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Abstract

The theory of lifting classes and the Reidemeister number of single-
valued maps of a finite polyhedron X is extended to n-valued maps by
replacing liftings to universal covering spaces by liftings with codomain an
orbit configuration space, a structure recently introduced by Xicoténcatl.
The liftings of an n-valued map f split into self-maps of the universal cov-
ering space of X that we call lift-factors. An equivalence relation is defined
on the lift-factors of f and the number of equivalence classes is the Reide-
meister number of f . The fixed point classes of f are the projections of the
fixed point sets of the lift-factors and are the same as those of Schirmer.
An equivalence relation is defined on the fundamental group of X such
that the number of equivalence classes equals the Reidemeister number.
We prove that if X is a smooth closed manifold of dimension at least three,
then algebraically the orbit configuration space approach is the same as
one utilizing the universal covering space. The Jiang subgroup is extended
to n-valued maps as a subgroup of the group of covering transformations
of the orbit configuration space and used to find conditions under which
the Nielsen number of an n-valued map equals its Reidemeister number.
If an n-valued map splits into n single-valued maps, then its n-valued
Reidemeister number is the sum of their Reidemeister numbers.

Keywords and Phrases: lifting, n-valued map, Reidemeister num-
ber, Nielsen number, configuration space, universal covering space,
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Jiang subgroup, orbit configuration space, semidirect product, fixed
point class, cyclic homotopy, braid group, lift-factor
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1 Introduction

Throughout the paper, the space X will be a connected finite poly-
hedron. Given some natural number n > 0, a set-valued function
f : X ( X is an n-valued map if it is continuous, that is, both up-
per and lower semi-continuous, and the cardinality of f(x) is exactly
n for each x, see [3].

For the Nielsen fixed point theory of a single-valued map f : X →
X, the set of liftings f̃ : X̃ → X̃ to the universal covering space
p : X̃ → X is partitioned into equivalence classes under conjugation
by covering transformations. An equivalence class is called a lifting
class and the number of such classes, which may be infinite, is the
Reidemeister number R(f) of the map f [12], [13]. The fixed point

sets Fix(f̃) of equivalent liftings, if nonempty, are mapped by p to

the same subsets of Fix(f). The sets pFix(f̃) are the fixed point
classes of the map f and the number of such classes of nonzero
fixed point index, called the Nielsen number, is a lower bound for
the number of fixed points of every map homotopic to f .

The purpose of this paper is to extend the theory of lifting classes
to the setting of n-valued maps. In order to do so, following [8] we
will view an n-valued map as a single-valued map from X to a space
of subsets of X. Let Fn(X) be the configuration space of n ordered
points on X, defined as:

Fn(X) = {(x1, . . . , xn) | i 6= j implies xi 6= xj}.

which is topologized as a subset of the n-fold Cartesian product of
X. Let Dn(X) be the configuration space of n unordered points on
X, defined as:

Dn(X) = {{x1, . . . , xn} | i 6= j implies xi 6= xj}.

Thus Dn(X) is the orbit space of Fn(X) under the free action of
the symmetric group Σn and the quotient map q : Fn(X)→ Dn(X),
which induces the quotient topology on Dn(X), is a covering space of
order n!. We will not distinguish between an n-valued map f : X (
X, and the corresponding function f : X → Dn(X), which is also
continuous [3]. Thus we may refer to a map f : X → Dn(X) as an
n-valued map.
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As we will discuss in Section 2, the lifting classes for f : X →
Dn(X) will not be classes of maps of the corresponding universal
covering spaces because if n > 1 then such a lifting does not have
a well-defined fixed point set. Instead we will consider liftings f̄ of
f from the universal covering space X̃ to an intermediate covering
space, the orbit configuration space pn : Fn(X̃, π) → Dn(X) where
Fn(X̃, π) is the subspace of the n-fold cartesian product of X̃ defined
by

Fn(X̃, π) = {(x̃1, . . . , x̃n) | i 6= j implies x̃i 6= αx̃j for all α ∈ π1(X)}.

Since Fn(X̃, π) is a subspace of Fn(X̃), we may write a lifting in
the form f̄ = (f̄1, f̄2, . . . , f̄n) where each f̄i, called a lift-factor, is a
map of X̃ to itself. Conjugation by covering transformations par-
titions the set of all lift-factors of all liftings of f into equivalence
classes. In the setting of n-valued maps, the Reidemeister number
R(f) is the number of equivalence classes of lift-factors. The fixed
point set of f is the union of the images of the fixed point sets of
the lift-factors, which are defined to be the fixed point classes of
f . However, a lift-factor may not have any fixed points, in which
case the corresponding fixed point class is the empty set. We prove
that the images are identical if the lift-factors are equivalent and
disjoint otherwise. The number of fixed point classes equals the
Reidemeister number.

Also in Section 2, choosing appropriate base points, we call the
lifting f̄ ∗ of f that preserves the base points its basic lifting. Then,
writing f̄ ∗ = (f̄ ∗1 , f̄

∗
2 , . . . , f̄

∗
n), every lift-factor of f can be written

in the form αf̄ ∗i for some α ∈ π1(X) and 1 ≤ i ≤ n. As a tool for
the subsequent calculations of the Reidemeister number, we use the
basic lifting to define a homomorphism ψf : π1(X)→ π1(X)n o Σn,
where this semi-direct product of the n-fold direct product of π1(X)
and the symmetric group of order n is isomorphic to the group of
covering transformations of the orbit configuration space, by setting
ψf (γ)◦f̄ ∗ = f̄ ∗◦γ. We then can write ψf (γ) = (φ1(γ), . . . , φn(γ);σγ)
where φi : π1(X)→ π1(X) and σ : π1(X)→ Σn with σγ = σ(γ).

Helga Schirmer, in initiating the Nielsen fixed point theory for
n-valued maps in [15], extended the classical definition of the fixed
point classes to n-valued maps. As a model for her definition, she did
not use images of fixed point sets of liftings but, instead, an equiv-
alent definition in terms of paths in the space. Gert-Jan Dugardein
reformulated Schirmer’s theory in terms of a definition of lifting
classes different than the one we introduce in Section 2, but one
that is equivalent to it, and he showed that the fixed point classes
defined as images of the fixed point sets of those liftings are the same
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as the classes defined by Schirmer. We will present Dugardein’s re-
sults in Section 3 and demonstrate that our definition of the fixed
point classes is equivalent to Schirmer’s.

In the fixed point theory of a single-valued map f : X → X, there
is a twisted conjugacy relation defined on the fundamental group
π1(X) of X by setting α equivalent to β if there exists γ ∈ π1(X)
such that α = γβfπ(γ−1) where fπ is the fundamental group ho-
momorphism induced by f . The equivalence classes are in one-
to-one correspondence with the lifting classes and thus the Reide-
meister number is the number of equivalence classes with respect
to this twisted conjugacy. In the setting of n-valued maps, for
n > 1 the approach in Section 4 is somewhat different. We uti-
lize the homomorphism ψf : π1(X) → π1(X)n o Σn where ψf (γ) =
(φ1(γ), . . . , φn(γ);σγ) that we introduced in Section 2. We define an
equivalence relation ∼i on π1(X) by setting α ∼i β if there exists
γ ∈ π1(X) such that σγ(i) = i and α = γβφi(γ

−1). This is not a
twisted conjugacy relation because φi is in general not a homomor-
phism. Let Ri be the number of equivalence classes of ∼i. There
is also an equivalence relation on {1, 2, . . . , n} defined by i ∼ j if
there exists γ ∈ π1(X) such that σγ(i) = j. If we choose a subset
I ⊆ {1, 2, . . . , n} of representatives for the equivalence classes of ∼,

then the Reidemeister number of f is R(f) =
∑
i∈I

Ri. We illustrate

this approach by computing the Reidemeister number of a specific
3-valued map of the 2-torus.

In Section 5 we calculate the Reidemeister number for all n-
valued maps f : S1 ( S1 of the circle. Viewing the circle as the
complex numbers of norm one, it was proved in [2] that every such
map is n-valued homotopic to a map that takes z to the set of n-th
roots of zd for some integer d. We use the results of the previous
section to prove that R(f) = |n − d| if d 6= n and R(f) = ∞ if
d = n.

Since the Reidemeister number of a single-valued map f : X → X
is determined by a twisted conjugacy relation that depends on the
induced fundamental group homomorphism fπ : π1(X)→ π1(X), it
would be natural to define the Reidemeister number of an n-valued
map f : X → Dn(X) in terms of the induced fundamental group
homomorphism fπ : π1(X) → π1(Dn(X)). Although, for reasons
explained above, we have utilized the orbit configuration space of
X̃ in place of the universal covering space of Dn(X), in Section 6
we prove that if X is a smooth closed manifold of dimension at
least three, then algebraically the two approaches are the same. A
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notable feature of this section is a demonstration that the config-
uration space Fn(X) is connected (if X is a connected polyhedron
not homeomorphic to the interval or circle) that is modeled on an
argument regarding robot motion planning.

For a map f : X → X, Jiang in [11] introduced a subgroup J(f̃) of
the fundamental group that is called the Jiang subgroup of the map
f . It consists of the elements α ∈ π1(X) such that there is a cyclic
homotopy H : X × I → X, that is, a homotopy with the property
that H(x, 0) = H(x, 1) = f(x) that, when lifted to the universal

covering space, induces a homotopy between f̃ and αf̃ , where α ∈
π1(X) is identified with the corresponding covering transformation.
In Section 7 we extend Jiang’s theory to n-valued maps. Lifting a
cyclic homotopy H : X × I → Dn(X) to a homotopy starting at the
basic lifting f̄ ∗ : X̃ → Fn(X̃, π) determines an element of π(X)n o
Σn at the other end of the lifting and thus the cyclic homotopies
determine a subgroup Jn(f̄ ∗) of π(X)n o Σn, the Jiang subgroup
for n-valued maps. If ψf (π1(X)) ⊆ Jn(f̄ ∗), where ψf : π1(X) →
π1(X)noΣn is the homomorphism introduced in Section 2, and for
each i ∈ {1, . . . , n}, there exists γ ∈ π(X) such that σγ(j) = i for
some j ∈ {1, . . . , n} then all the fixed point classes of f have the
same fixed point index and thus the Nielsen number N(f) has the
property that either N(f) = 0 or N(f) = R(f). If X = T q is the
q-torus for q ≥ 1, then ψf (π1(T q)) ⊆ Jn(f̄ ∗) for all n-valued maps.
In particular, if fn,A : T q → Dn(T q) is a linear n-valued map of [4],
then either N(fn,A) = 0 or N(fn,A) = R(fn,A).

A final section discusses split n-valued maps, that is, maps f : X →
Dn(X) for which there exist single-valued maps f1, . . . , fn : X → X
such that f(x) = {f1(x), . . . , fn(x)} for all x ∈ X. We prove that in
this case its Reidemeister number for n-valued maps is the sum of
the Reidemeister numbers of the fi.

We thank the referee for helpful comments and suggestions.

2 Coverings of Dn(X)

Let X be a space such that Fn(X) is connected and let u : F̃n(X)→
Fn(X) be the universal covering space. The quotient map q :
Fn(X)→ Dn(X) is a covering so, since F̃n(X) is a universal cover, it
is simply connected and thus F̃n(X) is the universal covering space
of Dn(X) with covering projection qu : F̃n(X)→ Dn(X).

