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Abstract

Techniques for Visual Media Forensics

by

Mike Goebel

Recent advances in image generation techniques have led to a proliferation of fake

content online. This has created a need for adaptable, data driven methods to authen-

ticate visual media, and prevent the spread of misinformation. In this defense, I will

address two specific problem areas in detail.

First, the detection of GAN generated images. We demonstrate the efficacy of a

novel forensic feature when combined with a conventional CNN architecture. Then, we

investigate these in the adversarial setting, evaluating robustness to several levels of

attack. These works represent some of the first attempts at adversarially robust GAN

image detection.

The second area investigates methods for applying forensics to satellite images. Specif-

ically, we look at the problems of metadata verification and image splicing detection. We

demonstrate the power of incorporating satellite image metadata into the splicing de-

tection problem, resulting in a joint model to accomplish both metadata and image

verification with high accuracy.

The dissertation will conclude with a brief discussion of several other forensic areas,

and potential future directions for the field.
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Chapter 1

Introduction

1.1 What is Visual Media Forensics?

Given a shocking image or video, we may often ask ourselves if what we believe to

be seeing is real. There exist many ”tricks” which can be used in deception. Illusions

of perception have been explored long before the creation of the the first digital camera.

UFOs, Bigfoot, and the Lock Ness Monster just to name a few.

But of specific interest to this work are the digital image and video manipulations.

These manipulations present a lower barrier to entry in the modern world, requiring only

a computer.

Unfortunately, the question of media authenticity is not black-and-white. Digital

manipulations are often necessary to present the best picture possible for the situation.

JPEG compression alters an image, for the benign purpose of decreasing the file size.

Contrast enhancement, cropping, and zooming can all make a small area of interest more

visible.

On the science side of things, a biology researcher may significantly adjust the satura-

tion in a confocal microscope image, to show a particular sub-cellular structure. Applica-

1



Introduction Chapter 1

tion of this manipulation to all samples in a dataset may in fact create a more informative

representation of the underlying biological structure. However, similar adjustment of lev-

els in a satellite image used for detection of methane plumes may misrepresent the true

patterns.

As another example, the same manipulation in a similar context may have drastically

different implications for the truthfulness of an image. Modern software allows for ev-

eryday users to take a series of group photos in quick succession, and swap faces between

each photo. If one person blinks in the first photo, their face from the second photo can

realistically swapped from the second. However, the same technology may also be used

to introduce new faces into the scene, creating a drastically different semantic meaning

for the scene.

From the previous examples, it is clear that there can be no single method to au-

thoritatively declare an image or video to be manipulated in all use cases. Instead, this

work aims to build more pinpointed classifiers for specific tasks. This will provide users

with more informative and accurate model responses, to accurately assess the media in

the context they originally saw it.

1.2 Summary of Contributions

There are two primary areas of contribution in this thesis. First, in the realm of

Generative Adversarial Network (GAN) image detection. This generation methodology

was the leader in terms of quality for the majority of my thesis. In this work, we propose

the multi-directional co-occurrence feature, combined with deep learning, as a method

of detecting these images. We then do extensive analysis, demonstrating these networks

ability for attribution of the type of GAN model used, as well as limits on the localization

of manipulation. Finally for GAN detection, there is extensive work done in developing
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potential adversarial attacks against this feature. This work presents the first adversarial

attack against the co-occurrence feature.

The next set of contributions pertain to the area of satellite image forensics. In

one work, we identify the first method to verify the authenticity of satellite image RPC

metadata using the image pixels. This is the first method to investigate the problem of

satellite image RPC metadata authentication. This is also one of few works to investigate

resampling detection and estimation in the case of non-linear transformations.

In another, we generalize this to include pixel tampering detection. This method

is verified on a set of spliced satellite images. Our method significantly out-performs a

state-of-the-art splicing localization deep learning method. It does so using a combination

of the RPC metadata, and explainable signal processing methods.

1.3 Organization

• Chapter 2 provides background on the imaging pipeline, a summary image foren-

sic techniques, and a description of the orthorectification process used in satellite

imagery.

• Chapter 3 presents the work on GAN image detection.

• Chapter 4 describes the work on satellite image RPC metadata verification.

• Chapter 5 demonstrates the generalization of ideas in Chapter 4 to the new task of

image splicing detection.

• Chapter 6 summarizes the main components of the dissertation, presents some of

my other related work, and proposes new domains the core ideals of this work could

be generalized to.
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Background

This chapter provides important background information for the remaining chapters. The

first section describes a theoretical basis for image forensics. By describing the baseline

principles under which an untampered image is generated, it becomes more apparent how

deviations from this can be detected and used in forensics.

The second section provides background on general image forensics. This is meant to

be a broad summary, and focuses mainly on forensics in handheld camera images.

The last section of this chapter described the details of the satellite imaging process.

Especially relevant to this work is the process of orthorectification, where a perspective

image from the satellite sensor is converted to ”map-like” orthogonal projection.

2.1 Understanding the Imaging Process

In theory, an image is simply an array of bytes. Without additional knowledge about

the imaging process, there is no reason to say that one collection of bytes is more likely to

be tampered than another. Understanding the imaging process can help identify expected

patterns in the image pixels, and differentiate between tampered and untampered classes.
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2.1.1 The pinhole camera model

The pinhole camera model represents one of the simplest mathematical models of an

imaging system. In this model, all points in 3D space are projected through the pinhole,

onto an imaging plane. The imaging plane would then be subdivided into a grid of pixels.

To convert from the continuous image to the discrete image, an average of the continuous

value can be taken inside of the pixel area.

This model is impossible to achieve fully in practice, but is intuitively what we might

expect of an image. Then, specific deviations from this can be classified and analyzed

individually.

2.1.2 Deviations from the Pinhole Camera Model

Several common deviations from the pinhole camera are reliably encountered with

digital cameras.

Firstly, distortions are introduced by the lens. Compared to a simple pinhole, lenses

allow for significantly more light to reach the sensor. However, they introduce blurring

of objects which are too close or too far. Barrel, pincushion, and mustache distortion

can also bring objects at the edge of the imaging frame closer or farther from the center.

Finally, chromatic aberration can be present in multi spectral images. Just as a prism

can separate the spectrum of white light, a lens can act differently on different spectrums

of light. Given all of these potential lens distortions, and the high cost of manufacturing

quality lenses, there is significant effort in many modern cameras to correct for these

distortions in software. Such corrects may correct for the above distortions to a degree,

but may themselves leave further artifacts in the image.

Another group of distortions arise from the discretization between a real camera,

and the pinhole camera model. First, light itself arrives in discrete photons. Even in a
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perfectly fixed scene, multiple exposures will lead to different pixel outputs. However, it

can be assumed that there is some underlying rate of photons, λ. The actual observed

rate of photons will be a Poisson random variable, with an average rate of λ. Further

noise is introduced as the finite photos pass through the color filter array, interact with

the camera sensor, and eventually are read by the analog to digital converter into bits.

There exist several other readily modellable deviations - such as Bayer color filter

array interpolation. There also exist more difficult to model deviations. For example,

imperfections in the sensor manufacturing. [9] found that certain pixels within a sensor

would be detectably more or less sensitive than others. This work then showed that these

varying sensitivities produced a fingerprint which is unique to each individual sensor.

All together, the essence of what makes an image real is complex. There are likely

intricacies about imaging we do not yet know about, or have represented in a model.

2.1.3 Image Forensics as a Statistical Problem

With the entire imaging process being non-deterministic, there are some interesting

extremes worth considering in the context of forensics. First, imagine a setup taking a

picture of a gray wall. With high probability, the image output will be gray, plus some

amount of noise. In most practical imaging scenarios this signal to noise ratio will be

small. However, there remains a non-zero probability that any possible combination of

image pixel values could be produced.

Intuitively, we might think of the sets of manipulated and unmanipulated images

being non-overlapping within a given context. Just as for object identification, cats and

dogs are treated as two separate classes. However, this is not true for image forensics.

Instead, it could be more accurately be thought of as the probability that a given image

came from an authentic imaging process, compared to a process involving manipulation.
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In many forensic works, there is a focus on the noise patterns. Here, noise will refer to

deviations seen from an ideal pinhole camera model. Compared to noise, content is often

complicated. It is much more difficult to have an accurate model for a 3D scene from a

single picture than having a model for pixel noise. Noise in most cases can be accurately

represented as random variables drawn from some distribution. This approach now poses

forensics as a problem of identifying which distribution this noise is likely to arise from:

real or manipulated.

2.2 Overview of the Modern Image Forensics Field

This section outlines several common image forensic tasks, and some of the state of

the art methods to achieve them.

2.2.1 Common Image Forensics Tasks

Within image forensics, there are several related tasks. These are not mutually exclu-

sive. However, thinking about the different objectives within forensics can give a better

picture of the field.

Binary Classification on Images: Determine with a binary score, whether or not

an image had undergone a particular manipulation. For example, GAN image detection

(see Chapter 3).

Binary Classification on Metadata: Determine if the corresponding metadata

matches the provided image. For example, RPC metadata verification (Chapter 4), or

authentication of a camera model.

Parameter Estimation: Often instead of a binary score, we want to have more

information about the image manipulation. Estimation of the scaling applied, or GAN

generation method for an image are both examples.
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Adversarial Forensics: Here, the party producing the manipulated image wishes

not only to fool a human looking at an image, but also methods attempting to detect

the manipulation. This area is investigated in Chapter 3.

Steganogaraphy and Watermarking: The task of hiding visually imperceivable

data in an image. For steganography, the embedded data should be undetectable to

anyone without a secret key. In watermarking, the watermark may be detectable by

anyone, but is often designed to be difficult to remove. Both of these fields involve the

embedding of such signals, and detection.

2.2.2 State of the Art Forensics Methods

Most state of the art methods fall into one of these classes:

• Training an off-the-shelf deep neural network directly.

• Hand crafting some feature based on theoretical assumptions, and passing this to

a neural network.

• Designing a neural network architecture specifically tailored to a forensics task.

There is no single best state of the art model for all forensics tasks, as the tasks

can vary quite significantly. Furthermore, there is often not agreement between datasets

as to what is considered to be acceptable and unacceptable manipulations in terms of

maintaining an image’s authenticity.

However, some strategies have proven useful across tasks. The Bayar convolutional

layers was one of those examples [10]. The novel approach in this paper was to constrain

the first convolutional layer to have a -1 as the center weight value, and for all of the

remaining weights to sum to zero. This effectively constrained the neural network to learn

a high pass filter, by predicting the noise residual. Under the assumptions that patterns
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in the noise are useful for forensics, this constrained the network to only utilize what was

considered useful by the network designer. The full convolutional neural network was

used to classify images which may have a median filter, Gaussian blur, Gaussian noise,

or resampling applied.

This same filter was used as a component in many other papers, including MantraNet [11].

MantraNet remains as one of the state of the art methods for image manipulation local-

ization. It was trained on a broad set of over 300 manipulations, and created a novel

covolutional block based on the z-score statistical test. Here, the assumption was that

the features in manipulated regions would be anomalous relative to the other features in

an image, and the z-score test could better constrain the network to detect this.

Other methods have taken advantage of more pinpointed artifacts which may show

up in images. For example, the JPEG ghost artifacts first published by Farid et. al. [12].

Of particular interest to this thesis are the artifacts produced by orthorectification

of satellite images. The details of this orthorectification is described in the next section.

This serves as background information for the satellite image features used in chapters 4

and 5.

2.3 Orthorectification

Particular only to satellite images in this work, orthorectifaction is one additional

process which can be in the imaging pipeline. The process is intricate, and plays a

pivotal role in aiding in image forensic tasks in chapters 4 and 5.

The process of orthorectification results in a camera model which differs from the

pinhole camera model commonly used in forensics. Instead, the camera projection is

resampled into a different projection entirely. It is from this additional projection that

artifacts can be uncovered for forensics.
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Figure 2.1: Visualization of the orthorectification process. The original and orthorec-
tified images are on the top and bottom respectively. The red lines represent lines of
equal latitude and longitude.

2.3.1 Orthorectification Definition

Intuitively, orthorectification is the process of warping a satellite image from a per-

spective image to a map-like one. In the orthorectified images, lines of equal latitude

are equally spaced and horizontal. Line of equal longitude are also equally spaced, and

vertical.

In the orthorectification process, there are three unique entities involved. These are:

• The perspective image: This is what is captured by the satellite sensor. It is a

perspective image from the camera location.
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• The Rational Polynomial Coefficients (RPCs): This captures the mapping from

world coordinates (latitude, longitude, elevation) to camera pixel coordinates.

• Digital Elevation Maps (DEMs): A mapping from (latitude, longitude) to elevation,

as a raster image.

To perform orthorectification, a mapping from (latitude, longitude) to (pixel row,

pixel column) is needed. This mapping is achieved in a two step process. DEMs can

be used to add elevation to the (latitude, longitude) pair. Then, (latitude, longitude,

elevation) can be mapped to a pixel coordinate with the RPCs.

To preform an orthorectification, all three of the above items are given. Then, a grid

of (latitude, longitude) pairs is constructed. Each coordinate in the grid is then mapped

to a floating point pixel coordinate, a location in the observed image. Each point should

fall between a set of 4 nearest neighbor integer pixel coordinates. Then, interpolation

can be used to compute the pixel value at that lat-long location.

DEMs are not of particular interest to this work, as they are freely available online,

and easier to verify than satellite image. As in, manipulation of a DEM could be easily

checked against another elevation map. Ideally, there should be little deviation between

sensors. Furthermore, there should be little temporal change in the DEMs. This is in

contrast to visible spectrum satellite images, which are frequently used to demonstrate

fast-changing events.

While the perspective image and DEMs are quite simple from their definition, the

RPCs are less so. The role that RPCs fill is quite open-ended: simply create a mapping

from pixel coordinates to earth coordinated. The next section discusses the structure of

this transformation, and what is contained in the metadata.
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2.3.2 Orthorectification in the Linear Case

This section walks through the derivation of the orthorectification equation under the

most restrictive of assumptions. Once this baseline method of orthorectification is estab-

lished, each idealized assumption can be broken down, and analyzed individually. The

camera is assumed to follow the perfect pinhole model. Lines of latitude and longitude

are equally spaced, and orthogonal. The earth is also assumed to be perfectly flat. The

flat-earth assumption introduces surprisingly little deviation from the truth, for observed

sample sizes. Over a typical imaging span of 20km, a flat plane will only deviate from

the surface of a 12800km diameter sphere by 8m.

Coordinates on the earth can be represented as a set of three values, (latitude, lon-

gitude, elevation) → (x, y, z). The imaging plane coordinates, as rows and columns, are

represented as the pair (r, c). Projection onto the imaging plane requires several math-

ematical steps. First, the establishment of a coordinate system for the imaging plane.

The camera location is assumed to be the origin, and the imaging plane is a distance of

1 away from the origin. Transformation of coordinates in the p = (x, y, z) earth coordi-

nates can be done using scaling, rotation, and a translation. Mathematically, this could

be represented as

pc = RSpe + t

where

pc =


xc

yc

zc

, the camera coordinates

pe =


xe

ye

ze

, the earth coordinates
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R =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , a rotation matrix

S =


sx 0 0

0 sy 0

0 0 sz

 , a scaling matrix

t =


t1

t2

t3

, a translation vector

Multiplying out the R and S matrices, the pc components can be expressed as

xc = b0 + b1xe + b2ye + b3ze

yc = b4 + b5xe + b6ye + b7ze

zc = b8 + b9xe + b10ye + b11ze

In other words, the transformation from 3D earth coordinates to 3D image coordinates

is affine. Projection onto the imaging plane gives the equations:

r = yc
zc

= b4+b5xe+b6ye+b7ze
b8+b9xe+b10ye+b11ze

c = xc

zc
= b0+b1xe+b2ye+b3ze

b8+b9xe+b10ye+b11ze

This shows that if the earth were flat, the precise equation for this task would be

Rational Linear Equations. However, latitude, longitude, and elevation do not form

a Euclidean space. The earth curves, and lines of longitude become closer near the

poles. This next section discusses generalization of this simple example to the full RPC

equation.
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Figure 2.2: The satellite imaging process. From left to right: the camera location,
imaging plane, and image field-of-view.

