IMD3 using (2.30a):

\[
P_{IMD3}^{PP}(dBm) = 6 \cdot 10 \log[\alpha] + 10 \log \left[\frac{50}{32} \left(\frac{1}{4} \kappa \eta \frac{q}{h\nu} i_0 \right)^2 \left(\frac{\pi}{V_{\pi}} v_m \right)^6 \cdot 1000 \right], \quad (2.32)
\]

where we can see that when α is changed the output changes by 6 or P_{IMD3} due to the detector has a slope of 3 in relation to the P_f. Next for the MZM contributed IMD3 we have:

\[
P_{IMD3}^{M2M}(dBm) = 4 \cdot 10 \log[\alpha] + 10 \log \left[\frac{50}{128} \left(\gamma \eta \frac{q}{h\nu} i_0 \frac{\pi}{2} \Delta \right)^2 \left(\frac{\pi}{V_{\pi}} v_m \right)^6 \cdot 1000 \right], \quad (2.33)
\]

where we see the power changes by 4 with α or by 2 in relation to the fundamental power. Assuming P_{IMD3}^{M2M} is small we should be able to measure P_{IMD3}^{PP} until there is a shift from 3 to 2 in
the slope at very low power. The assumptions we make do not account for instances where the electric fields of the three lasers will interact in the absorption medium. We assume that the polarizations for the two lasers that are intensity modulated with MZMs will be perpendicular, by using an polarizing beam combiner. The third DC laser however cannot be perpendicularly polarized to both of the first two lasers. Consequently, there may be instances where the electric field of the third laser adds to one of the other two lasers through the modulated sidebands, which might alter the distortion. This issue may also affect the two-tone heterodyne and four laser threetone setups which are described in sections 2.3.1 and 2.3.4 which both use four lasers.

Next we calculate the point where these two values intersect which will be the minimum IMD3 we are able to measure with this setup. We define this value as the output intercept point of the MZM and detector (OIPMD):

\[
\text{OIPMD} = 3P_{\text{IMD3}}^{\text{MZM}} - 2P_{\text{IMD3}}^{\text{PD}}.
\]

(2.34)

Substituting (2.32) and (2.33) into (2.34) we have:

\[
\text{OIPMD} = 10 \log \left[\frac{50 \cdot 1000}{2 \cdot 1024} \left(\frac{\gamma^2 \eta \frac{q}{\kappa} \frac{i_0}{h \nu}}{v_m} \right)^2 \left(\frac{\pi}{V_n} \right)^6 \left(\frac{\pi}{2} \Delta \right)^6 \right].
\]

(2.35)

We can see from (2.35) there is a heavy dependence on \(v_m \) for OIPMD, which means that as we increase the modulation depth of the signal to the MZM the amount of IMD3 due to the MZM will increase and limit our measurement. Now we can calculate our required values so that OIPMD is below the measurement floor of the ESA. We measure down to a value -140dBm. Assuming we don’t know the transfer function of the photodiode we set certain values to unity \(1 = \frac{\eta \gamma}{\kappa} \), and assume a responsivity of 1, as well as no scaling factors for the intermodulation distortions. Our modulators have an average \(V_n \) of 2.5V. We assume \(\frac{q}{h \nu} = 1.25 \) for 1.55\(\mu \)m wavelength. Now we look at the requirements for \(v_m \) for various values of \(\Delta \). The results can be
seen in Figure 2.11. If we can keep the bias offset to within 1% ($\Delta=0.01$) we can input a reasonable amount of RF power to the MZM.

![Figure 2.11. Maximum allowed v_m versus photocurrent for various values of Δ.](image)

Now we calculate the intersection of the IMD3 due to the photodiode and IMD3 due to the mixing of three times the fundamental with the second order MZM term. The intercept tells us the maximum IMD3 due to the photodiode we can measure. First we calculate the third order harmonic of the photodiode:

$$i_{3f}^{PD} = \rho \eta \frac{q}{h \nu} i_0 \alpha^3 \frac{1}{4} \left(\frac{\pi}{V_{\pi}} v_m \right)^3,$$

(2.36)

where ρ is an unknown factor for the third order harmonic mixing. Now we can calculate the third order mixing using Eq. (2.36) and Eq. (2.26):

$$i_i^{MZM}_{IMD3H} = \rho \frac{\alpha^4}{64} \eta \frac{q}{h \nu} \pi \Delta \left(\frac{\pi}{V_{\pi}} v_m \right)^5.$$

(2.37)

From equation (2.37) we can calculate the power and convert to dBm:
Using Eq. (2.32) and Eq. (2.38) we can calculate the upper measurement limit of IMD3.

\[
\begin{align*}
\rho_{IMD3H}^{MZM} (dBm) &= 10 \log \left[\frac{50}{2} \left(\frac{\rho^4}{64} \eta^{\frac{q}{h\nu}} \pi \Delta \left(\frac{\pi}{V_m} \right)^5 \right)^2 \right].
\end{align*}
\] (2.38)

We will plot this equation assuming \(\gamma, \eta, \) and \(\rho \) equal 1. The other variables are defined the same as above with \(V_m = 0 dBm \). The results are plotted in Figure 2.12. We see that the higher order IMD3 due to the MZM will not cause the measurement setup to be limited.

\[
\begin{align*}
OIP_{MDH} &= 4\rho_{IMD3}^{PD} - 3\rho_{IMD3H}^{MZM} \\
&= 10 \log \left[50 \cdot 1000 \cdot 64 \left(\frac{q}{h\nu} i_0 \right)^2 \frac{\gamma^8}{\rho^6} \left(\frac{1}{\pi \Delta} \right)^6 \left(\frac{V_m}{\pi v_m} \right)^6 \right].
\end{align*}
\] (2.39)

We will plot this equation assuming \(\gamma, \eta, \) and \(\rho \) equal 1. The other variables are defined the same as above with \(V_m = 0 dBm \). The results are plotted in Figure 2.12. We see that the higher order IMD3 due to the MZM will not cause the measurement setup to be limited.

![Figure 2.12. OIP3 limit due to higher order nonlinearities versus output photocurrent](image)

Figure 2.12. OIP3 limit due to higher order nonlinearities versus output photocurrent

2.4.5 Summary

The three laser two-tone measurement setup has been measured and characterized analytically and experimentally for the contributing MZM nonlinearities. From our analysis, we
have characterized the nonlinearity contributions from the MZMs, confirming the slopes measured in Figure 2.8 and demonstrating that the three laser two-tone setup accurately distinguished unwanted MZM nonlinearities from the photodiode nonlinearity measurement. Additionally, we looked at the effect of biasing off quadrature has on the maximum v_m input allowed. Finally, the setup was characterized for the higher limit of OIP3 that can be measured without the influence of higher order MZM nonlinearities. The higher order nonlinearities show no significant limitation as long as the bias is kept reasonably close to quadrature.

2.5 Comparing Nonlinearity Measurement Systems

2.5.1 Background and Motivation

Previous work has detailed theoretical mathematical relationships between different setups [1, 9, 14], however there has been little study to determine when these relationships are physically true. The mathematical relationships make various assumptions that may not always hold true in every case for every device. The nonlinearities generated from harmonic and intermodulation distortions are still largely not understood. Numerous authors have presented arguments for various causes of nonlinearity in photodiodes [1, 15, 16], but little has been done to determine the accuracy of the nonlinearity measurements. The aim of this work is to present the three setups used to measure OIP3, develop the mathematical relationships that may allow different setups to be interchanged, and then experimentally determine guidelines for when these relationships can accurately be used.

With the multitude of setups that are used to measure nonlinearities, there has been no comprehensive study of possible discrepancies between each measurement system and the conditions under which each system accurately measures photodiode distortion. Considering the
two-tone MZM setup, Draa et al. showed that distortions caused by the MZMs could introduce additional nonlinearities into the measurement, making it inaccurate when using the traditional setup [1,17]. Ramaswamy et al. proposed using a three-tone MZM setup to eliminate the contribution of modulator-induced distortions to the measured intermodulation distortions, using mathematical conversions to relate the measured data to the two-tone setup. The three-tone setup provided higher OIP3 results under certain situations, leading the authors to conclude that the three-tone setup is optimal [6]. The authors relied on the mathematical relationship and the higher OIP3 results to claim that the three-tone MZM setup was more accurate than the two-tone MZM setup. However the accuracy of the comparison relies on the mathematical relationship between the two and three-tone setups. If this relationship does not hold up, the results of the two setups cannot be compared. Additionally, Pan et al. measured devices using both the two-tone and three-tone MZM setups and showed little measurement differences between the two setups with their device even at high OIP3 values (~50dBm) [15]. The heterodyning technique has been touted for its lack of additionally contributed nonlinearities, but is generally considered to be the most complex of the setups [4].

In all the works mentioned, there is no consensus as to which measurement system provides the most accurate results, and whether the data from each setup can be equivalently measured using another. The purpose of this work is to measure a photodiode using the three widely used setups at various bias voltages and modulation depths. The three-tone MZM and the one- and two-tone heterodyne systems will be used to measure photodiode distortions in order to compare nonlinearity data from each setup. The results will determine if and when the theoretical mathematical relationships can be applied.
2.5.2 Measurement Setups

The five-laser heterodyne setup was described in 2.3.1 and can be seen in Figure 2.4. The five lasers are Lightwave Electronics LWE-125 diode pumped Nd:YAG lasers operating near 1319nm optical wavelength. The tuning range of the LWE-125 laser is about 40GHz, so each set of heterodyned lasers and the DC laser were each tuned to be 20GHz from each other, far outside the 3GHz bandwidth of the detector. The single-tone setup is configured by completely turning off one pair of heterodyned lasers.

The three-tone MZM setup was described in 2.3.4 and can be seen in Figure 2.7. For this setup, three Lightwave Electronics model-125 diode pumped Nd:YAG lasers operating near 1319nm optical wavelength are modulated by three MZMs and input into optical attenuators. The first two lasers are combined using a 50/50 coupler, and then to the third with another 50/50 coupler. Finally, an unmodulated Nd:YAG laser is input to an optical attenuator and combined with the signal using a 50/50 coupler. The output is fed into the DUT, and the RF output is measured by an ESA. The MZM setup utilizes the same laser wavelengths as the heterodyne setup to remove measurement differences resulting from optical wavelength dependencies of the photodiode under test. However, there may still be some discrepancies since the heterodyne lasers are not modulated, while the lasers modulated by the MZM will set off harmonics, some of which overlap in the optical domain. For all measurements, 20dB attenuation was required between the PD DUT and the ESA to ensure that the distortions produced in the ESA were below that of the PD.

2.5.3 Mathematical Relationships

For the three setups discussed in 2.5.2 the data cannot be readily compared between them to see if we measure the same OIP3 value. Since one-, two- and three-tone setups the mixing relationships will be different, we must first find a mathematical relationship to relate the data.
between the three setups. Once we can establish these relationships, we can use them to compare data to see if all three setups are consistently measuring OIP3. To determine the mathematical relationship between the data from each setup, a generalized photodiode nonlinearity, β, will be designated. For a small signal, the PD nonlinear transfer function can be approximated by a Taylor series defined by:

$$
\beta(x) = 1 + \sum_{n=1}^{\infty} (x - a)^n \frac{1}{n! \left(\frac{d^n \beta}{dx^n} \right)_{x=a}}.
$$

(2.40)

The incident optical power in each setup will be defined by a sum of sinusoids:

$$
P(t) = P_{avg} \left[1 + \left(\sum_{i=1}^{k} m_i \sin(\omega_i t) \right) \right],
$$

(2.41)

where $k = 1$ for the one-tone heterodyne (which is the setup in Figure 2.4 where the power of one pair of lasers is turned off), $k = 2$ for the two-tone heterodyne $k = 3$ and for the three-tone MZM setup, P_{avg} is the average power, m_i is the modulation index, and ω_i is the RF tone frequency. In the heterodyne setup, the modulation index m_i can be determined by simply measuring the average power contributions from each of the heterodyned laser pairs and the DC laser. In the modulator setup, the modulation index can be calculated using the RF input power to the modulator, optical input power, and modulator transfer function. Substituting (2.41) for $k = 1$ into (2.40) and expanding the resulting equation to the third order ($n=3$) we obtain:

$$
\beta(P(t)) = 1 + \beta_1 m_1 \sin(\omega_1 t) + \frac{\beta_2 m_1^2}{2} (1 - \cos(2\omega_1 t))
$$

$$
+ \frac{\beta_3 m_1^3}{4} (3 \sin(\omega_1 t) - \sin(3\omega_1 t)),
$$

(2.42)

for the one-tone setup. From (2.42) the coefficients for the fundamental, second order and third order components can be extracted. Repeating this step for $k = 2$ and 3, we have the resulting distortion for each respectively:
\[\beta(P(t)) = 1 + \beta_1(m_1 \sin(\omega_1 t) + m_2 \sin(\omega_2 t)) \]
\[+ \beta_2 \left(\frac{m_1^2}{2} (1 - \cos(2\omega_1 t)) + \frac{m_2^2}{2} (1 - \cos(2\omega_2 t)) \right) \]
\[+ m_1 m_2 (\cos((\omega_1 - \omega_2) t) - \cos((\omega_1 + \omega_2) t)) \right) \]
\[+ \beta_3 \left(\frac{m_1^3}{4} (3 \sin(\omega_1 t) - \sin(3\omega_1 t)) + \frac{m_2^3}{4} (3 \sin(\omega_2 t) - \sin(3\omega_2 t)) \right) \]
\[+ \frac{3m_1^2 m_2}{4} (2\sin(\omega_2 t) - \sin(2\omega_1 + \omega_2) t + \sin((2\omega_1 - \omega_2) t)) \]
\[+ \frac{3m_2^2 m_1}{4} (2\sin(\omega_1 t) - \sin((2\omega_2 + \omega_1) t) + \sin((2\omega_2 - \omega_1) t)) \right) \] (2.43)
\[\beta(P(t)) = 1 + \beta_1(m_1 \sin(\omega_1 t) + m_2 \sin(\omega_2 t) + m_3 \sin(\omega_3 t)) + \beta_2 \left(\frac{m_1^2}{2} (1 - \cos(2\omega_1 t)) + \frac{m_2^2}{2} (1 - \cos(2\omega_2 t)) + \frac{m_3^2}{2} (1 - \cos(2\omega_3 t)) \right) + m_1 m_2 (\cos((\omega_1 - \omega_2) t) - \cos((\omega_1 + \omega_2) t)) + m_1 m_3 (\cos((\omega_1 - \omega_3) t) - \cos((\omega_1 + \omega_3) t)) \]
\[- \cos((\omega_1 + \omega_3 t)) + m_2 m_3 (\cos((\omega_2 - 3\omega_3 t) - \cos((\omega_2 + \omega_3) t))) \]
\[+ \beta_3 \left(\frac{m_1^3}{4} (3 \sin(\omega_1 t) - \sin(3\omega_1 t)) + \frac{m_2^3}{4} (3 \sin(\omega_2 t) - \sin(3\omega_2 t)) + \frac{m_3^3}{4} (3 \sin(\omega_3 t) - \sin(3\omega_3 t)) \right) \]
\[+ \frac{3m_1^2 m_2}{4} (2\sin(\omega_2 t) - \sin((2\omega_1 + \omega_2) t) + \sin((2\omega_1 - \omega_2) t)) + \frac{3m_1^2 m_3}{4} (2\sin(\omega_3 t) - \sin((2\omega_1 + \omega_3) t) + \sin((2\omega_1 - \omega_3) t)) \]
\[+ \frac{3m_2^2 m_1}{4} (2\sin(\omega_1 t) - \sin((2\omega_2 + \omega_1) t) + \sin((2\omega_2 - \omega_1) t)) + \frac{3m_2^2 m_3}{4} (2\sin(\omega_3 t) - \sin((2\omega_2 + \omega_3) t) + \sin((2\omega_2 - \omega_3) t)) \]
\[+ \frac{3m_3^2 m_1}{4} (2\sin(\omega_1 t) - \sin((2\omega_3 + \omega_1) t) + \sin((2\omega_3 - \omega_1) t)) + \frac{3m_3^2 m_2}{4} (2\sin(\omega_2 t) - \sin((2\omega_3 + \omega_2) t) + \sin((2\omega_3 - \omega_2) t)) \]
\[+ \frac{6m_2^2 m_1}{4} (\sin((\omega_1 + \omega_2 - \omega_3) t) + \sin((\omega_1 - \omega_2 + \omega_3) t)) - \sin((\omega_1 + \omega_2 + \omega_3) t) - \sin((\omega_1 - \omega_2 - \omega_3) t)) \right) \]
\[(2.44) \]

This small signal approximation comparison holds for any well-behaved single photodiode nonlinearity, which grows at a higher rate than the fundamental.