Let p : X̃ → X be the universal covering space of X. A map
f : X → Dn(X) has a lifting f̃ to the universal covering spaces:
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X̃ F̃n(X)

X Dn(X)

f̃

p qu

f

But, in contrast to the setting of single-valued maps, the lifting of
an n-valued map f : X → Dn(X) to the universal covering spaces,
for n > 1, is not a convenient object of study because the fixed point
set of f̃ is not defined since F̃n(X) 6= X̃. Consequently, the map f
will not be lifted to the universal covering spaces, but instead we
will make use of an intermediate covering.

Let E be a space and G be a group acting on E. Xicoténcatl
defined the orbit configuration space of n ordered points (see [17])
as:

Fn(E,G) = {(e1, . . . , en) ∈ Fn(E) | Gei 6= Gej for i 6= j}.

We will make use of the orbit configuration space Fn(X̃, π1(X))
which we will write more compactly as Fn(X̃, π). We will show that
both Fn(X) and Fn(X̃, π) are (path) connected and locally path con-
nected for all compact polyhedra except when X is homeomorphic
to an interval or a circle. In the latter cases Fn(X) and Fn(X̃, π)
are still locally path connected.

The following theorem is the special case of Theorem 2.3 of [17]
that describes the covering Fn(X̃, π) of Dn(X). For the reader‘s
convenience, we provide a proof for this special case.

We will use the semidirect product group π1(X)n o Σn, where
π1(X)n is the direct product of n copies of the fundamental group
and where the group operation and inverse take the form:

(α1, . . . , αn;σ)(β1, . . . , βn; ρ) = (α1βσ−1(1), . . . , αnβσ−1(n);σ ◦ ρ)

(α1, . . . , αn;σ)−1 = (α−1
σ(1), . . . , α

−1
σ(n);σ

−1).

Theorem 2.1 (Xicoténcatl). Let X be a compact polyhedron which
is not homeomorphic to the circle or an interval, then the map

pn : Fn(X̃, π)→ Dn(X)

is a covering map with covering group π1(X)noΣn, where pn applies
p : X̃ → X to each element of an n-element configuration. The
action of π1(X)n o Σn on Fn(X̃, π) is given by:

(α1, . . . , αn;σ) · (x̃1, . . . , x̃n) = (α1x̃σ−1(1), . . . , αnx̃σ−1(n)).

6



Proof. The reader may verify that the stated definition determines
an action of π1(X)n o Σn on Fn(X̃, π).

As p : X̃ → X is a covering map with covering group π1(X) it
follows that pn : X̃n → Xn is a covering map with covering group
π1(X)n, where the action of an element (α1, . . . , αn) ∈ π1(X)n on
an element (x̃1, . . . , x̃n) ∈ X̃n is given by

(α1, . . . , αn) · (x̃1, . . . , x̃n) = (α1x̃1, . . . , αnx̃n).

Now Fn(X) is a subspace of Xn and (pn)−1(Fn(X)) = Fn(X̃, π),
hence by restriction we also obtain a covering map (which we de-
note by the same symbol) pn : Fn(X̃, π) → Fn(X) and Fn(X) =
π1(X)n\Fn(X̃, π). Note that the action of π1(X)n on Fn(X̃, π) is
just the restriction of the action of π1(X)n oΣn to the normal sub-
group π1(X)n.

The induced action of Σn =
π1(X)n o Σn

π1(X)n
on the space Fn(X) =

π1(X)n\Fn(X̃, π) is the action given by

σ · (x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n))

so Σn\Fn(X) = Dn(X) (and thusDn(X) = (π1(X)noΣn)\Fn(X̃, π))
and the map q : Fn(X)→ Dn(X) is a covering map.

It follows that the composition q ◦ pn : Fn(X̃, π) → Dn(X) is
also a covering map which, by abuse of notation, we also denote
by pn as in the statement of this theorem. Since we assume that
X is not the circle or an interval, we will prove as Theorem 6.3
that Fn(X̃, π) is path connected. Lemma 6.6 will contain a proof
that Dn(X) is locally path connected and, since pn : Fn(X̃, π) →
Dn(X) is a covering map, Fn(X̃, π) is also locally path connected.
Therefore by Theorem 81.5 of [14], π1(X)n o Σn is the group of
covering transformations of pn : Fn(X̃, π)→ Dn(X).

Remark 2.2. If X is homeomorphic to an interval or a circle the
space Fn(X̃, π) is disconnected for all n > 1. However the space
Dn(X) is connected (see Section 6). We still have that π1(X)noΣn

acts properly discontinuously on Fn(X̃, π) and that the orbit space
(π1(X)noΣn)\Fn(X̃, π) equals Dn(X), but π1(X)noΣn is not the
group of covering transformations. On the other hand we have the
following facts

• if C1 and C2 are two connected components of Fn(X̃, π), then
there exists (α1, . . . , αn;σ) ∈ π1(X)n o Σn such that

(α1, . . . , αn;σ)C1 = C2.
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• For any connected component C of Fn(X̃, π), it follows that
the restriction map pn : C → Dn(X) is a covering map, with
covering group

G = {(α1, . . . , αn;σ) ∈ π1(X)n o Σn | (α1, . . . , αn;σ)C = C}.

Now, let X be any compact polyhedron and let f : X → Dn(X)
be an n-valued map and f̄ : X̃ → Fn(X̃, π) a lifting of f. Since
Fn(X̃, π) ⊆ Fn(X̃), we may write f̄ in terms of the coordinate self-
maps of X̃ as f̄ = (f̄1, . . . , f̄n). Then we have the diagram

X̃ Fn(X̃, π)

X Dn(X)

(f̄1,...,f̄n)

p pn

f

We call the maps f̄i : X̃ → X̃ the lift-factors of the map f. Note
that another lifting f̄ ′ : X̃ → Fn(X̃, π) of f gives rise to other lift-
factors f̄ ′1, . . . , f̄

′
n of f. We define the set of lift-factors of f as the

set containing all lift-factors of all possible liftings of f.
Recall from the single-valued theory that, choosing a lifting f̃ ∗ : X̃ →

X̃ to the universal covering space of a single-valued function f : X →
X, the liftings are the αf̃ ∗ where α is a covering transformation and
therefore each lifting may be associated with an element of π1(X).

Liftings αf̃ ∗ and βf̃ ∗ are equivalent via µ ∈ π1(X) if

αf̃ ∗ = µβf̃ ∗µ−1.

In what follows, we will define a similar equivalence relation for
n-valued maps on the set of lift-factors.

Lemma 2.3. Let f̄i be a lift-factor of f and γ ∈ π1(X). Then γf̄iγ
−1

is also a lift-factor of f.

Proof. Let f̄ : X̃ → Fn(X̃, π) be a lifting of f with ith component
f̄i. Consider the map

(γ, . . . , γ) : Fn(X̃, π)→ Fn(X̃, π) : (x̃1, . . . , x̃n) 7→ (γx̃1, . . . , γx̃n)

and the following commutative diagram (where 1X is the identity
on X):

X̃ X̃ Fn(X̃, π) Fn(X̃, π)

X X Dn(X) Dn(X)

γ−1

p

f̄

p

(γ,...,γ)

pn pn

1X f 1Dn(X)
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It follows that (γ, . . . , γ)◦ f̄ ◦γ−1 is a lifting of f. The ith component
of this lifting is γf̄iγ

−1, so this is a lift-factor of f.

Now we can define lift-factor equivalence on the set of lift-factors
of f, denoted by ∼lf , by

f̄i ∼lf f̄ ′j ⇐⇒ ∃γ ∈ π1(X) : f̄i = γf̄ ′jγ
−1

on the set of lift-factors of f.
The equivalence classes are called the lift-factor classes. We de-

fine the Reidemeister number R(f) of f : X → Dn(X) to be the
number of lift-factor classes. The Reidemeister number is either a
natural number or ∞ and, since the lift-factors of a single-valued
map are its liftings to the universal covering space, this is the clas-
sical concept if f is single-valued.

Let f : X → Dn(X) be an n-valued map. We choose basepoints
as follows. First select some x̃∗ ∈ X̃ and let x∗ = p(x̃∗). Set

x(0) = f(x∗) ∈ Dn(X) and choose x̃(0) = (x̃
(0)
1 , . . . , x̃

(0)
n ) ∈ F (X̃, π)

such that
x(0) = {p(x̃(0)

1 ), . . . , p(x̃(0)
n )}.

Let f̄ ∗ : X̃ → Fn(X̃, π) be the lifting of f such that f̄ ∗(x̃∗) = x̃(0).
Note that if X is homeomorphic to the circle or an interval, there
is still just one such lifting. The universal covering space X̃ is con-
nected and thus f̄ ∗(X̃) is also connected, so we can apply the usual
covering space theory to the component C of Fn(X̃, π) which con-
tains x̃(0).

The lifting f̄ ∗ = (f̄ ∗1 , . . . , f̄
∗
n) is characterized by the property

that it preserves basepoints, so we will call it the basic lifting of the
n-valued map f . The lift-factors of f̄ ∗ can be ordered such that

f̄ ∗i (x̃∗) = x̃
(0)
i . For polyhedra X not homeomorphic to the circle or

an interval, by Theorem 2.1 and covering space theory all liftings of
f can be written in a unique way in the form

(α1, . . . , αn; η)f̄ ∗ = (α1f̄
∗
η−1(1), . . . , αnf̄

∗
η−1(n))

for some (α1, . . . , αn; η) ∈ π1(X)n o Σn.
From Remark 2.2 it is not difficult to see that if X is homeo-

morphic to the circle or an interval, each lifting of f can be written
uniquely in the same way.

It follows that every lift-factor of f can be written as αf̄ ∗i for an
α ∈ π1(X) and i ∈ {1, . . . , n}, so the set of lift-factors of f is the set

{αf̄ ∗i | α ∈ π1(X), i ∈ {1, . . . , n}}.
In the next lemma we will show that if two lift-factors agree at any
single point, then they must be the same.
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Lemma 2.4. Let f̄i, f̄
′
j : X̃ → X̃ be lift-factors of f. If f̄i(x̃) = f̄ ′j(x̃)

for any x̃ ∈ X̃, then this holds for all x̃ ∈ X̃ so f̄i = f̄ ′j.

Proof. Let f̄ ∗ = (f̄ ∗1 , . . . , f̄
∗
n) be a basic lifting of f. Then there exist

α, β ∈ π1(X) and k, l ∈ {1, . . . , n} such that f̄i = αf̄ ∗k and f̄ ′j = βf̄ ∗l .

For every x̃ ∈ X̃ we have

f(p(x̃)) = pn(f̄ ∗(x̃)) = {p(f̄ ∗1 (x̃)), . . . , p(f̄ ∗n(x̃))}.

Now assume that αf̄ ∗k (x̃) = βf̄ ∗l (x̃) for some x̃ ∈ X̃, then

p(f̄ ∗k (x̃)) = p(αf̄ ∗k (x̃)) = p(βf̄ ∗l (x̃)) = p(f̄ ∗l (x̃)).

