UCLA

UCLA Electronic Theses and Dissertations

Title
System Design and Implementation of a Wearable Posture and Health Monitoring Device

Permalink
https://escholarship.org/uc/item/1hw3d7p2

Author
Rooks, Joshua

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1hw3d7p2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

System Design and Implementation of a

Wearable Posture and Health Monitoring Device

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

By

Joshua Rooks

2016

(© Copyright by
Joshua Rooks
2016

ABSTRACT OF THE THESIS

System Design and Implementation of a

Wearable Posture and Health Monitoring Device

by

Joshua Rooks

Master of Science in Electrical Engineering
University of California, Los Angeles, 2016

Professor William J. Kaiser, Chair

Minder is a wearable device capable of continuously monitoring a users physiology and be-
haviors while delivering individualized guidance to keep users healthy. Unlike many wearable
technologies currently on the market, Minder can be used to track athletic performance by
providing accurate heart rate data during strenuous activity, as well posture quality, and context
specific data such as the number of steps taken over the course of a day. This health information
is transmitted over Bluetooth to a smart phone device where an app allows users to track their
stats and receive guidance. This thesis discusses the process through which the Minder system

was designed, and how the requirements of the system were addressed.

Three circuit boards were designed over the progression of this project starting with the first

development board. Development board 1 allowed us to test two different design approaches and

il

conduct preliminary testing of the parts selected for the system. The first approach used a central
microcontroller to implement the core functionality of our system, while the second approach
used the microcontroller inside the Bluetooth module to imple- ment the core functionality as
well as the Bluetooth stack. After testing, it was decided that the first approach would be best
because it reduced the complexity of firmware development that would be required to implement
the Minder functionality while not affecting the Blue- tooth stack as well as made the system
more flexible with the additional pins available on the standalone microcontroller. A second
development board was designed to implement this approach while ensuring communication
interfaces and GPIO were easily accessible via headers, pads and 0 ohm resistors to make the
board easily tested and debugged. The final circuit board is currently being designed as a

miniaturized fieldable prototype that will allow for system level testing of our design.

In addition to the circuit board design, firmware for a stand-alone ARM microcontroller and a
Bluetooth Low Energy module were developed to implement the system functionality as well as

over the air firmware update and serial bootloader capabilities.

Minder has been developed through the hard work of the entire Minder team. My focus has
primarily been on the design of the first development board and the firmware development of the

Bluetooth module, over the air update and serial bootloader.

The Minder system has been successfully tested on development boards, and is in the process

of being miniaturized for further prototyping.

il

The thesis of Joshua Rooks is approved.

Ankur Mehta
Oscar M. Stafsudd, Jr.
William J. Kaiser, Committee Chair

University of California, Los Angeles

2016

v

To my family ...
who have always pushed me to be my best

and supported me in all of my journeys

TABLE OF CONTENTS

1 Introduction 1
2 System Overview 2
2.1 Sensing 3
2.2 Processing 5
2.3 Communication 6
24 Storage. e 7
2.5 User Interaction 7
2.6 SizZe 8
2.7 Powero 8

3 System Approach 9
4 System Implementation L. 10
4.1 Part Selection 10
411 Sensors. 10

4.1.2 Processor 14

4.1.3 Bluetooth 15

414 Flash oo 16

4.1.5 User Interaction oo 17

4.1.6 Power e 18

4.2 Development Board 1. 20
4.3 Development Board 2o 31
4.4 Miniaturized Board 40

vi

5 Embedded Software Systems 47

5.1 STM Firmware e, 47
5.2 Bluetooth Firmware 50
5.3 Over the Air Update 54
5.4 BLE Bootloader 63
6 Conclusion and Future Work 68
References s, 69

vii

2.1

2.2

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

LisT oF FIGURES

System Block Diagram oo
Accelerometer

Accelerometer Angleso

LSM6DS3H Accelerometer and Gyroscope
AD8232 Heart Rate Monitor Front End
Three-Electrode Configuration [1]
Two-Electrode Configuration [1]
STM32L053C8 Microcontroller
PAN1740 Bluetooth Module[2]
W25X20CL Flash Chip
Indication RGB LEDs
BQ25120 Battery Charging IC
Parts List
Dev Board 1 System Block Diagram
Dev Board 1 Schematic: Power
Dev Board 1 Schematic: MCU and BLE Central MCU Configuration
Dev Board 1 Schematic: Flash and Accel Central MCU Configuration

Dev Board 1 Schematic: Heart Rate Central MCU Configuration
Dev Board 1 Schematic: BLE Only Configuration
Dev Board 1 Layout: Layer 1
Dev Board 1 Layout: Layer 2

Dev Board 1 Layout: Layer 3

viil

11

12

13

14

15

16

17

18

19

19

20

21

22

23

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

5.1

5.2

5.3

5.4

Dev Board 1 Layout: Layer 4 29

Development Board 1. oo 30
Dev Board 2 System Block Diagram 31
Dev Board 2 Schematic: Power and LEDs 32
Dev Board 2 Schematic: MCU and BLE 33
Dev Board 2 Schematic: Flash and Accel/Gyro 33
Dev Board 2 Schematic: ECG and LRA 34
Dev Board 2 Layout: Layer 1 35
Dev Board 2 Layout: Layer 2, 36
Dev Board 2 Layout: Layer 3, 37
Dev Board 2 Layout: Layer 4, 38
Development Board 2 39
Miniaturized Board System Block Diagram 40
Miniaturized Board Schematic: Power 41
Miniaturized Board Schematic: MCU and BLE 41
Miniaturized Board Schematic: Flash, Accel/Gyro and LRA 42
Miniaturized Board Layout: Layer 1 43
Miniaturized Board Layout: Layer 2 44
Miniaturized Board Layout: Layer 3 45
Miniaturized Board Layout: Layer4 46
Accelerometer Angle Equations [3] oL 48
Simplified Accelerometer Angle Equations 49
On Board Storage Format 49
STM Firmware Psudocode 50