2.3.3 A more precise orthorectification equation

The assumption of a flat sea level over the imaging region allows for a simpler equation,

but leaves an 8m error in the RPC rectification equation with respect to elevation. The

real shape of the earth used by USGS is instead an oblate spheroid. The oblate spheroid

model of the earth is rotationally symmetric about the north-south axis. Any crossections

of the earth through the north-south axis are ellipses. The earth is slightly larger in the

middle, with a flattening factor of about 1/298.

On the oblate spheroid earth model, locations can be defined by latitude (ϕ), longitude

(θ), and elevation (d). These need to be mapped to Cartsian coordinates (x, y, z), where

the origin is at the center of the earth sphere. The x-axis will travel through both the

equator and prime meridian. The z-axis will travel through the north pole. And the

y-axis will be orthogonal to both of these, traveling through the meridian of 90E. The
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conversion between these measurement systems is as follows:

x = (d+R1)cos(ϕ)cos(θ)

y = (d+R1)cos(ϕ)sin(θ)

z = (d+R2)sin(ϕ)

In practical applications, the ϕ and θ values within a particular image should only

vary by a small amount. This would be assuming that the imaging is not done too close

to the poles, where θ values from -180 to 180 could all be seen within a single image.

However, all practical images will be far from the polar regions. These equations can be

reparameterized based on this assumption. ϕ0 and θ0 are constants for an image, and

could be considered as the average latitude and logitude in a region. ϕ∆ and θ∆ are

variable within a region, but tend to be very small.

x = (d+R1)cos(ϕ0 + ϕ∆)sin(θ0 + θ∆)

y = (d+R1)cos(ϕ0 + ϕ∆)cos(θ0 + θ∆)

z = (d+R2)sin(ϕ0 + ϕ∆)

Then, the following trig identities can be applied:

sin(α + β) = sin(α)cos(β) + cos(α)sin(β)

cos(α + β) = cos(α)cos(β)− sin(α)sin(β)

This yields new formulas for x, y, and z:

x = (d+R1)(cos(ϕ0)cos(ϕ∆)− sin(ϕ0)sin(ϕ∆))(sin(θ0)cos(θ∆) + cos(θ0)sin(θ∆))

y = (d+R1)(cos(ϕ0)cos(ϕ∆)− sin(ϕ0)sin(ϕ∆))(cos(θ0)cos(θ∆)− cos(θ0)cos(θ∆))

z = (d+R2)(cos(ϕ0)sin(ϕ∆) + sin(ϕ0)cos(ϕ∆))

Taylor Series expansions can be constructed for sin(ϕ∆), cos(ϕ∆), sin(θ∆), and

cos(θ∆). Given the very small ranges for θ∆ and ϕ∆ (on the order of 10−3 radians),

the Taylor series can converge quite quickly.

Here, we could re-visit the flat-earth approximation made in the linear case. If we ap-

proximate the same 20km segment of a 6400km radius circle with a parabola, a deviation
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of less than 1cm can be achieved. Further expansion beyond the second or third term in

the polynomial provide close to no real benefit. For context, several tectonic plates on

the earth move at a rate of several centimeters a year. Large earthquakes can even cause

disturbances of up to 8 cm, almost instantaneously. For any practical system, regardless

of how accurate the measurement is, there is almost no benefit to including higher order

terms. However, there is additional computational benefit to truncating at 3rd order

terms in the polynomials. Approximating this as a ratio of two polynomials reduces the

need for trig functions in computation greatly. All of these figures are retrieved from the

USGS WGS 1984 standard [13].

2.3.4 Definition of the RPC Metadata

The RPC equation consists of several distinct parts, beyond the rational polynomial

coefficients. This includes the pre-scaling of the input and output values:

• An affine scaling of latitude, longitude, and height into the range [-1, 1]

• The rational polynomial transformation

• Another affine transformation, taking the row and column values from the range

[-1, 1] to the pixel coordinates

P = (Latitude− LAT OFF )/LAT SCALE

L = (Longitude− LONG OFF )/LONG SCALE

H = (Elevation− ELEV ATION OFF )/ELEV ATION SCALE

R = (Row − LINE OFF )/LINE SCALE

C = (Column− SAMPLE OFF )/COLUMN SCALE

(2.1)
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Figure 2.3: Parameters contained in the RPC metadata.
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Polynomial Term Line Numerator Line Denominator Row Numerator Row Denominator

1 0.0028087 1.0000000 -0.0018289 1.0000003
L -1.0166277 -0.0000365 -0.0084539 0.0007958
P -0.0027333 0.0000341 -1.1655187 -0.0005722
H 0.0011872 -0.0000018 -0.1105139 -0.0010652

L× P 0.0066865 -0.0003074 -0.0409052 -0.0002819
L×H -0.0010402 -0.0002256 0.0018884 -0.0001988
P ×H -0.0000099 -0.0000377 0.0004605 -0.0000098
L2 -0.0082514 0.0012272 -0.0016286 -0.0006459
P 2 0.0000110 -0.0000634 0.0094496 -0.0002889
H2 0.0000011 -0.0000000 -0.0000298 0.0000081

P × L×H 0.0000516 -0.0000002 0.0001124 0.0000013
L3 -0.0012205 0.0000014 0.0002509 0.0000496

L× P 2 0.0000298 -0.0000002 0.0007554 0.0000110
L×H2 -0.0000011 0.0000001 0.0000190 -0.0000003
L2 × P 0.0002998 -0.0000004 0.0003262 -0.0000010
P 3 0.0000001 -0.0000002 0.0002766 0.0000008

P ×H2 -0.0000001 0.0000001 -0.0000071 0.0000002
L2 ×H 0.0001795 -0.0000004 0.0002617 -0.0000004
P 2 ×H 0.0000001 -0.0000003 0.0000541 0.0000009
H3 0.0000000 -0.0000000 -0.0000009 -0.0000000

Table 2.1: A sample set of RPC coefficients. The largest magnitude coefficients are
in the linear terms, quickly shrinking in the higher order terms.

R =

∑20
i=1 LINE NUMi × ρ(P,L,H)∑20
i=1 LINE DENi × ρ(P,L,H)

C =

∑20
i=1 LINE NUMi × ρ(P,L,H)∑20
i=1 LINE DENi × ρ(P,L,H)

(2.2)

2.3.5 RPC Metadata Summary

The RPC metadata, combined with the DEMs, defines a function to warp a perspec-

tive image to an orthorectified one. This warping is leveraged in Chapters 4 and 5 for

forensics purposes.
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The next chapter presents work exclusively focused on GAN detection. It will leverage

aspects of the imaging pipeline defined in the first part of this chapter to help identify

differences between real and GAN images.
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GAN Image Detection

This chapter presents a combination of work from several papers. First, some work

focusing on exclusively on non-adversarial GAN image detection, attribution, and local-

ization [14]. This portion discusses, in depth, the various tasks surrounding detection.

The corresponding paper was one of the earliest successful works in detection, attribution,

and localization of GANs. It was also one of the first to consider co-occurrence matrices

for such a forensics task. This work was completed in collaboration with Lakshmanan

Nataraj. Specifically, the methods development was done jointly, followed by test and

evaluation and experimentation that I was mostly responsible for.

The second work discusses several methods for evading these detectors [15]. Here, the

data used in the previous publication was reused for the adversarial work. This publica-

tion was the first to incorporate co-occurrence matrices into an adversarial framework.

While the focus here is on GAN images, the findings could be generalized to other use

cases of co-occurrence matrices.
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3.1 Overview of GAN Generation

The advent of Convolutional Neural Networks (CNNs) [16,17] has shown application

in a wide variety of image processing tasks, and image manipulation is no exception.

In particular, Generative Adversarial Networks (GANs) [18] have been one of the most

promising advancements in image enhancement and manipulation. Due to the success

of using GANs for image editing, it is now possible to use a combination of GANs and

off-the-shelf image-editing tools to modify digital images to such an extent that it has

become difficult to distinguish doctored images from normal ones.

The GAN training procedure involves a generator and discriminator, as shown in

Figure 3.1. The generator may take in an input image and a desired attribute to change,

then output an image containing that attribute. The discriminator will then try to differ-

entiate between images produced by the generator and the authentic training examples.

The generator and discriminator are trained in an alternate fashion, each attempting to

optimize its performance against the other. Ideally, the generator will converge to a point

where the output images are so similar to the ground truth that a human will not be

able to distinguish the two. In this way, GANs have been used to produce “fake” images

that are very close to the real input images.

These include image-to-image attribute transfer (CycleGAN [4]), generation of fa-

cial attributes and expressions (StarGAN [3]), as well as generation of whole new im-

ages such as faces (ProGAN [2], StyleGAN [5]), indoors (StyleGAN) and landscapes

(SPADE/GauGAN [6]). In digital image forensics, the objective is to both detect these

fake GAN generated images, localize areas in an image which have been generated by

GANs, as well as identify which type of GAN was used in generating the fake image.

In the GAN training setup, the discriminator functions directly as a classifier of GAN

and non-GAN images. So the question could be raised as to why not use the GAN
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Figure 3.1: A basic GAN training setup
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discriminator to detect if it’s real or fake? To investigate this, we performed a quick test

using the CycleGAN algorithm under the maps-to-satellite-images category, where fake

maps are generated from real satellite images, and vice versa. In our test, we observed

that the discriminator accuracy over the last 50 epochs was only 80.4%. However, state-

of-the-art deep learning detectors for CycleGAN often achieve over 99% when tested on

the same type of data which they are trained [19–21]. Though the discriminator fills

its role of producing a good generator, it does not compare performance wise to other

methods which have been suggested for detection.

While the visual results generated by GANs are promising, the GAN based techniques

alter the statistics of pixels in the images that they generate. Hence, methods that

look for deviations from natural image statistics could be effective in detecting GAN

generated fake images. These methods have been well studied in the field of steganalysis

which aims to detect the presence of hidden data in digital images. One such method

is based on analyzing co-occurrences of pixels by computing a co-occurrence matrix.

Traditionally, this method uses hand crafted features computed on the co-occurrence

matrix and a machine learning classifier such as support vector machines determines

if a message is hidden in the image [22, 23]. Other techniques involve calculating image

residuals or passing the image through different filters before computing the co-occurrence

matrix [24–26]. Inspired by steganalysis and natural image statistics, we propose a novel

method to identify GAN generated images using a combination of pixel co-occurrence

matrices and deep learning. In this proposed method, the co-occurrence matrix is used as

an input to the deep learning model. In this chapter, we consider three related tasks. The

first is detection, which aims to assign a binary real/fake score to each image. The second

is attribution, which assigns a classification as to which GAN architecture produced the

image in question. And the third is localization, which identifies which regions of an

image may be GAN generated. For detection, we consider a two class framework - real
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and GAN, where a network is trained on co-occurrence matrices computed on the whole

image to detect if an image is real or GAN generated. For attribution, the same network

is trained in a multi-class setting depending on which GAN the image was generated

from. For localization, a network is trained on co-occurrence matrices computed on image

patches and a heatmap was is generated to indicate which patches are GAN generated.

Detailed experimental results on large scale GAN datasets comprising over 2.76 million

images originating from multiple diverse and challenging datasets generated using GAN

based methods show that our approach is promising and will be an effective method for

tackling future challenges of GANs.

3.1.1 GAN related works

Since the seminal work on GANs [18], there have been several hundreds of papers

on using GANs to generate images. These works focus on generating images of high

perceptual quality [2,27–32], image-to-image translations [4,30,33], domain transfer [34,

35], super-resolution [36], image synthesis and completion [37–39], and generation of

facial attributes and expressions [3, 35, 40, 41]. Several methods have been proposed in

the area of image forensics over the past years [42–46]. Recent approaches have focused

on applying deep learning based methods to detect tampered images [10,26,47–51].

In digital image forensics, detection of GAN generated images has been an active

topic in recent times and several papers have been published in the last few years [19–

21,52–73,73–76]. Other similar research include detection of computer generated images

(CGI) [77–80]

In [19], Marra et al. compare various methods to identify CycleGAN images from

normal ones. The top results they obtained are using a combination of residual fea-

tures [26, 81] and deep learning [1]. In [53], Li et al. compute the residuals of high
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pass filtered images and then extract co-occurrence matrices on these residuals, which

are then concatenated to form a feature vector that can distinguish real from fake GAN

images. In [21], Zhang et al. identify an artifact caused by the up-sampling component

included in the common GAN pipeline and show that such artifacts are manifested as

replications of spectra in the frequency domain and thus propose a classifier model based

on the spectrum input, rather than the pixel input. Our work is in some ways similar

to [21]. However, instead of the DFT, we utilize the co-occurrence matrix.

3.2 Our GAN Detection Method

The method consists of two main steps. First the computation of a co-occurrence

feature to capture the texture signatures of an image. The second involves passign this

feature through a deep learning network. Each of these are described in the following

two sections.

3.2.1 Co-Occurrence Matrix Computation

The co-occurrence matrices represent a two-dimensional histogram of pixel pair values

in a region of interest. The vertical axis of the histogram represents the first value of the

pair, and the horizontal axis, the second value. Equation 3.1 shows an example of this

computation for a vertical pair.

Ci,j =
∑
m,n


1, I[m,n] = i and I[m+ 1, n] = j

0, otherwise

(3.1)

Under the assumption of 8-bit pixel depth, this will always produce a co-occurrence

matrix of size 256x256. This is a key advantage of such a method, as it will allow for the
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Figure 3.2: An example co-occurrence computation. The input image (a) is split into
its three color channels (b). For each color channel, 4 different pairs of pixels are
used to generate 2-dimensional histograms (c). Horizontal, vertical, diagonal, and
anti-diagonal pairs are considered. These histograms are then stacked to produce a
single tensor (d). For some tests, only a subset of the co-occurrence matrices will be
used.

same network to be trained and tested on a variety of images without resizing.

Which pairs of pixels to take was one parameter of interest in our tests. For any pixel

not touching an edge, there are 8 possible neighbors. We consider only 4 of these for

our tests; right, bottom right, bottom, and bottom left. The other 4 possible pairs will

provide redundant information. For example, the left pairs are equivalent to swapping

the order of the first and second pixel in the right pair. In the co-occurrence matrix, this

corresponds to a simple transpose. There are many subsets of these 4 pairs which could

be taken, but our tests consider only a few; horizontal, vertical, horizontal and vertical,

or all.

Before processing matrices through a CNN, some pre-processing is done. First, each

co-occurrence matrix is divided by its maximum value. Given that the input images may

be of varying sizes, this will force all inputs into a consistent scale. After normalization, all

co-occurrence matrices for an image are stacked in the depth dimension. In the example

of an RGB image with all 4 co-occurrence pairs, this will produce a new image-like feature

tensor of size 256x256x12. Figure 3.2 gives a visualization of this process.
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3.2.2 Backbone Convolutional Neural Networks

While the co-occurrence matrices are not themselves images, treating them as so

has some theoretical backing. One of the primary motivations for using CNNs in image

processing is their translation invariance property. In the case of a co-occurrence matrix,

a translation along the main diagonal corresponds to adding a constant value to the

image. We would not expect this manipulation to affect the forensic properties.