When the one, two and three-tone cases are compared with each other, similar distortion in each case can be compared while keeping the modulation index constant. The second order relationship, in log scale, using the two-tone setup as the basis, are described by:

\[HD2_{1t} + 6 = IMD2_{2t} = IMD2_{3t}, \]
\[(2.45) \]
where HD_{1t} represents the second order harmonic distortion for the one-tone setup and IMD_{2t} and IMD_{3t} are the second order intermodulation distortion for the two-tone and three-tone setups respectively. For the third order distortion, the relationships, in log scale, using the two-tone setup as the base, are described by:

$$HD_{3t} + 9.54 = IMD_{3t} = IMD_{3t} - 6,$$ \hspace{1cm} (2.46)

where HD_{3t}, IMD_{3t} are the third order distortion for the one, two and three-tone setups respectively. Finally, the relationship between OIP2 and OIP3 for each setup can be determined. The local OIP2 and OIP3 will be determined by:

$$OIP2 = 2 \cdot F - IMD2,$$ \hspace{1cm} (2.47a)

$$OIP3 = \frac{3}{2} \cdot F - \frac{1}{2} IMD3,$$ \hspace{1cm} (2.47b)

where F is the average of all the fundamentals, in dBm, and IMD2 or IMD3 can also be the harmonic distortion (HD2 or HD3) of the single-tone setup. Using (2.47a), the relationship between OIP2, using the two-tone setup as the base, in dBm units of power, is:

$$OIP2_{1t} - 6 = OIP2_{2t} = OIP2_{2t}.$$ \hspace{1cm} (2.48)

Similarly, using (2.47b) the relationship between OIP3 using the two-tone setup as the base, in dBm units of power, is:

$$OIP3_{1t} - 4.77 = OIP3_{2t} = OIP3_{3t} + 3.$$ \hspace{1cm} (2.49)

Using these relationships, the data from the one, two and three-tone measurement systems can be compared.
2.5.4 Results and Analysis

A 3GHz-bandwidth photodiode from Applied Electronics (Model: PD3000) was measured. The measurement was taken around a 100MHz center frequency with 10MHz spacing for the two and three-tone setups, at 10mA photocurrent. The tones were set to slightly offset frequencies (i.e. 89.59MHz instead of 90.00MHz) instead of integers to avoid any extraneous signals present in the environment that might mix and cause distortions at even numbers (i.e. 10MHz, 100MHz). All second and third order intermodulation (and harmonic in the case of the one-tone setup) products were measured as a function of photodiode bias voltage. Local OIP2 and OIP3 values were calculated at each bias voltage point using (2.47a) and (2.47b). The data was plotted at approximately the same input modulation depth across all setups to get the best local OIP2 and OIP3 comparison between setups.

Figure 2.13 shows the OIP2 versus bias voltage for all second order distortion in the three setups separated into areas A and B. The plot contains the second order intermodulation distortions that add (i.e. F1+F2) as well as those that subtract (i.e. |F1-F2|). The one-tone heterodyne setup provides the second order harmonic (2·F1) at 200MHz. To compare the three measurement setups, 6dB was subtracted from the OIP2 data such that the OIP2 from all three measurement systems would align as dictated by (2.48). The three measurement setups are designated by color, red for the one-tone, blue for the two-tone, and green for the three-tone. The color scheme for each setup will be maintained throughout the remaining figures. Below 4V bias (A), the data clearly lines up for low frequency (solid points) and high frequency (open points) data. Above 4V bias (B), the data at high frequencies for the three-tone setup remain consistent. There is a large divergence between all three setups from 5-6V. For the low frequency intermods at high voltages (V > 6V), |F1-F3| and |F2-F3| for the three tone setup merge together along with |F1-F2| of the two tone, where before 6V |F1-F3| was significantly lower than the distortion closer to 10MHz (|F1-F2| and |F2-F3|).
Figure 2.13. OIP2 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups. Fundamental frequency $f=100\text{MHz}$, with frequency spacing $\Delta f=10\text{MHz}$ and total photocurrent=10mA. One and three-tone data is compensated to mathematically match the two-tone data. One-tone data for 5MHz fundamental included (red solid triangles).

Figure 2.14. OIP3 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups. Fundamental frequency $f=100\text{MHz}$, with frequency spacing $\Delta f=10\text{MHz}$ and total photocurrent=10mA. Only distortion near f is plotted. One and three-tone data is compensated to mathematically match the two-tone data. One-tone data for 33MHz fundamental included (red solid triangles).
In Figure 2.14 OIP3’s are plotted versus bias voltage from 0-10V for intermods with frequencies close to the fundamental frequency. In this instance the MZM setup contributes three sets of data, F1+F2-F3, F1-F2+F3, and -F1+F2+F3, while the two-tone heterodyne setup contributes data for 2·F1-F2 and 2·F2-F1. To compare the data sets from each measurement setup, the two and three-tone data has been shifted as per (2.49), 4.77dB subtracted from OIP3_{1t} data and 3dB is added to OIP3_{3t} to normalize to the two-tone setup. The graph is again split into two areas, A and B. In Figure 2.14, the data matches up well up to 4V in area A (±1dB). In area B (4-10V), the two-tone setup and three-tone setup no longer overlap. Also, the tones from each particular setup begin to deviate from each other. For the three-tone setup there is about 1dB between each case, with the OIP3 decreasing as the frequency of the distortion increases (78MHz, 102MHz, and 122MHz). For the two-tone setup the data crosses back and forth with no clear pattern. The largest discrepancy between the measurement systems is 8dB (16dB distortion) which is quite substantial.

Similarly, the OIP3 data for intermods close to the third harmonic frequency are plotted in Figure 2.15 and again divided into areas A and B at 4V. The three-tone setup provided F1+F2+F3, the two-tone F1+2·F2 and 2·F1+F2, and the one-tone 3·F1. The data matches well from 0-4V (area A) as in Figure 2.14; however the three setups begin to diverge above 4V as seen before in Figures 2.13 and 2.14. After 5V there is a large divergence from any pattern in the data. The one-tone data in particular is much lower than the other two setups. The OIP3 data is plotted separately for low and high-frequency cases because the shapes of the curves do not match up at frequencies that are far apart (similar to the OIP2 case). In the second order case, the low frequency OIP2s (around 10MHz), are significantly higher than the high frequency OIP2s. The OIP2 (for the three tone case) that results in double the frequency spacing (|F1-F3|) is slightly lower than the 10MHz low frequency OIP2s. The behavior has been observed where the lowest
frequencies exhibit the highest OIP2, in other diodes. The frequency dependence appears to be more dominant at low frequencies. Therefore, there is a significant difference in OIP2 between |F1-F2| and |F1-F3| for the three-tone case, with a separation of 10MHz. With similar separation at high frequencies there is no difference in OIP2 for F1+F2 and F1+F3. The disparity between same order distortion as a function of frequency (for both the sum and difference frequencies) leads to the conclusion there is some frequency dependence in photodiode nonlinearity. As this behavior has been noticed in some photodiodes but not in others the photodiode itself may be causing the frequency dependent behavior. Performing the experiments on multiple setups with more than one diode will give us a better understanding of where these discrepancies result from.

Figure 2.15. OIP3 versus bias voltage for a PD3000 photodiode, using one, two and three-tone measurement setups. Fundamental frequency f=100MHz, with frequency spacing Δf=10MHz and total photocurrent=10mA. Only distortion near 3·f is plotted. One and three-tone data is compensated to mathematically match the two-tone data.
Figure 2.16. Graphs of the electric field vs. time for one-tone (top), two-tone (middle) and three-tone (bottom) measurements.

Additional data is plotted in Figures 2.13 and 2.14 to analyze this frequency dependence. The OIP2 from the one-tone setup (red solid triangles) with a 5MHz fundamental resulting in 2·F1 at 10MHz is plotted in Figure 2.13. In area A, the data lines up well with the low frequency data from the two and three-tone setups that occur near 10MHz, despite originating from a much lower fundamental frequency. Data is plotted in Figure 2.14 from the one-tone setup (red solid triangles) with a fundamental of 33MHz, which results in a 3·F1 at 99MHz. The data matches well for the other nonlinearities that center around 100MHz in area A. The large difference in low and high frequency second order distortion values can be attributed to the differences in electric field that the diode sees between the measurement systems. The plots of the electric field for the one-tone, two-tone and three-tone sinusoidal measurement systems are shown in Figure 2.16, where the fields are assumed to be parallel. The data in Figure 2.13 and Figure 2.14 from the one-tone setup at different fundamentals (5MHz and 33MHz) demonstrates that the OIP2 and OIP3 are not necessarily a strong function of the fundamental frequencies. Instead the nonlinearity may be a function of the time dependent envelopes of the electric field rather than from the higher...
frequency. Since this behavior has not been observed in all photodiodes more investigation of this particular diode is necessary to explain the discrepancies that occur at the different frequencies. The polarizations of all the lasers cannot be simultaneously perpendicular. If the nonlinearities are perpendicularly polarized for the two-tone system, the resulting field would look like the one-tone case, possibly causing the distortion to change. The fact that the polarizations of each laser may be constructively or destructively combining in the device, where the distortion is sensitive to the electric field, means there are still many factors that we need to quantify in order to accurately characterize photodiode nonlinearity. Investigating the differences in distortion behavior for the two-tone case with and without perpendicular polarizations would be useful for future investigations.

![Figure 2.17. Fundamental and selected second and third order distortion power versus modulation depth at 2.5V bias for a PD3000 photodiode. Fundamental frequency f=100MHz, with frequency spacing Δf=10MHz and total photocurrent=10mA. One and three-tone data is compensated to mathematically match the two-tone data.](image-url)
Figure 2.18. Fundamental and selected second order distortion power versus modulation depth at 8.0V bias for a PD3000 photodiode. Fundamental frequency $f=100$MHz, with frequency spacing $\Delta f=10$MHz and total photocurrent=10mA. One and three-tone distortion data is shifted +9.54dB and -6dB respectively.

Figure 2.19. Fundamental and selected third order distortion power versus modulation depth at 8.0V bias for a PD3000 photodiode. Fundamental frequency $f=100$MHz, with frequency spacing $\Delta f=10$MHz and total photocurrent=10mA. One and three-tone data is compensated to mathematically match the two-tone data.
Now that the diode has been analyzed over bias voltages to determine the setups' correlation, the relationship of the output RF power versus modulation depth can be discussed. In Figure 2.17, fundamental, second and third order distortion power is plotted versus modulation depth at 2.5V bias, corresponding to area A in Figures 2.13-2.15. Again, the distortion data has been shifted to align with the two-tone setup, as per (2.46). In the plot the second order data clearly lines up for low and high frequencies at a large range of modulation depths. Additionally the data are all within 3% deviation of the expected slope value of two. The slopes of the 3rd order distortion are well behaved (slope of 3 or 60dB/decade) across all measurement setups. All of the data fall within ±1dB at different modulation depths, indicating that all setups are measuring the same nonlinearity, and therefore producing the same local OIP. In this case, we conclude that the measurement setups can be used interchangeably since the mathematical relationships in (2.48) and (2.49) hold true.

In the case of 8V bias, the data did not show a consistent OIP3 in Figures 2.13-2.15. In order to understand why this may occur we will look at the output RF power versus modulation depth for second and third order distortion in Figures 2.18 and 2.19 respectively. In contrast to Figure 2.17, the slopes of the data do not adhere to the mathematical assumptions made in 2.5.3; namely, the second order distortion does not have a slope of 2 in relation to the modulation depth and the third order distortion does not have a slope of 3. It is clear that for high bias voltages the mathematical description of the diode nonlinearity behavior does not follow from equation (2.40) in this particular test diode. In the case of 8V the diode may be operating outside our assumptions or influenced by outside factors (such as the measurement setup) that will no longer allow us to make the assumptions in 2.5.3 that determined the mathematical relationships between each setup. One cannot calculate or infer OIP2 or OIP3 from the single tone or 3-tone measurement systems in this case. The traditional definitions of OIP can no longer be applied to this distortion, since the 3rd order distortion data in Figure 2.19 does not behave as expected, and cannot be
extrapolated. In these cases where the nonlinearities do not grow exponentially, local OIPx definitions [18] should be utilized.

The data displayed in table 2.1 summarizes the results of Figures 2.17-2.19. The chart demonstrates that the setups can be accurately compared to within a few dBm if the data versus modulation depth has a strong slope of two for OIP2 and three for OIP3. In area B the traditional definition of OIP no longer applies since the distortion does not behave well with the mathematical relationship. In instances where the distortion does not follow the expected nonlinear mathematical relationship, the three setups do not give consistent results and therefore cannot be compared. The inability to compare setups at some voltages could be caused by different nonlinearities present at different voltages. In the case of low voltages, a single nonlinearity is probably dominant. As the voltage increases, multiple nonlinearities begin to manifest, and could interfere in constructive or destructive ways, leading to unconventional distortion relationships versus modulation depth and thus rendering the setups incomparable, and the OIP metric itself irrelevant.

Table 2.1. Table showing mean slopes for data in area A (2.5V) and B (8V) of Figures 2.17-2.19.

<table>
<thead>
<tr>
<th></th>
<th>2.5V data Slope (avg)</th>
<th>8.0V data Slope (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Tone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMD2</td>
<td>1.944</td>
<td>2.628</td>
</tr>
<tr>
<td>IMD3</td>
<td>3.007</td>
<td>2.301</td>
</tr>
<tr>
<td>2-Tone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMD2</td>
<td>1.967</td>
<td>1.571</td>
</tr>
<tr>
<td>IMD3</td>
<td>2.962</td>
<td>2.674</td>
</tr>
<tr>
<td>1-Tone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD2</td>
<td>1.971</td>
<td>0.832</td>
</tr>
<tr>
<td>HD3</td>
<td>2.787</td>
<td>0.531</td>
</tr>
</tbody>
</table>

2.5.5 Polarization Investigation

As mentioned previously the polarization of each beam in any of the setups may play a part in the measured OIP3 and account for some of the discrepancies between setups. In order to investigate this issue, we went back to the setup introduced in section 2.3.3, which is the three-
laser two-tone MZM setup. In this case we are combining two optical beams that are individually modulated using a PBC (the reverse of a polarizing beam splitter) to ensure that the modulated beams are orthogonal. Since in the four-laser three-tone MZM setup it is impossible to have all three modulated beams perpendicular we will use the two-tone setup as an example. In this case we measured the photodiode using three lasers all at 1550nm. In the first case we use a 50/50 coupler to combine the two modulated beams and then combine the output with the DC laser using a 50/50 coupler. In the second case we combine the two modulated beams using two polarization controllers input into a PBC and then combine the output with the DC laser using a 50/50 coupler. For both tests we use input frequencies of 94.47MHz and 105.59MHz at 10mA output photocurrent.

![Figure 2.20. OIP2 versus bias voltage at 10mA for the case with a 50/50 coupler and PBC.](image-url)
In Figure 2.20 we see the OIP2 as a function of bias voltage from 2-8V for both cases (coupler and PBC), where for most voltages the OIP2 is the same; however from 7-8V the PBC gives a higher value of OIP2 than the coupler. The difference may indicate some dependence of the nonlinearity on the polarization (and also premixing that may occur for non-orthogonal beams). In Figure 2.21 the OIP3 is plotted as a function of bias voltage for the distortion seen at the frequency $2F_2+F_1$. In the case of this frequency, the OIP3 is different over the entire range of voltages, where we measure a higher value of OIP3 with the PBC then with the coupler. We can also look at the difference between both cases for all third order intermodulation frequencies, which is shown in Figure 2.22. In Figure 2.22 we see that the OIP3 is relatively the same for the $2F_1-F_2$ and $2F_1+F_2$ cases until we reach 7V where we measure a higher value with the PBC. The OIP3 is significantly higher for the PBC in the case of $2F_2-F_1$ and $2F_2+F_1$ over the entire range of voltages.
The data presented in Figures 2.20-2.22 indicate that the polarization plays an integral role in determining the measurement of nonlinearity. This may account for some of the discrepancies seen in Figures 2.13-2.15, where the effects from mixing before the device may cause more nonlinearity at certain biases when the beams are not orthogonal. Kingston theorized that the mixing that occurs between two plane waves at the surface of a detector is the dot product of the polarization of the two electric field vectors [19]. Even though the third laser that is combined using a 50/50 coupler is not modulated, the combination with the previously combined orthogonal fields, there may be some mixing that occurs. One way to avoid this would be to use a wavelength that is far enough away from the first two lasers in order to prevent cross modulation between the two modulated beams. It is important to note that the data presented is for one device at certain conditions and that the data may vary for devices and other factors such as

Figure 2.22. Difference in measured OIP3 between PBC and coupler for all intermodulation frequencies versus bias voltage at 10mA photocurrent.
photocurrent, bias voltage and frequency. The polarization effect is an important finding that warrants more investigation in future work.

2.5.6 Summary

Nonlinearity was measured (OIP2 and OIP3) for the PD3000 photodiode using three setups, a one-tone heterodyne, two-tone heterodyne and three-tone MZM design. The data from each was compared over a range of 10V bias voltage for a 100MHz center frequency with 10MHz separation between tones. Mathematical relationships were established to compare data from each setup. Using these relationships we found the data matched well between all setups from 0-4V where the diode exhibited expected behavior versus modulation depth. From 4-10V the results diverged for each setup and no longer correlated with the mathematical relationships we presented in 2.5.3. The slopes versus modulation depth no longer adhered to the mathematical relationships of two for OIP2 and three for OIP3, invalidating the three setups as a consistent measurement. Data was also taken using the one-tone setup demonstrating a nonlinearity correlation resulting from the frequency at which the distortion occurs. Finally the effect of having non-orthogonally combined beams was investigated using the three-laser two tone setup. The results so a dependence on bias where in some instances having the modulated beams be orthogonal resulted in a higher OIP3 and OIP2, indicating possible issues that may prevent the comparison of different setups.