If k 6= l, then f(p(x̃)) would be a set with fewer than n points of
X. We conclude that k = l, so αf̄ ∗k (x̃) = βf̄ ∗k (x̃). Covering transfor-
mations are uniquely determined by the action on one point, so it
follows that α = β and hence f̄i = f̄ ′j.

In the lemma above we showed that for α, β ∈ π1(X) and i, j ∈
{1, . . . , n} :

αf̄ ∗i = βf̄ ∗j ⇐⇒ α = β and i = j,

so we can identify the set of lift-factors of f with the set π1(X) ×
{1, . . . , n}.

The basic lifting f̄ ∗ determines a function ψf : π1(X)→ π1(X)no
Σn by the requirement that

∀γ ∈ π1(X) : ψf (γ) ◦ f̄ ∗ = f̄ ∗ ◦ γ.

We write ψf (γ) = (φ1(γ), . . . , φn(γ);σγ).
The function ψf depends on the choice of the basic lifting in the

following way. Suppose f̄ ′ = (f̄ ′1, f̄
′
2, . . . , f̄

′
n) is another lifting, then

f̄ ′ is related to the basic lifting by f̄ ′ = (~α; η)f̄ ∗ for some (~α; η) =
(α1, α2, . . . , αn; η) ∈ π1(X)noΣn. Define ψ′f : π1(X)→ π1(X)noΣn

by ψ′f (γ) ◦ f̄ ′ = f̄ ′ ◦ γ for γ ∈ π1(X). Then

ψ′f (γ)◦ f̄ ′ = (~α; η)f̄ ∗ ◦γ = (~α; η)ψf (γ)◦ f̄ ∗ = (~α; η)ψf (γ)(~α; η)−1 ◦ f̄ ′

and therefore
ψ′f (γ) = (~α; η)ψf (γ)(~α; η)−1.

Thus ψf is well-defined up to an inner automorphism of π1(X)noΣn.

Lemma 2.5. The function ψf : π1(X) → π1(X)n o Σn is a homo-
morphism.

10



Proof. Let α, β ∈ π1(X) and x̃ ∈ X̃. By the definition of ψf , we
have on the one hand f̄ ∗(αβx̃) = ψf (αβ) ◦ f̄ ∗(x̃) and on the other
hand f̄ ∗(αβx̃) = ψf (α) ◦ f̄ ∗(βx̃) = ψf (α) ◦ ψf (β) ◦ f̄ ∗(x̃). It follows
that

ψf (αβ)(f̄ ∗1 (x̃), . . . , f̄ ∗n(x̃)) = ψf (α)ψf (β)(f̄ ∗1 (x̃), . . . , f̄ ∗n(x̃)).

Since any lifting of f can be uniquely written in the form (α1, . . . , αn; η)f̄ ∗,
this implies that ψf (αβ) = ψf (α)ψf (β) which concludes the proof
that ψf is a homomorphism.

Note that the lemma implies that σ : π1(X) → Σn : γ 7→ σγ is
also a homomorphism.

Theorem 2.6. Let f : X → Dn(X) be an n-valued map with basic
lifting f̄ ∗ = (f̄ ∗1 , . . . , f̄

∗
n). Two lift-factors αf̄ ∗i and βf̄ ∗j are equivalent

if and only if there exists an element γ ∈ π1(X) such that{
σγ(j) = i
α = γβφj(γ

−1).

Proof. Note that for all γ ∈ π1(X) :

(f̄ ∗1 , . . . , f̄
∗
n) ◦ γ−1 = ψf (γ

−1)(f̄ ∗1 , . . . , f̄
∗
n)

= (φ1(γ−1), . . . , φn(γ−1);σγ−1)(f̄ ∗1 , . . . , f̄
∗
n)

= (φ1(γ−1)f̄ ∗σγ(1), . . . , φn(γ−1)f̄ ∗σγ(n)).

The last equality holds because σ is a homomorphism such that
σ−1
γ−1 = σγ. The jth component of (f̄ ∗1 , . . . , f̄

∗
n) ◦ γ−1 is

f̄ ∗j ◦ γ−1 = φj(γ
−1)f̄ ∗σγ(j).

This expression implies that for α, β ∈ π1(X) and i, j ∈ {1, . . . , n} :

αf̄ ∗i ∼lf βf̄ ∗j ⇐⇒ ∃γ ∈ π1(X) : αf̄ ∗i = γβf̄ ∗j γ
−1

⇐⇒ ∃γ ∈ π1(X) : αf̄ ∗i = γβφj(γ
−1)f̄ ∗σγ(j)

⇐⇒ ∃γ ∈ π1(X) :

{
σγ(j) = i
α = γβφj(γ

−1),

where the last equivalence holds because αf̄ ∗i = βf̄ ∗j ⇐⇒ α =
β and i = j.

Since we identify the set of lift-factors with the set π1(X) ×
{1, . . . , n}, the equivalence relation ∼lf gives rise to an equivalence
relation on π1(X)×{1, . . . , n}. We denote the equivalence classes of
this relation by [(α, i)]. Theorem 2.6 then implies that

[(α, i)] = [(β, j)] ⇐⇒ ∃γ ∈ π1(X) :

{
σγ(j) = i
α = γβφj(γ

−1).
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Theorem 2.7. If n-valued maps f, g : X → Dn(X) are homotopic,
then R(f) = R(g).

Proof. Let f, g : X → Dn(X) be homotopic n-valued maps, f̄ ∗ the
basic lifting of f and H : X × I → Dn(X) a homotopy such that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Lifting H to

H̄ : X̃ × I → Fn(X̃, π)

with H̄(x̃, 0) = f̄ ∗(x̃) defines the basic lifting ḡ∗ of g by setting
H̄(x̃, 1) = ḡ∗(x̃). If X is homeomorphic to the circle or an interval
we can use the usual covering space theory by restricting Fn(X̃, π)
to the connected component C of Fn(X̃, π) containing f̄ ∗(x̃). Con-
sidering the basic liftings f̄ ∗ of f and ḡ∗ of g, we will show that
ψf = ψg. Let γ ∈ π1(X) and define the map

γ × 1I : X̃ × I → X̃ × I : (x̃, t) 7→ (γx̃, t).

The map H̄ ◦ (γ × 1I) : X̃ × I → Fn(X̃, π) is a lifting of H with

(H̄ ◦ (γ × 1I))(x̃, 0) = H̄(γx̃, 0) = f̄ ∗(γx̃) = ψf (γ)f̄ ∗(x̃),

(H̄ ◦ (γ × 1I))(x̃, 1) = H̄(γx̃, 1) = ḡ∗(γx̃) = ψg(γ)ḡ∗(x̃)

for all x̃ ∈ X̃. The map ψf (γ) ◦ H̄ is also a lifting of H, with

(ψf (γ) ◦ H̄)(x̃, 0) = ψf (γ)f̄ ∗(x̃),

(ψf (γ) ◦ H̄)(x̃, 1) = ψf (γ)ḡ∗(x̃),

for all x̃ ∈ X̃. By the uniqueness of lifting property (and the fact
that all maps have their image in the same connected component
C in the case that X is homeomorphic to a circle or an interval), it
follows that ψg(γ)ḡ∗(x̃) = ψf (γ)ḡ∗(x̃) for all x̃ ∈ X̃ and, applying
uniqueness of liftings again, this shows that ψf = ψg. Theorem 2.6
then implies that R(f) = R(g).

Theorem 2.8. Let f : X → Dn(X) be an n-valued map, then

Fix(f) =
⋃
f̄i

pFix(f̄i)

where the union is taken over the set of lift-factors of f and Fix(f) =
{x ∈ X | x ∈ f(x)}.

Proof. Let x̃ ∈ X̃ such that x̃ = f̄i(x̃). Then for x = p(x̃), we have

x = p(f̄i(x̃)) ∈ fp(x̃) = f(x)
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and we have proved that⋃
f̄i

pFix(f̄i) ⊆ Fix(f).

Now suppose x ∈ Fix(f). Choose a lifting f̄ = (f̄1, . . . , f̄n) : X̃ →
Fn(X̃, π) of f and let

pnf̄ = {pf̄1, . . . , pf̄n} : X̃ → Dn(X).

Since x is a fixed point, there exists i ∈ {1, . . . , n} and x̃ ∈ p−1(x)
such that pf̄i(x̃) = x so f̄i(x̃) ∈ p−1(x) and thus there exists γ ∈
π1(X) such that γf̄i(x̃) = x̃. We have proved that x ∈ pFix(γf̄i)
and since γf̄i is also a lift-factor of f, we have

Fix(f) ⊆
⋃
f̄i

pFix(f̄i).

In the next theorem we will see that an equivalence class of lift-
factors determines a subset of Fix(f).

Theorem 2.9. Let f : X → Dn(X) be an n-valued map and f̄i, f̄
′
j

two lift-factors of f.

(a) If f̄i ∼lf f̄ ′j, then pFix(f̄i) = pFix(f̄ ′j).

(b) If pFix(f̄i) ∩ pFix(f̄ ′j) 6= ∅ then f̄i ∼lf f̄ ′j.

Proof. For (a), assume that f̄i = γf̄ ′jγ
−1 with γ ∈ π1(X). We will

show that pFix(f̄i) = pFix(f̄ ′j). Let x0 ∈ pFix(f̄i). Then there

exists x̃0 ∈ p−1(x0) ∩ Fix(f̄i) so

x̃0 = f̄i(x̃0) = γf̄ ′j(γ
−1x̃0).

Therefore γ−1x̃0 = f̄ ′j(γ
−1x̃0), that is γ−1x̃0 ∈ Fix(f̄ ′j), and thus x0 =

p(γ−1x̃0) ∈ pFix(f̄ ′j). We have proved that pFix(f̄i) ⊆ pFix(f̄ ′j). A

symmetric argument establishes that pFix(f̄i) = pFix(f̄ ′j).

Now, for (b), we assume that pFix(f̄i) ∩ pFix(f̄ ′j) is nonempty

and we will find an element γ ∈ π1(X) such that f̄i = γf̄ ′jγ
−1. Let

x0 ∈ pFix(f̄i) ∩ pFix(f̄ ′j) and choose x̃0 ∈ p−1(x0) ∩ Fix(f̄i). There

exists µ ∈ π1(X) such that µx̃0 ∈ Fix(f̄ ′j), so f̄ ′j(µx̃0) = µx̃0 and
thus

µ−1f̄ ′j(µx̃0) = x̃0 = f̄i(x̃0).

Since the lift-factors µ−1f̄ ′jµ and f̄i agree at a point, they are the

same by Lemma 2.4, so µ−1f̄ ′jµ = f̄i. Choosing γ = µ−1, this com-
pletes the proof.
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For a map f : X → Dn(X), we can now define the fixed point
classes of f . To any equivalence class [f̄i] of a lift-factor, we associate
a fixed point class which is the subset of Fix(f) given by

pFix(f̄i) = {p(x̃) | f̄i(x̃) = x̃} ⊆ Fix(f).

The theorem above shows that this subset does not depend on the
chosen representative of the equivalence class [f̄i].

We note that Fix(f̄i) may be empty and therefore a fixed point
class pFix(f̄i) may be the empty set. Just as in the single-valued
case, two empty fixed point classes that are determined by differ-
ent lift-factor classes will be regarded as being different fixed point
classes.