In this chapter, we use Xception Net [1] deep neural network architecture for detec-

tion, attribution and localization of GAN generated images. The Xception network is a

modified version of Inception network [82] but was created under a stronger theoretical

assumption than the original Inception, where cross-channel correlations are completely

split from spatial correlations by use depth-wise separable convolutions. The network

also includes residual connections, as shown in Figure 3.3. For these reasons, the authors

claim that Xception can more easily find a better convergence point than most other

CNN architectures, while keeping model capacity low [1]. In this paper, we modify the

original input and output shapes in the Xception network to accommodate our task as

shown in Figure 3.3. The initial convolutional portions of the network remain unchanged,

though the output sizes of each block are slightly different. This small change in size is

accommodated by the global pooling step. Finally, the last fully connected layer of each

network is changed to the desired number of output classes, and given the appropriate

activation. For detection and attribution, our architectures are the same except for the

last layer and activation. For localization, no changes were made to the model architec-

ture but co-occurrence matrices were extracted on small image patches, and individually

passed through the network.
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Figure 3.3: The original Xception network [1], shown next to our two modified models.
Our architectures for detection and attribution are the same, except for the last layer
and activation.
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(a) Real Images (b) GAN Images

Figure 3.4: Sample images from different GAN datasets (a) Real images and (b) GAN
images from different GAN datasets (top to bottom): ProGAN [2], StarGAN [3],
CycleGAN [4], StyleGAN [5], and SPADE/GauGAN [6].

3.3 Datasets

We evaluated our method on five different GAN architectures, of which each was

trained on several different image generation tasks: ProGAN [2], StarGAN [3], Cycle-

GAN [4], StyleGAN [5], and SPADE/GauGAN [6]. The modifications included image-

to-image translation, facial attribute modification, style transfer, and pixel-wise semantic

label to image generation. A summary of the datasets, including the number of images

from each class, is shown in Figure 3.5. These comprise a total of more than 2.76 million

images of which 1.69 million images are real images and 1.07 million images are fake GAN

generated images. In several cases, one or more images in the GAN generated category

will be directly associated with an image in the authentic class. For example, a person’s

headshot untampered, blond, aged, and gender reversed will all be in the dataset. How-

ever, the splitting for training accounts for this, and will keep all of these images together

to be put into either training, validation, or test. Some sample images from all the GAN

datasets are shown in Figure 3.4.
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Figure 3.5: Quantitative summary of the GAN datasets used in our experiments.

StarGAN

This dataset consists of only celebrity photographs from the CelebA dataset [83], and

their GAN generated counterparts [3]. The GAN changes attributes of the person to give

them black hair, brown hair, blond hair, different gender, different age, different hair and

gender, different hair and age, different gender and age, or different hair, age, and gender.

These are the smallest of all of the training images, being a square of size 128 pixels.

CycleGAN

This datasets includes image-to-image translations between a wide array of image

classes [4]. The sets horse2zebra, apple2orange, and summer2winter do a strict image-

to-image translation, with the assumption that the GAN will learn the areas to modify.

While the whole output is generated by the GAN, the changes for these will ideally be

more localized. Ukiyoe, Vangogh, Cezanne, and Monet are four artists which the GAN
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attempts to learn a translation from photographs to their respective styles of painting.

Facades and cityscapes represent the reverse of the image segmentation task. Given a

segmentation map as input, they produce an image of a facade or cityscape. Map2sat

takes in a Google Maps image containing road, building, and water outlines, and generates

a hypothetical satellite image.

ProGAN

This dataset consists of images of celebrities, and their GAN generated counterparts,

at a square size of 1024 pixels [2]. All data was obtained per the instructions provided

in the paper’s Github repository.

SPADE/GauGAN

SPADE/GauGAN contains realistic natural images generated using GANs [6]. This

dataset uses images from ADE20k [84] dataset containing natural scenes and COCO-

Stuff [85] dataset comprising day-to-day images of things and other stuff, along with their

associated segmentation maps. These untampered images are considered as real images

in the GAN framework, and the pretrained models provided by the SPADE/GauGAN

authors are used to generate GAN images from the segmentation maps.

StyleGAN

This dataset contains realistic images of persons, cars, cats and indoor scenes [5].

Images for this dataset were provided by the authors.
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3.4 Experiments

This section describes the training procedure, and numerous tests done with the

model. The tests involve tasks of detection, attribution, and localization. Testing also

investigates several real-world problems, such as the effect of JPEG compression and

generalization to unseen networks.

3.4.1 Training Procedure

All deep learning experiments in this paper were done using Keras 2.2.5 and all

training was done using an Adam optimizer [86], learning rate of 10−4, and cross-entropy

loss. A batch size of 64 was used for all experiments. Unless otherwise stated, a split

of 90% training, 5% validation, and 5% test was used. Given the large amount of data

available, a single iteration through the entire dataset for training took 10 hours on a

single Titan RTX GPU. To allow for more frequent evaluation on the validation set,

the length of an epoch was capped at 100 batches. Validation steps were also capped

at 50 batches, and test sets at 2000 batches. After training for a sufficient period of

time for the network to converge, the checkpoint which scored the highest in validation

was chosen for testing. For experiments to determine hyper-parameters, training was

capped at 50 epochs, and took approximately 3 hours each on a single Titan RTX. After

determination of hyper-parameters, training of the final model was done for 200 epochs,

taking approximately 12 hours.

3.4.2 Comparison with other CNN architectures:

First we evaluate our method on different well known CNN architectures: VGG16 [17],

ResNet50 ResNet101 [87], ResNet50V2, ResNet101V2 and ResNet152V2 [88], Incep-

tionV3 and InceptionResNetV2 [82], and Xception [1]. Shown in Table 3.1 are the results
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Table 3.1: Comparison of different popular ImageNet [8] classification architectures
on classifying GANs from co-occurrence matrices. All datasets are mixed for training,
validation, and testing. The features are extracted from a whole image, with no JPEG
compression.

Network Accuracy
VGG16 [17] 0.6115
ResNet50 [87] 0.9677
ResNet101 [87] 0.9755

ResNet152V2 [88] 0.9795
ResNet50V2 [88] 0.9856

InceptionResNetV2 [82] 0.9885
InceptionV3 [89] 0.9894
ResNet101V2 [88] 0.9900

Xception [1] 0.9916

for the different CNN networks. Though designed for ImageNet classification, all models

take in an image with height, width, and 3 channels, and output a one-hot encoded label.

The models are used as-is, with the following slight modifications. First, the number of

input channels is set to be the depth of the co-occurrence feature tensor. Second, input

shape was fixed at 256x256. Third, the number of output channels was set to 1. All of

these parameters were passed as arguments to the respective Keras call for each model.

A small margin separated the top performers, though Xception was the best with an

accuracy of 0.9916 and had fewer parameters than others. For this reason, we chose

Xception for the remainder of the experiments.

3.4.3 Comparison of Co-occurrence Matrix Pairs

Next we perform tests with different co-occurrence pairs, shown in Table 3.2. These

experiments included JPEG compression, randomly selected from quality factors of 75,

85, 90, and no compression. Interestingly, it seems that the addition of more co-

occurrence pairs did not significantly improve performance. For the remainder of the

test, all 4 co-occurrence pairs were used.
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Table 3.2: Test on difference co-occurrence pairs. These were done on the whole
image, with the additional challenge of JPEG compression. The JPEG quality factor
was randomly selected with equal probability from the set of 75, 85, 90, or no JPEG
compression

Pairs Accuracy
Horizontal 95.51
Vertical 95.56

Hor and Ver 95.17
Hor, Ver, and Diag 95.68

Table 3.3: Accuracy when trained on one patch size, and tested on another. Data
for training and testing has been pre-processed using JPEG compression with quality
factors randomly selected from 75, 85, 90 or none.

Train
64 128 256

Test
64 0.7814 0.7555 0.6778
128 0.8273 0.8336 0.8158
256 0.8311 0.8546 0.8922

3.4.4 Effect of patch size

For real world applications, the two parameters of interest were JPEG compression

and patch size. The results for different patch sizes are shown in Table 3.3. These results

are from images JPEG compressed by a factor randomly selected from 75, 85, 90, and

none. A model is trained for each of the possible patch sizes, and then each model is

tested against features from each patch size. It should be noted that in cases where the

input image is smaller than the requested patch size, the whole image is used. There

is notable generalization between different patch sizes, in that the model trained on a

patch size of 256 and tested on 128 achieves an accuracy within a few percentage points

of a model trained and tested on 128. Thus we would expect our models to work with

a variety of untested patch sizes within a reasonable range while only taking a minor

performance drop.
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Table 3.4: Test accuracy when model is trained on images pre-processed with one
JPEG quality factor, and tested on another.

Train
75 85 90 None

Test

75 0.7738 0.7448 0.7101 0.6605
85 0.8209 0.8593 0.8362 0.7209
90 0.8310 0.8690 0.8756 0.7651

None 0.9198 0.9386 0.9416 0.9702

3.4.5 Effect of JPEG compression

Now assuming a fixed patch size of 128, we varied the JPEG quality factors: 75,

85, 90 and no compression. The model was again trained only on one particular JPEG

factor as shown in Table 3.4. As expected, we see that performance increases with respect

to quality factor. However, this table also shows that the model does not overfit to a

particular quality factor, in that testing on a slightly better or worse quality factor gives

a score not far from a model tuned to the particular test quality factor.

3.4.6 Generalization

To test the generalization between GANs, leave-one-out cross validation was used for

each GAN architecture. One dataset of GAN images is used for testing and remaining

GAN image datasets are used for training. Here, a patch size of 128 was used with no

JPEG compression. From Table 3.5, we see that some GAN datasets such as SPADE,

StarGAN and StyleGAN have high accuracy and are more generalizable. However, the

accuracies for CycleGAN and ProGAN are lower in comparison, thus suggesting that

images from these GAN categories should not be discarded when building a bigger GAN

detection framework.

Visualization using t-SNE: To further investigate the variability in the GAN detection

accuracies under the leave-one-out setting, we use t-SNE visualization [7] from outputs of

the penultimate layer of the CNN, using images from the test set (as shown in Figure 3.6).
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Table 3.5: Train on all but one GAN, test on the held out images. Patch size of 128,
no JPEG compression.

Test GAN Accuracy
StarGAN 0.8490
CycleGAN 0.7411
ProGAN 0.6768
SPADE 0.9874

StyleGAN 0.8265

Table 3.6: Comparison with State-of-the-art. The co-occurrence based method out-
-performs all other methods in this evaluation metric.

Method ap2or ho2zeb wint2sum citysc. facades map2sat Ukiyoe Van Gogh Cezanne Monet Average
Steganalysis feat. 0.9893 0.9844 0.6623 1.0000 0.9738 0.8809 0.9793 0.9973 0.9983 0.9852 0.9440
Cozzalino2017 0.9990 0.9998 0.6122 0.9992 0.9725 0.9959 1.0000 0.9993 1.0000 0.9916 0.9507
XceptionNet 0.9591 0.9916 0.7674 1.0000 0.9856 0.7679 1.0000 0.9993 1.0000 0.9510 0.9449
Nataraj2019 0.9978 0.9975 0.9972 0.9200 0.8063 0.9751 0.9963 1.0000 0.9963 0.9916 0.9784
Zhang2019 0.9830 0.9840 0.9990 1.0000 1.0000 0.7860 0.9990 0.9750 0.9920 0.9970 0.9720

Proposed approach 0.9982 0.9979 0.9982 0.9366 0.9498 0.9776 0.9973 0.9980 0.9993 0.9697 0.9817

The t-SNE algorithm aims to reduce dimensionality of a set of vectors while preserving

relative distances as closely as possible. While there are many solutions to this problem

for different distance metrics and optimization methods, KL divergence on the Student-t

distribution used in t-SNE has shown the most promising results on real-world data [7].

To limit computation time, no more than 1000 images were used for a particular

GAN from either the authentic or GAN classes. As recommended in the original t-SNE

publication, the vector was first reduced using Principle Component Analysis (PCA).

The original 2048 were reduced to 50 using PCA, and passed to the t-SNE algorithm. As

we see in Figure 3.6, the images in CycleGAN and ProGAN are more tightly clustered,

thus making them difficult to distinguish between real and GAN generated images, while

the images from StarGAN, SPADE and StyleGAN are more separable, thus resulting in

higher accuracies in the leave-one-out experiment.

3.4.7 Comparison with State-of-the-art

We compare our proposed approach with various state-of-the-art methods [19–21]

on the CycleGAN dataset. In [19], Marra et al. proposed the leave-one-category-out
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Figure 3.6: Visualization of images from different GAN datasets using t-SNE [7].

benchmark test to see how well their methods work when one category from the Cycle-

GAN dataset is kept for testing and remaining are kept for training. The methods they

evaluated are based on steganalysis, generic image manipulations, detection of computer

graphics, a GAN discriminator used in the CycleGAN paper, and generic deep learning

architecture pretrained on ImageNet [8], but fine tuned to the CycleGAN dataset. Among

these the top preforming ones were from steganalysis [25,81] based on extracting features

from high-pass residual images, a deep neural network designed to extract residual fea-

tures [26] (Cozzolino2017) and XceptionNet [1] deep neural network trained on ImageNet

but fine-tuned to this dataset. Apart from Marra et al. [19], we also compare our method

with approaches including Nataraj et al. (Nataraj2019) [20], which uses co-occurrence

matrices computed in the horizontal direction, and Zhang et al.(Zhang2019) [21], which

uses spectra of up-sampling artifacts used in the GAN generating procedure to classify

GAN images.
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Table 3.7: Number of images per class
Train Val Test

Authentic 1,612,202 42,382 42,397
StarGAN 28,062 738 711
CycleGAN 17,265 439 439
ProGAN 70,286 1833 1,881
SPADE 138,075 3,717 3,704

StyleGAN 766,045 20,220 20,158

Table 3.6 summarizes the results of our proposed approach against other state-of-

the-art approaches. Our method obtained the best average accuracy of 0.9817, when

compared with other methods. Even on individual categories, our method obtained more

than 0.90 on all categories.

3.4.8 Tackling newer challenges like StyleGAN2

Apart from generalization, we tested our method on 100,000 images from the recently

released StyleGAN2 [90] dataset of celebrity faces. The quality of these images were much

better than the previous version and appeared realistic. When we tested on this dataset

without any fine-tuning, we obtained an accuracy of 0.9464. This shows that our approach

is promising in adapting to newer challenges. We also fine-tuned to this dataset by adding

100,000 authentic images randomly chosen from different GAN datasets, thus our new

dataset comprised of 100,000 authentic images and 100,000 StyleGAN2 images. Then,

we split this data into 40% training, 10% validation and 50% testing. When we trained

a new network on this dataset, we obtained a validation accuracy of 0.9984 and testing

accuracy of 0.9972, thus also confirming that our approach can be made adjustable to

newer GAN datasets.

3.4.9 GAN Attribution/Classification

While the primary area of interest is in determining the authenticity of an image, an

immediate extension would be to determine which GAN was used. Here we perform an
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additional experiment on GAN class classification/attribution as a 6-class classification

problem, the classes being: Real, StarGAN, CycleGAN, ProGAN, SPADE/GauGAN

and StyleGAN. The number of output layers in the CNN was changed from 1 to 6,

and output with the largest value was selected as the estimate. A breakdown of the

number of images per class for training, validation and testing is given in Table 3.7.

First, the network was trained where the input co-occurrence matrices were computed

on the whole image. The training procedure was kept the same as with all other tests in

the paper, with the exception of using a batch size of 60, and 10 images from each class

per batch. This encouraged the network to not develop a bias towards any particular

GAN for which we have more training data. First we consider the images as they are

provided in the datasets. The classification results are shown in the form of confusion

matrices in Table 3.8. For convenience, we also report the equal prior accuracy, equal

to the average along the diagonal of the confusion matrix. This equal prior accuracy

can be interpreted as the classification accuracy if each class is equally likely. We obtain

an overall classification accuracy (considering equal priors) of 0.9654. High classification

accuracy was obtained for most categories. StyleGAN had comparatively lower accuracy

but still more than 90%, being mostly confused with SPADE/GauGAN and CycleGAN.