2.6 Conclusion

In conclusion we have introduced the basics of photodiode nonlinearities and discussed the various setups used to measured OIP3. The three laser two-tone setup was experimentally and analytically characterized in depth and shown to be a good solution calibrating out the
nonlinearities inherent in the two-laser two tone MZM setup. The setup was experimentally characterized, where we were able to identify MZM nonlinearities present for a test diode that were measurable above the noise floor, indicating that we can clearly determine the limit of accuracy for measuring OIP3, namely when the slope changes from three to two. Additionally we compared the one-tone heterodyne, two-tone heterodyne and three-tone MZM setups and analyzed using the mathematical relationships for each using a test diode. The result demonstrated that the setups can be compared when there is a good slope of three for the OIP3 and slope of two for OIP2. In other cases, where the device nonlinearity is not behaving conventionally, the data cannot be compared across different setups. From this we understand that there can be discrepancies between measurement setups which may limit our ability to compare data across multiple setups. We also looked at the difference in measurement of OIP2 and OIP3 using the three-laser two-tone MZM setup with and without a PBC, In some cases we found using a PBC resulted in a higher measurement of OIP2 and OIP3. Since this was not true for all voltages and all frequencies of intermodulation more investigation is needed. For the purpose of our continued work we will use the three-laser two-tone MZM setup.

2.7 Acknowledgements

(2010), Meredith N. Draa, A. S. Hastings, K. J. Williams. Contribution from co-author David C. Scott is greatly appreciated for the fabrication of the devices measured. Contributions from Jian Ren for the help with designing the three-laser two-tone setup is greatly appreciated. Contributions from co-authors Alexander S. Hastings and Dr. Keith J. Williams for contributions of measurement data as well as insight are greatly appreciated. The author would also like to acknowledge the insight and guidance provided by Professors Paul Yu and William Chang as well as funding support through DARPA from both Dr. Steve Pappert and Dr. Ron Esman. The author of this thesis was the primary author of this work.
2.8 References

Chapter 3
Nonlinearity in PIN Waveguide Photodiodes

3.1 Introduction

Previously in Chapter 2, we investigated the limitations and accuracy of multiple nonlinearity setups. Our investigations allowed us to better understand the three-laser two-tone Mach-Zehnder modulator measurement setup and the limitations we face in measuring intermodulation distortions. Using this information we would like to design and test waveguide photodiodes for high power and high linearity analog optical links. As discussed in Chapter 1, there are many design considerations that we must consider for such a device, as there will be a number of tradeoffs, including power handling capability, responsivity, and bandwidth. We will continue this discussion with a more detailed look at various design considerations for PIN and UTC structures for a waveguide photodiode (WGPD) and then present two PIN WGPDs to be characterized.

The WGPD is a good candidate for the frequency agile links. By using waveguiding principles to absorb light along the entire length of the photodiode, the PIN WGPD can offer benefits when compared to a surface normal style photodiodes due to its thin intrinsic region which results in a fast transit time [1]. Thermal runaway at the front part of the photodiode has been identified as a failure mechanism for current waveguide style devices [2]. Surface normal photodiodes have measured very high output third order intercept point (OIP3), 52+dBm, at high photocurrents at frequencies less than 1GHz [3-5] and slightly lower values at high frequencies by using a high Carbon doped absorber [4]. Previous WGPDs have demonstrated a reduction in optical overlap factor which resulted in OIP3 measurements up to 40.9dBm at 80.6mA at 1GHz.
using a uni-traveling carrier (UTC) style PD [6]. Additionally, Jasmin et al. adjusted the active region in the intrinsic region to control confinement factor and increase efficiency [7]. The significance of this work is to look at the interplay between bandwidth limitations, power handling capability and OIP3 performance for PIN style waveguide photodiodes. We intend to show the benefits of decreasing the optical overlap factor for a PIN photodiode by reducing the absorption layer thickness and lengthening the device. We will look at linearity and power handling capability, which will allow us to continue design of future devices that need to be high power and high linearity. Additionally, we will use a basic circuit model to look at one of the devices and use it to establish approximately what parameter values we will need in order to achieve better nonlinearity in future devices.

3.2 Background

3.2.1 Surface Normal PIN Photodiodes

A PIN photodiode is made of a p-type layer and n-type layer with an intrinsic or i-layer between. Typically the i-layer is an undoped layer where the absorption occurs [8]. For links operating around 1.55 µm wavelengths, indium-gallium-arsenide (InGaAs) is a widely used material since it has a bandgap around 1.6 µm and its direct bandgap provides a large absorption coefficient. InGaAs will be the material used throughout this work for optical absorption in all photodiodes discussed. Another material that has similar absorption properties to InGaAs is germanium (Ge), however due to its high dark current, InGaAs is generally preferred [8]. Recent advances in passivation techniques have provided dark current as low at 4.1×10^{-5} A/cm² with an external quantum efficiency of 32% for Ge devices [9].

The design of the PIN photodiode provides an ability to absorb photons, thus creating an electron and hole pair, and sweep the carriers out to their respective ends and collected at an
external circuit with the help of an applied electric field. Figure 3.1a shows the bandgap structure of a PIN photodiode, while Figure 3.1b shows the resulting electric field from reverse biasing the diode. Assuming a surface normal structure, the quantum efficiency \(\eta_q \) is defined as the number of photo-generated electrons divided by the number of incident photons [8]. The \(\eta_q \) of such a photodiode, neglecting scattering and free-carrier absorption, is [10]:

\[
\eta_{SN} = 1 - \frac{e^{-\alpha d}}{(1 + \alpha L_p)}
\]

(3.1)

where \(L_p \) is the diffusion length of holes, \(d \) is the thickness of the intrinsic region and \(\alpha \) is the absorption coefficient. If we look at the carrier transit time for such a device, where the electric field is applied across the intrinsic layer [11]:

\[
\tau_{tr} = \frac{d^2}{\mu_n V}
\]

(3.2)

where \(\mu_n \) is the electron mobility and \(V \) is the applied bias (except in cases of high power where not all of the voltage will be across the intrinsic layer), we see that as \(d \) increases so does \(\tau_{tr} \), but in order to increase efficiency \(d \) must be increased for a surface normal structure. In the case where the velocity is saturated, the transit time will not be voltage dependent as in (3.2). Neglecting this case, the typical PIN photodiode which is surface normal illuminated, shown in Figure 3.2, can be limited in bandwidth when attempting to maintain a high efficiency. In the cases where the surface normal is not RC limited, but transit time limited, the solution for this is provided by using a waveguide style photodiode, as described in section 3.2.2.
Figure 3.1. (a) PIN photodiode band diagram and (b) electric field of reverse biased PIN photodiode.

Figure 3.2. Surface normal photodiode.
For a surface normal PIN photodiode there will be a tradeoff between capacitance (area) and high power handling as well. If we define the device capacitance as:

\[C_{PD} = \frac{\varepsilon A}{d}, \]

(3.3)

where \(d \) is the thickness of the intrinsic region and \(A \) is the area of the device, we see that a smaller area and thicker intrinsic layer will lead to a lower capacitance. As we decrease the area, the power handling capability will decrease as the thermal resistance is related by [12]:

\[R_T = \frac{d}{\kappa A}, \]

(3.4)

Equation (3.4) tells us that the thermal resistance decreases as the device area increases and the intrinsic thickness decreases (assuming the heat is located primarily in the intrinsic layer). Equations (3.1) through (3.4) present design tradeoffs for a surface normal PIN photodiode. Overall, PIN photodiodes provide broad bandwidth, high linearity and temperature stability [13], which are qualities all necessary for high SFDR links which require high bandwidth. Next we will discuss the PIN photodiode in detail for a WG structure including the tradeoffs we will consider.

3.2.2 Waveguide PIN Photodiodes

A number of performance improvements can be obtained by using a waveguide style photodiode, seen in Figure 3.3. The light is input transversely to the active layer, instead of normal to the junction plane. The photocurrent density is given by:

\[J_{WG}(x) = \frac{qP}{h\nu}\Gamma\alpha\eta(e^{-\alpha x}), \]

(3.5)

where \(P \) is the optical power, \(q \) is the electronic charge, \(h\nu \) is the photon energy, \(\Gamma \) is the optical confinement factor, \(\alpha \) is the absorption coefficient and \(\eta \) is the input coupling coefficient. The optical confinement factor is the ratio of the optical energy of the mode in the active medium to the total optical energy of the mode in the cavity [14]. The confinement factor represents the amount of light that is present in the absorbing layers along the waveguide, which will determine
the absorption profile and current density along the device. From equation (3.5) we can integrate over the device length to find the quantum efficiency of a WGPD:

$$\eta_{WG} = \frac{q}{h\nu} \eta(1 - e^{-\alpha L}).$$

(3.6)

In this case, d can be chosen so that an appropriately high transit time can be achieved, while L can be increased so that 100% quantum efficiency can be achieved. Altering the absorption layers thickness, d, will not only reduce the transit time but will also reduce Γ as there will be less overlap of the waveguide field evanescent tail and therefore less absorption. The responsivity of a WGPD is generally smaller than a surface normal PD due to the modal mismatch between the waveguide and the single mode fiber [15]. However, since the absorption is now traverse to the transit of carriers, the WGPD has a larger bandwidth-efficiency performance than SN photodiodes. Additionally, even if L is relatively large, a narrow waveguide and detector can be used in order to keep capacitance small and bandwidth high [10]. The transit time limit is inversely proportional to the intrinsic region thickness, but the RC limit is proportional to L, indicating a tradeoff between the two.
3.2.3 PIN versus UTC Waveguide Photodiodes

As discussed in Chapter 1, the uni-traveling carrier photodiode has the benefit of a large absorption area and high transit speed from the electrons being the primary carriers, while incorporating a thin intrinsic layer for surface normal photodiodes. In the case of a WGPD, a UTC structure can provide faster transit as the electrons will be the primary carrier. However, since the WGPD is side illuminated, a thick absorbing layer will result in a high current density at the front facet. The quantum efficiency benefit achieved with a surface normal design is not as important for a WGPD when considering a UTC layer structure. UTC WGPDs have shown high linearity with an OIP3 of 42dBm at 23mA [16]. Another benefit of using a UTC structure for a WGPD is that InGaAs has a very poor thermal conductivity (0.05 W/cm/K) which causes device heating in the intrinsic region for a PIN PD. Since thermal considerations are more stringent for a WGPD due to the uneven current density distribution, improving the thermal properties of the intrinsic region is an important design consideration. In order to reduce front end current density, the absorber can be thinned and the device length increased so as to reduce the overall optical overlap factor. In the rest of the chapter, a study of two devices allows us to look at the tradeoffs for controlling Γ while maintaining the same responsivity.

3.3 Device Structures and Modeling

3.3.1 Device Structures

Two PIN waveguide (WG) photodiodes will be discussed in this chapter. The devices were designed with high linearity in consideration, as well as high power. The original device, A, is designed for a 20GHz link. The second structure (designated device B) is a modification of device A, where we intend to see if there are benefits to reducing the overlap factor, but maintaining efficiency (by increasing device length). Additionally, we would like to look at the
tradeoff between power and bandwidth (where the increased length provides more device area but negatively affects the capacitance). The epitaxial structures can be seen in Table 3.1 where the variable X corresponds to the absorber thickness indicated in Table 3.2. There is a 0.01μm thick layer of p-InGaAs, followed by the p-InP barrier layers. Next there are three layers of intrinsic InGaAsP that are unintentionally doped (UID) and 0.007μm which provide bandgap smoothing. The purpose of the bandgap smoothing is to reduce carrier pile-up at the p-i and i-n interfaces where bandgap discontinuities occur. The discontinuities contribute to charge screening at high power as carriers are not able to leave the intrinsic region and will alter the electric field near the interfaces, causing saturation and nonlinearity. The absorber thickness is determined in Table 3.2. Next there are three more layers of UID InGaAsP to smooth out the bandgap and provide the remaining intrinsic region. Finally there is 0.59μm of n-type InGaAsP. The waveguiding layers are indicated in orange, where the lighter orange layer is also part of the intrinsic region. Both device mesas are 5μm wide with the length depending on the design. The devices are designed to have 20GHz and 10GHz bandwidth for device A and B respectively. The two factors that are modified are the absorption layer thickness, which is reduced, and the length, which is increased, from device A to device B. The result of the reduced absorption layer thickness is a smaller optical overlap factor for device B. Both devices are anti-reflective coated with Al₂O₃.
Table 3.1. PIN waveguide layer structure with bandgap wavelengths in parenthesis.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness (μm)</th>
<th>Doping</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-InGaAs</td>
<td>0.010</td>
<td>1.5E+19</td>
</tr>
<tr>
<td>p-InP</td>
<td>0.900</td>
<td>8.E+19</td>
</tr>
<tr>
<td>p-InP</td>
<td>0.100</td>
<td>5.E+19</td>
</tr>
<tr>
<td>i-InGaAsP (1.00)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAsP (1.15)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAsP (1.35)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAs</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAsP (1.35)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAsP (1.15)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>i-InGaAsP (1.00)</td>
<td>0.285-X</td>
<td>-</td>
</tr>
<tr>
<td>n-InGaAsP (1.00)</td>
<td>0.590</td>
<td>1.E+18</td>
</tr>
<tr>
<td>InP</td>
<td>0.250</td>
<td>-</td>
</tr>
</tbody>
</table>

For Device B, the absorber is made thinner, but the intrinsic layer thickness is maintained the same to examine the effects of reducing the front facet heating and absorption along the length of the device. Additionally, the longer device is necessary to maintain similar responsivity for each device since the overlap factor (Γ) is significantly reduced in device B. Table 3.2 shows the design parameters for each device. The layer structures are shown in Table 3.2 where X corresponds to the absorber layer thickness detailed in Table 3.1. The length of device B is almost twice as long as device A because of the capacitance requirements for the bandwidth design and to maintain responsivity.

Table 3.2. Device design parameters.

<table>
<thead>
<tr>
<th></th>
<th>Device A</th>
<th>Device B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (GHz)</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Width (μm)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Length (μm)</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Absorber (‘X’) (μm)</td>
<td>0.035</td>
<td>0.016</td>
</tr>
<tr>
<td>Γ</td>
<td>0.0367</td>
<td>0.0094</td>
</tr>
</tbody>
</table>
3.3.2 Electrical Simulation

The devices are modeled electrically in a 2-D simulation using Silvaco International's numerical device simulator ATLAS. The specific device parameters used in the model are detailed in Appendix A which are the result of data from [17] and [18]. Here we discuss the basic mobility and recombination models that are used. The ANALYTIC model, which is the Caughey-Thomas formula, is used for low field mobility where the mobility is defined as:

$$\mu_0 = \mu_{1c} \left(\frac{T_L}{300K} \right)^{\alpha} + \mu_{2c} \left(\frac{T_L}{300K} \right)^{\beta} - \mu_{1c} \left(\frac{T_L}{300K} \right)^{\alpha},$$

(3.7)

where N is the local impurity concentration, T_L is the temperature in degrees Kelvin, and the rest of the parameters are specified based on the material set to fit the mobility curve. This model is used in conjunction with a concentration dependent model (CONMOB) which is a lookup table based on concentration. At high electric fields the parallel electric field-dependent mobility (FLDMOB) was used given by the formula:

$$\mu(E) = \mu_0 \left[\frac{1}{\left(\frac{1}{\beta} \right) + \left(\frac{\mu_0 E}{v_{sat}} \right)^{\beta}} \right],$$

(3.8)

where E is the parallel electric field and μ_0 is the low field mobility, and β and v_{sat} are parameters set by the user. For carrier recombination the concentration dependent Shockley-Read-Hall lifetime model (CONSRH) where the recombination is defined by:

$$R_{SRH} = \frac{pn - n_{ie}^2}{\tau_p \left[n + n_{ie} e^{-\frac{E_{trap}}{kT_L}} \right] + \tau_n \left[p + n_{ie} e^{-\frac{E_{trap}}{kT_L}} \right]},$$

(3.9)

with τ_n and τ_p are defined by:

$$\tau_n = \frac{TAUN0}{1 + \frac{N}{NSRHN}},$$

(3.10a)
\[\tau_p = \frac{TAU P_0}{N + \frac{N}{NSRHN}}, \]

(3.10b)

and \(N\) is the local impurity concentration. The rest of the parameters can be user specified based on the material. Lastly the FERMI model was specified in order to use Fermi Dirac statistics, with reduced carrier concentrations in heavily doped regions.

We simulated the DC responsivity curve which can be seen in Figure 3.4. The light is top down illumination. Since both devices are waveguide style, the output is scaled to 3D using the device geometry and the optical overlap factor. The simulation looks at a 2D structure that is 1\(\mu\)m wide. The current density is multiplied by the width (5\(\mu\)m) and length (device A: 55\(\mu\)m and device B: 100\(\mu\)m). The optical overlap factor is determined by simulation using BeamProp and then is used to scale the overall photocurrent as a function of device length, since the simulation assumes top down illumination, which gives a uniform absorption. The simulation does not take into account the thermal heating that occurs in the device and has not been calibrated with measured data. The results indicate a higher expected 1dB DC saturation for device B. The electric field is reduced by charge-screening at high powers as more carriers are in the intrinsic region. The compression of the output photocurrent at high optical power can be attributed to the carrier buildup in the intrinsic region, which results in increased recombination and compression of the photocurrent. The increase in carriers in the intrinsic region (as input optical power is increased) results in a redistribution of electric field which can be seen in Figures 3.5 and 3.6 for device A and B respectively. The devices were modeled without a load, so that the electric field redistribution occurs from the highest output photocurrent level shown in each plot there is some negative electric field seen that is also due to the simulation setup which lacks a 50\(\Omega\) load.