Thus two nonempty fixed point classes pFix(f̄i) and pFix(f̄ ′j)

are equal if and only if f̄i ∼lf f̄ ′j and are disjoint when f̄i �lf f̄
′
j. So

R(f), the number of lift-factor classes, is also the number of fixed
point classes.

3 The Construction of Dugardein

We continue to denote the universal covering space of X by p : X̃ →
X. Given an n-valued map f : X → Dn(X), Gert-Jan Dugardein

defined a map f̂ : X̃ → Fn(X̃, π) as follows.1 The map fp : X̃ →
Dn(X) lifts to Fn(X) and therefore it splits as (f1, . . . , fn) : X̃ →
Fn(X) where fi : X̃ → X for each i. The ordering can be cho-

sen so that each fi lifts to f̃i : X̃ → X̃ such that f̃i(x̃
∗) = x̃

(0)
i ,

the basepoints of Section 2. Therefore, (f1, . . . , fn) lifts to f̂ =

(f̃1, . . . , f̃n) : X̃ → Fn(X̃) such that f̂(x̃∗) = x̃(0). Since pn(f̃1, . . . , f̃n)(x̃) ∈
Dn(X) for all x̃ ∈ X̃ and hence pf̃i(x̃) 6= pf̃j(x̃) for i 6= j, we may

consider f̂ as a map f̂ : X̃ → Fn(X̃, π).

It is clear from the definition that f̂ : X̃ → Fn(X̃, π) is a lifting
of f : X → Dn(X). The basic lifting f̄ ∗ is also such a lifting and

f̂(x̃∗) = f̄ ∗(x̃∗) = x̃(0), so they are the same map. Moreover, since

(f̃1, . . . , f̃n) and (f̄ ∗1 , . . . , f̄
∗
n) are two splittings of f̄ = f̂ that corre-

spond at the basepoints, then f̃i = f̄ ∗i for i = 1, . . . , n. Consequently,

the results of this section, that concern the subsets pFix(αif̃i) of
Fix(f), apply as well to the fixed point classes that were defined in
Section 2 as the sets pFix(αif̄

∗
i ).

1The construction and its properties were presented at the conference “Nielsen Theory and
Related Topics” held in Rio Claro, Brazil in July, 2016. Dugardein has made the slides of his
talk available to the authors and given them permission to include this material in the present
paper.
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For a map f : X → Dn(X), employing the definition of Schirmer
in [15] we will say that x0, x1 ∈ Fix(f) are S-equivalent if there is
a map c : I = [0, 1] → X from x0 to x1 such that, for the splitting
fc = {c1, . . . , cn} : I → Dn(X), some ck is a path from x0 to x1 and
ck is homotopic to c relative to the endpoints.

Theorem 3.1 (Dugardein). Fixed points x0, x1 of f : X → Dn(X)
are S-equivalent if and only if there exists i ∈ {1, . . . , n} and αi ∈
π1(X) such that x0, x1 ∈ pFix(αif̃i).

Proof. Suppose x0, x1 ∈ pFix(αif̃i) so there exist x̃0 ∈ p−1(x0), x̃1 ∈
p−1(x1) in X̃ such that x̃0 = αif̃i(x̃0) and x̃1 = αif̃i(x̃1). Let c̃ : I →
X̃ be a path from x̃0 to x̃1, then c̃ is homotopic to αif̃ic̃ relative to
the endpoints by a homotopy H̃ : I × I → X̃. Let p(c̃) = c, then
fc : I → Dn splits as fc = {c1, . . . , cn}. We have a commutative
diagram:

X̃ Fn(X)

I X Dn(X)

p

(f1,...,fn)

q

c

c̃

f

Now pH̃ : I × I → X is a homotopy between c and pαif̃ic̃. On the
other hand,

pαif̃ic̃ = pf̃ic̃ = fic̃ ∈ q(f1, . . . , fn)c̃ = fc

so pαif̃ic̃ = ck for some k ∈ {1, . . . , n} and therefore x0 and x1 are
S-equivalent.

If fixed points x0, x1 of f : X → Dn(X) are S-equivalent, then
there is a map c : I → X from x0 to x1 such that, for the splitting
fc = {c1, . . . , cn} : I → Dn(X), some ck is a path from x0 to x1 and
ck is homotopic to c relative to the endpoints. Let H : I×I → X be
a homotopy from ck to c relative to the endpoints, that is, H(0, t) =
x0, H(1, t) = x1 for all t ∈ I and H(s, 0) = ck(s), H(s, 1) = c(s) for

all s ∈ I. Choose some x̃0 ∈ p−1(x0). Since (f̃1, . . . , f̃n) is a lifting
of f and x0 is a fixed point of f , then there exists i ∈ {1, . . . , n}
such that f̃i(x̃0) ∈ p−1(x0) and therefore αi ∈ π1(X) such that

αif̃i(x̃0) = x̃0. Let H̃ : I×I → X̃ be the lifting of H to x̃0 such that
H̃(0, t) = x̃0 for all t ∈ I. Define x̃1 = H̃(1, 0) and thus H̃(1, t) = x̃1

for all t ∈ I. Note that p(x̃1) = x1.
The path c̃, which is defined as the restriction of H̃ to I ×{1} is

a lifting of the path c starting at x̃0.
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We claim that the path c̃′, defined as H̃ restricted to I × {0}, is

the path αif̃ic̃. For this, it is enough to prove that αif̃ic̃ is a path
starting at x̃0 and is a lifting of the path ck. The starting point of
αif̃ic̃ is αif̃ic̃(0) = αif̃i(x̃0) = x̃0. As above we have that

pαif̃ic̃ = pf̃ic̃ = fic̃ ∈ q(f1, . . . , fn)c̃ = fc.

And so pαif̃ic̃ is one of the paths cj. But we know that pαif̃ic̃ starts
at x0. Since each of the paths cj starts at a different point, we must

have that pαif̃ic̃ is equal to the unique path which also starts at x0,
which is ck, and this proves our claim.

Since H̃ is a path homotopy between c̃ and c̃′ = αif̃ic̃, it follows
that c̃(1) = c̃′(1), so

x̃1 = c̃(1) = c̃′(1) = αif̃i(x̃1)

which shows that x̃1 ∈ Fix(αif̃i). So we have proved that x0, x1 ∈
pFix(αif̃i).

Thus by Theorem 3.1 the fixed point classes pFix(αif̄
∗
i ) defined

in Section 2 are the same subsets of Fix(f) as those of Schirmer
in [15]. Schirmer in [15] defined the Nielsen number N(f) of an
n-valued map to be the number of fixed point classes of non-zero
index. By Theorem 2.9 we can conclude that

Proposition 3.2. For any n-valued map f : X → Dn(X), we have
N(f) ≤ R(f).

4 Computation of the Reidemeister number

In the previous section, we proved that the Reidemeister number of
an n-valued map is an upper bound for the Nielsen number. In this
section, we will present a method for computing the Reidemeister
number and we will demonstrate this method by means of the fol-
lowing example of a 3-valued map on the torus T 2 = S1 × S1. (We
will view S1 as being the set of complex numbers of modulus 1).

Consider the maps f̄ ∗i : R2 → R2 (i = 1, 2, 3) defined by

f̄ ∗1 (t, s) = (
t

2
,−s),

f̄ ∗2 (t, s) = (
t+ 1

2
,−s),

f̄ ∗3 (t, s) = (−t,−s+
1

2
).
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These maps induce a 3-valued map on the torus:

f : T 2 ( T 2 : p(t, s) 7→
{
p(
t

2
,−s), p(t+ 1

2
,−s), p(−t,−s+

1

2
)

}
,

where p : R2 → T 2 : (t, s) 7→ (e2πit, e2πis) is the universal covering
space. If we choose basepoints x̃∗ = (0, 0), x∗ = p(0, 0), x(0) =
f(x∗) =

{
p(0, 0), p(1

2
, 0), p(0, 1

2
)
}

and x̃(0) =
(
(0, 0), (1

2
, 0), (0, 1

2
)
)
,

then f̄ ∗ = (f̄ ∗1 , f̄
∗
2 , f̄

∗
3 ) : R2 → F3(R2, π1(T 2)) is the basic lifting of f.

We start by computing the fixed points of f. A point p(t, s) ∈ T 2 is a
fixed point of f if and only if p(t, s) = p( t

2
,−s) or p(t, s) = p( t+1

2
,−s)

or p(t, s) = p(−t,−s+ 1
2
).

We consider the three cases separately. For the first case, we have

p(t, s) = p
( t

2
,−s

)
⇐⇒ ∃k,m ∈ Z : t =

t

2
+ k and s = −s+m

⇐⇒ t

2
∈ Z and 2s ∈ Z.

The fixed points we find in this way are p(0, 0) and p(0, 1
2
).

Analogously, the requirement that p(t, s) = p( t+1
2
,−s) leads to

the same fixed points p(0, 0) (= p(1, 0)) and p(0, 1
2
) (= p(1, 1

2
)).

Finally, requiring that p(t, s) = p(−t,−s + 1
2
) gives rise to four

fixed points p(0, 1
4
), p(0, 3

4
) , p(1

2
, 1

4
) and p(1

2
, 3

4
).

So f has six fixed points, of which two are related to both f̄ ∗1 and
f̄ ∗2 and the other four are connected with f̄ ∗3 . It is important to note
that f̄ ∗1 and f̄ ∗2 give rise to the same fixed points.

Recall the definition of the homomorphism ψf : π1(X)→ π1(X)no
Σn :

∀γ ∈ π1(X) : ψf (γ) ◦ f̄ ∗ = f̄ ∗ ◦ γ.
We will compute ψf for this 3-valued map f. Let γ ∈ Z2, so γ =
(z1, z2) which acts on (x, y) ∈ R2 by translation. Then

(f̄ ∗ ◦ γ)(t, s) = f̄ ∗(t+ z1, s+ z2)

=

(
(
t+ z1

2
,−s− z2) , (

t+ z1 + 1

2
,−s− z2), (−t− z1,−s− z2 +

1

2
)

)
.

When z1 is even, we find that this equals(
(
z1

2
,−z2), (

z1

2
,−z2), (−z1,−z2); I

)
f̄ ∗(t, s),
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with I the identity permutation of {1, 2, 3}, while if z1 is odd, this
equals (

(
z1 − 1

2
,−z2), (

z1 + 1

2
,−z2), (−z1,−z2); ν

)
f̄ ∗(t, s),

with ν(1) = 2, ν(2) = 1 and ν(3) = 3. This determines ψf (γ) =
(φ1(γ), φ2(γ), φ3(γ);σγ) for all γ = (z1, z2) ∈ Z2 :

z1 even z1 odd
φ1(z1, z2) ( z1

2
,−z2) ( z1−1

2
,−z2)

φ2(z1, z2) ( z1
2
,−z2) ( z1+1

2
,−z2)

φ3(z1, z2) (−z1,−z2) (−z1,−z2)
σ(z1,z2) I ν = (12)(3)

We now turn back to the general situation. Each time we con-
sider a map f : X → Dn(X), we will assume that a basic lift-
ing f̄ ∗ as in Section 2 is fixed and we will also consider the in-
duced homomorphism ψf : π1(X) → π1(X)n o Σn with ψf (γ) =
(φ1(γ), . . . , φn(γ);σγ).