These results show that our approach can also be used to identify which category of GAN

was used.

Next, we trained the network using a patch size of 128×128 as input, and repeated the

experiment. This is to see how well our method can be used for detection, localization

as well as classification. The classification results are shown in Table 3.9. Now, we

obtain an overall classification accuracy (considering equal priors) of 0.8477 (a drop of

12% when compared to full image accuracy). High classification accuracy was obtained

for StarGAN, CycleGAN and ProGAN, while SPADE/GauGAN and StyleGAN had

comparatively lower accuracies. These could be due to many factors such as the number
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Figure 3.7: t-SNE visualization of 6 classes: Real, StyleGAN, StarGAN, ProGAN,
SPADE/GauGAN and CycleGAN

Table 3.8: Confusion matrix on images from GAN datasets without any pre-processing
on the full image. Equal prior accuracy of 0.9654.

Predicted Label
Real StarGAN CycleGAN ProGAN SPADE StyleGAN

GT Label

Real 0.975 0.000 0.000 0.016 0.002 0.006
StarGAN 0.000 0.976 0.014 0.000 0.010 0.000
CycleGAN 0.000 0.000 0.964 0.000 0.036 0.000
ProGAN 0.000 0.000 0.000 1.000 0.000 0.000
SPADE 0.001 0.000 0.019 0.000 0.975 0.005

StyleGAN 0.007 0.000 0.022 0.000 0.068 0.902

of test images per class, patch size, and the authentic image datasets that were used for

training in generating these GAN images.

In Table 3.10 we repeat the same experiment (with patch size 128×128) but with

images that were randomly preprocessed with JPEG quality factors of 75, 85, 90, or no

JPEG compression, with each of the four preprocessing methods equally likely. For this

experiment, the overall classification accuracy drops slightly to 0.8088 due to the impact

of JPEG compression.

For the multi-class experiment trained without JPEG compression, we repeat the

t-SNE visualization procedure. Figure 3.7 shows all data-points on a single plot. These

visualizations further support the results from the classification experiment.
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Figure 3.8: Localization heatmaps of (a) Real images and (b) GAN images from
different GAN datasets (top to bottom): ProGAN [2], StarGAN [3], CycleGAN [4],
StyleGAN [5], and SPADE/GauGAN [6].

(a) Real Images (b) GAN Images

Table 3.9: Confusion matrix on images from GAN datasets without any pre-processing
on 128×128 patches. Equal prior accuracy of 0.8477.

Predicted Label
Real StarGAN CycleGAN ProGAN SPADE StyleGAN

GT Label

Real 0.826 0.003 0.016 0.021 0.066 0.068
StarGAN 0.000 0.933 0.054 0.000 0.006 0.006
CycleGAN 0.000 0.002 0.959 0.002 0.032 0.005
ProGAN 0.000 0.002 0.008 0.981 0.004 0.005
SPADE 0.001 0.025 0.210 0.008 0.728 0.029

StyleGAN 0.003 0.025 0.101 0.009 0.203 0.659

Table 3.10: Confusion matrix with JPEG compression (128×128 patches). Equal
prior accuracy of 0.8088. The images were preprocessed using a JPEG factor of 75,
85, 90, or no compression. Each of these four possible preprocessing functions was
randomly selected with equal probability for every image.

Predicted Label
Real StarGAN CycleGAN ProGAN SPADE StyleGAN

GT Label

Real 0.741 0.005 0.020 0.026 0.103 0.104
StarGAN 0.006 0.927 0.023 0.000 0.031 0.012
CycleGAN 0.009 0.014 0.892 0.007 0.074 0.005
ProGAN 0.002 0.003 0.009 0.973 0.007 0.007
SPADE 0.075 0.015 0.095 0.009 0.765 0.042

StyleGAN 0.114 0.021 0.059 0.008 0.243 0.555

41



GAN Image Detection Chapter 3

3.4.10 Localization

Figure 3.8 show two example localization outputs. The image is processed in over-

lapping patches, with a particular stride and patch size. A co-occurrence matrix is then

extracted for each patch, and passed through the CNN to produce a score. For pixels

which are a part of multiple patches, the scores are simply the mean of all of the patch

responses. These two examples use a patch size of 128, and a stride of 8. We can see

that the heatmaps are predominantly blue for real images and predominantly red for

GAN generated images. This further supports that our method can be effectively used

for GAN localization.

3.5 Adversarial Attack Setup

This next section discusses several methods for adversarially attacking these detectors.

All of the work in this chapter was published in [15]. Here, we only focus on the case

of binary detection. However, most of these methods could be trivially generalized to

the other models. The case of binary detection provides a simpler framework to test out

these broadly applicable methods.

In addition to adversarially attacking the co-occurrence based method, I provide

attacks for two other methods as well. The DFT method from [21], and a baseline with

no feature, only a deep learning network. Figure 3.9 shows an abstract outline of these

models. This section describes the 3 methods we investigate for the feature extraction

step.
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Figure 3.9: High-level diagram of the detection architectures. Sections 3.5.1, 3.5.2,
and 3.5.3 describe the different feature extraction methods investigated. Section 3.8.2
describes the different CNN architectures tested.

3.5.1 Co-Occurrence

Unless stated otherwise, we will use the horizontal co-occurrence matrix defined by

Nataraj et al.. For each channel in the RGB input image, represented by the array X,

we produce a 2D histogram of horizontal pixel pairs:

Ci,j =
∑
k,l

δ(Xk,l − i) · δ(Xk,l+1 − j) (3.2)

Where δ(·) is the Kronecker delta function:

δ(n) =


1, if n = 0

0, otherwise

, n ∈ Z (3.3)

Each co-occurrence matrix is then scaled into the range [0, 1], re-stacked in the channel

dimension, and passed to a deep learning classifier.

3.5.2 DFT

As proposed by Zhang et al., we will use the DFT of the image as an input to a deep

learning classifier. The processing steps for the DFT based method are as follows:

1. Get the centered, unitary DFT of the input image

2. Take the magnitude of the DFT
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3. Apply the function f(x) = log (x+ 10−6)

4. Shift and scale into the range [-1,1]

All steps are consistent with those used in X. Zhang et al., except for the inclusion of

a small constant in step 3, to prevent a log(0) case. They use a ResNet34 architecture

pretrained with ImageNet weights for detection.

3.5.3 Direct

This method will pass the image directly to a deep learning classifier, with only affine

scaling as a preprocessing step. The following ImageNet means and standard are applied,

as per the torchvision documentation [91]:

mean = 255 · [0.485, 0.456, 0.406], (3.4)

std = 255 · [0.229, 0.224, 0.225] (3.5)

For their direct method, Wang et al.used ResNet50 pretrained on ImageNet [92].

3.6 Adversarial Attack Methods

In creating an adversarial attack, there are several levels of knowledge that a potential

adversary may have.

The first is white-box. This assumes total knowledge of a system by an adversary.

An example of this might be openly publishing your detection code. This would allow

full knowledge and experimentation with your system by an adversary.

The second is black-box. This is the weakest assumption, and is not directly addressed

for this GAN detection work. However, such an attack is included later in this thesis, in
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the work on DeepFake detection. This setup assumes that the adversary has no knowledge

of your system, but a limited ability to query it. For example, a web server where users

can get a GAN detection score for 100 images a day.

The third is gray-box. This term is simply used to represent an adversary with partial

knowledge about your system. For the specific usage, this would mean knowledge about

the features used for GAN detection. For example, the adversary may know that the

model uses a co-occurrence feature, or a DFT feature. As a real world use case, the web

server from the black-box scenario may decide to advertise the high level method they are

using to detect fake images. Such advertisements may increase user trust in a product,

if they know what tools are being used. Or even, if there is published research to back it

up. However, this will also give an adversary additional information about your system.

While using a feature like a co-occurrence matrix or DFT adds explainability to the

CNN result, there is a question whether or not using some hard coded feature could

introduce an additional avenue for an adversary to attack.

The next section discusses the main contribution of my work, the adversarial gray

box attack on the co-occurrence based detector. Then, this is generalized to white box,

and the DFT detectors.

3.7 Adversarial Gray Box attack

This section discusses the adversarial gray-box attack on the co-occurrence feature,

the main contribution of [15]. The later part of this section then generalizes the attack

to DFT based features, and to a PGD attack.

45



GAN Image Detection Chapter 3

3.7.1 Adversarial Attack Methods

For our gray-box attack, we assume that it is known that co-occurrence matrices are

the only feature used for detection, but we have no knowledge about the deep learning

model used on these matrices. We also assume that the adversary has an arbitrary set

of real images at their disposal. The goal of the adversary will be to modify each GAN

image by some small amount, such that the co-occurrence matrix of the adversarial image

is close to, if not exactly equal to, the co-occurrence matrix of a real image.

The adversarial, real, and GAN images will be represented by XA, XR, and XG

respectively. F (·) is the co-occurrence function, L1(·, ·) and L2(·, ·) are the loss functions

to be defined later, and λ is a user-defined constant. The adversarial image will be

proposed as:

XA = argmin
X̃

L1(F (X̃), F (XR)) + λL2(X̃,XG) (3.6)

3.7.2 Distinctions Between Co-Occurrence and Histograms

Given the formulation in equation 3.6, it is worth noting that the Earth Mover’s

Distance (EMD) solves a similar optimization problem, and that there exist efficient

approximations [93]. For a pair of 2 dimensional histograms and for some pre-defined

cost function between bins, this would produce a minimal cost transformation from one

histogram to the other. However, non-edge pixels will appear twice in the co-occurrence

histogram, once as the left pixel in the pair, and again as the right. Therefore, entries

in the co-occurrence matrix cannot be individually manipulated to achieve this optimal

transport, without inadvertently changing values at another location in the histogram.

To handle this entanglement between pairs, we use gradient descent to find an ap-

proximate minimum. This will require the functions F , L1, and L2 to be differentiable.
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The original definition of the co-occurrence function was over only integer inputs, posing

a problem for the differentiability requirement. The next few sections break down the

details of how F , L1, and L2 are selected.

3.7.3 Differentiable Extension of Co-Occurrence Function

In creating a differentiable extension of the co-occurrence matrix, we impose the

following requirements:

1. For integer inputs, F (·) must be equivalent to the original co-occurrence function.

2. The sum of the histogram bins should equal the number of input elements.

3. For all input elements, the contribution to each bin must be non-increasing with

respect to distance from that bin.

4. It must be differentiable over R2
[0,255].

Given the original co-occurrence formulation in equation 3.2, a simple extension would

be to define a new one-dimensional function f(·) which will interpolate the delta func-

tion’s integer values:

Ci,j =
∑
k,l

f(Xk,l − i) · f(Xk,l+1 − j) (3.7)

Equation 3.7 consists only of additions, multiplications, and f(·), making gradient

calculation straightforward. From this equation, the previous four requirements can be

simplified into these requirements on f(·):

1. f(x) = δ(x), x ∈ Z

2. f(x) = 1− f(x− 1), ∀x ∈ R[0,1]
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3. df
dx

≤ 0 for x > 0, and df
dx

≥ 0 for x < 0

4. df
dx

should be defined for all x ∈ R[−255,255]

The combination of constraints 1 and 3 will require that f(x) = 0 for x /∈ (−1, 1).

Therefore, each pixel pair will contribute to at most 4 bins. This fact was taken advantage

of in implementation, as opposed to computing the entire summation in equation 3.7.

Both the triangle and raised cosine shown below were tested as interpolation functions:

tri(x) =


1− |x|, if |x| < 1

0, otherwise

(3.8)

raised cos(x) =


1+cos(πx)

2
, if |x| < 1

0, otherwise

(3.9)

For the triangle function, derivatives at x = −1, 0, 1 are undefined, so the average of

the left and right derivatives is used. Raised cosine gave better results experimentally,

and will be used for the remainder of the tests.

3.7.4 Co-Occurrence Loss Function

In this section, we provide intuitive reasoning and experimental justification for our

selection of L1. We we first give motivating examples for the 1D and 2D histogram cases.

“Source” will correspond to the GAN input, “target” to the real input, and “solution”

to the adversarial solution. For all of these examples, we will assume λ = 0.

One-Dimensional Example

Consider the case with a source of [1, 2, 3], a target of [2, 3, 4], and λ = 0. We would

now like gradient descent to push the source towards the target, making their histograms
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equal. In this example, all derivatives should be negative.

Shown in Figure 3.10 are plots of loss for different loss functions, varying one input at

a time. Consider the loss values as x1 is moved from 1 to 4. For L1, there is a constant

loss from x1 = 1 to 3. This is compared to L2, where loss fluctuates in the same region.

Given that the histogram will have a constant L1 norm, and that L2 loss is less for

the vector [1/2,1/2] than [0,1], the L2 loss function tended to get stuck between integer

values. For this reason, we will focus on L1 loss.

Looking at the top left graph in Figure 3.10, the loss for x1 decreases only after

passing the threshold of 3. Using point-wise loss, the vacancy at 4 can only pull values

which are within the (−1, 1) support region of f(·). To alleviate this, we instead compute

loss on a multiscale pyramid of the histograms, with a downsampling factor of 2 in each

step.

To combine the multi-scale losses, a simple weighted sum is used. Weights are set

equal to the downsampling factor at each level. These weights are selected as the cost

of moving pixels between bins at each layer in the pyramid scales with respect to the

downsampling factor. Results using the image pyramid loss are shown in the right column

of Figure 3.10. When gradient descent is run on the different loss functions for the 1D

case, the results in Figure 3.11 are produced.

Two-Dimensional Examples

A 2D example is shown in figure 3.12, which also demonstrates the necessity of random

noise. Often we need points initialized to the same value to split into different outcomes,

which cannot occur with deterministic gradient descent.

This two-dimensional histogram test was repeated over 100 iterations, with both

source and target vectors containing 8 elements uniformally sampled from Z2
[0,7]. For the

L1 pyramid with Gaussian noise, all 100 tests successfully converged from the source to
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Figure 3.10: Loss functions with respect to value in each index for 1D loss functions,
on source of [1,2,3] and target of [2,3,4]. Ideally, we would like the gradients for each
index, at initialization, to be negative. This will push each value in the source towards
the target. L1 loss would often get stuck on the plataeus, L2 would get stuck at the
minima in-between integer values, and the L1 pyramid converged more easily. See
figure 3.11 for convergence results.
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Figure 3.11: Plot of each value in the source vector with respect to step number, when
solving with a source of [1,2,3] and target of [2,3,4]. Top left: without random noise,
all points are stuck in flat regions, no change in values. Top right: the addition of
noise allows for the algorithm using L1 norm to gradually drift towards the target.
Bottom row: Both with and without noise, the algorithm converges over 14 times
faster than the top right case.
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target. This is compared to only 8 for L1 with Gaussian noise.

Extension to Co-Occurrence on Images

For an 8-bit image, a 9 layer pyramid is used, with downsampling factors from 1

(None) to 256. To implement the blurring and downsampling steps in the co-occurrence

image pyramid, we rely upon the original interpolation function defined for the co-

occurrence. By dividing the input image by the downsampling factor before computing

co-occurrence, lower resolution co-occurrence matrices can be produced. The full loss

function is shown in equation 3.10.

L1(F (X̃), F (XR)) =
8∑

n=0

2n
∥∥∥∥F (

XA

2n

)
− F

(
XR

2n

)∥∥∥∥
1

(3.10)

3.7.5 Image-Space Loss Function

In equation 3.6, only the L2 and λ terms are left to be defined. For consistency with

the co-occurrence loss, L1 distance is chosen for the image-space loss. The λ parameter

remains as a user selected parameter, and several values were tested experimentally.