Although the behavior is similar, the collapse of the electric field occurs at very different photocurrent levels that correspond to the curves in Figure 3.4. Later results will demonstrate the beneficial behavior of device B in terms of linearity.
Figure 3.4. Simulation of DC responsivity for device A and B.

Figure 3.5. Electric field at various levels of photocurrent for device A without a load.
3.3.3 Thermal Simulation

We simulated the devices for thermal heating using COMSOL. The devices are setup in 3D based on the geometry and the bulk conductivities for each layer. In the simulation, the power density is defined along the length of the device according to:

\[P(z) = \frac{P_{in}}{W \cdot D} \frac{q}{h \nu} V_p \Gamma \alpha e^{-\Gamma \alpha z} \ (W/m^2), \]

(3.11)

where \(P_{in} \) is the input optical power, \(W \) is the width of the mesa, \(D \) is the height of the intrinsic region, \(q \) is the electronic charge, \(h \) is Planck’s constant, \(\nu \) is the frequency, \(V_p \) is the bias voltage, \(\Gamma \) is the optical overlap factor, \(\alpha \) is the absorption coefficient and \(\eta \) is the input optical coupling efficiency. The device is simulated over a range of input power and the maximum temperature in the device is recorded. The output photocurrent can be found by integrating (3.11) over the length of the device, multiplying by the device width and intrinsic thickness and dividing by the bias voltage:
where L is the length of the device. Using data from device A the output photocurrent is scaled to approximate that the device fails at 600K. From this, device B can be compared in measurement to assess whether the model predicts the failure point. The results of the simulation can be seen in Figure 3.7. The simulation predicts that device B will fail at slightly twice the amount of photocurrent of device A, where we use 600K as our temperature that we assume catastrophic failure. In Figure 3.8, the heat distribution can be seen for device A at 100mW input optical power and -4V bias. The maximum temperature reached is 477K. The highest temperatures are seen in the intrinsic layers which is expected since this is where the heat is generated due to the applied bias voltage.

$$I_{pd} = P_{in} \frac{q}{h\nu} \eta(1 - e^{-\frac{q}{kT}}) \quad (A),$$

(3.12)
3.4 Experimental Results and Discussion

3.4.1 Bandwidth Measurement

The devices were measured for bandwidth using an Agilent 86030A Lightwave Analyzer. The bandwidth measurements were made up to 50GHz at -4V bias and 1mW input optical power and can be seen in Figure 3.9 and Figure 3.10 for device A and B respectively. The graphs show measurements for many of the same devices to demonstrate the consistency of the bandwidth. The bandwidths are 20GHz and 10GHz for device A and B at low input optical power. Additionally, the device photocurrent failure point was measured at -4V bias with a result of 32mA and 49.3mA for device A and B. Device B exhibits almost two times the current capability of device A at -4V bias due to the reduction in optical overlap and the increased length of the device. Calculating the transit time bandwidth using $f_T \approx \frac{v_h}{2 \pi d}$ we find for both devices the
approximate transit time bandwidth is 139GHz which is much larger than the RC limited bandwidth seen in Figure 3.9. The rate of roll-off for Figure 3.10 is higher due to the fact that device B has a higher capacitance than device A.

Figure 3.9. Normalized frequency response of device A up to 50GHz.

Figure 3.10. Normalized frequency response of device B up to 50GHz.
3.4.2 DC Saturation

The devices were measured for DC saturation at -2V bias with a responsivity of .5A/W and can be seen in Figure 3.11 along with the simulated DC saturation curves performed in Silvaco using surface normal illumination. The maximum recorded responsivity of each device is .75A/W and .74A/W for device A and B respectively. The saturation point was determined by recording output DC photocurrent versus input DC optical power and finding a linear line of best fit at low input power to determine the approximate photocurrent where DC saturation begins. Device A begins to saturate at about 75mA while device B did not saturate, but exhibited thermal runaway and failed at 160mA. The simulation was scaled according to device geometry parameters as detailed above and then calibrated to the results. The simulation does not predict saturation as in the 4V bias case for device B seen in Figure 3.4. In Silvaco, the electric field is observed to collapse which should induce saturation. Instead we observe a large increase in electron current density occurs in the p-region overtaking the hole current density, which leads to recombination near the intrinsic region to p-region interface, where the recombination will release heat. We believe the recombination reduces the carrier densities and accounts for the observed induced electric field in the intrinsic region that is seen in the simulation. From this observation we believe the field across the intrinsic region increases the carrier transport to their saturation velocities causing the runaway current observed in the measurement. As discussed earlier, the simulation does not contain a load, which will alter the electric fields in the simulation.
3.4.3 Nonlinearity Measurement

The device OIP3 was measured using the three laser two-tone setup in 2.3.3. Two distributed-feedback lasers were externally modulated and amplified with an erbium doped fiber amplifier (EDFA). The EDFA is held at constant power and the output at each is attenuated using a variable optical attenuator (VOA) and then combined with a 50/50 coupler. A third unmodulated distributed feedback laser is amplified with an EDFA and also controlled by a VOA. The two branches are combined with a wavelength division multiplexer (WDM) and input into the device. The measurements were made as discussed in 2.3.3 where the slope is three to ensure third order distortion at the given frequency is due to the detector alone.
IMD3 for each device was measured with frequency tones of 1GHz and 1.1GHz. The results can be seen in Figure 3.12 with the fundamental and IMD3 plotted for both devices. The devices are biased at -4V and have a DC photocurrent of 10mA and 28mA for device A and B respectively. The OIP3 in Figure 3.12 is 30.5dBm and 42.4dBm for device A and B. In the graph both IMD3 sets of data exhibit a slope of 2.97 based on the trend line which is within measurement error. The devices were measured for OIP3 versus a number of different variables for comparison.

In Figure 3.12 the OIP3 of the devices are measured over a range of photocurrents with data for device A in blue and device B in red at input frequencies of 1GHz and 1.1GHz and bias voltage of -4V. Device A shows an increase in OIP3 up to 10mA and then is relatively flat until its failure point at -4V bias which is usually slightly more than 30mA. The coupling for device B was optimized for the best nonlinearity possible for the particular device. Two sets of data shown for device B are for two different devices to demonstrate the high reliance of OIP3 on fiber
coupling. The circle data shows a significant increase in OIP3 over photocurrent and overall is between 5 to 10dBm higher than device A with a peak occurring at 28mA. The triangle data shows the same increase in OIP3 as photocurrent increases but a flatter response from 20mA to 30mA. During measurements a specific fiber position could be tweaked to see approximately a 10dBm reduction in IMD3 with little effect on the fundamental thereby significantly increasing OIP3. In device A, the fiber positioning was not observed to have a significant effect on OIP3 while maintaining a consistent responsivity. Because of the difference in device structures, there may be a difference in the excitation and propagation of the optical modes which would lead to different thermal distributions and possibly generated distortions that could make OIP3 of device B more sensitive to the fiber position.

Figure 3.13. OIP3 for device A and B with -4V bias at 1GHz.
Figure 3.14. OIP3 for device A and B at 15mA and 20mA at 1GHz.

Both devices were measured over a range of bias voltages which can be seen in Figure 3.14. The purpose of this measurement was to determine the optimal bias point of the device when considering linearity and thermal heating tradeoffs. At a higher bias the device may have better linearity, but will dissipate more power. For device A, the measurements were taken at 15mA photocurrent from -2V to -6V. The device failed at -6V and at about 90mW of power. For device B, the measurements were taken at 20mA from -2V to -9.5V, where the device failed at about 190mW of power, which is almost double that of device A. In Figure 3.14, the OIP3 shows an increase from -2V to -4V and then a leveling off for both devices, with device B about 8dBm higher for OIP3. Device B however shows an increase in OIP3 from -7V to -9.5V with a peak of 40.5dBm for OIP3 at -9.5V. Both devices were designed to operate at -4V, in order to maximize linearity by maintaining a particular electric field across the device that is below the breakdown voltage but greater than the point at which carrier velocities are no longer constant. From the results is the desired bias operation is confirmed with the leveling off of OIP3 at voltages higher than -4V.
Figure 3.15. OIP3 for device A at 10mA and B at 25mA and -4V bias versus frequency.

Next OIP3 is measured over a range of frequencies. The results can be seen in Figure 3.15 for device A and B. Device A is measured from 1-18GHz at 10mA output photocurrent and -4V bias with an initial OIP3 of 32.7. The device exhibits a flat response up until about 16GHz where OIP3 begins to roll off, which interestingly looks similar to the responsivity roll off although the two may not necessarily have any correlation. The OIP3 roll off may be influenced by both thermal and transit time effect. Device B is measured from 1-10GHz at 25mA output photocurrent and -4V bias with an initial value of 34.6dBm. The device has a flat response up until 8GHz where there is a slight roll off.

In summary, device B exhibits better linearity at photocurrents higher than 5mA. In device B, the optical confinement factor is lower which does two things. First the absorption profile is more spread out, which reduces the thermal heating at the front facet. Second the current density is more uniform along the device. We believe the more uniform current distribution reduces the charge screening effects as well as thermal heating, both of which can cause more nonlinearity. Device B has an increase in OIP3 at higher bias voltage which is due the
higher electric field being able to sustain high current densities before charge screening and saturation occur. From our experimental investigation we find the tradeoff of bandwidth has resulted in a significant improvement in DC saturation, power handling capability and linearity. The reduction of current density and a uniform distribution is critical for future designs that we would like to be both high power and high linearity.

3.5 Nonlinearity Modeling by Equivalent Circuit Analysis

Various models have been presented for analyzing photodetector nonlinearities [19-20], and a model for high bias voltage demonstrated a constant IP3 for low frequency and a dependence \(\sim f^{-3} \) at high frequency [21]. Jiang’s model uses an equivalent circuit with impedances calculated from the photodiode’s microwave reflection coefficient \((S_{11}) \) measurement. We use this model to extract the device parameters at various output photocurrents. The data from device A presented in Figure 3.15 will be analytically modeled. The circuit model diagram is shown in Figure 3.16. The current, \(i \), is given by:

\[
i = \frac{d}{dt} \left\{ \left(C_0 + iC_1 \right)V \right\} + \frac{V}{R_0 - iR_1} + \frac{V}{Z(\omega)}, \tag{3.13}
\]

where \(R_1 \) is the optical power dependent differential resistance, \(C_1 \) is the optical power dependent differential capacitance, \(C_0 \) and \(R_0 \) are the junction capacitance and junction resistance at a given DC photocurrent, \(R_s \) is the series resistance, \(R_L \) is the load resistance, and \(C_p \) is the parasitic capacitance. Assuming two RF current sources we can write:

\[
i(t) = i_0(\cos(\omega_1 t) + \cos(\omega_2 t)). \tag{3.14}
\]

Substituting (3.14) into (3.14) and using the harmonic balance method we can solve for the IMD3 coefficients as well as the fundamental. For IMD3 we have:

\[
V_{\text{IMD3}} = \sqrt{V_{52a}^2 + V_{52b}^2}. \tag{3.15}
\]
The full equations and analysis for V_{52a} and V_{52b} can be found in Appendix B.

OIP3 is modeled in green in Figures 3.17 and 3.18 with the measured values in red. The values for each parameter are detailed in Table 3.3. There is good agreement with the circuit model up to \sim16GHz but after that the data drops off much quicker. In Figure 3.17a, the effects of increasing C_0 were investigated. In this case we find that as the initial capacitance increases the OIP3 at higher frequencies decreases, which is as expected. Similarly C_1 was increased and we find that this has a positive effect on OIP3 at high frequencies. This is due to the fact that if the differential capacitance is increasing in value, the overall capacitance is reducing as current increases. Since a large capacitance will result in a faster roll-off of OIP3, the high differential capacitance results in a lower overall capacitance at high photocurrent, causing the behavior seen in Figure 3.17b. Additionally, we looked at the effects of increasing R_0 which caused OIP3 to increase at low frequencies. This is due to the fact that a high shunt resistance equates to high OIP3 at low frequencies. Lastly, R_1 was increased and we see that this negatively affects OIP3 almost uniformly versus frequency, which indicates that a low differential resistance is beneficial for OIP3.
Figure 3.17. Effect on OIP3 for increasing (a) C_0(fF) with values 200, 400, 600, 800, and 1000 and (b) C_1(fF/mA) with values of 6, 8, 10, 12, and 14.
Figure 3.18. Effect on OIP3 for increasing (a) R_0(kΩ) with values of 125, 145, 165, 185, and 205 and (b) R_1(kΩ/mA) with values of 33, 35, 37, 39, and 41.
Table 3.3. Extracted values for circuit parameters that match OIP3 data from device A.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s (Ω)</td>
<td>25</td>
<td>C_p (fF)</td>
<td>0.0001</td>
</tr>
<tr>
<td>R_0 (kΩ)</td>
<td>125</td>
<td>C_0 (fF)</td>
<td>200</td>
</tr>
<tr>
<td>R_1 (kΩ/mA)</td>
<td>33</td>
<td>C_1 (fF/mA)</td>
<td>6</td>
</tr>
</tbody>
</table>

From the analytical model, we find that we would like a very high junction resistance on the order of 200kΩ and above where this resistance is maintained as a function of photocurrent (i.e. low differential junction resistance). In order to achieve high OIP3 over bandwidth of the device we would like to keep the junction capacitance low, ideally on the order of 10's of fF, while having the negative differential capacitance around 8fF/mA if possible. Previous work has shown that highly doping the p-region next to the i-region using carbon as the dopant made the junction profile less gradual which has shown to lower junction capacitance [4]. Using this information and the parameters from the model we can incorporate this into future devices. We would like to note that we have not presented a nonlinearity model, but rather used the small signal equivalent circuit to extract circuit parameters.

3.6 Conclusion

Two WGPD devices were fabricated and characterized demonstrating the effects of reducing the optical overlap factor and increasing thermal capacity through lengthening the device, with the tradeoff of bandwidth. The devices were characterized first through two simulation programs for output DC saturation and thermally for device maximum photocurrent. The 1dB DC saturation points were measured as 80mA and >150mA for device A and B. Device B showed a high dependence of OIP3 on fiber positioning due to the decreased absorber thickness. A significant enhancement of OIP3 and power capability is observed for device B with
a record high maximum OIP3 of 42.4dBm at 28mA and 1GHz frequency for a PIN waveguide photodiode. We find that the reduction of the optical overlap factor provides significant linearity improvement, (>10dB at 30mA) and almost double the DC saturation point, with a reduction in bandwidth by half. The relationships between bandwidth (capacitance), thermal resistance and responsivity were outlined section 3.2. Additionally, not only did the device thermal performance improve but the linearity improved as well. In our future design we will seek to develop a device that aims to more uniformly distribute the absorption throughout the device, to gain both thermal and linearity improvements; however we would like to find a solution to avoid the reduction in bandwidth capability that we saw from device B. Chapter 4 will discuss a new design that uses the design considerations investigated in this chapter, while also incorporating a UTC style structure with a WGPD.

3.7 Acknowledgments

Portions of Chapter 3 appear in "Behaviors of the Third Order Intercept Point for PIN Waveguide Photodiodes," published in Optics Express, vol. 17, no. 16, pp. 14389-14394 (2009), Meredith N. Draa, J. Bloch, D. C. Scott, N. Chen, S. B. Chen, W. S. Chang, and P. K. L. Yu and "Frequency behaviors of the third order intercept point for a waveguide photodiode using three laser two-tone setup," published in IEEE Lasers and Electro-Optics Society (LEOS 2008), Meredith N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. L. Yu. Contribution from co-author Dr. David C. Scott is greatly appreciated for the fabrication of the devices and RF response measurements. The author would also like to thank Jeff Bloch for his contributions to the device designs. The author would also like to acknowledge the insight and guidance provided by Professors Paul Yu and William Chang as well as funding support through DARPA from both
Dr. Steve Pappert and Dr. Ron Esman. The author of this thesis was the primary author of this work.
3.8 References

Chapter 4

Uni-Traveling Carrier Directional Coupled Waveguide Photodiode

4.1 Introduction

Since we have thoroughly investigated the various nonlinearity setups in Chapter 2, we are now able to use our understanding of the measurement limitations and accuracies to look at nonlinearity in two waveguide photodiodes. From this study we then looked at two PIN waveguide photodiode devices and compared their performance in Chapter 3. From Chapter 3, we found that reducing the optical overlap factor of the waveguide device by thinning the absorber and lengthening the device, resulted in a higher OIP3 and higher power handling capability due to the reduction in space-charge screening and thermal effects resulting from the more uniform absorption distribution. Previous efforts to use alternate illumination techniques have shown linearity improvement for uni-traveling carrier (UTC) style photodiodes, as well as increased power handling without compromising bandwidth for surface normal structures [1]. UTC structures gain added bandwidth and linearity due to the fact that electrons are the primary carrier and have a higher saturation velocity than holes. Because of the high velocity, the bandwidth increases, while at the same time carrier pile up is avoided which delays the onset of charge screening effects that cause nonlinearities. By employing a design that is not limited by the front facet current density, the WG photodiode can overcome some of the current handling and saturation issues that limit power handling and linearity. We saw previously in Chapter 3 that the more uniform absorption distribution resulted in higher linearity in a WGPD due to the reduction in space charge screening and better power dissipation capability.
Monolithic integration capabilities for multiquantum-well phase modulators and couplers have been shown with UTC WG photodiodes, demonstrating the versatility provided by WG structures [2]. The use of evanescently coupled photodiodes to achieve high responsivity (>1A/W) and more uniform illumination as well as 0.5A/W responsivity at 50GHz with the use of a integrated spot size converter, have demonstrated the ability to increase WG photodiodes performance [3, 4]. In this work, a novel waveguide device is presented that utilizes a monolithically integrated directional coupled technique for guiding the optical power to the photodiode. The directional coupled photodiode (DCPD) with a UTC structure is designed to improve the absorption profile of a waveguide style photodiode, similar to the evanescently coupled photodiode [3]. The front facet will no longer have the highest current density, or exponential absorption profile, because the coupler will provide control over the absorption profile. Previous efforts to reduce the coupling factor, and spread out the absorption have shown an increase in power handling and linearity but at the expense of device bandwidth for a PIN PD [5]. The DCPD will benefit the device by spreading the absorption profile more uniformly, gaining the benefit of a more even current distribution.