Lemma 4.1. Let f : X → Dn(X) be an n-valued map with basic
lifting f̄ ∗. Let i, j ∈ {1, . . . , n} and suppose there exists γ ∈ π1(X)
such that σγ(j) = i. Then for every α ∈ π1(X) there exists β ∈
π1(X) such that αf̄ ∗i ∼lf βf̄ ∗j .

Proof. If γ ∈ π1(X) such that σγ(j) = i, then j = σ−1
γ (i). By

the definition of ψf , we have f̄ ∗ ◦ γ = ψf (γ)f̄ ∗. If we write this in
components, we have

(f̄ ∗1γ, . . . , f̄
∗
nγ) = (φ1(γ)f̄ ∗

σ−1
γ (1)

, . . . , φn(γ)f̄ ∗
σ−1
γ (n)

).

The ith component is f̄ ∗i γ = φi(γ)f̄ ∗
σ−1
γ (i)

= φi(γ)f̄ ∗j . It follows that

αf̄ ∗i = αφi(γ)f̄ ∗j γ
−1 = γγ−1αφi(γ)f̄ ∗j γ

−1.

Choosing β = γ−1αφi(γ), we have proved that αf̄ ∗i ∼lf βf̄ ∗j .

For i, j ∈ {1, . . . , n}, we will write i ∼ j when there is some
γ ∈ π1(X) with σγ(j) = i. This defines an equivalence relation be-
cause σ is a homomorphism. The relation ∼ divides the basic lifting
f̄ ∗ = (f̄ ∗1 , . . . , f̄

∗
n) into equivalence classes where f̄ ∗i and f̄ ∗j are in the

same class when i ∼ j. We will refer to these classes as the σ-classes
of the basic lifting.

Now we compute the σ-classes for the 3-valued map f of the ex-
ample. For (z1, z2) ∈ Z2, we showed before that σ(z1,z2) = I if z1
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is even and σ(z1,z2) = (12)(3) if z1 is odd. Consequently the basic
lifting f̄ ∗ has two σ-classes : {f̄ ∗1 , f̄ ∗2} and {f̄ ∗3}.

In general, let r be the number of σ-classes and take for every
class a representative f̄ ∗ik so that we have the set of representatives

{f̄ ∗i1 , f̄
∗
i2
, . . . , f̄ ∗ir}. By Lemma 4.1 and Theorem 2.6,

R(f) = R1(f) + · · ·+Rr(f),

with Rk(f) the number of equivalence classes of the restriction of
the relation ∼lf to the set {αf̄ ∗ik | α ∈ π1(X)}. For i ∈ {1, . . . , n},
define the following finite index subgroup of π1(X):

Si = {γ ∈ π1(X) | σγ(i) = i}.

For the computation of Rk(f), we restrict ∼lf to the set {αf̄ ∗ik | α ∈
π1(X)} and we find that

αf̄ ∗ik ∼lf βf̄
∗
ik
⇐⇒ ∃γ ∈ π1(X) :

{
σγ(ik) = ik
α = γβφik(γ

−1)

⇐⇒ ∃γ ∈ Sik : α = γβφik(γ
−1).

Note that, in general, the map φi : π1(X) → π1(X) is not a
homomorphism, but that if we restrict the domain to Si, then φi :
Si → π1(X) will be a homomorphism. This suggests a Reidemeister
relation ∼i on π1(X) defined by

α ∼i β ⇔ ∃γ ∈ Si : α = γβφi(γ
−1).

Note that this is not an ordinary Reidemeister relation (or twisted
conjugacy relation) since the homomorphism φi is not an endomor-
phism of Si (see the example below). Nevertheless, we will denote
the number of equivalence classes of ∼i, determined by the homo-
morphism φi : Si → π1(X), by R(φi). The computation above shows
that αf̄ ∗ik ∼lf βf̄

∗
ik

if and only if α ∼ik β. We conclude that

R(f) = R1(f)+R2(f)+ · · ·+Rr(f) = R(φi1)+R(φi2)+ · · ·+R(φir).

If we denote the equivalence class of γ ∈ π1(X) for the relation
∼ik by [γ]ik , then we have

Fix(f) =
r⋃

k=1

⋃
[γ]ik

pFix(γf̄ ∗ik)

where the last union is taken over all [γ]ik with γ ∈ π1(X). Note
that this union is a disjoint union and some sets may be empty.
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Applying this to the example, we choose representatives f̄ ∗1 and
f̄ ∗3 for the σ-classes (so i1 = 1 and i2 = 3). For the sets Sik ,
we have S1 = {(z1, z2) ∈ Z2 | z1 is even} and S3 = Z2. Now
φ1 : S1 → Z2 is defined by φ1(z1, z2) = ( z1

2
,−z2) and φ3 : S3 → Z2

by φ3(z1, z2) = (−z1,−z2). We compute R1(f) :

(k1, k2)f̄ ∗1 ∼lf (l1, l2)f̄ ∗1
⇐⇒ (k1, k2) ∼1 (l1, l2)

⇐⇒ ∃(z1, z2) ∈ S1 : (k1, k2) = (z1, z2)(l1, l2)φ1(−z1,−z2)

⇐⇒ ∃(z1, z2) ∈ S1 :

{
k1 = z1 + l1 − z1

2
k2 = z2 + l2 + z2

⇐⇒ ∃(z1, z2) ∈ S1 :

{
2(k1 − l1) = z1
k2−l2

2
= z2

⇐⇒ k2 and l2 have the same parity

This means that there are two equivalence classes so R1(f) = 2.
In terms of fixed point classes, the lift-factors αf̄ ∗1 (and also the
lift-factors αf̄ ∗2 ) give rise to two fixed point classes.

Analogously, for the computation ofR2(f) we find that (k1, k2)f̄ ∗3 ∼lf
(l1, l2)f̄ ∗3 if and only if there exists (z1, z2) ∈ Z2 with z1 = k1−l1

2
and

z2 = k2−l2
2
, which means that both k1 and l1, and k2 and l2 have the

same parity. Thus there are four equivalence classes, so R2(f) = 4,
which means that the lift-factors αf̄ ∗3 give rise to four fixed point
classes.

We conclude that

R(f) = R1(f) +R2(f) = R(φ1) +R(φ3) = 2 + 4 = 6,

so N(f) ≤ 6.
Computing the fixed point classes explicitly leads to two fixed

point classes

pFix((0, 0)f̄ ∗1 ) = {p(0, 0)} and pFix((0, 1)f̄ ∗1 ) = {p(0, 1

2
)}

for the σ-class {f̄ ∗1 , f̄ ∗2} and four fixed point classes

pFix((0, 0)f̄ ∗3 ) = {p(0, 1

4
)}, pFix((0, 1)f̄ ∗3 ) = {p(0, 3

4
)},

pFix((1, 0)f̄ ∗3 ) = {p(1

2
,
1

4
)} and pFix((1, 1)f̄ ∗3 ) = {p(1

2
,
3

4
)}

for the σ-class {f̄ ∗3}. So f has in total six fixed point classes, each
class is a singleton.
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Because the covering map is a local homeomorphism, the fixed
point index of f at each of these points will agree with the fixed
point index of the lifts f̄ ∗i at their fixed points. Since these lifts are
linear maps with isolated fixed points, each of these indices will be
+1 or −1. Thus each of the fixed point classes of f is essential, and
so N(f) = 6.

5 The Circle

As before we represent S1 as the complex numbers of norm one. We
define f : S1 → D2(S1) by letting f(z) be the two square roots of
z. Then the map (f̄ ∗1 , f̄

∗
2 ) : R → F2(R,Z) defined by f̄ ∗1 (t) = t

2
and

f̄ ∗2 (t) = t+1
2

= f̄ ∗1 (t) + 1
2

is a lifting of f , which we choose as the
basic lifting. Since the covering transformations are the elements
k ∈ Z acting on R by translations t 7→ k + t, then

f̄ ∗i (k + t) =
k

2
+ f̄ ∗i (t)

for i = 1, 2.
Thus if k is even, then f̄ ∗i (k + t) = k

2
+ f̄ ∗i (t), with k

2
∈ Z. If k is

odd, then

f̄ ∗1 (k + t) =
k

2
+ f̄ ∗1 (t) =

k − 1

2
+

1

2
+ f̄ ∗1 (t) =

k − 1

2
+ f̄ ∗2 (t)

and

f̄ ∗2 (k + t) =
k

2
+ f̄ ∗2 (t) =

k + 1

2
− 1

2
+ f̄ ∗2 (t) =

k + 1

2
+ f̄ ∗1 (t),

with k±1
2
∈ Z. Therefore, σk is the identity permutation of {1, 2}

if k is even and the other permutation if k is odd. The functions
φi : Z→ Z are defined by φ1(k) = k

2
if k is even and φ1(k) = k−1

2
if

k is odd and φ2(k) = k
2

if k is even and φ2(k) = k+1
2

if k is odd. In
this case it is easy to see that the φi are not homomorphisms; for
instance φ1(1) = 0 but φ1(1 + 1) = 1.

We will show that R(f) = 1. That is, for α, β ∈ Z and i, j ∈
{1, 2}, we always have [(α, i)] = [(β, j)] in the notation of Section 2.

In the sequel we will use the results from the previous section. As
σ1(1) = 2, there is only one σ–class and therefore R(f) = R1(f) =
R(φi1). We choose i1 = 1. It is easy to see that S1 = 2Z. Recall
that R(φ1) is the number of equivalence classes of the relation ∼1
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on Z where

∀k, l ∈ Z : k ∼1 l ⇔ ∃z ∈ 2Z : k = z + l − φ1(z)

⇔ ∃z ∈ 2Z : k = z + l − z

2
⇔ ∃u ∈ Z : k = l + u.

It follows that for all k, l ∈ Z we have k ∼1 l and hence R(f) =
R(φ1) = 1.

More generally, define an n-valued map f : S1 → Dn(S1) by let-
ting f(z) be the set of n-th roots of zd for an integer d 6= n. Thus
f = φn,d in the notation of [2]. Define liftings f̄ ∗1 , . . . , f̄

∗
n by setting

f̄ ∗j (t) =
dt+ j − 1

n
·

Take f̄ ∗ = (f̄ ∗1 , f̄
∗
2 , . . . , f̄

∗
n) as the basic lifting of f.

We will prove that α + f̄ ∗i ∼lf β + f̄ ∗j (that is [(α, i)] = [(β, j)])
if and only if dα + i = dβ + j mod |d − n| and therefore that
R(f) = |d− n|.

To compute f̄ ∗j (t+ k), divide dk by n to obtain integers q, r with
dk = qn+ r and 0 ≤ r < n. Then we have:

f̄ ∗j (t+ k) =
dt+ qn+ r + j − 1

n
=
dt+ r + j − 1

n
+ q

=

{
f̄ ∗j+r(t) + q if j + r ≤ n

f̄ ∗j+r−n(t) + q + 1 if j + r > n.

Thus σ−1
k (j) is either j+ r or j+ r−n. In particular, if σ−1

k (j) ≥ j,
then σ−1

k (j) = j + r. Of the two cases in the formula above, we will
only need the case where j + r ≤ n. In this case we have

σ−1
k (j) = j + r φj(k) = q.