3.7.6 Implementation Details

Ideally, we would like to choose source-target pairs with similar color values for op-

timization. For example, we would not want to force a GAN image with a green grassy

background to have the same color distribution as a real image of a blue ocean. To do

this, we divide the data into blocks of size approximately 900, and for each GAN image,

select the real image whose EMD over the 1D RGB histograms is closest to that of the

GAN image.

With the pairs selected, we can then run our gradient descent algorithm. The solution
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Figure 3.12: Example applying point-wise and pyramid loss to a 2D histogram
gradient descent problem. Each graph is a parametric plot, with step number as the
parameter, showing the path of each 2D input from source to solution. Each color
represents a different 2D input element. Top left: with L1 loss and no noise, all
gradients are 0. Top right: With noise, L1 finds a sub-optimal minima, where not all
target points are reached. Bottom left: Without added noise, the pyramid loss almost
converges to a global minima. However, the two source points originating from (1,1)
need to split and fill different target points. With deterministic gradient descent, this
splitting will not occur. Bottom right: A proper solution is found with pyramid loss
and noise.
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Figure 3.13: Example solution found by our algorithm, for the given real and GAN images.

is initialized with the source image. We use a standard gradient descent, with a learning

rate of 0.01, and momentum of 0.9. This is done in 3 sequential epochs, with 200, 50,

and 50 steps. For the first 2 epochs, Gaussian noise with standard deviation of 0.01 is

added to the image. No noise is added in the last epoch. The solution is rounded after

each epoch.

When run on an Nvidia 1080 Ti, the algorithm took approximately 30 seconds per

256x256 image. However, up to 3 processes could be placed on a single GPU, so 6

adversarial images could be produced every minute.

Quantitative results are shown in figure 3.15. For comparison, average L1 loss between

the co-occurrence matrices of the source target pairs was 0.90, and L1 loss between source

and target images was 52.7. For this real data, it cannot achieve a perfect match between

the real and adversarial co-occurrence matrices. Two examples are given in figures 3.13

and 3.14. The effect of this slight mismatch is investigated experimentally.
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Figure 3.14: Another example solution found by our algorithm, and corresponding red
channel co-occurrence matrices. In the top-left corner of the solution co-occurrence a
square artifact can be seen.

Figure 3.15: Testing of the co-occurrence algorithm on our dataset described in section
3.8.1 on 200 images for 3 different λ values. Smaller λ values will force the co-occur-
rence matrix of the adversarial image closer to that of the real image, at the cost of
greater perturbation.
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3.7.7 Gray-Box DFT

This method follows a similar formulation to the co-occurrence gray-box attack. A

real image is obtained in addition to the GAN image, and the detection feature of the

adversarial image is made to be similar to the real image, while minimizing the distance

from the original GAN image. We rely upon the intuition that the defining features of the

GAN in the DFT domain are concentrated away from the DC axes. To estimate this high-

frequency noise signal, we use the same filter as Kirchner in his work on resampling [94],

with a centered DFT given in equation 3.11:

F(f) =
1

4


3 0 3

0 0 0

3 0 3

 (3.11)

To produce an adversarial image, we solve the following:

XA = argmin
X̃

∥∥∥f ∗ X̃ − f ∗XR

∥∥∥2

2
+ λ2

∥∥∥X̃ −XG

∥∥∥2

2
(3.12)

Application of the Fourier transform turns this problem into one of weighted least

squares, and can be solved as:

F(XA) =
F(f)2 · F(XR) + λ2F(XG)

F(f)2 + λ2
(3.13)

This is done between randomly selected real and GAN images, for different λ values

in the experimental portion of this chapter.
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3.7.8 White-Box PGD

With the co-occurrence, DFT, and direct methods all being differentiable pytorch

functions, we run the L∞ PGD algorithm on all GAN images on each method [95]. This

is done using the advertorch library [96]. Default parameters are used, with a maximum

distortion of 1, maximum step size of 2/40, and 40 total iterations, running on pixels in

the range [0, 255]. Pixels are rounded after completion of PGD.

3.8 Adversarial Attack Experiments

While the previous section outlined a theoretical backing for the attack, it needs to be

verified in practice. The next section details the experiments done to verify the attack’s

effectiveness in different settings.

3.8.1 Datasets

Our dataset consists of 4 different GANs, drawing from a variety of image datasets

and tasks. Image counts are given in table 3.11. Each group is divided into a 70/15/15

train/val/test split. These groups are then further split in half; the first for training and

testing of models, and the second for generating adversarial samples. All images were

center-cropped to 256× 256.

3.8.2 Neural Network Selection

Neural network selection was done experimentally, and results are shown in table

3.12. All models were trained with 16 real and 16 GAN images per batch, for 16 epochs.

An Adam optimizer was used, with default parameters of 0.001 for the learning rate, and

(0.9,0.999) for the betas [86]. The final model weights for testing are selected from the
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Architecture Dataset Total Count

CycleGAN [4] apple2orange [97] 3,000
horse2zebra [97] 3,000

summer2winter [4] 3,000
cityscapes [98] 3,000
cezanne [4] 3,000
monet [4] 3,000
ukiyoe [4] 3,000
vangogh [4] 3,000

ProGAN [2] CelebHQ [99] 24,000
SPADE [100] ADE20K [101] 12,000

COCO-Stuff [85] 12,000
StyleGAN [5] LSUN Bedroom [102] 8,000

LSUN Car [102] 8,000
LSUN Cat [102] 8,000

Total 96,000

Table 3.11: Combined number of real and fake samples from each data subset. For
all subsets, the number of real and fake examples is equal. In all, there were 48k real
and 48k GAN images used.

Method Co-Occurrence DFT Direct
Initialization ImNet rand ImNet rand ImNet rand
ResNet18 0.979 0.974 0.904 0.888 0.980 0.829
ResNet50 0.979 0.977 0.864 0.900 0.976 0.866
ResNet101 0.424 0.569 0.503 0.500 0.519 0.503
ResNet152 0.500 0.668 0.495 0.500 0.500 0.499
ResNeXt50 0.978 0.975 0.882 0.907 0.986 0.853
Inception V3 0.944 0.500 0.948 0.708 0.990 0.949
MobileNet 0.978 0.974 0.949 0.919 0.996 0.989

Table 3.12: Overall accuracy of different networks on a balanced test set of real
and GAN. Each row represents using a different deep learning architecture. Three
detection methods are shown as the first column headers. The second shows results
with either ImageNet weights or random initialization.

epoch number on which validation loss was the lowest.

The ImageNet pretrained networks did better than those with random initializations

in almost all cases. As the larger networks did not provide noticeable improvements on

this dataset, we will use pretrained ResNet18 and pretrained MobileNet for the remainder

of tests. We chose ResNet18 to generate the PGD samples, given that ResNets were used

by both Zhang et al.and Wang et al..
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Real GAN GB CO λ = 0.0 PGD CO

ResNet18 0.979 0.984 0.030 0.000
MobileNet 0.976 0.981 0.039 0.083

Table 3.13: Test set accuracy of co-occurrence based detectors, without adversarial
retraining. Gray-box (GB) co-occurrence (CO) samples are generated as described in
section 3.7. PGD co-occurrence examples are produced using ResNet18.

3.8.3 Testing on Adversarial Samples

We then evaluated the detectors chosen in the previous section on the co-occurrence

adversarial examples, with results shown in Table 3.13. For both detectors, the gray-

box co-occurrence attack drops the GAN detection rate from approximately 98% to less

than 4%, with no knowledge of the deep-learning model used. As expected with the

PGD attack, accuracy on the exact model being attacked drops to 0. However, accuracy

on MobileNet drops to only 8%; more than twice what was achieved with the gray-box

attack.

3.8.4 Adversarial Training

Next we adversarially trained the same networks using different subsets of the ad-

versarial samples. The labels remain binary, with real images in one class, and all GAN

images, including adversarial GAN images, in the other.

For data balancing, we maintain an equal number of positive and negative samples.

Within the positive sample class, each of the sub-types is sampled equally. For example,

in the test using all gray-box co-occurrence adversarial examples, we used 16 real, 4 GAN,

and 4 from each of the 3 gray-box co-occurrence classes. For the set of all adversarial

images, a batch size of 40 is used so the batch can be evenly divided. For all other cases,

batch size remains 32.
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Test
Real GAN CO λ = 0 CO PGD

Train
Real, GAN 0.979 0.984 0.030 0.000

Real, GAN, All Adv 0.901 0.971 0.970 1.000

Table 3.14: Results for only the ResNet18 co-occurrence detector. The rows show
results with and without adversarial retraining.

Real GAN Co-Occur Gray-Box DFT Gray-Box PGD
λ = 0.0 λ = 3.0 λ = 10.0 λ = 0.003 λ = 0.01 λ = 0.03 Co-Occur DFT Direct

ResNet18

Co-Occur

No Adv* 0.979 0.984 0.030 0.019 0.332 0.624 0.627 0.627 0.000 0.863 0.854
No Adv 0.976 0.980 0.032 0.027 0.358 0.906 0.883 0.852 0.000 0.907 0.878

GBCO 0.0 0.972 0.966 0.957 0.992 0.932 0.473 0.480 0.476 0.144 0.822 0.794
GB-CO 3.0 0.974 0.972 0.424 0.985 0.999 0.702 0.685 0.666 0.311 0.923 0.910
GB-CO 10.0 0.985 0.973 0.121 0.826 0.997 0.360 0.402 0.444 0.000 0.890 0.876
All GB-CO 0.964 0.951 0.947 0.999 0.997 0.415 0.448 0.472 0.104 0.883 0.858
All GB-DFT 0.968 0.984 0.047 0.029 0.222 0.998 0.997 0.994 0.000 0.893 0.880
All PGD 0.974 0.974 0.031 0.045 0.449 0.832 0.783 0.713 1.000 0.996 0.995
All Adv 0.901 0.971 0.970 0.999 0.999 0.993 0.987 0.969 1.000 0.981 0.984

DFT

No Adv* 0.874 0.934 0.824 0.796 0.860 0.311 0.277 0.239 0.853 0.284 0.888
No Adv 0.882 0.971 0.801 0.808 0.914 0.235 0.236 0.218 0.971 0.165 0.910

All GB-CO 0.868 0.973 0.962 0.967 0.965 0.213 0.200 0.214 0.964 0.420 0.831
All GB-DFT 0.905 0.831 0.851 0.820 0.881 0.950 0.946 0.913 0.925 0.273 0.780
All PGD 0.959 0.930 0.809 0.784 0.875 0.114 0.089 0.089 0.943 0.992 0.935
All Adv 0.771 0.834 0.983 0.984 0.984 0.890 0.962 0.956 0.951 0.858 0.870

Direct

No Adv* 0.974 0.985 0.782 0.792 0.932 0.286 0.355 0.384 0.989 0.989 0.000
No Adv 0.947 0.989 0.868 0.862 0.965 0.279 0.369 0.427 0.992 0.991 0.013

All GB-CO 0.971 0.966 0.995 0.995 0.994 0.290 0.428 0.524 0.976 0.975 0.032
All GB-DFT 0.930 0.964 0.774 0.783 0.896 0.998 0.999 0.998 0.959 0.960 0.090
All PGD 0.979 0.976 0.849 0.848 0.963 0.193 0.287 0.363 0.991 0.988 0.997
All Adv 0.936 0.981 0.993 0.993 0.994 0.996 0.999 0.999 0.989 0.988 0.999

MobileNet

Co-Occur
No Adv* 0.976 0.981 0.039 0.027 0.456 0.576 0.556 0.553 0.083 0.945 0.914
No Adv 0.974 0.985 0.029 0.020 0.359 0.695 0.672 0.647 0.036 0.947 0.924
All Adv 0.952 0.974 0.955 0.999 0.999 0.996 0.994 0.986 1.000 0.996 0.995

DFT
No Adv* 0.955 0.962 0.632 0.630 0.748 0.182 0.187 0.190 0.941 0.222 0.891
No Adv 0.928 0.970 0.524 0.539 0.770 0.192 0.189 0.176 0.926 0.217 0.910
All Adv 0.865 0.911 0.981 0.982 0.985 0.956 0.959 0.919 0.983 0.926 0.944

Direct
No Adv* 0.995 0.997 0.553 0.635 0.845 0.204 0.189 0.190 0.979 0.984 0.787
No Adv 0.993 0.996 0.640 0.694 0.808 0.088 0.043 0.030 0.849 0.861 0.744
All Adv 0.989 0.984 0.993 0.996 0.999 0.999 1.000 0.999 0.997 0.998 0.998

Table 3.15: Comprehensive table showing test set results on all datasets, for many
training combinations. Each row represents a different detector and/or training set,
and each column the data set tested on. The PGD data is generated using the models
labeled with an asterisk.

Full Results

All results are shown in table 3.15, with a summary of just the co-occurrence results

in table 3.14. These results show test accuracy on only one group at a time. When

comparing across rows, it is important to note any changes in accuracy on real images

in addition to changes in GAN performance.

From this table, we summarize the results as follows:

1. Without adversarial retraining, all adversarial attacks would generally decrease

performance on all detectors.
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2. Adversarially training on one attack method does not generally improve perfor-

mance against other methods.

3. After adversarial training, the models which are most different from the assump-

tion in the adversarial attacks performed best. Notably, MobileNet trained on all

adversarial images achieved over 98% on all subsets.

For all co-occurrence based detectors which were not trained on the gray-box co-

occurrence attack, accuracy was less than 5% for λ = 0. This included models which

were trained on all other adversarial attacks. This indicates that most co-occurrence

detectors not trained on this particular attack would remain highly vulnerable. After

retraining, accuracy on the λ = 0 class was only slightly lower than the regular GAN

class. The difference was more significant in the MobileNet co-occurrence detector.

Also noteworthy is that the DFT and direct classifiers performed, on average, 18%

worse on the GB-CO λ = 0 set than the original GAN images, if they were not trained

against the GB-CO attack. Performance generally improved back to baseline levels after

retraining.

We repeat the tests from table 3.15 using JPEG compression (Q = 75), and have put

these results in the supplementary materials.

3.8.5 Other Tests

Reversed Gray-Box Co-Occurrence Attack

Though less useful as a real-world attack, the GB-CO method can also be used to

generate real images which will be classified as GAN.With the target and source switched,

we produced a test set of adversarial real images, and tested on the regular ResNet18

co-occurrence detector (row 1 in table 3.15). 95.9% of the images were misclassified as

GAN.
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Real GAN Adv C-Band
0.974 0.992 0.131

Table 3.16: Results of cross-channel co-occurrence detector on cross-channel co-occur-
rence method described in section 3.8.5, without adversarial retraining. Adversarial
images were generated using the gray-box method, using this new co-occurrence for-
mulation.

Cross Channel Co-Occurrence Detector

Recently a paper was posted on arXiv from M. Barni et al.claiming to have improved

the original co-occurrence GAN detector by including cross-channel co-occurrence ma-

trices [103]. Their cross-band co-occurrence matrices for a red-green pair are defined in

equation 3.14, assuming HWC convention on X. This is repeated for the red-blue and

green-blue pairs. For spatial co-occurrence, they instead use diagonal pairs, shown in

equation 3.15. After producing these 6 co-occurrence matrices, they are stacked in the

channel dimension, and passed to a ResNet18 classifier.