The photodiode linearity requirements for a radio frequency photonic link have been quantified previously [6]. In order to meet these requirements, various nonlinearity mechanisms have been studied including nonlinear capacitance [7-9], which is an issue at high frequencies, transit time effects due to the electric field dependence of carrier velocities [10], [11], and most recently a voltage-dependent nonlinearity resulting from impact ionization in the depletion region [12]. Pan et al. characterized the high frequency nonlinearity of a highly doped p-type absorber in a modified uni-traveling carrier (UTC) device by modeling the voltage-dependent capacitive effects [9]. The voltage-dependent responsivity, modeled with an equivalent circuit, is generally the limiting factor for output third order intercept (OIP3) at frequencies well below the 3-dB
bandwidth [13]. After presenting and discussing the UTC DCPD, we will look at the nonlinearity and investigate the possible voltage-dependent responsivity effects on OIP3.

4.2 Device Design

Conventional waveguide directional couplers and multimode interference couplers are based on the interference in quasi-symmetrical waveguide structures that have a low number of modes. Although their power transfer and the interference process are well controlled, and the structure can be analyzed by techniques such as coupled mode or super-mode analyses, a UTC detector placed on top of low-mode coupler cannot be used to absorb a uniform and small fraction of incident power for three reasons. (1) The optical power in coupled low-mode waveguides is oscillatory, where even distribution is desired. (2) Only a limited total power can be handled in low mode waveguides without saturation because of their small cross section. (3) The UTC detector is a major perturbation of the waveguide coupler. In order to detect a very large incident power without saturation in the UTC detector, only a very small uniform fraction of incident power should be absorbed in the absorber. For these reasons, a novel DCPD design which consists of a UTC structure on top of a very large multimode waveguide was conceived. The device design was a collaboration of many people, including Jeffrey Bloch, Dr. Xuecai Yu, Dr. David Scott, Prof. Paul Yu and Prof. William Chang. The author's major contribution was the design of the layer structure using Silvaco and the thermal analysis of the device geometry using Comsol, where Jeffrey Bloch design the directional coupled optical waveguide layers and geometry and the metal coplanar waveguide.
Figure 4.1a shows the first design. It includes an input transitional waveguide, 50µm long, which transfers the incident optical radiation into desired modes. A 90µm propagation section of 8µm wide waveguide is used to control the input optical radiation pattern at the beginning of the DCPD. The active region (UTC layers) is 200µm long and 2µm wide. After the
first 40µm, the width of the optical waveguide is tapered, so the distribution of absorbed power can be more uniform. The UTC on top of a highly multimode waveguide presents a highly asymmetrical total waveguide structure which cannot be analyzed analytically. Simulation techniques such as BeamProp and Fimmwave were used to first find the modes excited in the complex asymmetric structure. A few selected dominant modes were then used to analyze their interferences. These interference patterns will contribute to the actual radiation that may be excited by the incident radiation. Since the actual excited modes of the structure are much more complex, this preliminary result is used only as a guide to vary the dimensions and indices of the DCPD. Various proposed structures excited by incident radiation are then simulated to seek dimensional and index variation which yields uniform and low fractional absorbed power. Figure 4.2 illustrates the simulated absorbed power per µm length. Contrary to the conventional waveguide PD, the absorbed power per µm length is fairly uniform and is less than 1% of the incident power. Note that the absorbed power per unit length will vary slightly as will the optical power distribution along the guided region, depending on the specific combination of modes excited by incident radiation determined by the relative position of the fiber.

The device structure was grown on an InP substrate by metal-organic chemical vapor deposition at a commercial vendor. A cross section of the device is shown in Figure 4.1b employing a modified UTC style design [14]. Previous reported UTC style designs have demonstrated high linearity capabilities, due to the ability to have both a thin depleted absorber thickness but large responsivity by incorporating a p-type absorber [14]. There is a 0.25µm layer of N⁺ InP with doping of 3×10^{18} cm⁻³. The wave-guiding layers are made of InGaAsP with 1.3µm thick N⁺ with 1×10^{18} cm⁻³ doping, 0.2µm with 6×10^{16} cm⁻³ n-collector layer and 0.346µm unintentionally doped (UID) layer. The rest of the intrinsic layer is made of thin (7nm) InGaAsP for band smoothing purposes. Following this is a 50nm layer of InGaAs compensated doped at 1×10^{16} cm⁻³, and then three 200nm p-doped layers of InGaAs with graded doping (1×10^{17} cm⁻³,
2.5\times 10^{17} \text{ cm}^{-3}, \text{ and } 5\times 10^{17} \text{ cm}^{-3} \text{ respectively) to create a quasi-electric field for facilitating electron transport [15]. The absorber is followed by three thin InGaAsP layers (7nm) with p-type doping concentration of 1\times 10^{18} \text{ cm}^{-3} \text{ to help with valence band smoothing. Next is a 0.779\mu m layer of InP p-doped with a concentration of 1\times 10^{18} \text{ cm}^{-3}. The top layer is a 50nm p-contact layer of InGaAs.}

The device layer structure was designed with the aid of simulations in Silvaco, which will be discussed in the next section. The layers and thicknesses are chosen based on a number of design considerations. First of all, we wanted to use a UTC structure because there has been considerable data demonstrating high linearity in these devices for both surface normal and waveguide structures [2, 9, 13-14]. The modified UTC structure incorporates a thin InGaAs layer in the intrinsic region between the p-absorbing layers and the InGaAsP depletion layers, which has shown to improve bandwidth, responsivity, and linearity when compared to the traditional UTC structure [13]. Due to the benefits of this structure we began the UTC DCPD design with this in mind. For the design process, we simulated various p-absorber thicknesses as well as optimized the lightly doped absorbing layer that makes up part of the intrinsic region based on the DC saturation obtained in Silvaco with the tradeoff of coupling efficiency obtained with BeamProp simulations. Since the p-layers present a major perturbation of the directional coupled waveguide layers, we decreased the p+ InP layers slightly from designs presented in Chapter 3 and kept the p-doped InGaAs layers to 0.6\mu m thickness. Additionally, a lightly n-doped collecting layer, which induced a small electric field at the N-I interface, was added below to facilitate the sweeping of electrons out of the intrinsic region. The need for higher indexed InGaAsP for the directional coupled design resulted in layers 12-13 having an index of 3.33 instead of 3.22, which when simulated in Silvaco did not show any negative effects on the DC saturation point.
4.3 Baseline Device

4.3.1 Electrical and Thermal Simulation

Thermal and electrical simulations have been performed for the modified uni-traveling carrier directional coupled photodiode (MUTC-DCPD) similar to those described in sections 3.3.2 and 3.3.3 for the PIN waveguide photodiodes. In the thermal simulation, instead of using an exponential decay for the power distribution, a uniform distribution was used based on the absorption profile generated in Figure 4.2. The device structure incorporates the geometry of the waveguiding layers, which is different from previous devices since there is a large area to the left of the active region where the optical coupling occurs. This will create a different thermal profile since the device is no longer symmetric. For the electrical and thermal simulation, there is no load...
specified as with previous simulations. As before, we incorporated details from previous work [16]. The modeling is based off measured data available in the NSM Archive [17]. Figure 4.3 shows the DC saturation characteristic of the DCPD compared to the previous simulations of devices A and B discussed in Chapter 3 at the same bias of 4V as well as a surface normal UTC device with 14GHz bandwidth presented by Wang et al. at 7V bias [18]. In this case the DCPD is operating at a slightly lower electric field than devices A and B, since its intrinsic layer is 0.4µm and the intrinsic layer is 0.32µm for devices A and B. We compare the DCPD device with previous ones, which we already know from Chapter 3 have a fairly high OIP3 from measurements for waveguide photodiodes. We are designing the DCPD device in order to improve DC saturation and OIP3. Since we cannot predict OIP3 from our simulations at this point we use the DC saturation as a rough guide for device linearity performance. From the simulation, we see that the DCPD has a much higher expected DC saturation than all of the three devices, and therefore a higher photocurrent expectation neglecting thermal issues. In our simulation the devices are all 2D and simulated with surface normal illumination, despite the actual device geometry. The simulation provides a best case scenario for photocurrent distribution in a WGPD. The simulation can be thought of as taking a slice of the WGPD and looking at the electrical and photocurrent density characteristics. We also scale the output photocurrent down when converting to the 3D case as we use the absorption profile generated by optical simulations performed in BeamProp, where as for the SN case we can just multiply by the area of the device since illumination is generally considered uniform throughout the device.
Figure 4.3. DC responsivity for DCPD compared to devices A and B (with no load). The devices are biased at 4V which creates an electric field of 83kV/cm for the UTC SN, 100kV/cm for the DCPD and 125kV/cm for devices A and B.

Similarly, the electric field at different levels of photocurrent is shown in Figure 4.4. The electric field is mostly across the intrinsic region, with a small quasi-induced field in both the p-absorber and n-collector regions, which will help aid the transport of electrons through the p-absorber and depletion layers. As the photocurrent increases, we see a reduction in the electric field which is due to the buildup of carriers in the intrinsic region that results in charge screening. As the electric field is reduced due to carrier buildup, nonlinearities will result as well as a reduction in bandwidth, since the carriers will be travelling below their saturation velocity. The maintenance of the electric field at high photocurrent is key to the linearity of the device. Up to >474mA the electric field is being screened, but we see that the reduction occurs evenly across the depletion layer. This behavior is desired as when the electric field is uneven as seen for 787mA there will be more carriers built up at one end of the depletion layer that may induce
additional nonlinearities. Since holes are the slower of the two carriers, generally there are more holes building up in the intrinsic region near the P-I interface which will cause the accelerated screening of the electric field in that region, as see at 787mA. Additionally, there is a spike that grows as optical power increases at 0.9µm along the device, which is due to the fact that we have not simulated a load for this device. Therefore as the electric field collapses, it instead results as a spike at the p+ interface. Additionally, there is some increasing field across the step-doped regions (0.9µm to ~1.5µm) that occurs because the carriers are inducing a field in the p-doped absorber area. We also see that the device is retaining some electric field across the intrinsic region even at ~800mA. Despite the increase in DC saturation from the purely electrical simulation we need to also analyze the thermal expectations of the DCPD.

![Electric field at various photocurrents for DCPD at 4V bias voltage (with no load).](image)

Figure 4.4. Electric field at various photocurrents for DCPD at 4V bias voltage (with no load).

We investigated the thermal heating profile for the MUTC-DC PD using Comsol. The device is setup using thermal conductivities from the NSM archive [17]. The thin layers of
InGaAsP (~7nm) are combined and given a weighted thermal conductivity to simplify the device modeling. The device has a 250µm thick substrate of InP below the device where the bottom side is heat sunk to 378K. The tapered part of the Y-junction coupler absorber is considered rectangular since the taper is over a very long distance. The power is defined in the intrinsic region below the absorber as a constant density along the length of the line. The density is determined by using the optical simulations performed in BeamProp, which establish the amount of power absorbed per length of device seen in Figure 4.2. A snapshot of the device and its heating can be seen in Figure 4.5, where the maximum temperature reached is 368K for 100mA photocurrent. The maximum device temperature is plotted as a function of output photocurrent in Figure 4.6 compared to devices A and B. The simulated results show the device in the current design can reach 180mA before thermal breakdown (set at 600K), which is much lower than the expected photocurrent saturation from the electrical simulation. This indicates that the device will most likely be limited by heating. Additionally, the device coupling is sensitive to position and thus may not exhibit a constant absorption along the device. If the device is not optimally coupled, photocurrent peaks could occur along the device which could induce thermal failure at a much lower photocurrent.
Figure 4.5. Heating profile of UTC-DCPD at 100mA output photocurrent (max. temperature 368K).

Figure 4.6. Maximum device temperature vs. output photocurrent for UTC-DCPD compared with devices A and B.
4.3.2 Responsivity Measurement

The responsivity was measured at 1550nm versus voltage and plotted as a normalized responsivity versus electric field in Figure 4.7 where the electric field is calculated using the bias voltage and depletion layer thickness. Figure 4.7 is essentially a plot of the responsivity versus bias voltage, where we look at the change in responsivity compared to the case at 50kV/cm over a range of electric fields. The purpose of this is to see by how much the responsivity changes as a percentage of the original value at low bias voltage. The different ranges of electric field are due to the power dissipation limitation, where at higher photocurrents the device will burn out at a lower electric field. The device exhibits some responsivity variation due to coupling. This is anticipated since different alignment of incident radiation to the input transition waveguide will excite different modes. The responsivity can vary up to 0.2A/W with small changes in alignment, which is more variation than previous waveguide photodiodes measured in [8]; however once the fiber is aligned the responsivity is very stable. Additionally, the change in alignment along with responsivity resulted in large changes (~10dBm) in third order distortion, meaning the linearity measurements, which are discussed later, are also more sensitive to fiber positioning.
In measuring the responsivity the highest value was first obtained, which was 0.88A/W at 4V and 10mA. Each photocurrent case is normalized using the responsivity value at 2V, 0.8A/W, 0.81A/W and 0.88A/W for 0.1mA, 1mA and 10mA cases respectively. The responsivity has less variation versus electric field as current increases (up to 175kV/cm when comparing all three photocurrents). The largest increase in normalized responsivity occurs at very low current (0.1mA). It has been shown that the low electric field impact ionization coefficient in the intrinsic region leads to this electric field or voltage dependent responsivity [12]. The DCPD contains InGaAsP in the depletion region which has an electron ionization coefficient relevant at fields greater than 200kV/cm [19]. At high fields, impact ionization causes excess carriers to be created resulting in an increase in responsivity and unwanted nonlinearities [12]. In Figure 4.7 the effect is seen at higher electric fields for the 0.1mA and 1mA case, where there should be little
device heating. As the photocurrent increases, so does the device temperature. Investigations into nonlinearities of responsivity as a function of voltage have suggested the presence of impact ionization and Franz Keldysh effects, both of which are dependent on temperature. [9]. Additionally, the dark current was measured as a function of reverse bias voltage in Fig. 4 (inset) to determine if that contributed to the increase in responsivity at 0.1mA. The device begins to break down around 14V (350kV/cm electric field), but the dark current is still ~225nA which is much less than the change in current measured at 0.1mA as bias is increased. We conclude that up to 175kV/cm the device shows less dependence on bias voltage at higher photocurrent, where this behavior may be due to the ionization coefficient effects that have been suggested before [12]. However, due to the complicated nature of our device we still have yet to pinpoint the layers that most likely are affected by increased recombination and impact ionization which results in the nonlinear responsivity as a function of bias voltage. Continued simulation of the DCPD in Silvaco will help sort out some of these questions in the future.

4.3.3 Bandwidth Measurement

The devices were measured for bandwidth using an Agilent 86030A Lightwave Analyzer. The bandwidth measurements were made up to 30GHz at -4V bias and 1mW input optical power and can be seen in Figure 4.8 respectively. On the wafer a total of 11 devices were measured all yielding a 3dB bandwidth of 10GHz, despite being designed for a 20GHz bandwidth. The shape of the bandwidth curve has the distinct roll-off indicating that the device is RC limited as opposed to transit time limited. Using the device capacitance and assuming a 50Ω load, we can use $f_{3dB} \approx 1/2\pi RC$, where we find $f_{3dB}=27$GHz not including parasitic capacitance. If we use the low field hole velocity for InGaAsP (which is the majority of the material in the intrinsic region) and use the equation $f_{3dB} \approx 1/2\pi * v_h / d$, we find the transit time limited response to be ~111GHz. This is much greater than the RC limit, indicating that bandwidth is as we expected
and limited by the RC time constant. The reduced capacitance is due to the unaccounted for parasitic capacitance which can be addressed by redesigning the coplanar waveguide.