Therefore if j + r ≤ n we compute

d(φj(k)− k) = dφj(k)− dk = dq − (qn+ r) = (d− n)q − r.

Now let α, β ∈ Z and i, j ∈ {1, . . . , n}. We will prove that [(α, i)] =
[(β, j)] if and only if dα + i = dβ + j mod |d − n|. Assume that
[(α, i)] = [(β, j)]. Since the Reidemeister relation is symmetric, we
may assume that i ≥ j. Then there is some k ∈ Z with σ−1

k (j) = i
and α = −k+ β +φj(k) (see Theorem 2.6 with γ = −k). As above,
divide dk by n to obtain dk = qn+r. Since i = σ−1

k (j) ≥ j, we have
i = j + r. Since j + r = i ≤ n then

d(α− β) = d(φj(k)− k) = (d− n)q − r = (d− n)q − (i− j)
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and thus dα + i = dβ + j mod |d− n|.
For the converse, assume that dα+ i = dβ+j mod |d−n| where

α, β ∈ Z and i, j ∈ {1, . . . , n} with i ≥ j. Then there is some q ∈ Z
such that d(α− β) = (d− n)q + (j − i). Let r = i− j, and we have
dα − dβ = dq − nq − r so nq + r is a multiple of d and therefore
there exists k ∈ Z such that dk = nq + r. We have j + r = i ≤ n so

d(α− β) = (d− n)q − r = d(φj(k)− k)

which means that α− β = φj(k)− k so [(α, i)] = [(β, j)] if d 6= 0. In
case d = 0, it is easy to verify that α + f̄ ∗i ∼lf β + f̄ ∗j if and only if
i = j so if and only if dα + i = dβ + j mod |d− n|.

We have proved that [(α, i)] = [(β, j)] if and only if dα+i = dβ+j
mod |d − n| so there are |d − n| Reidemeister classes characterized
by the remainder of dα + i mod |d − n| and thus R(f) = |d − n|.
The Reidemeister number is a homotopy invariant by Theorem 2.7.
By Theorem 3.1 of [2], every n-valued self-map f : S1 → Dn(S1) is
homotopic to φn,d for some integer d, and this d is called the degree
of f . We have shown:

Theorem 5.1. Let f : S1 → Dn(S1) be an n-valued map of degree
d 6= n. Then R(f) = |d− n|.

We can also compute R(f) in the case when n = d:

Theorem 5.2. Let f : S1 → Dn(S1) be the n-valued map of degree
n. Then R(f) =∞.

Proof. We use basic liftings of f as above, letting d = n:

f̄ ∗j (t) =
nt+ j − 1

n
= t+

j − 1

n
.

For some k ∈ Z, we will have f̄ ∗j (t + k) = t + k + j−1
n

= k + f̄ ∗j (t),
and so σk(j) = j for each j, and φj(k) = k for each k. Thus by
Theorem 2.6 we have α + f̄ ∗j ∼lf β + f̄ ∗i if and only if i = j and
α = β. Since α and β can be any integers, there are infinitely many
lift-factor classes, and thus R(f) =∞.

6 The Orbit Configuration Space and the Uni-
versal Cover

The theory of lifting classes, Reidemeister classes, and twisted con-
jugacy of a single-valued map f : X → X is defined in terms of
the universal cover X̃ of X and the induced homomorphism f# :
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π1(X) → π1(X). The most direct generalization to an n-valued
map f : X → Dn(X) would seem to involve the universal cover of
Dn(X) and the induced homomorphism f# : π1(X) → π1(Dn(X)).
In this section, we discuss these ideas and describe why we have
instead opted in Section 2 to use the orbit configuration space. We
will show that for manifolds of dimension at least 3, the two ap-
proaches are algebraically the same. In dimensions 1 and 2 (as long
as X is not the circle), the orbit configuration space approach is a
quotient of the universal cover approach, but it still includes all the
data necessary to compute the Nielsen theory of an n-valued map.

First we briefly review the Galois Correspondence for covering
spaces (see [10, Theorem 1.38]) which states that there is a bijective
correspondence between isomorphism classes of connected covering
spaces over X and conjugacy classes of subgroups of π1(X). We
summarize the specific facts that we will need in a lemma:

Lemma 6.1. Let A and X be connected, locally connected, and
semilocally simply connected spaces. Let u : Ã→ A be the universal
cover of A, and let p : B → A be some other normal connected
cover.

a. There is a covering map r : Ã→ B with u = p◦ r, and the cov-
ering group of p : B → A is π1(A)/N for some normal subgroup
N ≤ π1(A). If N is trivial, then r is a homeomorphism.

b. If f : X → A is a map and f̃ : X̃ → Ã is a lifting of f
to universal covers, then there is a lifting f̄ : X̃ → B with
f̄ = r ◦ f̃ .

c. If f# : π1(X) → π1(A) is the induced homomorphism of fun-
damental groups, then there is an induced homomorphism φ :
π1(X) → π1(A)/N with φ = q ◦ f#, where q is the canonical
surjection q : π1(X)→ π1(X)/N .

We will apply the lemma above to the setting of maps f : X →
Dn(X), the covers pn : Fn(X̃, π) → Dn(X) and the universal cover
u : D̃n(X)→ Dn(X).

As a preliminary we must establish that pn : Fn(X̃, π)→ Dn(X)
is a connected cover, and that Dn(X) has the appropriate connect-
edness properties for covering space theory. We begin with the con-
nectedness of Fn(X̃, π). Our argument closely resembles a similar
argument for Fn(X). The idea is due to Farber, in [6, Section 8].

Farber’s result is important in the topological theory of robot
motion planning. The following result, when X is a 1-complex other
than the circle or interval, essentially says that any labeled set of
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n robots moving along a track with junctions can be rearranged
without colliding to move to any desired locations.

Lemma 6.2. Let X be a connected polyhedron not homeomorphic
to the interval or circle. Then Fn(X) is path connected.

Proof. The fact that X is not the interval or circle means that some
subdivision of X must have a vertex which meets at least 3 edges.
Such a vertex is called an essential vertex in [6]. Let v be an es-
sential vertex of X, let e be one of the edges meeting v, and let
z = (z1, . . . , zn) ∈ Fn(X) be some ordered n-configuration with
zi ∈ e for each i.

To show that Fn(X) is connected, it suffices to show that any
other ordered n-configuration x = (x1, . . . , xn) ∈ Fn(X) can be
connected to z by a path in Fn(X). This path in Fn(X) would
consist of n paths γi connecting xi to zi such that γi(t) 6= γj(t) for
any t and all i 6= j. We imagine such a set of paths as representing
a continuous motion of the points xi to zi during which the n points
never collide.

It is clear that the points {x1, . . . , xn}, if we disregard their or-
dering, can be moved without colliding into the points {z1, . . . , zn}.
To achieve this we proceed as follows. First of all, by further subdi-
viding X if needed we can assume that all the points xi are vertices
of X. From now on, we replace X by its 1-skeleton and we will
construct a path where the xi move along this 1-skeleton. We can
now further delete edges of X, different from e and two other edges
meeting v, until we reach the situation in which X is a tree. We now
equip X with the standard metric as a tree (in which every edge has
length 1) and order the xi by increasing distance from v. Then we
may move the points without colliding into the edge e one at a time
starting with those nearest to v. (Note this argument shows that
Dn(X) is connected for any connected polyhedron, even the circle
or interval.)

To show that Fn(X) is connected, it remains only to show that the
configuration (z1, . . . , zn) can be moved without collision into any
permutation of itself. This is accomplished by Farber’s algorithm
described in detail in [6] (a similar procedure is used in [16]). Briefly,
the points may rearrange without colliding by using the essential
vertex as a three-way road junction: Let e2 and e3 be two other
edges meeting v. If for example z3 and z4 wish to exchange their
positions, then first z1 and z2 can move into e2. Then z3 moves into
e3, then z4 moves into e2, then z3 moves back into e followed by z4

and finally by z2 and z1. In this way any desired permutation of the
zi can be achieved by noncolliding paths.
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In the following result we generalize Farber’s procedure to the
setting of the orbit configuration space. There is a motion-planning
interpretation of this theorem: if we have n objects moving along
tracks which are arranged like a covering space, for example verti-
cally stacked tracks as in a parking garage, then any labeled set of n
robots moving along these tracks can be rearranged into any desired
locations without ever colliding or moving directly above or below
each other.

Theorem 6.3. Let X be a connected polyhedron not homeomorphic
to the interval or circle. Then Fn(X̃, π) is path connected.

Proof. We will mimic the argument used in Lemma 6.2. Let v be
an essential vertex X with some incident edge e, and choose ṽ ∈ X̃
with p(ṽ) = v and the edge ẽ incident at ṽ with p(ẽ) = e. Let
(z̃1, . . . , z̃n) ∈ Fn(X̃, π) with z̃i ∈ ẽ for each i, and we will show
that any configuration (x̃1, . . . , x̃n) ∈ Fn(X̃, π) can be connected to
(z̃1, . . . , z̃n) by a path in Fn(X̃, π).

We imagine this path in Fn(X̃, π) as representing a continuous
motion of the points x̃i into the points z̃i such that the projections
xi = p(x̃i) never collide in X. By first lifting the path obtained in
Lemma 6.2, we can move each of the points x̃i into some covering
translations of ẽ, reaching points γiz̃i for some γi ∈ π1(X) such that
the projections are noncolliding during the motion.

It remains to show that the configuration (γ1z̃1, . . . , γnz̃n) can
be moved to (z̃1, . . . , z̃n) with noncolliding projections. Since we
may achieve any permutation of the γizi by moving points so that
their projections move according to the three-way junction at v, it
will be enough to show that (γ1z̃1, γ2z̃2, . . . , γnz̃n) can be moved to
(z̃1, γ2z̃2, . . . , γnz̃n) with noncolliding projections.

Viewing γ1 ∈ π1(X) as a loop provides a path from γ1z̃1 to z̃1.
Again using the three-way junction at v we can move γ1z̃ along
this path to z̃1 so that no collisions occur in the projection. (If
a collision of projections is about to occur in e, the two points can
use the three-way junction to exchange positions before continuing.)
Thus (γ1z̃1, γ2z̃2, . . . , γnz̃n) can be moved to (z̃1, γ2z̃2, . . . , γnz̃n) with
noncolliding projections as desired.

In the case where X is the interval or circle, Fn(X̃, π) is indeed
disconnected.

Example 6.4. Let X be the interval [0, 1]. Then X̃ = X and π1(X)
is trivial, so Fn(X̃, π) = Fn([0, 1]). We first consider the case n = 2.
It is clear that in this case

F2([0, 1]) = {(x, y) ∈ [0, 1]2 | x 6= y},
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with the usual subspace topology from R2, is disconnected.
For n > 2, there is a natural surjection f : Fn([0, 1])→ F2([0, 1])

which discards the last n − 2 points. Since Fn([0, 1]) has a discon-
nected image under f , it must itself be disconnected.

Example 6.5. Let X be the circle S1. Then X̃ may be identified
with the line R, and we will show that Fn(R, π) is disconnected.

We again first consider the case n = 2. In this case we have:

F2(R, π) = {(x, y) ∈ R2 | x− y 6∈ Z},

with the subspace topology from R2, and this is disconnected.
For n > 2, a similar argument as in Example 6.4 shows that

Fn(R, π) is also disconnected.