Ci,j =
∑
k,l

δ(Xk,l,1 − i) · δ(Xk,l,2 − j) (3.14)

Ci,j =
∑
k,l

δ(Xk,l − i) · δ(Xk+1,l+1 − j) (3.15)

We also modified the co-occurrence gray-box attack equation in 3.7 to accept the 6

different pairs used in M. Barni et al.. We ran the algorithm to produce an adversarial

test set for the cross-band co-occurrence detector. Results are shown in table 3.16. The

gray-box attack remains effective against detectors using this other co-occurrence feature.
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3.9 Conclusion

In this chapter, we presented two main projects. The first used extensive testing to

benefit the advantages of using a co-occurrence matrix in GAN detection, over a CNN

alone. The second portion discussed the adversarial setting. This work proposed several

new adversarial attacks against co-occurrence matrices as a feature in general. It then

demonstrated the effectiveness of the attack against an unassuming network, and ways

to reduce susceptibility of networks to attack.
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Chapter 4

RPC Verification

This next chapter discusses the usage of resampling artifacts for the task of satellite image

RPC metadata verification. Our paper, pusblished in IEEE Tansactions on Information

Forensics & Security, was the first work investigating the problem of RPC metadata

verification [104]. In this work, I created and did initial testing on the first draft of

the RPC verification model. Tejaswi Nanjundaswamy performed additional testing, and

is credited with the idea to use SSIM in the algorithm, with Chandrakanth Gudavalli

performing additional testing on new datasets and contributing substantially to writing

the final paper.

In the following we describe the problem background, then the detection method, and

finally experimental results.

4.1 Background

While forensic analysis on digital images have been well studied [49, 105, 106], there

are fewer studies in detecting manipulations in satellite images [107] and even lesser

when it comes to the detection of tampering of metadata. Satellite images, for the
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most part, are orthorectified using rational polynomial coefficients (RPC) and Digital

Elevation Models (DEM). The RPC coefficients define a best-fit mapping from latitude,

longitude, and elevation to pixel coordinates. These coefficients are determined from

the camera location, orientation, and parameters intrinsic to the imaging system. Such

RPC coefficients are provided in the image metadata. The DEMs contain a dense grid of

elevation measures at different points around the globe, and are freely available online.

Unlike RPC coefficients, DEMs are not unique to a particular satellite image. The

combination of the RPC coefficients with the DEMs allows for the transformation of the

captured image into an orthorectified view.

RPC metadata associated with an image is essential in obtaining the pixel coordinates

of a given object or a given lat-long in the unrectified image. Tampering could be used by

adversaries to mask the true locations of objects or other geo-features of interest. Tam-

pering of RPC metadata associated with orthorectified satellite imagery raises questions

and suspicions on the authenticity of image content as well. This paper addresses the

problem of verifying RPC metadata that is attached to orthorectified satellite imagery.

Our approach to detecting the tampering is based on resampling estimation. Given

an image, there exists a noise associated with it. Here noise can be treated as the

deviation from ideal pinhole camera model. Once an image is resampled using an affine

transformation, the noise variance fluctuates periodically across the image. DFT of noise

variance in the resampled image can be calculated using the method proposed in Kirchner

et. al [94], which we refer it as “Residual DFT Pattern” (a sample is shown in Figure 4.1).

The RPC metadata, together with the DEMs, define a mapping from sensor pixel

space to orthorectified image space. DEMs for a given location define a mapping for or-

thorectified image space to elevation. The combination of RPC and DEMs together create

a mapping from lat-long coordinates to sensor pixel location. This mapping therefore

defines an expected resampling pattern due to orthorectification. Using the RPC + DEM
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Figure 4.1: Visualization of Expected Residual DFT patterns when RPC Metadata
is tampered (left) and Untampered (right), with respect to Residual DFT pattern of
the image (middle).

metadata associated with the image, we resample a predefined checkerboard pattern and

estimate the DFT of noise variance in the original image. We refer to this estimated

DFT as “Expected Residual DFT Pattern”. Any modifications to the RPC metadata

will alter this expected DFT pattern. If the metadata used to resample/orthorectify the

checkerboard pattern is same as the metadata used to resample the satellite image, then

both the DFTs show structural similarity, as shown in Figure 4.1. Therefore, we use the

structural similarity index metric (SSIM) between the two DFT patterns to verify if the

associated RPC metadata is tampered on not.

Since the process of orthorectification creates a new, warped set of image pixel loca-
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tions, resampling must be used to produce the orthorectified image. Altering of the RPC

coefficients will affect the warping pattern used, and therefore the resampling. There

are several methods used for resampling detection and/or estimation ( [49,94,108–111]).

In our proposed approach, we selected a fixed linear predictor based residual spectral

analysis as described in Kirchner et. al [94]. This method offers fast prediction for large

images, which makes the technique reliable for satellite images as they tend to have

larger dimensions. Images that we worked on are typically of size 20, 000× 8, 000. This

method also calculates relatively unique features for a variety of scaling, rotation, and

sheer factors.

4.2 Orthorectification and RPC Metadata

Orthorectification is the process of transforming an image onto its upright planime-

try map by removing the perspective angle. Orthorectification is done using Rational

Polynomial Coefficients (RPCs) based on empirical models that relate the geographic

location (latitude/longitude, denoted by X, Y ) and the surface elevation data (denoted

by Z) to map the row and column positions (denoted by r, c) through two rational poly-

nomials [112]. Satellite sensor models are empirical mathematical models that relate

image coordinates (row and column position) to latitude and longitude using the terrain

surface elevation. The name Rational Polynomial derives from the fact that the model

is expressed as the ratio of two cubic polynomials. A single image involves two rational

polynomials, one each for computing row and column position as shown in (4.1).

r =
P1(X, Y, Z)

P2(X, Y, Z)
, c =

P3(X, Y, Z)

P4(X, Y, Z)
(4.1)
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Figure 4.2: Some example resampling patterns. Only the sub-integer shifts impact
the noise variance patterns. (a) Pattern where noise variance is σ2. (b) Pattern where
noise variance is 0.25σ2.

where, P1, P2, P3, and P4 are cubic polynomials, each with 20 coefficients (which are

referred as RPC Metadata) as shown in (4.2).

P∗(X, Y, Z) = a∗ 1 + a∗ 2X + a∗ 3Y + a∗ 4Z + a∗ 5X
2+

a∗ 6XY + a∗ 7XZ + a∗ 8Y
2 + a∗ 9Y Z+

a∗ 10Z
2 + a∗ 11X

3 + a∗ 12X
2Y + a∗ 13X

2Z+

a∗ 14Y
3 + a∗ 15XY2 + a∗ 16Y

2Z + a∗ 17XY Z+

a∗ 18XZ2 + a∗ 19Y Z2 + a∗ 20Z
3

(4.2)

where, ∗ belongs to 1, 2, 3, or 4.

The coefficients of these two rational polynomials, shown in (4.1), are computed as

the best fit mapping from spatial location (X, Y, Z) to pixel coordinates (r, c). This is

done by considering the camera’s orbital position, orientation, and corresponding physical

sensor model.

Using the unrectified satellite image, its RPC Metadata, and a Digital Elevation Map

(DEM) to provide the elevation values, an unrectified image is resampled to generate an

orthorectified image. Figure 4.5 shows a visualization of this transformation, by passing
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Figure 4.3: Resampling spatial mapping for a scaling example (Scale factor of 0.9;
blue: original locations; red: new locations). These sampling patterns move in and
out of phase with each other to form a periodic pattern. This pattern is reflected in
the noise variance of the resampled image.

Figure 4.4: Some toy examples showing the image Residual DFT (2nd row) under
different transformations.

a grid of vertical and horizontal lines through the warping function. DEMs with 30-meter

resolution produced by the United States Geological Survey (USGS) are available for free

download for any area in the United States, and 10-meter USGS DEMs are available in

most areas of the globe.
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Figure 4.5: A grid before (left) orthorectification and after (right). Note the significant
non-linearities introduced by the hilly region.

4.3 Method

This next section describes the methodology used for RPC metadata verification. At

a high level, this involves the following steps:

• Computation of the observed resampling feature in the image

• Computation of the expected resampling feature based on the RPC metadata

• Comparison of these two features

• Setting up this method to work for large input images

Each of these points is addressed in a separate subsection below.

4.3.1 Calculation of Residual DFT Pattern

While there are several methods for resampling detection and/or estimation, base

ours on a fixed linear predictor residual spectral analysis as described in Kirchner et.

al [94]. This method offers faster prediction, which is essential for satellite images with

sizes close to 20, 000 × 8, 000 pixels. This method first estimates an image noise signal
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by applying a fixed linear filter. Here noise refers to any deviation in the sample from

an ideal pinhole camera model. It is shown that different resampling patterns will create

unique, periodic artifacts in the noise variance, and can be analyzed through the DFT

of noise variance, which we refer as Residual DFT Pattern. We now briefly describe this

resampling estimation method as it is used to calculate the residual DFT pattern.

Kirchner et. al [94] assumes that the pixel noise in the image captured by the camera

is zero mean and constant variance (σ2). Resampling will cause the noise variance to

fluctuate depending on the location. For the points where resampled pixels map directly

onto one of the positions of original pixels, the variance will also be σ2. Points that lie

equidistant from its 4 nearest neighbors will have a noise variance of only 0.25σ2. Visual

representations of both are shown in Figure 4.2. All other points in the resampling

pattern will have a noise variance which lies between these two extremes.

It is shown by [94] that affine resampling methods introduce periodic patterns in

the pixel noise variance present in the resampled image. An example of this is shown in

Figure 4.3. This figure represents the pixel displacements that occurred due to resampling

technique in which the image is scaled by a factor of 0.9. The new pixel locations will be

coming in and out of phase with the original pixel locations, causing periodic patterns in

the noise variance of resampled image. Given this model of the resampling process, we

only need a method to estimate the pixel noise variance. Then, unique periodic patterns

will be visible in the DFT of the variance estimate, which is referred as Residual DFT

pattern.

To estimate the noise variance in an image, the following procedure is used by Kirchner

et. al [94]. First, a high pass filter is used to remove a sufficient amount of image content.

The following convolution kernel is used for the tests:
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−1/4 1/2 −1/4

1/2 −1 1/2

−1/4 1/2 −1/4


To estimate the noise value at each pixel, the method applies the above linear, high

pass filter to remove the image content. This filtered image (denoted by e) is treated as an

estimate of the noise values at each pixel. The method estimates the noise variance (de-

noted by p) similar to Popescu and Farid’s Gaussian distribution based calculation [113]

as shown in (4.3).

p = λexp(−|e|τ

σ
) (4.3)

where λ, σ > 0 and τ ≥ 1 are controlling parameters.

The controlling parameters have been fixed by the method to λ = 1, σ = 1 and τ = 2.

The DFT of the estimated noise variance (p) is referred to as Residual DFT pattern.

Some toy examples showing the image residual DFT patterns under different transfor-

mations are shown in Figure 4.4.

A distinction from previous works in resampling detection is that the resampling

pattern for these satellite images is not affine. While an affine transformation will produce

periodic artifacts, and discrete points in the Expected DFT spectrum, the RPC+DEM

resampling patterns will not. However, these patterns are very close to being locally

affine for small patches, and will instead form a cloud of points in the DFT pattern.

4.3.2 Calculation of Expected Residual DFT Pattern

We calculate the DFT of “expected noise variance” at each point in the orthorectified

image, which is referred to as Expected Residual DFT Pattern.
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Figure 4.6: Overview of proposed framework to detect tampering in RPC Metadata.

The expected noise variance is estimated at each point in the orthorectified image by

using the RPC metadata associated with the image. In order to estimate the variance

at a given point, we exploit the fact that variance is inversely proportional to distance

between the new orthorectified pixel location and its nearest neighbor in the unrectified

image. We compute the DFT of the calculated distance, which is same as Expected DFT

Pattern as the distance is inversely proportional to the variance.

We get these distances using only the forward warp function by using the following

procedure. An array, Y , of the same height and width as the image (which is referred to

as synthetic grid) is initialized with 4 channels. Then, it is filled with values such that

any 2x2 block contains 4 orthogonal vectors as shown in Eq 4.4.

Y =



a b a b ...

c d c d

a b a b

c d c d

...
. . .


(4.4)

where, a = [255, 0, 0, 0], b = [0, 255, 0, 0], c = [0, 0, 255, 0], d = [0, 0, 0, 255].
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This matrix is passed through the same transformation pipeline as the image. As-

suming that the transformation can be approximated to a bilinear interpolation, from

the transformed version of Y, the bilinear interpolation formula can then be reversed to

calculate the distance matrix which represents the distance between each of the new or-

thorectified pixel location and its nearest neighbor in the unrectified image. This ensures

that, it is required to provide only the forward warping function.

We calculate the DFT magnitude of this distance matrix, which we refer to as the

Expected DFT pattern. This will later be compared with the residual DFT pattern

to measure the structural similarity between both. Before comparing both the DFT

patterns, we high pass filter the residual DFT pattern through multiplication by a cone,

C, as shown in (4.5). We do it to suppress the strong and less informative low frequency

components, and level out the noise floor in it.

C(row, col) = 4
√

(2 ∗ row − h)2 + (2 ∗ col − w)2 (4.5)

where h, w are height and width of DFT matrix.

This entire process is summarized into a flow chart that is shown in Figure 4.6. In

this section, all processes in the flow chart are defined except for computing the mismatch

between two DFT patterns. Section 4.3.3 investigates different methods of computing

the mismatch score.

4.3.3 Similarity score calculation between DFT Patterns

Given two DFT patterns, a metric to quantify the similarity between them is required.

One of the options would be to use Mean squared error (MSE) as a metric to quantify

the dissimilarity between two DFT arrays (say x,y) as shown in (4.6).
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dMSE =
1

M ∗N

N∑
i=1

M∑
j=1

(xi,j − yi,j)
2

(4.6)

where M, N are number of rows and number of columns of the DFT arrays respectively.

Otherwise, both the two-dimensional arrays can be flattened into a single dimension

and compute the cosine similarity score between them as shown in (4.7).

cosine similarity =
α · β

∥α∥ · ∥β∥
(4.7)

where α,β are the flattened DFT arrays.

Equation 4.6 and Equation 4.7 show that both MSE and cosine similarity metric

take every pixel into account and perform a one-to-one comparison when computing the

similarity score.

Since, we observed from our experiments that, the intensity and position of peaks in

DFT patterns can vary slightly around a specific area, image similarity measures that

capture “structural” similarity are of interest. We used SSIM [114] to calculate the

similarity score between two DFT arrays. SSIM score between two discrete signals is

calculated as follows. Let x, y be the two DFT arrays that correspond to a given image

patch. Let µx, σ
2
x and σxy be the mean of x, variance of x, and the co-variance of x and

y, respectively. Approximately, µx and σx can be viewed as estimates of the luminance

and contrast of x, and σxy measures the the tendency of x and y to vary together, thus

an indication of structural similarity. SSIM compares luminance (l), contrast (c), and

structure (s) of x, y (using Equation 4.8, Equation 4.9, and Equation 4.10, respectively)

and the overall similarity score is computed using Equation 4.13.

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.8)
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c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.9)

s(x,y) =
2σxy + C3

σxσy + C3

(4.10)

C3 = C2/2 (4.11)

where C1, C2 and C3 are small constants given by

C1 = (K1 L)2, C2 = (K2 L)2 and C3 = C2/2, (4.12)

L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale images),

and K1 << 1 and K2 << 1 are two scalar constants. The general form of SSIM between

signal x and y is defined as:

SSIM(x,y) = [l(x,y)α · c(x,y)β · s(x,y)γ] (4.13)

where α, β and γ are parameters to define the relative importance of the three compo-

nents. We use α, β, γ = 1 to give equal importance to luminance (l), contrast (c), and

structure (s). Hence the resulting SSIM index is given by

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.14)

Since SSIM measures similarity (i.e., 1 implies matched, and 0 implies mismatched),

we use (1−SSIM(x,y)) as the metric to calculate the distance (or dissimilarity) between

the two DFT patterns in our experiments. Figure 4.7 and Figure 4.8 show sample sce-

narios explaining the reason for choosing SSIM over MSE and cosine similarity metrics
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respectively.