Figure 4.8. Normalized frequency response for DCPD from 0-30GHz.

4.3.4 Nonlinearity Measurement

Next the device OIP3 was measured using the three laser two-tone modulation setup outlined in Chapter 2 [10]. In measuring OIP3 we noticed significant changes in the third order distortion with positioning. We believe the increased sensitivity in distortion changes is due to the complicated absorption profile that changes with the positioning of the fiber. The changes can cause photocurrent peaks in different areas of the device that may negatively or positively affect the distortion in certain cases by compensating or adding to other nonlinearities which are present. We measured OIP3 over a range of photocurrent at -4V for input frequencies of 1GHz and 1.1GHz. The results can be seen in Figure 4.9. The OIP3 increases from 5mA to 20mA with a maximum value of 37dBm and then starts to decrease after 30mA. The device was not measured above 30mA to avoid failure. The increase in OIP3 with photocurrent has been measured before
in waveguide devices[20], and has been attributed to the self induced field for UTC devices [21].

The decrease in OIP3 as photocurrent above 30mA may be due to charge screening effects that are happening at much lower photocurrents than anticipated which may be due to the fact that the device catastrophic failure point is much lower than the simulation predicted. If the device is failing at a low photocurrent, then device self heating would also negatively affect nonlinearity and cause OIP3 to drop as well.

Figure 4.9. OIP3 versus photocurrent at 4V bias.

Figure 4.10 shows OIP3 versus bias at various photocurrents. OIP3 increases sharply from 0-2V; similar behavior has been observed before in Figure 3.14, due to the changing capacitance in the depletion region with increasing electric field. Capacitance is a function of the charge and voltage where if the voltage is changing the capacitance will change where the measurement for this will be shown later. Additionally, the OIP3 increases with photocurrent (~13dB), particularly at 4V from 5-25mA. Increases in OIP3 with photocurrent have been observed previously in UTC style surface normal devices [9] and PIN waveguide devices [8]. The increase in OIP3 with photocurrent may be a result of the responsivity as a function of bias.
voltage being more linear (up to 175kV/cm) at higher photocurrents; however, since the devices are measured at 1GHz, the thermal heating may not be the dominant issue. In order to confirm that \(R(V) \) is the dominant nonlinearity we plan to continue measurements by using a bias modulation measurement technique presented in [13]. Additionally, the increase in OIP3 may be explained by the self-induced field that has been observed before in UTC devices [20]. In Figure 4.4 as photocurrent increases, there is an induced field in the p-absorber region where there is graded doping. We can simulate the transit time limited 3dB bandwidth using Silvaco, by solving for a particular current density and then applying a small signal to the optical beam to find the device response. We simulated the second beam as a small signal starting at 1GHz frequency with steps of 1GHz up to 100GHz. After simulating at multiple photocurrent densities we can extract the frequency at which the device response has dropped 3dB. In Figure 4.11 we can see that as the photocurrent density increases there is an increase in the 3dB bandwidth followed by a sharp drop off at very high photocurrent densities, which is where the device is under saturation. This increase in device response has been detailed before in UTC style waveguide devices [20].

![Figure 4.10. OIP3 versus bias voltage at various photocurrents for 1GHz and 1.1GHz input tones.](image-url)
Figure 4.11. Simulated transit time limited 3dB bandwidth as a function of photocurrent density for DCPD at 4V bias (with no load).

Figure 4.12. Maximum device temperature vs. output photocurrent for DCPD as designed and with 0.5µm undercut (with no load).
Since this is the first time that a DCPD has been demonstrated, it is as important to understand its behavior as to show its performance. We were unable to reach the high photocurrent predicted from simulations due to a fabrication defect that unintentionally reduced the p-mesa width by 0.5µm due to undercutting. We believe the undercutting lead to self-heating at a much lower power than anticipated. To investigate this issue we first thermally simulated the undercut and compared it to the original device simulation from Figure 4.6. The results of the simulation can be seen in Figure 4.12, where we see the device undercut causes failure at a much lower photocurrent (about 30%) than our original (and best case scenario). Next we compared previous waveguide photodiodes from [21] and the DCPD to see where failure occurred in the device. In Figure 4.13a the device is 5µm wide and the catastrophic failure clearly occurs at the front of the device, with damage to both the p-mesa and p-metal. In contrast, in Figure 4.13b, the DCPD shows about 10µm of metal at the front end before the failure occurs. In the case of the DCPD, we were able to avoid catastrophic failure at the very front of the device. The damage is mostly in the metal, rather than the mesa. From Figure 4.13b we show that the DCPD is capable of relieving some of the front end current density compared to a traditional WGPD. Reducing the p-absorber thickness and widening the p-mesa should help avoid the p-metal damage we see in Figure 4.13b.
Alternatively when considering improvements for the DCPD design in the future, other detector structures such as the partially depleted absorber (PDA) [22] may perform better. The PDA structure has currently demonstrated RF output of 26.5dBm, over 700mA of compression current and a very high linearity figure of merit [23]. The device utilizes an InGaAs absorber in
the intrinsic layer with additional p-doped InGaAs layers. The DCPD design may benefit from this, as a typical waveguide photodiode with a large InGaAs layer would have very high absorption and consequently high current density at the front of the device. Since the previous work has shown that the catastrophic failure occurs at the front due to the high current density [24], we may be able to use the DCPD design to ease this complication for future designs of the DCPD.

![Figure 4.14. OIP3 versus frequency at 20mA and 4V bias voltage with modeled OIP3 curve (black) based on C(V) measurement at 5MHz (inset).](image)

Finally, OIP3 was measured versus frequency from 1-10GHz at 10mA and 4V bias voltage as shown in Figure 4.14. OIP3 remains relatively flat up to 10GHz. Note that from the electrical point of view, the device length is much less than the microwave wavelength up to 10 GHz. Therefore the bandwidth is limited by the RC constant of lumped element circuits, which was measured to be 10GHz. The capacitance was measured as a function of voltage and plotted in the inset of Figure 4.14 at 5MHz. The capacitance has an almost constant differential over the range of 2-7V with a change of ~6fF/V. Using the model outlined in [7], we plotted the calculated
capacitance limited OIP3 for the device, which is plotted in Figure 4.14. We can see from this that the data follows the calculated limit at frequencies above 6GHz.

4.4 Device Variations

4.4.1 Variation Designs

In addition to the device introduced in section 4.3, additional device variations were introduced, including the width of the MMI coupler (8µm in the baseline design) and the width of the PD or p-mesa (2µm baseline). For the MMI mesa, the device variations included widths of 6µm, 7µm, 9µm and 10µm, in addition to the baseline structure. Additionally, the device had PD width variations of 2.5µm, 3µm, 4µm and 5µm, only PD widths from 2.5µm to 4µm will be analyzed.

4.4.2 Thermal Simulation

In order to get an initial understanding of variations on certain device dimensions we performed thermal simulations using Comsol. In each case we modified the device dimensions accordingly. Additionally we modified the power density distribution we'd expect for each device dependent on the dimensions. In our simulation we account only for uniform power density throughout the intrinsic region, where the heat is generated. This is a best case scenario for each device, as we know altering both the MMI width and PD width will significantly change the absorption profile. This simulation will give us a general understanding the basic thermal limitations we will have from changing the device geometry.

In Figure 4.15 we plot the maximum device temperature versus output photocurrent for varying MMI widths. We can see from the figure that varying the MMI width has little impact on the overall temperature of the device and generally the temperature decreases linearly with MMI
width. We only expect a small change in temperature since the heat is primarily generated in the PD mesa, although some of the intrinsic layers are part of the MMI. Since the absorption occurs in the p-mesa we expect that the carrier density that will result will occur directly below the p-absorber in the intrinsic region. The heat distribution and absorption profile will be more heavily affected by the change in coupling properties that will occur with the change in MMI width and to an extent the changing PD width as this will change the balance of the MMI. In the next section we will look at the responsivity and discuss this behavior.

![Figure 4.15. Thermal simulation of maximum device temperature vs. output photocurrent for varying MMI widths at 4V bias with no load.](image-url)
In Figure 4.16 we plot the maximum device temperature versus output photocurrent for varying device width. In this case we see a large increase in output photocurrent capability from 2µm to 2.5µm, but only a small increase from 2.5µm to 3µm. The discrepancy between the two may explained by this. As the width goes from 2 to 2.5, the reduction in power density reduces the thermal load and reach higher photocurrent before 600K; however when the device with goes from 2.5 to 3, there is a smaller percentage increase in device area, as well as more of a thermal barrier. Figure 4.17 plots the top down view of each device at 150mA output photocurrent. We can clearly see that the 2.5µm device has better lateral thermal heat distribution than 3µm. The reason for this is the geometry of the two devices. Since the MMI width is not changing below the absorber the MMI extends out 1.5µm wider (below the absorber on one side) for the 2.5µm device, so that the heat can spread laterally and down into the substrate easily. In the case of the 3µm device there is only 1µm of the MMI for the heat to extend laterally before it hits the corner.
of the MMI mesa layer. This corner creates a thermal barrier. In the case of the 4µm wide device this corner no longer exists since now the edge of the p-layers line up with the MMI layers, thus making the path of least thermal resistance only the downward direction (into the substrate).

![Figure 4.17. Top down view at 150mA output photocurrent for varying PD width at 4V bias with no load.](image)

4.4.3 Responsivity Measurement

Responsivity for each device was measured from 0-4V, shown in Figure 4.18 and Figure 4.19 for MMI width and PD width variations respectively, with the baseline device indicated with solid data points. In Figure 4.18 the overall responsivity has no clear trend either up or down.
with MMI width. This indicates that the device responsivity has a complex dependence on the modal structure in the MMI and thus the absorption profile will be significantly affected by MMI dimensions (delay length and width, and input waveguide position). Not only does this change in absorption profile affect responsivity, but previous waveguide structures have shown that lowering and spreading out the current density significantly affects the thermal characteristics of the device and consequently OIP3 as detailed in [21]. In Figure 4.19, responsivity increases with increasing absorber width. This behavior is reasonable since the device absorption area is increasing with width. There is a large jump between 2µm and 2.5µm, but little change from 2.5µm to 3µm. An explanation for this is that the increase in width of the PD allows for more absorption, but also changes the coupling factor which may cancel out the increase in this instance caused by larger absorption area.

Figure 4.18. Responsivity versus bias voltage at 20mA photocurrent for DCPD devices with varying MMI widths, and a fixed MMI delay length.
Figure 4.19. Responsivity versus bias voltage at 20mA photocurrent for DCPD devices with varying PD (p-mesa) widths.

The general behavior of responsivity versus bias voltage is similar for all devices, where there is a large increase in responsivity from 0-1.5V and then a leveling off from 1.5-4V. The increase in responsivity from 0-1.5V results from the increase in electric-field across the depletion region as bias is applied, which will counteract the space-charge nonlinearities which occur at high photocurrent (20mA). After reaching the point at which there is a significant electric field (>40kV/cm) across the device, temperature dependent effects due to band-gap shifting may occur, where the responsivity may increase or decrease depending of the shift in the bandgap which will cause a change in the absorption coefficient [12].

From Figures 4.18 and 4.19 we conclude that nonlinearity of the responsivity changes as a function of the device geometry and thus the nonlinearities will result accordingly. The analytical relationship between the nonlinear voltage-dependent responsivity and OIP3 as a function of MMI and PD width will be discussed in the next section.
4.4.4 Bandwidth Measurement

The bandwidth for each device variation was measured similarly as in 4.3.3. The bandwidth versus the width of the MMI coupler can be seen in Figure 4.20 along with the calculated RC bandwidth. The bandwidth was calculated by taking the capacitance of the photodiode adding the parasitic capacitance due to both the benzocyclobutane (BCB) polymer bridge on which the p-metal sits and metal conductors of the coplanar waveguide (CPW) and using \(f_{3dB} = \frac{1}{2\pi RC} \). The parasitic capacitance calculated was 21fF and the device capacitance was 116fF. In the case of the MMI width changing we do not expect to see any change in the bandwidth since we are changing a parameter that is passive. The photodiode mesa is unchanged in this situation. Comparing the device to the rough calculation we see that the bandwidth is about 10GHz lower, which indicates that there is more parasitic capacitance than our initial calculation gives us. In Figure 4.21 the 3dB bandwidth versus PD width is plotted along with the calculated bandwidth. In this case we should see a significant change in bandwidth (as evident in our calculation), however the 3dB bandwidth only changes by \(~1.5GHz\). Since in this case the metallization and dimensions of our CPW we would need to calculate the parasitic capacitance in more detail for each case in order to get an accurate model.
4.4.5 Voltage-Dependent Nonlinearities

The voltage-dependent responsivity has been discussed before by Hastings et al. in [12]. The authors used a second order polynomial expansion to predict the second order distortions as
related to the voltage-dependent responsivity nonlinearity measured. This analysis can be extended to predict the third order distortions. Depending on the shape of the curve and the range of data being analyzed, using a third order polynomial may or may not be sufficient to predict third order distortions. In some cases it may be necessary to use higher order polynomials in order to accurately predict second and third order nonlinearities. For our analysis we will consider a photocurrent with the form

$$I_{PD}(t) = c_1 P(t) + c_2 VP(t) + c_3 V^2 P(t),$$ \hspace{1cm} (4.1)

where c_1 is the responsivity in the absence of any nonlinearity with units A/W, c_2 is the first-order voltage-dependent responsivity with units of A/W/V, and c_3 is the second-order voltage-dependent responsivity with units of A/W/V2. Equation (4.1) can be used to determine the relationship between the third-order distortion and the fundamental power. As in [12], for a small nonlinearity the dynamic voltage drop across the photodiode is defined as

$$V(t) = -I_{PD}(t)Z \approx -c_1 P(t)Z,$$ \hspace{1cm} (4.2)

where Z is the load impedance. The incident power can be defined as

$$P(t) = A(1 + m \sin \omega t),$$ \hspace{1cm} (4.3)

where A is the average power and m is the modulation depth. Substituting (4.3) and (4.2) into (4.1), the relationship between the third order and fundamental power can be obtained

$$\frac{P_{3\omega}}{P_{\omega}} = \left(\frac{c_1 c_3 Z^2 A^2 m^2}{4}\right)^2.$$ \hspace{1cm} (4.4)

Using (4.4), OIP3 can be related to the voltage-dependent responsivity nonlinearities discussed in 4.4.2 for the various devices measured. A change in the nonlinear responsivity behavior of each device can be fitted with a polynomial and coefficients c_1 and c_3 can be
extracted, which represent the voltage dependent nonlinearities of the first and third order caused by avalanching, thermal and possibly other unknown effects. For the baseline device we extracted from 2V to 4V values of $c_1=0.6284$ (A/W), $c_2=0.0424$ (A/W/V) and $c_3=0.0054$ (A/W/V²). Comparing our value of c_2 to [12] which was 0.002 (A/W/V) we have a little over an order of magnitude higher value which would indicate more second order nonlinearities. This may be due to the fact that we are operating at a much higher photocurrent (compared to [12]) which will be affected by linearities such as band gap shifting due to thermal heating. Additionally, the capacitance will play a significant factor in determining nonlinearity, especially at higher frequencies.

OIP3 was measured using the setup outlined in 2.3.3, with fundamental tones of 1GHz and 1.1GHz. The assumption is that the OIP3 will still be in the quantum efficiency (responsivity) limited range at this frequency since the baseline device has a 3dB bandwidth of 10GHz. The device with a 6µm wide MMI coupler was measured at 4V bias and 20mA photocurrent. The output RF fundamental power and third-order intermodulation distortion (IMD3) RF power, occurring at 0.9GHz, is shown in Figure 4.22 for various modulation depths as a function of output fundamental RF power. Fitting curves have been added and extracted to the intercept point, giving an OIP3 of 36.8dBm, where the IMD3 has a slope of three and the fundamental has a slope of one. The rest of the devices were measured in a similar manner.
Figure 4.22. Output fundamental RF power and third order distortion RF power versus output fundamental RF power for the DCPD device with 6µm wide MMI at 4V bias and 20mA photocurrent.

Figure 4.23. Extracted c_1 and c_3 parameters versus MMI width from Figure 4.18.
The parameters c_1 and c_3 can be extracted by taking a second-order polynomial fit of the curves in Figure 4.18 from 1-4V where the value of each are plotted in Figure 4.23. The calculated OIP3 was extracted using $|c_1|$ and $|c_3|$ from the plot with $Z=50$ and OIP3 is independent of A and m. The nonlinearity parameters generally vary in coordination with each other, however for the 10µm device $|c_1|$ decreases but $|c_3|$ increases in which case $|c_3|$ should be the dominant factor in OIP3. The result can be seen along with the measured values in Figure 4.24. The calculated data shows similar behavior versus MMI width suggesting that the voltage-dependent nonlinearity is a dominating factor. In the case of 6µm width the calculation is ~3dB lower in which case we may need to include other nonlinearities in order to more accurately model OIP3.

In the case of the 10µm device the OIP3 decreases confirming our earlier prediction that the decrease in $|c_3|$ would dominate the increase in $|c_1|$. As OIP3 varies nonmonotonically with MMI width a number of factors could be the cause, such as thermal variations due to the change in...
absorption profile. We can recall the responsivity in Figure 4.18 also varied nonmonotonically with MMI width.