Now we show that Dn(X) has the required connectedness prop-
erties for classical covering space theory.

Lemma 6.6. If X is a connected finite polyhedron, then Dn(X) is
connected, locally path connected, and locally simply connected.

Proof. We have already shown in the proof of Lemma 6.2 that
Dn(X) is connected.

Since Fn(X) is a finite covering of Dn(X), any point of Dn(X)
has a open neighbourhood which is homeomorphic to an open set of
Fn(X). Therefore, it is enough to show that Fn(X) is locally path
connected and locally simply connected.

Since X is a finite polyhedron, X itself is locally path connected
and locally simply connected.

As X is a Hausdorff space, we have that for all 1 ≤ i < j ≤ n,
the set Ki,j = {(x1, x2, . . . , xn) ∈ Xn | xi = xj} is a closed subset of
Xn. It follows that

Fn(X) = Xn\

( ⋃
1≤i<j≤n

Ki,j

)

is an open subset of Xn.
Let p = (x1, x2, . . . , xn) be any point of Fn(X). As Fn(X) is

an open subset of Xn and X is locally path connected and locally
simply connected, any neighbourhood of p contains a subset U =
U1 × U2 × · · · × Un ⊆ Fn(X) where each Ui is path connected and
simply connected. It follows that U itself is path connected and
simply connected, and therefore Fn(X) is locally path connected
and locally simply connected, which completes the proof.
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Now we return to the discussion of the relationship between
Fn(X̃, π) and the universal cover u : D̃n(X) → Dn(X). The group
of covering transformations is isomorphic to π1(Dn(X)), which is a
well studied object: it is the full braid group Bn(X).

When Fn(X̃, π) is connected, we have a connected covering pn :
Fn(X̃, π) → Dn(X). Thus by Lemma 6.1 (a) there is a covering
map r : D̃n(X)→ Fn(X, π) with u = pn ◦ r:

D̃n(X) Fn(X̃, π) Dn(X)r

u

pn

(1)

Since the covering group of Fn(X̃, π) is π1(X)n o Σn, Lemma
6.1 (b) shows that π1(X)n o Σn occurs naturally as a quotient of
Bn(X) by some normal subgroup. By Lemma 6.1 (c) there is a
homomorphism Φf : π1(X)→ π1(X)n o Σn such that the following
diagram commutes:

Bn(X)

π1(X) π1(X)n o Σn

r̄
f#

Φf

(2)

where the vertical arrow is the quotient homomorphism induced by
the covering map r.

In terms of the orbit configuration space, this homomorphism Φf

plays the same role that the induced homomorphism f# plays in
terms of the universal covering space. In fact we have already made
use of Φf in the previous sections since it agrees with the morphism
ψf we introduced in Section 2, as the next result demonstrates.

Theorem 6.7. Let X be a polyhedron not homeomorphic to the
circle or interval, and let f : X → Dn(X) be a map, then Φf is the
morphism ψf .

Proof. Let f̄ ∗ = (f̄ ∗1 , . . . , f̄
∗
n) be the basic lifting of f , and let F :

X̃ → D̃n(X) be a lifting of f such that the diagram commutes:

D̃n(X)

X̃ Fn(X̃, π)

rF

f̄∗

Since f# is the induced homomorphism of f on the fundamental

group, we can choose base points in D̃n(X) so that, for any γ ∈
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π1(X) and x̃ ∈ X̃, we have:

F (γx̃) = f#(γ)F (x̃).

Applying r to the above gives:

f̄ ∗(γx̃) = Φf (γ)f̄ ∗(x̃).

We also have by definition of ψf that

f̄ ∗(γx̃) = ψf (γ)f̄ ∗(x̃).

Since the action of π1(X)n o Σn on Fn(X̃, π) is a covering action,
and Φf (γ)f̄ ∗(x̃) = ψf (γ)f̄ ∗(x̃), this means that Φf (γ) = ψf (γ) as
desired.

In the case where X is a smooth closed manifold of dimension
at least 3, the algebra given by the universal covers and the orbit
configuration space in diagram (2) are isomorphic:

Theorem 6.8. Let X be a smooth closed manifold of dimension at
least 3. Then π1(Dn(X)) = Bn(X) is isomorphic to π1(X)n o Σn.

Proof.2 We will use the following algebraic characterization of the
semidirect product: If H,G, and N are groups and we have a short
exact sequence:

1→ H
i→ G

j→ N → 1,

then G ∼= H oN if the sequence is right-split, i.e. there is a homo-
morphism k : N → G such that j ◦ k is the identity on N .

Let Pn(X) ⊆ Bn(X) be the subgroup of “pure braids”, those for
which the underlying permutation of the strands is trivial. There is
a well-known short exact sequence ([9], page 16):

1→ Pn(X) ↪→ Bn(X)
j→ Σn → 1,

where the map from Pn(X) to Bn(X) is the inclusion, and j is the
underlying permutation of the braid.

It is a classical theorem of Birman [1, Theorem 1] that when X
is a smooth closed manifold of dimension 3 or higher, the pure braid
group Pn(X) is isomorphic to π1(X)n. (Intuitively: since X has
high enough dimension, braid strands can pass through each other
and so there is no classical braiding of strands wrapping around
one another. The only nontrivial elements of Pn(X) arise when the

2The authors thank Daciberg Gonçalves for suggesting this proof.
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n strands wrap around holes in the space.) Thus our short exact
sequence becomes:

1→ π1(X)n ↪→ Bn(X)
j→ Σn → 1,

and we need only find a right-inverse k : Σn → Bn(X) of j.
Since X is a manifold of dimension 3 or higher, let U ⊂ X be an

open set which is homeomorphic to an open m-ball, m ≥ 3. Let i :
Dn(U)→ Dn(X) be the inclusion, which induces a homomorphism
on fundamental groups i# : Bn(U)→ Bn(X). Birman’s result shows
that Pn(U) ∼= π1(U)n ∼= {1}. Then the short exact sequence for U
takes the form:

1→ 1 ↪→ Bn(U)→ Σn → 1

and therefore Bn(U) ∼= Σn. Under these isomorphisms, i# gives us
a homomorphism k : Σn → Bn(X).

It remains only to show that k is a right-inverse of j, but this is
clear: if we begin with a permutation σ ∈ Σn, then k(σ) ∈ Bn(X)
is a braid in X which is induced by inclusion from a braid in U
with underlying permutation σ. Thus the underlying permutation
of k(σ) is σ, which is to say that j(k(σ)) = σ as desired.

7 The Jiang subgroup

Let f : X → Dn(X) be an n-valued map. A homotopy H : X ×
I → Dn(X) is a cyclic homotopy of f if H(x, 0) = H(x, 1) = f(x)
for all x ∈ X. A cyclic homotopy of f will lift to a homotopy
starting at the basic lifting f̄ ∗ = (f̄ ∗1 , . . . , f̄

∗
n) : X̃ → Fn(X̃, π) and

ending at (γ1f̄
∗
σ−1(1), . . . , γnf̄

∗
σ−1(n)), where σ is a permutation and

γi ∈ π1(X). In this way, from each cyclic homotopy we obtain an
element (γ1, . . . , γn;σ) ∈ π1(X)n o Σn. The Jiang subgroup for n-
valued maps Jn(f̄ ∗) ⊆ π1(X)n o Σn is the set of all such elements.

For n = 1, this definition is the same as that of the subgroup J(f̃)
of π1(X) introduced by Jiang; see [12], page 30.3

Proposition 7.1. The set Jn(f̄ ∗) is a subgroup of π1(X)n o Σn.

Proof. Let (α1, . . . , αn; η), (β1, . . . , βn; θ) ∈ Jn(f̄ ∗). We will show
that Jn(f̄ ∗) is a subgroup by proving that

(α1, . . . , αn; η)(β1, . . . , βn; θ)−1 ∈ Jn(f̄ ∗).

3There is an extension of the Jiang subgroup, due to Gonçalves [7], that applies to maps
f : X → Y and is quite different from Jn(f̄), which concerns only n-valued maps, that is, the
case Y = Dn(X).
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Since (α1, . . . , αn; η) ∈ Jn(f̄ ∗), there is a cyclic homotopy H of f
lifting to n homotopies, of the f̄ ∗i to αif̄

∗
η−1(i). Similarly there is a

cyclic homotopy K of f lifting to n homotopies of f̄ ∗i to βif̄
∗
θ−1(i).

Equivalently, K lifts to homotopies of β−1
θ(i)f̄

∗
θ(i) to f̄ ∗i . Replacing i by

η−1(i), we see that K lifts to homotopies of β−1
θη−1(i)f̄

∗
θη−1(i) to f̄ ∗η−1(i).

Then the concatenated homotopy H ∗K−1, where K−1 denotes the
reverse of K, is a cyclic homotopy of f lifting to homotopies of f̄ ∗i
to αiβ

−1
θη−1(i)f̄

∗
θη−1(i). Thus

(α1β
−1
θ◦η−1(1), . . . , αnβ

−1
θ◦η−1(n); η ◦ θ

−1) ∈ Jn(f),

and this element is equal to (α1, . . . , αn; η)(β1, . . . , βn; θ)−1.

It is natural to ask how the subgroup Jn(f̄ ∗) depends on the
choice of lifting f̄ ∗. An alternative choice will change the Jiang
subgroup, but in a predictable way. Any other lifting has the form
Γf̄ ∗ for some Γ ∈ π1(X)n o Σn, as follows.

Theorem 7.2. Let f : X → Dn(X) be an n-valued map, and f̄ ∗ :
X̃ → Fn(X̃, π) its basic lifting. Then Jn(Γf̄ ∗) is isomorphic to
Jn(f̄ ∗) by an inner automorphism of π1(X)n o Σn. In particular
Jn(Γf̄ ∗) = Jn(f̄ ∗)Γ, where the exponent denotes conjugation by Γ.

Proof. We will show that for each A = (α1, . . . , αn; η) ∈ Jn(f̄ ∗),
we have ΓAΓ−1 ∈ Jn(Γf̄ ∗). Since A ∈ Jn(f̄ ∗), there is a cyclic
homotopy of f which lifts to a homotopy of f̄ ∗ to Af̄ ∗. This same
cyclic homotopy, when lifted to start at Γf̄ ∗, will give a homotopy
of Γf̄ ∗ to ΓAf̄ ∗ = (ΓAΓ−1)Γf̄ ∗, and thus ΓAΓ−1 ∈ Jn(Γf̄ ∗).

Recall from Section 2 that the homomorphism ψf : π1(X) →
π1(X)n o Σn is defined by the requirement that ∀γ ∈ π1(X) :
ψf (γ)f̄ ∗ = f̄ ∗γ. From the definition of Jn(f̄ ∗), we immediately ob-
tain:

Theorem 7.3. Let f : X → Dn(X), and let f̄ ∗ : X̃ → Fn(X̃, π) be
the basic lifting. Then there is a cyclic homotopy from f̄ ∗ to f̄ ∗γ for
every γ ∈ π1(X) if and only if ψf (π1(X)) ⊆ Jn(f̄ ∗).