SSIM based scores were concentrated in a very small range. So we normalized the

scores using a sigmoid function, f(x) in Eq 4.15, to be well spread between 0 (matched)

and 1 (mismatched), thereby easily differentiate matched and mismatched pairs.

f(x) =
1

1 + e−λe(x−µe)
(4.15)

We empirically estimated λe, µe (which determine the shape of the sigmoid curve)

from the outputs of experiments on larger datasets.

4.3.4 Handling of the Full Image

Given a large satellite image and associated RPC metadata, we divide the image

into non-overlapping patches and compute both the DFT patterns for each patch. We

calculate the SSIM score for each patch and generate a heatmap of SSIM scores for the

entire image. Median of patch-wise SSIM scores is treated as the overall tampering score

of the image, whereas heatmap can be used to determine where and how the match and

mismatch differ.

DFT-X

SSIM: 1.0
MSE: 0.0

Increment each 
pixel value of 
DFT-X by a 
value of 10

DFT-Y

SSIM: 0.999
MSE: 100.0

(DFT-X versus DFT-X) (DFT-X versus DFT-Y)

Figure 4.7: Sample demonstration to show that SSIM is more apt than MSE for our
use case. Even though both the DFT patterns look alike, MSE is unable to capture
the similarity unlike SSIM.
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DFT-A

SSIM: 1.0
Cosine Similarity: 1.0

Shift location of  
peaks in 

DFT-A by 20 
pixels vertically

DFT-B

SSIM: 0.999
Cosine Similarity: 0.0

(DFT-A versus DFT-A) (DFT-A versus DFT-B)

Figure 4.8: Sample demonstration to show that SSIM is more apt than Cosine Similar-
ity for our use case. Even though both the DFT patterns look alike, cosine similarity
is unable to capture the similarity unlike SSIM.

4.4 Experiments

This section describes the experiments that are carried out to verify the authenticity

of satellite images using proposed technique. First is a description of the datasets used.

Second, a series of experiments to verify the effectiveness of this method.

4.4.1 Dataset

Level 1B data (in GeoTIFF format, with RPC Metadata associated) from Orbview-3

satellite [115] is collected from USGS Earth Explorer [116]. For elevation maps that are

required for orthorectifying the images, we used SRTM 1 Arc-Second Global data [117].

Samples from different regions of the globe with both flat and hilly terrains are used

to carry out the experiments. Table 4.1 shows the number of samples collected from each

region. Each sample in the dataset has pixel information and corresponding metadata

associated with it. We created a dataset of tampered samples by replacing the metadata

of each sample with metadata associated with one of the other samples in the dataset. We

used two different approaches to create the tampered data. In the first approach we ran-

domly exchange metadata (see Section 4.4.2). In the second approach we selected images

that are overlapping spatially and captured at different time instances, and exchanged

their metadata. We consider 85% overlap and 98% overlap, see Section 4.4.3
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4.4.2 Random exchange of metadata

Experiments are carried out on Japan dataset by considering the collected image-

metadata pairs as samples of untampered dataset. We created a dataset of tampered

samples by replacing the metadata of each sample with metadata associated with one of

the other samples that are randomly selected from the dataset. We calculated both DFT

patterns for each sample by dividing images into non-overlapping patches of size 1024

x 1024. As described in Section 4.3.3, normalized SSIM score between DFT patterns

of each patch is calculated. We set the window size parameter to 63 while computing

SSIM score. Median of scores of all patches in a given image is considered as the overall

tampering score of the image and this score is used as the key to detect tampering in

metadata. Binary classification of these scores resulted in:

• Area under ROC curve (AUC) of 0.9969

• Accuracy of 99.15%

• Tampered detection accuracy of 99.65% (Percentage of tampered samples that are

detected as tampered)

• Untampered detection accuracy of 98.65% (Percentage of untampered samples that

Region
Number of

Images
Japan

(Hilly Terrain)
1708

Northern Europe (Estonia, Latvia, Lithuania)
(Flat Terrain)

88

South America (Paraguay)
(Flat Terrain)

848

West Africa (Western Sahara region)
(Flat Terrain)

355

Table 4.1: Data collected from different regions of the globe to test the proposed method.
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are detected as untampered)

We repeated the above experiment for various patch sizes and the corresponding

results are shown in Table 4.2. As we got highest accuracy for patch size of 1024x1024,

we finalized on breaking the images into 1024x1024 patches.

Patch size AUC Accuracy (%)
2048x2048 0.9978 98.92
1024x1024 0.9969 99.15
512x512 0.9951 99.00
256x256 0.9956 98.68
128x128 0.9958 98.71

Table 4.2: Performance for varying patch size

4.4.3 Spatially overlapping image metadata exchange

Experiments presented in Section 4.4.2 are carried out by randomly exchanging meta-

data between different samples in a dataset. But, a more purposeful manipulation is

exchanging metadata between samples corresponding to the same GPS coordinates that

are captured at different timestamps. To recreate this, for each image, we search for a

maximum overlapping pair captured at different timestamp in the dataset. We used the

image pairs with overlap percentage (overlap area/original area) above a threshold to

exchange metadata between them.

With 85% overlap area threshold, only 164 images (and 328 samples) remain from

the 1708 images of Japan region. Conducting tampered sample detection experiments

with patch size of 1024x1024 on this small dataset resulted in:

• Area under ROC curve (AUC) of 0.9848

• Maximum accuracy of 97.85%
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Region
Overlap

Area Threshold
Number

of Samples
AUC-ROC

0% (Random) 3416 (1708 images) 0.996
85% Overlap 328 (164 images) 0.984Japan
98% Overlap 94 (47 images) 0.994
0% (Random) 174 (87 images) 0.987
85% Overlap 138 (69 images) 1.00Northern Europe
98% Overlap 90 (45 images) 1.00
0% (Random) 1696 (848 images) 0.999
85% Overlap 518 (259 images) 0.989South America
98% Overlap 246 (123 images) 0.989
0% (Random) 710 (355 images) 0.999
85% Overlap 134 (67 images) 0.997West Africa
98% Overlap 52 (26 images) 1.00

Table 4.3: Experimental results on the datasets from different parts of globe. Each
image stems two samples - one in the tampered dataset and the other in untampered
dataset.

• Tampered detection accuracy of 98.16%

• Untampered detection accuracy of 97.55%

With 98% overlap area threshold, only 47 images (and 94 samples) remain from the

big dataset of 1708 images. Classification results on this dataset resulted in:

• Area under ROC curve (AUC) of 0.9941

• Accuracy of 96.81%

• Tampered detection accuracy of 100%

• Untampered detection accuracy of 93.62%

For dataset from Japan region, results for purposeful temporal metadata exchange

are slightly worse than random metadata exchange. But, this is not the case with the

datasets from other regions.
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4.4.4 Testing on flat regions

Orbview-3 satellite data is collected from other regions of the globe with flat regions

(< 500 feet variation). Tampering detection experiments are conducted for Northern

Europe, South America and West Africa datasets and corresponding results are described

in Table 4.3

The comprehensive results for three different flat regions of the world compared to

the Japan dataset, suggest that the performance of our proposed algorithm does not

suffer even when there are no significant terrain features that can add more features to

the DFT pattern.

4.5 Conclusions

In this chapter, we presented a work focusing solely on the task of satellite image RPC

metadata verification. An accuracy of over 99% was achieved for the satellite image as a

whole. The original paper for this work was the first to investigate the problem of RPC

verification. [104] Furthermore, this was one of very few works to tackle a problem in the

domain of non-linear image resampling estimation or detection.
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RPC Splicing

Given the success of our RPC tampering detection method, there was motivation to

generalize the RPC resampling estimation method to detecting other manipulations. In

this case, we look at splicing in satellite images. The next sections first present an

overview of the specific problem we are trying to solve, details on how a dataset was

created, and finally, experimental justification for the proposed method.

5.1 Motivation

The previous chapter demonstrated a convincing usage of resampling artifacts for the

task of RPC metadata verification. The task of RPC metadata verification was specific to

satellite images only, and the first work to investigate this problem. However, there also

exists numerous manipulations which can be done to image pixels. These manipulations

are not unique to satellite images, and countless previous works have investigated this

problem for detecting these in handheld camera imagery. These methods are constrained

to only have knowledge of the image pixels, no metadata.

Naive application of these tools can be applied to satellite images. With some retrain-
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ing, comparable accuracy can be seen on satellite image datasets to that of the original

paper. But, satellite images come with the additional information of the RPC meta-

data. This section demonstrates that simple signal processing methods which utilize the

RCP metadata can significantly outperform the state-of-the-art deep learning methods

for image splicing detection.

5.1.1 Problem Outline

As an end result, the method should take in an image + metadata package, and

localize where the manipulation took place. Figure 5.1 gives a visualization of the desired

output for a given input. For most of the work, it is assumed that the RPC metadata is

authentic. Tests showing its effectiveness without authentic metadata are at the end of

the chapter.

The presence of metadata also resolves some ambiguity with regards to which region

should be marked as manipulated. For example, if an image is spliced, with half of the

pixels from image A, and the other half from image B, is the region taken from image

A or B the manipulated one? Here, the definition of a spliced region will be any image

pixels which were not included in the original image corresponding to the metadata.

5.2 Dataset

The data collection consisted of two primary steps. First was collection of a large

number of real satellite images. Second, creating a dataset of manipulated images from

these which would mimic the real-world use case.
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Figure 5.1: A sample manipulated image and corresponding manipulation mask.

5.2.1 Source Images

All data for this work was taken from the publicly available OrbView-3 satellite. Only

panchromatic images were used, with a pixel size of approximately 1m2. Images were

taken from 3 distinct geographic regions:

• Japan

• South America

• West Africa

Separating by region ensures that there is no crossover between the training and test

sets, and provides a diversity of geography. In all parts of the process, the regions are kept

separate. Splicing only happens within a region, and testing is done in a leave-one-out

fashion. For example, test results for Japan will be produced by first training a model

on South America and West Africa.
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The data was further parsed into 2048 × 2048 patches. The native data size of 20k

× 8k (160 megapixels) was far too large for the segmentation software. Furthermore,

inference time on such large images using any deep learning method would be extremely

long. While feasible in practice, it did not allow for fast experimentation. The choice of a

4 megapixel patch size allowed for sufficiently complex content in each patch. Generaliza-

tion to the full image size is trivial, as all methods used to follow are fully convolutional.

5.2.2 Spliced Data Creation

The process consists of three major steps.

• Segmentation of objects of interest.

• Random splicing

• Automated and human quality control on manipulated images

Segmentation

Segmentation is done in the Computer Vision Annotation Tool (CVAT) [118]. Most

real-world splicing manipulations would fall into one of two categories - either adding or

removing information. For example, a building could be added to an image, or, greenery

could be used to cover up an existing building. Good objects for both of these tasks were

identified by a human annotator.

Two methods were used for segmentation of these regions of interest. The primary

method was Facebook Research’s Segment Anything module [119]. Segment Anything is

a deep learning model trained to segment objects based on a set of point annotations.

If the segmentation result is deemed to be poor, more point annotations can be added,

and a better segmentation can be computed.
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Figure 5.2: The process of creating spliced images. Two images from the same geo-
graphic region are used. One provides the background, and the other, an object to be
spliced in. Random scaling, rotation, and translation is applied.

In approximately 1/5 cases, the segment anything module did not give precise enough

results. In this case, manual segmentation with a polygon was used.

Splicing

A visual overview of the splicing process is shown in Figure 5.2. The selection of

source and target image pairs is done randomly. 70% of the donor patches were randomly

rotated. Independently, 70% were also randomly scaled, with a scale factor between 0.5

and 2. Random translation was used in all samples to place the object in a random

location inn each target image.
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Quality Control

After producing numerous sample images, several quality control metrics were put in

place to ensure the images looked realistic. First, the following automated criteria were

enforced:

• The pixel standard deviation in the target region should be at least 10. This ensures

that the background is not so flat that it carries little visual information.

• The mean of the donor matches the target in the same area within +50% or -

33%. In other words, the image being spliced in should be close enough in average

intensity to the original.

• The standard deviation is between the donor and target matches within a multi-

plicative factor of 3. This threshold is more forgiving, allowing for more varied

source to target transfers. For example, a building being pasted into a plain back-

ground may have relatively different standard deviations. However, vastly different

values beyond 3 will stand out as obviously manipulated.

After all of the above checks, human verification was done. Given the large quantity

of images, this was a 5 second check per image to sort out obvious fakes. For example,

placing a building in the middle of the ocean would be filtered out in this step.

5.2.3 Final Manipulated Image Statistics

For each of the 2048 × 2048 patches, the average number of manipulated pixels

was 1.75%, while the median was 0.839%. A diverse range of manipulation sizes were

considered, as seen in Figure 5.3.
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Figure 5.3: A histogram of manipulation area in pixels for each region. Note the
horizontal axis is a log scale.

Country Number of Images
Japan 560

West Africa 131
South America 634

Table 5.1: Total number of spliced images per country.
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5.3 State-of-the-Art Baseline

As a SoTA baseline method, MantraNet [11] was chosen. The model was trained

on 385 different image manipulations, and is designed for the task of localization. Fur-

thermore, it is fully convolutional, and can accept the large input sizes seen in satellite

imagery.

The three main contributions of this work were:

• The usage of image residual features as an input to the convolutional neural net-

work. While this has been done before [10], this work combined many of the filters

used in SoTA forensics models.

• The anomaly detection network. This layer incorporated techniques from a Z-score

test to identify anomalous regions of the image.

• The optimization of both of the above layers through extensive experimentation.

Given the extensive experimentation done with the network, the next question was

how well this would perform on the satellite images directly. Initial application of their

pre-trained model to the satellite splicing dataset gave poor results. The AUC-ROC was

slightly above random chance on all 3 test sets.

This is somewhat expected, as there are a few key factors which differentiate satellite

images from those seen in normal handheld camera images. These are:

• Higher bit depth. The satellite images were 11 bit instead of the normal 8 bit.

• Lack of gamma correction.

• Lack of JPEG compression artifacts.
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Test Location Japan South America West Africa
AUC-ROC 0.8383 0.8351 0.8550

Table 5.2: MantraNet Test Results after fine-tuning.

Modifying the test images by applying gamma correction did improve results, but not

to more than 60% AUC. However, this process is lossy, throwing away information from

the smaller bits.

Significantly better results were obtained by fine-tuning the network on the new data.

The strategy essentially matched that of the original MantraNet paper for fine tuning.

Each training batch was half real images, and half manipulated, with a patch size of 256

× 256. For the manipulated samples, only a small portion of the 2048 × 2048 area is

actually manipulated. During training, it is enforced that the 256 × 256 sub-patch must

contain a portion of the manipulated region.

5.4 RPC based Pixel Alteration Localization (RPC-

PAL) Model

This is a two part model, which builds upon both the MantraNet model and the RPC

tampering detection model. At a high level, the RPC information can provide a coarse

estimate as to where the tampering took place. The MantraNet portion provides more

fine-grained segmentation.

5.4.1 From whole image to localization

The input image and checkerboard start as large 20k × 8k images, which are then

cropped down into 2048 × 2048 regions for training and evaluation. To achieve local-

ization within these crops, further patches are extracted. These are done with a square
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patch size of 128 pixels, and a stride of 64. Different patch sizes and strides were ex-

perimented with in the final end-to-end system. A patch size around 128 gave the best

results. Smaller strides gave slightly better accuracy, at the expense of computational

cost. There seemed to be little benefit to using anything smaller than 1/2 the patch size,

or 64 pixels. Once these patches were extracted, and evaluated individually for similarity,

they were reformed into an array, and scaled back to the original resolution using bilinear

interpolation.