![Graph showing extracted c_1 and c_3 parameters versus photodiode width](image)

Figure 4.25. Extracted c_1 and c_3 parameters versus photodiode width from Figure 4.19.

For the second set of variations, PD width, similar analysis has been completed to extract c_1 and c_3 from Figure 4.19 which is plotted in Figure 4.25. Additionally, the OIP3 and calculated OIP3 is plotted in figure 4.26. The same relationship between the two is noted as in Figure 4.24. In Figure 4.26, the highest OIP3 is not the baseline device, but the 3µm wide PD, which corresponds to the lowest value of c_3 in Figure 4.25. When looking back at the thermal simulations, the 2.5µm device had the best lateral heat distribution, however this device also has the lowest OIP3. There are many factors that will trade off in this particular device, as the absorption profile is also different, where the distribution of current may cause unwanted nonlinearities in this case so it is too early to make a concrete conclusion for the drop in OIP3 for this device. At low photocurrents, the nonlinear thermal effects will be negligible. Although we
are measuring at a relatively low frequency where the contribution should be small, the capacitive
effects should also be incorporated into the model to achieve better accuracy.

Analyzing the data from Figures 4.23 through 4.26 we conclude there is good agreement
between the voltage-dependent responsivity nonlinearity model (using the region 1V-4V) and
OIP3 in the instances of varying either the device MMI width or the PD width at the
measurement conditions stated. We found that using a polynomial fit in this case from 0V-4V
would not be accurate enough, as there is a large change in responsivity from 0-1V. In order to
look at the entire range of voltage, we would need to extend our analysis to a higher order
polynomial (in the curve fitting and in the model) in order to get better predictions. The trends for
$|c_1|$ and $|c_3|$ accurately reflect the measured OIP3 and predict OIP3 in good correlation with the
measurement. Other variations of the DCPD device were also fabricated which may not be
dominated by the voltage-dependent responsivity, and future work will discuss the other
nonlinearity mechanisms affecting these variations.
4.5 Conclusion

A novel DCPD device has been presented. The device exhibits a maximum responsivity of 0.88A/W and OIP3 of 35dBm at 4V and 25mA. The device linearity was measured over a range of frequencies and photocurrents. The design allows for coupling that reduces the front facet current density, where the failure point was shown to no longer occur at the front of the device, as was the case with a WGPD. Simulation results indicate that absorption per unit length in UTC detector could even be much lower than the 1% incident power reported here. The smaller the fraction of absorbed power per unit length, the larger is the total power that can be detected without saturation. A smaller fraction of the absorbed power implies much longer length will be required to achieve a respectable responsivity. This implies that, with proper design, the power handling capacity of DCPD can be very large, without limiting bandwidth.

Additionally, variations on the baseline UTC DCPD including MMI width and PD width were characterized. The devices were simulated thermally and we determined that the device geometry plays an integral roll in the thermal distribution of the device. We found that from a best base scenario, the 2.5µm wide device had very good thermal distribution in the lateral direction; however more modeling will need to be completed to account for the nonlinear capacitance contribution to nonlinearity. The device bandwidths were measured and compared to the theoretical curves. Also an analytic model for voltage-dependent responsivity nonlinearities demonstrated good correlation for the devices. The device responsivities were measured from 0-4V bias at 20mA in order to extract the model parameters, which were then used to predict OIP3. OIP3 was measured at 20mA and 4V for each device and the calculated OIP3 was plotted as well. The analysis is still preliminary and continued work, including a more rigorous look at responsivity that includes an AC component will help us to better understand the various nonlinearity mechanisms that are present in the DCPD device.
We were able to successfully demonstrate the ability to control the absorption profile along a waveguide photodiode without the cost of bandwidth which was the method used in Chapter 3 where the absorber was thinned and the device lengthened. Although there are other ways to alter the absorption profile without the change in bandwidth, as demonstrated by the refracting facet photodiode [1]. From the first demonstration of the device, we have concluded there are significant power limitation issues, since we still have failure relatively close to the front end of the device. The use of alternatives for future designs, such as the PDA or thinning the p-absorber were suggested as a way to avoid some of the perturbation of the directional coupler and possibly increase power handling capability. We also determined that the 2µm width device is very sensitive fabrication tolerances even with a small undercut, while the 3µm device provided the highest linearity. Although the linearity of the device was not as high as we initially expected, we learned a lot from the design variations where the DCPD is a complicated structure, as the linearity does not change monotonically with either the PD or MMI widths. Since the absorption profile and device behavior can change drastically for small changes in these parameters, for future generations we will need to do extensive simulation for the design and incorporate the data obtained through our investigations. Additionally we will need to look at the nonlinear capacitance and in order to model more accurately the OIP3, especially at high frequencies. Although the responsivity plays an important role in the nonlinearity of the device, the capacitance is just as important and will need to be a major design factor in the future. Designing a slightly wider device, and the MMI structure accordingly, while slightly thinning the absorber should improve the device performance in future generations.
4.6 Acknowledgments

Portions of Chapter 4 appear in "Novel Directional Coupled Waveguide Photodiode - Concept and Preliminary Results," published in Optics Express, vol. 18, no. 17, pp. 17729-17735 (2010), Meredith N. Draa, J. Bloch, D. Chen, D. C. Scott, N. Cheng, S. B. Chen, X. Yu, W. S. Chang, P. K. L. Yu, and "Voltage-Dependent Nonlinearities in Uni-Traveling Carrier Directional Coupler Photodiodes" accepted to the 2010 IEEE International Topical Meeting on Microwave Photonics (2010), Meredith N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, N. Chen S. Chen, and K. J. Williams. The contributions to the DCPD design, including the directional coupled waveguide and CPW design, by Jeffrey Bloch, Dingbo Chen and Xuecai Yu are greatly appreciated. Contribution from co-authors Dr. David C. Scott is greatly appreciated for the fabrication of the devices and RF response measurements. The author would also like to acknowledge the insight and guidance provided by Professors Paul Yu, William Chang and Dr. Keith Williams as well as funding support through DARPA from both Dr. Steve Pappert and Dr. Ron Esman. The author of this thesis was the primary author of this work.
4.7 References

Chapter 5
Conclusion and Future Work

5.1 Summary

The primary motivation behind this thesis was to answer the questions, "How can we accurately measure nonlinearity in photodiodes, and how can we use this to characterize devices in order to investigate the nonlinearity of different device designs through analytical models?"

The first step in answering this question was to analyze our current nonlinearity measurement setup and detect if there were any inherent non-ideal factors that cause measurement inaccuracies. It is only thorough mitigating these factors that we hope a new system can be developed to measure future devices. The accurate measurement is important for the characterization of high linearity photodiodes, used in two designs, a PIN waveguide and a UTC DCPD design. In order to characterize our devices and investigate nonlinearities, the measurement system accuracy is critical to investigations we perform in order to obtain a better understanding of the nonlinearity mechanisms. The research presented in this dissertation is one small part of the overall understanding of nonlinearities and the phenomena that contribute unwanted distortions.

First, the contributed nonlinearities of the current measurement system were discussed. From this the three-laser two-tone measurement system was designed in order to control the unwanted MZM nonlinearity. We were able to show the contributed MZM nonlinearities and established that they could be distinguished from the photodiode nonlinearity. The data presented was backed up with the mathematical analysis of the system, confirming the measured slope relationships. From the new system we concluded that the use of the extra laser to provide a consistent DC optical power, while using the VOAs to control modulation depth allowed for the
MZM nonlinearities to be effectively controlled. We also looked at the OIP3 measurement of a test photodiode using the one and two tone heterodyne setups and the four-laser three-tone MZM setup. The three systems were used to measure the same device under the same conditions (bias voltage, photocurrent, optical wavelength and frequency). The data was compensated between the one, two and three-tone cases using mathematical relationships. From the data we concluded that as long as the device exhibited a strong slope of three for third order distortion the data could be compared across setups. The third order intermodulation distortions of the device however did not always exhibit a slope of three due to possibly the presence of other competing nonlinearities, resulting in vastly different OIP3 measurements for each system. The polarization of the optically modulated beams was investigated and shown to affect the measurement in certain instances; however we have not fully understood the measurement discrepancies between the three setups.

Second, two PIN waveguide photodiodes were presented in Chapter 3. The devices were designed for high power high linearity analog optical links using a PIN layer structure with a waveguide device geometry. The devices were the same design except that for device B the absorber was half the thickness of device A and twice the length. The result was that device B had half the bandwidth, but approximately twice the power dissipation capability. Additionally, device B demonstrated an increase in OIP3 resulting from the reduction in optical overlap factor which provided a more spread out absorption profile and an increase in OIP3. We believe that reducing the optical overlap factor reduced the charge screening occurring in the device. The DC saturation was characterized experimentally, which was modeled well using Silvaco showing that device A was saturation limited and device B did not saturate before thermal runaway occurred at 2V bias. The reduction in charge screening can cause the device to no longer be saturation limited in the DC measurement, as well as reduce the nonlinear distortions resulting in the increased OIP3 that was measured. The OIP3 versus frequency for device A was also used with the circuit model first introduced by Jiang in [1]. From the analytical model, we find that we would like a
very high junction resistance on the order of 200kΩ and above where this resistance is maintained as a function of photocurrent (i.e. low differential junction resistance). In order to achieve high OIP3 over bandwidth of the device we would like to keep the junction capacitance low, ideally on the order of 10's of fF, while having the negative differential capacitance around 8fF/mA if possible. The circuit analysis of device A allowed us to theoretically look at different OIP3 curves as a function of frequency. Ideally we would like the OIP3 curve to be as flat as possible versus frequency (i.e. almost no roll-off). Our circuit model investigation indicates that the main contributor to avoiding the roll-off is to achieve a low capacitance. Previous studies have shown that creating a step-junction using high doping with dopants that have low diffusion at the p-i interface improves the voltage-dependent capacitance and as a result the OIP3 at high frequencies [2].

Third, a novel design developed by our group was presented that incorporated a directional coupler with a UTC style waveguide photodiode. We observed through device failure points along the device with photographs that the DCPD relieved the high current density at the front end of the device when compared to a WGPD. The primary issue with the first design was the low linearity measured. Since we do not need a thick absorber to achieve high responsivity, as is the case with a surface normal device, removing the slightly n-doped absorbing layer should help to improve our linearity. We also determined that there are still significant power limitations for the first design, which can possibly be mitigated by decreasing the absorber thickness and slightly widening the device, in coordination with a new MMI design to better balance the device. We also thermally simulated device structures that varied the MMI width and absorber width, finding that the 2.5μm width had the best lateral thermal distribution. Finally, the responsivity, bandwidth and OIP3 were measured for the first generation device with varying MMI width and absorber width. The bandwidth was modeled and we found the decrease in bandwidth with increasing width was not as sharp as we predicted, possibly due to additional parasitic
capacitance. The OIP3 was analytically modeled using the responsivity data, which showed good agreement with the data. We concluded from the data that the complexities of the DCPD make OIP3 change non-monotonically with device changes in width of the MMI and PD.

5.2 Future Work

5.2.1 Nonlinearity Investigations

As discussed in Chapter 1, there are many contributing factors to the nonlinearity of a photodiode. Some of these mechanisms include the fluctuation of carrier velocities and diffusion constants which are influenced by space-charge fields, the flow of current in the p-contact, scattering, and potential drops in the photodiode due to current flow in the external load resistance [3]. Investigations have been performed to show the influence of the Franz-Keldysh effect and impact ionization on the voltage-dependent responsivity [4]. Additionally, the voltage and current dependent capacitance are major factors in nonlinearity which will be discussed in more detail.

From the analysis presented in 4.4.3 we presented a correlation between voltage-dependent responsivity nonlinearity and OIP3. Additionally there will be optical power dependent responsivities which should be investigated. The voltage-dependent responsivity model showed correlation with the measured general behavior of the OIP3 data as a function of MMI and absorber width. This correlation suggests the same underlying mechanisms responsible for the behaviors of the responsivity and OIP3. Another method for using this model is to calculate the necessary values of parameters such as c3, which represent the third order nonlinearity, in order to guide the design. Since designing the responsivity of the device is readily controllable we can use this information to understand the tradeoffs between the two parameters. In order to be able to
use the model to design future devices we will need to identify the specific causes of nonlinearity that will increase c_3. Previously we mentioned the possibility of both impact ionization and Franz-Keldysh effects which occur in the devices, where further investigation will allow us to identify a specific cause of nonlinearity for our device using a physical model. Additionally, the analytical model discussed in Chapter 4 can also be used to look at the second order nonlinearities using the relationship from c_1 and c_2. After establishing an analytical relationship we can begin to develop the physical models that correspond to the device mechanisms that are responsible for nonlinearity. Previously, the second order relationship has been briefly discussed by Hastings et al where they showed a good agreement using the model and the measurement of second order harmonics [5].

Additionally nonlinear capacitance has been shown in [6], where the nonlinearity was due to the sensitivity of the PD capacitance due to the charge location within the depletion region, as a function of current. Capacitive nonlinearities can also result from external loading. Load transients will cause the capacitance to change dynamically during the evolution of the current waveform as it flows through the load impedance. When the device is biased and photocurrent is induced through optical illumination a voltage drop is induced across both the series and load resistances. The result of this voltage swing is a reduced bias voltage across the PD junction causing variations in device capacitance [4]. The importance of diffusion of dopants in the p-InGaAs region of a UTC device has been shown to negatively affect the voltage-dependent capacitance and contribute to the IMD3 thus creating a need to ensure minimal diffusion in order to avoid the nonlinearity contributions due to voltage swing from voltage dependent capacitance [4]. Additionally, nonlinear capacitance results from the screening of the space charge field which is dependent on photocurrent. At high illumination the total volumetric charge density in the depletion region may change as a result of the preferential screening of both ionized donors and acceptors by the free electrons and holes respectively [4]. The result of this neglecting feedback is
a deeper penetration of the depletion region into the quasi-neutral region [4]. These issues as well as the previous mentioned responsivity nonlinearities are two areas that continue to warrant investigation in order to better understand the photodiode behaviors.

5.2.2 Nonlinearity Modeling

We have used multiple software programs to model device behavior. Additionally there are other modeling options. Currently none of the models combine the waveguiding modeling provided by Beam Prop with the electrical modeling handled by Silvaco and the thermal modeling provided by Comsol. To get an accurate picture of the device, developing a combination of the three would be more useful, but Silvaco still has limited dynamic modeling capabilities. Other software may be more useful, such as Crosslight Apsys which has the capability to input two-tone signals and model the resulting behavior. Currently an absorption profile can be modeled well in Beam Prop, shown in Figure 5.1 with a polynomial fit. The result can be modeled as a function using a curve fit or possibly encoded into a file to input into Comsol as the power distribution for the thermal simulation. The combination of these two programs would give a better understanding of how much hot spots affect the heating distribution and power dissipation limitations. Providing this level of simulation detail could sort out thermal issues and provide better understanding of how to utilize heat sinking. Another benefit that could be incorporated into the simulations is to take detailed photos of the devices after to extract better measurements for the real device dimensions and contact thicknesses and determine points of failure. An example of this is shown in Figure 5.1 of device A that was characterized in chapter 3. Adding these changes to the Comsol simulation could provide useful understanding of how fabrication tolerances can affect the power handling. Currently, the simulation predictions are far above what the actual performance yielded for expected power dissipation. Finding a solution to this problem for waveguide style photodiodes continues to be a necessarily and important topic.
Figure 5.1. Simulated DCPD power absorption along length of the device with polynomial fit (black).
5.2.3 Redesigning the UTC DCPD

The first design of the DCPD device proved to be a novel concept that could vastly improve the power dissipation capability of waveguide style devices. The device performed under
the expected benefits of the device, and some of those factors were discussed, such as fabrication issues. From here the device will need to be redesigned. First, the device design should focus on how to improve the linearity. Since we are using a waveguide design and do not require a thick absorber for high responsivity, the lightly n-doped absorber that is in the intrinsic region is not necessary. We also maybe like to investigate using a PIN structure as we saw good linearity for device B in chapter 3. Again the UTC structure has shown high linearity for SN devices and is beneficial to that geometry because there can be a thick absorber and thin intrinsic region. Secondly we need to improve power dissipation. The narrow mesa obviously presented a problem, and make fabrication difficult. Moving back to a 3µm or 4µm wide detector might help relax some of the issues that occurred with the first generation device. In order to change the device width we will have to redesign the layer structure and dimensions of the coupler for effectively coupling to the absorber. As mentioned earlier, possibly moving to a PIN structure or a UTC structure which has a thinner absorber, the perturbation of the coupler will be less severe, which will allows us to design the coupler for a shorter and wider device.

From chapter 3 we found that for a normal waveguide device thinning the absorber region and lengthening the device resulted in significant improvement. Additionally device B was a 10GHz device, while the DCPD was designed for 20GHz, it only yielded a bandwidth of 10GHz. In this case the two devices had similar bandwidths but very different performances. What we can learn from this is that the very thick absorber (0.65µm) may have caused carrier buildup at the p-i interface which results in charge screening effects. If the absorber can be reduced, by removing the n-doped absorber and thinning each of the layers that have different doping, while maintaining a good responsivity (~0.75A/W) the device may see much better power dissipation results.