The condition that ψf (π1(X)) ⊆ Jn(f̄ ∗) is the n-valued analogue
of the condition in single-valued Nielsen theory that f#(π1(X)) ⊆
J(f̃). In the single-valued theory, this condition implies that all
fixed point classes have the same index, and this can be used to
show in many cases that N(f) = R(f). In the n-valued theory the
result is that some, though perhaps not all, of the fixed point classes
have the same index.
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Lemma 7.4. Let f : X → Dn(X) be a map and f̄ ∗ = (f̄ ∗1 , . . . , f̄
∗
n)

be the basic lifting. If ψf (π1(X)) ⊆ Jn(f̄ ∗), then pFix(γf̄ ∗j ) and

pFix(δf̄ ∗j ) have the same fixed point index for each j and any γ, δ ∈
π1(X).

Proof. It suffices to show that pFix(f̄ ∗i ) and pFix(γf̄ ∗i ) have the
same index for any i and any γ ∈ π1(X). First observe that
γf̄ ∗i ∼lf f̄ ∗i γ since γf̄ ∗i = γf̄ ∗i γγ

−1. Thus pFix(γf̄ ∗i ) = pFix(f̄ ∗i γ)
by Theorem 2.9. By Theorem 7.3, since ψf (π1(X)) ⊆ Jn(f̄ ∗) we
have a cyclic homotopy of f̄ ∗i to f̄ ∗i γ. Thus, by the homotopy in-
variance of the fixed point index (Lemma 6.4 of [15]), we have

ind(f, pFix(f̄ ∗i )) = ind(f, pFix(f̄ ∗i γ)) = ind(f, pFix(γf̄ ∗i )).

Recall from Section 4 the definition of σ−classes: these are the
equivalence classes of the relation defined by

i ∼ j ⇐⇒ ∃γ ∈ π1(X) : σγ(i) = j.

Proposition 7.5. Let f : X → Dn(X) be a map and f̄ ∗ = (f̄ ∗1 , . . . , f̄
∗
n)

be the basic lifting. If ψf (π1(X)) ⊆ Jn(f̄ ∗), and i and j are in the
same σ−class, then pFix(γf̄ ∗i ) and pFix(δf̄ ∗j ) have the same index
for any γ, δ ∈ π1(X). In particular, if there is only one σ−class,
then all the fixed point classes of f have the same index and therefore
either N(f) = 0 or N(f) = R(f).

Proof. If i and j are in the same σ−class, then by Lemma 4.1 there
exists β ∈ π1(X) such that γf̄ ∗i ∼lf βf̄ ∗j . By Theorem 2.9, it follows

that pFix(γf̄ ∗i ) = pFix(βf̄ ∗j ), and then by Lemma 7.4 we have:

ind(f, pFix(γf̄ ∗i )) = ind(f, pFix(βf̄ ∗j ))

= ind(f, pFix(δf̄ ∗j ))

For t = (t1, . . . , tq) ∈ Rq, denote the universal covering space of
the torus T q by pq : Rq → T q where pq(t) = (p(t1), . . . , p(tq)) for
p(tj) = exp(i2πtj). The condition of Theorem 7.3 which implies
equality of indices is always satisfied for maps on tori:

Theorem 7.6. Let T q denote the q-torus, and let f : T q → Dn(T q)
be a map. Then ψf (π1(T q)) ⊆ Jn(f̄ ∗).

Proof. Let a ∈ Zq ∼= π1(T q). We will show that there is a cyclic
homotopy of f which lifts to a homotopy of f̄ ∗(t) to f̄ ∗(t + a). For
t ∈ Rq and s ∈ [0, 1], define H̄(t, s) = f̄ ∗(t + sa). Then H̄ is a
homotopy of f̄ ∗(t) to f̄ ∗(t + a), and each stage of the homotopy is
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n-valued because f̄ ∗(t) is n-valued. Let H(pq(t), s) = (pq)n(H̄(t, s)).
Then we can compute:

H(pq(t), 0) = (pq)n(H̄(t, 0)) = (pq)nf̄ ∗(t) = f(pq(t))

H(pq(t), 1) = (pq)n(H̄(t, 1)) = (pq)nf̄ ∗(t+ a)

= f(pq(t+ a)) = f(pq(t))

where the last equality holds because a ∈ Zq. Thus H is a cyclic
homotopy of f , which lifts to H̄, a homotopy of f̄ ∗(t) to f̄ ∗(t+a).

To illustrate the previous results, we apply them to the following
class of n-valued maps introduced in [4].

We recall that a q×q integer matrixA induces a map fA : Rq/Zq =
T q → T q by

fA(pq(t)) = pq(At) = (p(A1 · t), . . . , p(Aq · t)),

where Aj is the j-th row of A, and that fA is called a linear self-map
of T q.

We define x = (x1, . . . , xq), y = (y1, . . . , yq) ∈ Rq to be congruent
mod n, written x ≡ y (n), if xj − yj is divisible by n for all j =
1, . . . , q.

For k ∈ Z, let k = (k, k, . . . , k) ∈ Zq. Define f
(k)
n,A : Rq → T q by

f
(k)
n,A(t) = pq(

1

n
(At+ k)).

Theorem 7.7. ([4], Theorem 3.1) A q×q integer matrix A induces
an n-valued map fn,A : T q → Dn(T q) defined by

fn,A(pq(t)) = {f (1)
n,A(t), . . . , f

(n)
n,A(t)}

if and only if Ai ≡ Aj (n) for all i, j ∈ {1, . . . , q}.

Since f1,A = fA : T q → T q, the maps fn,A are called linear n-
valued self-maps of tori.

The n-valued map fn,A lifts to f̄ ∗n,A = (f̄ ∗1 , . . . , f̄
∗
n) : Rq → Fn(Rq,Zq)

where

f̄j(t)
∗ =

1

n
(At+ j).

Proposition 7.8. Let A be a q × q integer matrix such that Ai ≡
Aj (n) for all i, j ∈ {1, . . . , q} and let fn,A : T q → Dn(T q) be the
corresponding linear n-valued self-map of T q, then all the fixed point
classes of fn,A have the same index and therefore N(fn,A) = 0 or
N(fn,A) = R(fn,A).
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Proof. The map fn,A lifts to f̄ ∗n,A = (f̄ ∗1 , . . . , f̄
∗
n) : Rq → Fn(Rq,Zq)

where

f̄ ∗j (t) =
1

n
(At+ j).

Define H̄ = (h̄1, . . . , h̄n) : Rq × I → Fn(Rq,Zq) by setting

h̄j(t, s) =
1

n
(At+ j + s).

Then for each j < n, the coordinate j of H̄ gives a homotopy of f̄ ∗j
to f̄ ∗j+1. By projecting this homotopy, we have ind(fn,A, pFix(f̄ ∗j )) =

ind(fn,A, pFix(f̄ ∗j+1)) for each j < n.

Now let pFix(γf̄ ∗j ) and pFix(δf̄ ∗k ) be any two fixed point classes.

By concatenating the homotopies above, pFix(f̄ ∗j ) and pFix(f̄ ∗k )
have the same index. By Theorem 7.6 we have ψfn,A(π1(T q)) ⊆
Jn(f̄ ∗n,A), and so we may apply Lemma 7.4. We obtain:

ind(fn,A, pFix(γf̄ ∗j )) = ind(fn,A, pFix(f̄ ∗j ))

= ind(fn,A, pFix(f̄ ∗k )) = ind(fn,A, pFix(δf̄ ∗k )).

Therefore all the fixed point classes have the same index and we
conclude that N(fn,A) = 0 or N(fn,A) = R(fn,A).

The Nielsen number of fn,A was calculated in [5] to be N(fn,A) =
n| det(E− 1

n
A)| where E is the identity matrix, and thus, if N(fn,A)

is non-zero, we can conclude that R(fn,A) = n| det(E − 1
n
A)| also.

8 Split maps

An n-valued map f : X → Dn(X) is split if there exist single-valued
maps f1, . . . , fn : X → X such that f(x) = {f1(x), . . . , fn(x)} for all
x ∈ X. We write f = {f1, . . . , fn}. Schirmer proved ([15], Corollary
7.2) that if f = {f1, . . . , fn}, is split, then the Nielsen number of
the n-valued map is related to the Nielsen number for single-valued
maps by

N(f) = N(f1) + · · ·+N(fn).

Recall from Section 2 that the homomorphism ψf : π1(X) →
π1(X)n o Σn is defined by the requirement that ∀γ ∈ π1(X) :
ψf (γ)f̄ ∗ = f̄ ∗γ, and that we write ψf (γ) = (φ1(γ), . . . , φn(γ);σγ).

Theorem 8.1. Let f = (f1, . . . , fn) be a split n-valued map with
basic lifting f̄ ∗ = (f̄ ∗1 , . . . , f̄

∗
n) where f̄ ∗i is a lifting of fi. Then σα

is the identity permutation for every α, and each φi is the induced
homomorphism fiπ : π1(X)→ π1(X) of fi.
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Proof. Since f̄ ∗α = ψf (α)f̄ ∗ = (φ1(α)f̄ ∗
σ−1
α (1)

, . . . , φn(α)f̄ ∗
σ−1
α (n)

), we

have f̄ ∗i α = φi(α)f̄ ∗
σ−1
α (i)

for all i. By single-valued covering space

theory f̄ ∗i α = fiπ(α)f̄ ∗i , where fiπ is the induced fundamental group
homomorphism of fi. It follows that φi(α)f̄ ∗

σ−1
α (i)

= fiπ(α)f̄ ∗i , so

σα(i) = i and φi = fiπ.

Since the permutations σα are all the identity in the split case,
the characterization of the equivalence relation ∼lf in Theorem 2.6
can be simplified.

Corollary 8.2. Let f = (f1, . . . , fn) be a split n-valued map with
basic lifting f̄ ∗. Then [(α, i)] = [(β, j)] if and only if i = j and
there is some γ such that α = γβfiπ(γ−1), where fiπ is the induced
fundamental group homomorphism of fiπ.

The above corollary means that when f splits, no fixed point class
pFix(αf̄ ∗i ) can equal any fixed point class pFix(βf̄ ∗j ) when i 6= j,
and when i = j these fixed point classes are equal exactly when they
are equal according to the classical theory of Reidemeister classes of
a single-valued map.

Theorem 8.3. Let f = (f1, . . . , fn) be a split n-valued map. Then

R(f) = R(f1) + · · ·+R(fn),

where on the right side, R denotes the classical Reidemeister number
of a single-valued map.

Proof. We have already shown that when f is split, we have [(α, i)] =
[(β, j)] if and only if i = j and α and β are classically Reidemeis-
ter equivalent by φi, the induced homomorphism of fi. Thus the
number of Reidemeister classes of f is the total of the number of
Reidemeister classes of the various fi.
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[3] Brown, R. and Gonçalves, D. On the topology of n-valued maps,
Advances in Fixed Point Theory 8, 205 - 220 (2018).

35



[4] Brown, R. and Lin, J., Coincidences of projections and linear
n-valued maps of tori, Topol. Appl. 157, 1990 - 1998 (2010).

[5] Crabb, M., Lefschetz indices for n-valued maps, J. Fixed Point
Theory Appl. 17, 153 - 186 (2015).

[6] Farber, M., Collision free motion planning on graphs, in Algo-
rithmic Foundations of Robotics VI, Erdmann, M. et al eds.,
Springer, 123 - 138 (2005).
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