5.4.2 RPC + DEM Pathway

In this computational sequence, the method determines what the expected resampling

pattern is in each small patch region. Once the checkerboard pattern is passed though

the resampling function, using the RPC and DEM, it is parsed into patches as described

above. The resampled checkerboard is used to compute the L1 distance between each

pixel in the new image, and its nearest neighbor in the original image space. This is

used as a proxy for the estimate of image pixel noise. Then the magnitude of the Fourier

spectrum is computed as the expected local resampling signature.

5.4.3 Image Pathway

As with the RPC + DEM pathway, this one starts with the patching process. Each

of these steps is run on individual patches, until the comparison step.

The steps are as follows:

• Apply the high pass filter

• Non-linear variance estimator function

• Fourier Transform magnitude
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• Multiply with a cone-like high pass filter. In particular, the function y(ω) =
√

|ω|

• Divide the resulting array by the standard deviation of its values, to give the whole

signal a variance of 1.
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5.4.4 Experimentation with Variance Estimator

Under the assumption that the noise is a zero mean, Gaussian random variable, the

minimum mean squared error estimate of the variance would be equal to the square of the

residual. However, there is a limit to how strongly the assumption that linear predictor

residue is a good estimate of the noise. There will often be outliers, where portions of

the image will have significantly larger high frequency components.

Previous works relied on a Gaussian function as a non-linearity to estimate the vari-

ance. For the simplicity in comparison, it should be noted that shifting or scaling the

activation function vertically will not have any affect on the final output. The constant

shift will appear only in the F(0,0) component of the Fourier Transform, which will be

thrown out by the cone filter. Any scaling will be thrown out by the final normalization

step of the resulting filter In comparing the square function and Gaussian, there is little

difference for small deltas. For larger deltas, the Gaussian essentially clips the values at

1, doing so in a smooth way.

The followup question would be whether or not the Gaussian activation function

is optimal. For large delta values, the square function grows like O(x2), where as the

Gaussian grows as O(1). The intuitive extension used in this work is to try a function

between these two extremes. The desired function should act like O(x2) for small deltas,
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and O(xk) for large deltas. The k value should be between 0 and 2, the two extremes

already investigated. Experimentally, values close to 1 tended to perform well, so k will

be fixed at 1.

The second question is how quickly the change from O(x2) to O(x1) should hap-

pen. This can be achieved by simple horizontal scaling of the activation function. This

transition point can be represented as L.

In designing a function for this task, it can be more easily be done in the derivative

space. For small deltas, the derivative should be a linear slope. For large deltas, it should

be a constant -1 or +1. In machine learning, this function is often referred to as ”hard

tanh” However, smoothness would be desired here, so a normal hyperbolic tangent will

be suitable. With this as the derivative, the final function would be the integral of this:

f(x) = L ∗ ln(cosh(x
L
)) (5.2)

Experimentally, L was chosen to be 30 based on the satellite image results.

5.4.5 Matching Metric

Both the image and RPC pathways result in a grid of spectral patterns. As with the

previous chapter, the SSIM metric was used. However, some additional post-processing

was done to optimize performance.

While it is true that the patterns may visually look similar, the scales of the two

patterns may be significantly different. For example, multiplying all pixels in the input

image by a factor of 10 will increase the magnitude of the image resampling signatures by

a factor of 10. But the same increase will not be seen in the RPC resampling signature.

Notably, the SSIM penalizes for this difference in scale. The eliminate this, both of

the signatures are divided by their respective standard deviations, to give each signal a
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Figure 5.4: Visualization of the different non-linearities. The soft absolute value
function strikes a balance between the square function which is ideal under perfect
noise estimation, and the Gaussian kernel, currently used by the previous resampling
works.

variance of 1. Note that this variance will be different than the one used in the SSIM

calculation. In SSIM, the variance is computed over a window. In these experiments,

the SSIM window size was set at 63.

5.4.6 Full Model

To produce the most accurate model, information from both the MantraNet output

and RPC matching were combined. Anecdotally, the MantraNet model was capable

of giving very fine-grained annotations. It had knowledge of textures and edges, and

could create good object segmentation boundaries for manipulated regions. However, it

suffered from a significant number of false positives, and noise outside of the manipulated

region.

In contrast, the RPC based method produced accurate, but coarse masks. The intu-

ition is that combining these would take the best of each of these. False positives from

the MantraNet model could be suppressed by the RPC method, acting almost as an
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Figure 5.5: Full RPC-PAL network diagram. The details of each computational step
are described in the text.

attention map for likely manipulated regions.

To combine these two models, several methods were tried. The first were pixel-wise

methods. These would make a decision given only the RPC model and MantraNet

outputs at a single pixel as input. Both a DNN and simple logistic regression were tried,

with very similar results. The second type of method tried used whole images as input. A

basic UNet was tried, but results were still less than 0.1% better than logistic regression.

In the end, logistic regression was chosen. Based on the logistic regression weights, after

accounting for difference in variance of the two signals, the weight on the RPC model

output was around 10 times higher than the MantraNet output. Essentially, the RPC

model has a much more significant impact on the final output than MantraNet. This is

confirmed by the individual results of each model in the next section.
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Japan South America West Africa
MantraNet 0.8383 0.8351 0.8550

RPC only - Gaussian 0.7915 0.8102 0.8554
RPC only - soft abs 0.9600 0.9805 0.9677

RPC-PAL (Combined Model) 0.9723 0.9813 0.9773

Table 5.3: Comparison of all networks. Scores are reported as AUC-ROC. The com-
bine RPC-PAL model out-performs all other models on each of the test sets.

5.5 Experimental Results

5.5.1 Image Pixel Manipulation Only

The testing setup was done in a leave-one-out fashion, based on locations. Results

reported on each test location are from models trained on the remaining two.

Most notable in these results was the effect of the specific non-linearity used. Switch-

ing from the Gaussian to soft-abs significantly improved AUC. The combination of the

RPC model and MantraNet gave modest improvements over the RPC method alone.

5.5.2 RPC tampering and Splicing

As a follow-up, an obvious attack here would be to manipulate the image RPC meta-

data in addition to the pixel values. This introduces a bit of a philosophical question - if

the RPC data is from one image, and pixel values from two other images, which of the

three pieces of data would be considered ”authentic” in the new composite image, and

which should be labeled as fake. The answer more-or-less comes down to an arbitrary

choice of verbiage.

The problem would be more accurately posed as finding if each image pixel is consis-

tent with the provided RPC metadata. In the upper left quadrant of Figure 5.9 is the

case of no manipulation. Both the RPC method and MantraNet are classifying almost

all pixels as unlikely to be tampered.
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Figure 5.6: ROC curves for the Japan test set.
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Figure 5.7: ROC curves for the South America test set.

Figure 5.8: ROC curves for the West Africa test set.
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In the lower left quadrant is testing on the spliced images, again with the untampered

RPC. This was the case which was investigated in the previous section, and the main

focus of this work. The dotted lines represent the true positives for image tampering.

There is more significant separation between the histograms for the RPC only model

compared to MantraNet.

Of more interest is the right hand column. At the top, is RPC manipulation only.

RPC data was randomly swapped between images in the test set. There is of course

no change in the MantraNet scores, as it does not use the RPC metadata. The RPC

based model instead classifies almost all pixels as being tampered. This is expected and

desirable, in the sense that none of the pixel noise patterns should match the expected

patterns based on the RPC.

Finally, the bottom right considers simultaneous manipulation of the RPC metadata

and the image pixels. Again, from left to right, the MantraNet model is agnostic to

the RPC metadata, and there is no change. The RPC based model, instead, flags all

pixels as being manipulated. This is consistent with what should be expected based on

its derivation. As none of the pixels will be consistent with the RPC metadata, all are

labeled as fake.

5.6 RPC Splicing Detection Summary

Given the previous results, it is clear that the simpler RPC based method can out-

perform a neural network with access to only the image pixel values. In addition to

explainable, the RPC method also offers far greater efficiency. However, for full perfor-

mance, both of the two can be used together in the full RPC-PAL model.

Given this, there are several ways in which this model can be utilized in real-world use

cases. The RPC model can function as an initial filter, to determine if full neural network
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Figure 5.9: Histogram of pixel detector responses for several scenarios. The RPC
based model will flag most pixels which are spliced and/or have manipulated RPC
metadata.
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evaluation is necessary. Depending on the size of the region identified, the MantraNet

model could either be run on the whole image, or over a rectangular region which was

identified as suspicious by the RPC model.

The work presented here showed the value of incorporating RPC metadata into the

single task of splicing localization. However, there is reason to believe that this method

could be generalized to other manipulations. For example, inpainting. By utilizing

a simple signal processing feature, explainability can be assigned to model decisions.

However, there likely remains a small performance gap which can be filled in by a neural

network, as was done in creating RPC-PAL.

While this section only investigates satellite images, the Discussion and Conclusion

Chapter offers some ideas as to how methods described here could be applied to other

imaging domains.
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Discussions and Conclusion

This dissertation presented several works in the area of image forensics. The first of these

investigated the detection of GAN generated images in Chapter 3. Then, delving into the

complex issues of adversarial robustness in the context of GAN image detection. Novel

adversarial attacks were presented against the co-occurrence image texture feature.

Chapters 4 and 5 discussed two image forensics applications in satellite imaging.

Chapter 4 addressed the more niche problem of RPC metadata verification. Such tools

are necessary to authenticate overhead imagery, as the metadata carries important infor-

mation about the date, time, and location of an image. Chapter 5 further leveraged this

metadata into image splicing detection. It demonstrated that the RPC patterns provided

significant information about the expected resampling artifacts which should be seen in

an image, and that these artifacts can be localized. When applied to splicing detection,

it was demonstrated that the simple signal processing approach using RPC metadata

could significantly out-perform a state-of-the-art image manipulation localization deep

learning model.
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6.1 DeepFake Detection

In this section, I provide a brief overview of my work in Deepfake (DF) video detection.

I was the second author on the paper ”Generalizable Deepfake Detection with Phase-

Based Motion Analysis”, with Ekta Prashnani as the lead author [120]. In a similar

idea to the GAN detection work, this paper relied on a theoretically motivated feature,

computed on the input, and passed to a deep learning framework.

6.1.1 Summary of the Work

Existing methods that rely on temporal information across video frames for DF de-

tection have many advantages over the methods that only utilize the per-frame features.

However, these temporal DF detection methods still show limited cross-dataset general-

ization and robustness to common distortions due to factors such as error-prone motion

estimation, inaccurate landmark tracking, or the susceptibility of the pixel intensity-

based features to adversarial distortions and the cross-dataset domain shifts. Our key

insight to overcome these issues is to leverage the temporal phase variations in the band-

pass frequency components of a face region across video frames. This not only enables

a robust estimate of the temporal dynamics in the facial regions, but is also less prone

to cross-dataset variations. Furthermore, we show that the band-pass filters used to

compute the local per-frame phase form an effective defense against the perturbations

commonly seen in gradient-based adversarial attacks. Overall, with PhaseForensics, we

show improved distortion and adversarial robustness, and state-of-the-art cross-dataset

generalization, with 92.4% video-level AUC on the challenging CelebDFv2 (a recent state

of-the-art method, FTCN, [121] compares at 86.9%).
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Figure 6.1: Visualization of the Complex Steerable Pyramid. The phase of the pyra-
mid can be used to represent motion at different scales.

6.1.2 Method

The key motivation behind this method is that the facial motion in deepfake videos

would be in some ways different than real ones. Real human motion is complex, and

difficult to replicate. Our intuition is that our model could more easily detect abnormal

motion, than a deepfake method could replicate normal motion.

The feature we used here to represent motion is the Complex Steerable Pyramid

(CSP). A visualization of this is shown in Figure 6.1. The ”complex” and ”steerable”

part of the pyramid means that motion is decomposed into separate x and y components,

and any motion vector not along the x or y axis can be fully represented as a combination

of x and y. The pyramid portion alludes to the fact that motion is represented at different

scales. As a simple example, coarse motion might correspond to motion of the whole head,

or the jaw. Finer motions could be lip or eye movements.

By restricting a neural network to only use the motion information, we argue that

the network is less prone to overfitting on details particular to a dataset. This should

lead to better generalization, which we demonstrate experimentally in Table 6.1.

105



Discussions and Conclusion Chapter 6

METHOD DFDC VFHQ CDFv2
Xception [122] 70.9 70.1 73.7

Multi-Attention [123] 63.0 55.0 68.0
PatchForensics [124] 65.6 - 69.6
Face X-ray [125] 65.5 - 79.5
CNN GRU [126] 68.9 66.0 69.8
Two-branch [127] - - 76.7
DSP FWA [128] 67.3 69.0 69.5
LipForensics [129] 73.5 90.2 82.4

FTCN [121] 74.0 84.8 86.9
PhaseForensics 76.9 92.3 92.4

Table 6.1: PhaseForensics results for cross-dataset generalization, where our method
achieves state of the art results.

6.2 Potential Future Directions

The opportunities in image and video forensics are constantly changing. While not

investigated in this work, these are several potential new directions to investigate.

6.2.1 Manipulation Detection Using Lens Correction Artifacts

In the conventional imaging process described in chapter 2, it is mentioned that

there may be distortion due to the lens. This is especially apparent in the constrained

environment of mobile phone cameras. A requirement for a smaller camera module leads

to compromises elsewhere.

However, recent models have begun implementing distortion correction into the phone.

The research question here is if the fact that the images are resampled according to a

distortion patterns can be leveraged for manipulation localization.

This is a very similar setup to the splicing detection problem using RPC metadata.

There is some resampling pattern which is applied to all regions of an image. Spliced

objects placed into that image will not match the resampling pattern. So, successful

detection of the resampling pattern can be used to identify manipulated regions.
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This problem presents several unique difficulties:

• The software is closed-source, and can always change. This is the biggest barrier in

researching this problem. However, sufficient examples could be collected to model

the system. Deep learning would be useful here to quickly adapt to changing

software.

• The resampling pattern is not known by default. However, particular patterns

could be assumed. The pattern should not change too quickly, and be close to

radially symmetric.

• Usage of lossy compression. JPEG compression has been studied in forensics before,

and the limitations imposed by it are well known.

6.2.2 Deep Learning Generated Image Detection

While some GAN networks could be trained on a single GPU in less than a day,

the newest generative models require orders of magnitude more computational power.

Reports on training costs for most models cite figures in excess of $1 million USD. With

this vast investment in training, there are also more restrictions on how openly available

these models are.

This presents a vastly different landscape than many of the GAN detection models

were developed in. The concentration of generative models into the hands of relatively

few presents unique challenges and opportunities. As a challenge, it is clear that the

results are becoming more visually realistic.

An opportunity is the ability to train these models such that they are easily iden-

tifiable by a watermark detection algorithm. Instead of attempting to identify small

abnormalities in the image as a side effect, why not purposefully embed them ourselves.
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As a first step, simply applying an off the shelf image watermarking technique would

suffice for a web server. The user has no control over the source code being run, and for

an everyday person, would be entirely unaware of the digital watermarking being used

at all.

However, a more sophisticated user may obtain weights and code, then run the model

themselves. Here, the user could simply remove any lines of code adding a watermark.

Instead the watermark could be produced by the network itself. This would require,

during training of the model, that the output of a watermark detector also be maximized.

In this scenario, retraining of a model would be required to remove the watermark

from outputs. An open question would then be, how much fine tuning is required to

remove the watermark from the model weights? Or alternatively, how effective various

adversarial attacks could be at removing the watermark.

6.3 Final Thoughts

Visual media forensics remains an important area of research, as the explosion in

visual media sharing continues. The growth comes from both sides, with new camera

technologies, and new methods for generating fake media. Even in the 5 years of my

PhD, there has been significant changes in both of these areas. These changes make

media forensics an ever evolving field, full of new challenges to be explored.
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