Another aspect to investigate is other types of detectors to use for the layer structure. Currently, partially depleted absorbers (PDA) provide the highest output power and power
dissipation for photodiodes [5]. In this instance the absorbing material is partially p-doped, partially intrinsic and partially n-doped, where the layer thicknesses correspond to balancing the electron and hole concentrations in the intrinsic region. An example layer structure can be seen in Figure 5.3. In this case the p-doped layers of InGaAs are graded in two steps, as is the n-doped layers, but the p-doped layers are slightly thicker since electrons have a higher velocity and more need to be injected into the intrinsic region to balance the holes. The other benefit to this design is that there are no heterojunctions at the p-i and i-n interfaces to cause additional carrier buildup.

![Figure 5.3. Bandgap diagram of layer structure for PDA style photodiode with bias applied across i-InGaAs layer. Horizontal is the layer thickness and vertical is the bandgap (not to scale).](image)

5.3 Conclusion

The need for higher power and higher linearity photodiodes continues to be significant. As laser technology improves, photodiodes need to be able to handle requirements for these links. Innovative ideas such as the DCPD design will lead the way in exploring solutions for the next generation of analog optical links. The study of linearity as a limiting factor in photodiodes still has many areas that are uncharacterized and not well understood, which leaves open a multitude of research to be completed in the field of analog photodiodes.
5.4 Acknowledgements

In Chapter 5, the photos in Figure 5.3 were provided by Dr. David Scott at Archcom Technology, Inc. Additionally, Figure 5.2 is a repeat of the data presented in Chapter 4 provided by Jeff Bloch.
5.5 References

Appendix A
Silvaco Models

All of the equations presented in this appendix are from the Silvaco User's Manual Volume I. For the simulations various models can be specified. For In$_{1-x}$Ga$_x$As$_y$P$_{1-y}$ layers the low field mobility is defined:

\[\mu_{n1} = 33000 + (8500 - 33000)x \cdot \text{comp} \]
\[\mu_{p1} = 460 + (400 - 460)x \cdot \text{comp} \]
\[\mu_{n2} = 4600 + (300 - 4600)x \cdot \text{comp} \] \hspace{1cm} (A.1)
\[\mu_{p2} = 150 + (100 - 150)x \cdot \text{comp} \]
\[\mu_{n0} = \mu_{n1} + (1 - y \cdot \text{comp})(\mu_{n2} - \mu_{n1}) \]
\[\mu_{p0} = \mu_{p1} + (1 - y \cdot \text{comp})(\mu_{p2} - \mu_{p1}) \]

Where \(\mu_{n0} \) and \(\mu_{p0} \) are the low field mobilities. For high field mobilities a parallel electric field dependence can be established where:

\[\mu_n(E) = \mu_{n0} \left[\frac{1}{1 + \left(\frac{\mu_{n0}E}{v_{satn}} \right)^{\text{BETAN}}} \right]^{\frac{1}{\text{BETAN}}} \] \hspace{1cm} (A.2a)

\[\mu_p(E) = \mu_{p0} \left[\frac{1}{1 + \left(\frac{\mu_{p0}E}{v_{satp}} \right)^{\text{BETAP}}} \right]^{\frac{1}{\text{BETAP}}} \] \hspace{1cm} (A.2b)

Where VSATN and VSATP are defined as:

\[VSATN = 11.3 \cdot 10^6 - 1.2 \cdot 10^4 T_L \] \hspace{1cm} (A.3a)
\[VSATP = 11.3 \cdot 10^6 - 1.2 \cdot 10^4 T_L \] \hspace{1cm} (A.3b)
Where the defaults are:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETAN</td>
<td>2</td>
</tr>
<tr>
<td>BETAP</td>
<td>1</td>
</tr>
<tr>
<td>ALPHAN.FLD</td>
<td>2.40E+07</td>
</tr>
<tr>
<td>ALPHAP.FLD</td>
<td>2.40E+07</td>
</tr>
<tr>
<td>THETAN.FLD</td>
<td>0.8</td>
</tr>
<tr>
<td>THETAP.FLD</td>
<td>0.8</td>
</tr>
<tr>
<td>TNOFN.FLD</td>
<td>600</td>
</tr>
<tr>
<td>TNOFP.FLD</td>
<td>600</td>
</tr>
</tbody>
</table>

And T_L is the lattice temperature specified. Additionally a negative differential mobility model by Barnes et. Al. for is defined as:

\[
\mu_n(E) = \frac{\mu_{n0} + \frac{V_{SATN}}{E} \left(\frac{E}{E_{CRITN}} \right)^{GAMMAN}}{1 + \left(\frac{E}{E_{CRITN}} \right)^{GAMMAN}} \tag{A.4a}
\]

\[
\mu_p(E) = \frac{\mu_{p0} + \frac{V_{SATP}}{E} \left(\frac{E}{E_{CRITP}} \right)^{GAMMAP}}{1 + \left(\frac{E}{E_{CRITP}} \right)^{GAMMAP}} \tag{A.4b}
\]

Where the defaults are:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECRITN</td>
<td>4.00E+03</td>
</tr>
<tr>
<td>ECRITP</td>
<td>4.00E+03</td>
</tr>
<tr>
<td>GAMMAN</td>
<td>4</td>
</tr>
<tr>
<td>GAMMAP</td>
<td>1</td>
</tr>
</tbody>
</table>

All of the variables can be specified in the simulations. Additionally the InP and InGaAs use appropriate low field mobility as opposed to (A.1). The models described are defined by the parameters set according to the defaults listed or otherwise are user specified. For the purposes of our simulations the parameters were specified as:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>InGaAs</th>
<th>InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Gap</td>
<td>.734 eV</td>
<td>1.35 eV</td>
</tr>
<tr>
<td>Electron Lifetime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_0</td>
<td>0.704 ns</td>
<td></td>
</tr>
<tr>
<td>NSRHN</td>
<td>7.134x10^17 cm^-3</td>
<td></td>
</tr>
<tr>
<td>Electron Mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{max}</td>
<td>11599 cm^2/V·s</td>
<td>4917 cm^2/V·s</td>
</tr>
<tr>
<td>μ_{max}</td>
<td>3372 cm^2/V·s</td>
<td>0</td>
</tr>
<tr>
<td>N_c</td>
<td>8.9x10^16 cm^3</td>
<td>6.4x10^17 cm^3</td>
</tr>
<tr>
<td>α</td>
<td>0.76</td>
<td>0.46</td>
</tr>
<tr>
<td>E_{critn}</td>
<td>3000 V/cm</td>
<td>11000 V/cm</td>
</tr>
<tr>
<td>γ_n</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Hole Mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{max}</td>
<td>331 cm^2/V·s</td>
<td>151 cm^2/V·s</td>
</tr>
<tr>
<td>μ_{max}</td>
<td>75 cm^2/V·s</td>
<td>20</td>
</tr>
<tr>
<td>N_c</td>
<td>1x10^10 cm^3</td>
<td>7.4x10^17 cm^3</td>
</tr>
<tr>
<td>α</td>
<td>1.37</td>
<td>0.96</td>
</tr>
<tr>
<td>E_{critp}</td>
<td>4000 V/cm</td>
<td>4000 V/cm</td>
</tr>
<tr>
<td>γ_p</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Saturation Velocity (E)</td>
<td>2.5x10^7 m/s</td>
<td>2.6x10^7 m/s</td>
</tr>
<tr>
<td>Saturation Velocity (H)</td>
<td>5x10^6 m/s</td>
<td>6.6x10^6 m/s</td>
</tr>
<tr>
<td>Imaginary Refractive</td>
<td>0.075</td>
<td>0</td>
</tr>
<tr>
<td>Real Refractive</td>
<td>3.595</td>
<td>3.165</td>
</tr>
<tr>
<td>Electron Affinity</td>
<td>4.58</td>
<td>4.37</td>
</tr>
</tbody>
</table>
Appendix B
Harmonic Balance Calculation

The analysis presented in this appendix is an expansion of the analysis provided in [1].

We will start with the equation for the equivalent circuit model. We can calculate the voltage, V, across the load as:

\[
\frac{d}{dt} \{(C_0 + iC_1)V\} + \frac{V}{R_0 - iR_1} + \frac{V}{Z(\omega)} = i
\]

(B.1)

Where \(i = i_0(\cos(\omega_1 t) + \cos(\omega_2 t)) \) which represents the two RF current sources, \(Z(\omega) \) is the equivalent impedance of parasitic capacitance, series resistance and the load resistance. \(C_1 \) is the optical-power-dependent differential capacitance and \(R_1 \) is the optical power dependent differential resistance. \(C_0 \) and \(R_0 \) are the respective capacitance and resistance of the junction at a given DC photocurrent. We will approximate assuming \(R \gg iR_1 \):

\[
\frac{1}{R_0 - iR_1} = \frac{1}{R_0} \left[1 + i \frac{R_1}{R_0} + \left(\frac{R_1}{R_0} \right)^2 + \cdots \right]
\]

(B.2)

Substituting (A.2) into (A.1):

\[
\frac{d}{dt} \{(C_0 + i(\cos(\omega_1 t) + \cos(\omega_2 t))C_1)V\}
\]

\[+ \frac{V}{R_0} [1 + i_0 k(\cos(\omega_1 t) + \cos(\omega_2 t)) + i_0^2 k^2(\cos(\omega_1 t) + \cos(\omega_2 t))^2] + \frac{V}{Z(\omega)} \]

(B.3)

\[= i_0(\cos(\omega_1 t) + \cos(\omega_2 t)) \]

where \(k = \frac{R_1}{R_0} \).

We will use the harmonic balance method [source], where V can be expressed as:
We can insert (B.4) into (B.3) and use the orthogonality property of sine and cosine functions to extract the coefficients. First we will find the linear equations for V_{51a} and V_{51b} which represent the IMD3:

$$V = V_{11a} \cos(\omega_1 t) + V_{11b} \sin(\omega_1 t) + V_{12a} \cos(\omega_2 t) + V_{12b} \sin(\omega_2 t) + V_{21a} \cos(2\omega_1 t) + V_{21b} \sin(2\omega_1 t) + V_{22a} \cos(2\omega_2 t) + V_{22b} \sin(2\omega_2 t) + V_{31a} \cos(3\omega_1 t) + V_{31b} \sin(3\omega_1 t) + V_{32a} \cos(3\omega_2 t) + V_{32b} \sin(3\omega_2 t) + V_{41a} \cos((\omega_1 + \omega_2)t) + V_{41b} \sin((\omega_1 + \omega_2)t) + V_{42a} \cos((\omega_1 - \omega_2)t) + V_{42b} \sin((\omega_1 - \omega_2)t) + V_{51a} \cos((2\omega_1 - \omega_2)t) + V_{51b} \sin((2\omega_1 - \omega_2)t) + V_{52a} \cos((2\omega_2 - \omega_1)t) + V_{52b} \sin((2\omega_2 - \omega_1)t) + V_{61a} \cos((2\omega_1 + \omega_2)t) + V_{61b} \sin((2\omega_1 + \omega_2)t) + V_{62a} \cos((2\omega_2 + \omega_1)t) + V_{62b} \sin((2\omega_2 + \omega_1)t)$$

We can insert (B.4) into (B.3) and use the orthogonality property of sine and cosine functions to extract the coefficients. First we will find the linear equations for V_{51a} and V_{51b} which represent the IMD3:

$$\begin{align*}
C_0(2\omega_1 - \omega_2)V_{51b} + \frac{i_0 C_1}{2} (2\omega_1 - \omega_2)(V_{12b} + V_{21b}) + \frac{V_{51a}}{R_0} + \frac{i_0 k}{2R_0} (V_{42a} + V_{21a}) + \frac{k^2}{4R_0} (4V_{51a} + V_{12a} + 2V_{11a} + 2V_{31a}) + \frac{V_{51a}}{Z(\omega)} = 0 \\
- C_0(2\omega_1 + \omega_2)V_{51a} - \frac{i_0 C_1}{2} (2\omega_1 + \omega_2)(V_{42a} + V_{21a}) + \frac{V_{51b}}{R_0} + \frac{i_0 k}{2R_0} (V_{42b} + V_{21b}) + \frac{k^2}{4R_0} (4V_{51b} - V_{12b} + 2V_{11b} + 2V_{31b}) + \frac{V_{51a}}{Z(\omega)} = 0
\end{align*}$$

We can use (B.5) to solve for V_{51a} and V_{51b}:

$$\begin{align*}
V_{51b} &= \frac{FD - DG - C_0(2\omega_1 - \omega_2)(E + B)}{D^2 + (2\omega_1 - \omega_2)^2 C_0^2} \\
V_{51a} &= \frac{-C_0(2\omega_1 - \omega_2)V_{51b} - B - E}{D}
\end{align*}$$

(B.6a)
Now we need to solve for $V_{11a}, V_{11b}, V_{12a}, V_{12b}, V_{21a}, V_{21b}, V_{31a}, V_{31b}, V_{42a}$ and V_{42b}.

If $\omega_1 \approx \omega_2 \approx \omega$, we can assume $V_{11a} = V_{12a}$ and $V_{11b} = V_{12b}$.

\[
\begin{align*}
-\omega C_0 V_{11a} + \frac{V_{11b}}{R_0} + \frac{3i_0^2 k^2}{4R_0} V_{11b} + \frac{V_{11b}}{Z(\omega)} &= 0 \\
\omega C_0 V_{11b} + \frac{V_{11a}}{R_0} + \frac{3i_0^2 k^2}{4R_0} V_{11a} + \frac{V_{11a}}{Z(\omega)} &= 0
\end{align*}
\]

(B.7)

Solving for V_{11a} and V_{11b} we have:

\[
\begin{align*}
V_{11a} &= i_0 \frac{H}{J + \frac{\omega^2 C_0^2}{H}} \\
V_{11b} &= \frac{\omega C_0 V_{11a}}{H}
\end{align*}
\]

(B.8)

We can solve for V_{21a} and V_{21b} from:

\[
\begin{align*}
2C_0 \omega V_{21b} + i_0 C_1 \omega V_{11b} + \frac{V_{21a}}{R_0} + \frac{i_0 k}{2R_0} V_{11a} + \frac{i_0^2 k^2}{R_0} V_{21a} + \frac{V_{21a}}{Z(\omega)} &= 0 \\
-2C_0 \omega V_{21a} - i_0 C_1 \omega V_{11a} + \frac{V_{21b}}{R_0} + \frac{i_0 k}{2R_0} V_{11b} + \frac{i_0^2 k^2}{R_0} V_{21b} + \frac{V_{21b}}{Z(\omega)} &= 0
\end{align*}
\]

(B.9)

From (B.9) we have:

\[
\begin{align*}
V_{21a} &= \frac{-2C_0 \omega V_{21b} - L}{D} \\
V_{21b} &= \frac{DM - 2C_0 \omega L}{D^2 + 4C_0^2 \omega^2}
\end{align*}
\]

(B.10)

Where D is as defined in equation (B.6). Next we can solve for V_{31a} and V_{31b}:
From (B.10) we have:

\[
\begin{align*}
V_{31a} &= -\frac{3\omega C_0 V_{31b} + N}{D} \\
V_{31b} &= \frac{DP - 3\omega C_0 N}{D^2 + 9\omega^2 C_0^2}
\end{align*}
\]

(B.12)

Solving for \(V_{42a}\) and \(V_{52b}\) we have:

\[
\begin{align*}
C_0(\omega_1 - \omega_2)V_{42b} - \frac{i_0 C_1}{2}(\omega_1 - \omega_2)(V_{12b} - V_{11b}) + \frac{V_{42a}}{R_0} + \frac{i_0^2 k^2}{4R_0} V_{42a} + \frac{V_{42a}}{Z(\omega)} \\
&\quad - \frac{i_0 k}{2R_0}(i_0 k(V_{21a} + V_{22a}) + V_{12a} + V_{11a}) = 0 \\
-C_0(\omega_1 - \omega_2)V_{42b} - \frac{i_0 C_1}{2}(\omega_1 - \omega_2)(V_{12b} - V_{11b}) + \frac{V_{42b}}{R_0} + \frac{i_0^2 k^2}{4R_0} V_{42b} + \frac{V_{42b}}{Z(\omega)} \\
&\quad - \frac{i_0 k}{2R_0}(i_0 k(V_{21b} + V_{22b}) + V_{12b} + V_{11b}) = 0
\end{align*}
\]

(B.13)

From (B.13) we get:

\[
\begin{align*}
V_{42a} &= -\frac{C_0(\omega_1 - \omega_2)V_{42b} + Q}{D} \\
V_{42b} &= \frac{C_0(\omega_1 - \omega_2)Q + RD}{D^2 + C_0^2(\omega_1 - \omega_2)^2}
\end{align*}
\]

(B.14)

where \(V_{22a}\) and \(V_{22b}\) are equivalent to equation (B.10) by replacing \(\omega_1\) with \(\omega_2\) and as before \(V_{11a} = V_{12a}\) and \(V_{11b} = V_{12b}\).

Now that we have solved for all variables we can substitute (B.8), (B.10), (B.12) and (B.14) into (B.6) and solve for \(V_{51a}\) and \(V_{51b}\). Finally we can calculate the IMD3:

\[
V_{IMD3} = \sqrt{V_{51a}^2 + V_{51b}^2}
\]

(B.15)