X

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

GATT Block Diagram [4] 51

Minder BLE Connection as Seen from a Users Phone 53
STM Bootloader Commands [5] 55
Flash Extended Erase Sequence [5] 57
Example Flash Extended Erase 58
Flash Write Memory Sequence [5] 59
Example Flash Write Memory 60
Flash Read Memory Sequence [5] 61
Example Read Write Memory 0oL 62
Flash Go Sequence [B] 63
FROMELF.exe Command 64
BLE Bootloader Port Sequence [6] oL 65
BLE Bootloader Load Firmware Sequence 66

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor William Kaiser, whose guidance and
support has been invaluable during my time at UCLA. I'd also like to thank my friends and

labmates at WHI for all your hard work and for making my time here so enjoyable.

Finally to Andrew, Mahdi and Yeung, thank you for making Minder such an awesome

project to learn and work on.

x1

CHAPTER 1

Introduction

The wearable market is expected to grow rapidly over the next five years. While right now
wearables incorporating wireless health are primarily limited to fitness trackers, the capa-
bility for continuously monitoring of a user’s physiology and behaviors will fundamentally
change the way healthcare is delivered and allows for individualized guidance to keep users
healthy. Minder is designed to take this next step in wireless health as a wearable device
capable of continuously monitoring a users physiology and behaviors with posture, heart
rate and activity level data collection while giving users continuous feedback to improve
their posture as well as their overall health. To accomplish this, Minder has been designed
to balance the sensing, processing, storage and communication needed to monitor a user
with the size and energy efficiency requirements of a wearable device that appeals to the
public. The development of this system took place in four stages, starting with defining the
requirements, specifications and system design, and then moving onto the hardware design
stages of part selection and circuit board design. The final stage was the firmware design
for the various onboard processors. Minder is currently still in development but is estimated
to achieve full functionality on a development board within the next few weeks. After that,
work will begin on an initial prototype which will incorporate full miniaturization of the
system as well as ways to make the final project more manufacturable. The Minder system
will be a critical tool in improving user’s health through posture correction and activity and

heart rate tracking.

CHAPTER 2

System Overview

The overall goal of the Minder system is to create a wearable device that monitors a users
posture as well as their activity and heart rate. By tracking the users posture over time,
Minder allows users to see their rate of good verses bad posture over time and identify
patterns of bad posture such as hunching over or leaning to the side. The system requirements
for Minder can be broken down into the 7 following requirements. First the system needs to
collect data about the user, this includes data that can be used to determine posture as well
as activity and heart rate (HR) information. Next, the system needs to process that data to
produce meaningful information such as whether or not the user is in good posture or bad
posture, step count and heart rate. The system then needs to communicate that meaningful
information to the user. For posture, that means directly interacting with the user to inform
them that they have gone from good to bad posture. For information that is tracked, i.e.
heart rate, activity, and posture over time, the system needs to communicate to an external
device, such as a smartphone or laptop, that is gathering the tracked data. If the external
device is not available, Minder needs to keep a reasonable amount of data in memory until
the external device can be reconnected. There are also two usability requirements to think
about. First, the system has to be able to be worn comfortably on the users person. Second,
the system needs to be able to function for at least a full day in between charges. These

overall basic requirements can be broken down into the following categories:

e sensing

® processing

e communication
e storage

e user interaction
® size

e energy efficiency

Storage

t

Sensors Processor Communication

User
Interaction

Figure 2.1: System Block Diagram

2.1 Sensing

To meet the sensing requirements, the Minder system needs to collect data about the user
which can be processed to determine posture, activity and heart rate. For posture and

activity sensing, using an accelerometer /gyroscope (accel/gyro) combination was determined

to be the best option. An accelerometer measures acceleration in a vector, and by using a

3D accelerometer, we can measure acceleration in the x, y and z dimensions.

1g

Figure 2.2: Accelerometer

On earth, there is always an acceleration of about 1g towards the center of the Earth
due to Earths gravity. By looking at how this gravity vector changes in respect to x, y and
z axes we can evaluate how the orientation of the accelerometer has changed assuming no
other external forces are acting upon the accelerometer. In addition to the accelerometer,
we also have a gyroscope which allows us to measure rotation. While we are not currently

using the gyroscope data in our system, there is a possibility it can be used in the future.

As a wearable device, the Minder system attaches to the users body and by using an
accelerometer and gyroscope, we can collect data about the devices orientation and relate

that back to posture. By calculating how the orientation of the system has changed from

an initial reference orientation, we can estimate a persons posture and then evaluate if
that posture is good or poor. In addition to determining posture, the accelerometer can
also be used to detect steps. There are many different processes for detecting steps from
accelerometer data, but the idea behind it is that when your foot hits the ground there is
a noticeable spike of deceleration. By processing the accelerometer data, the deceleration

spike can be identified and counted as a step.

The final sensor needed for the Minder system is a way to monitor heart rate. Heart
rate monitoring is a common feature in wearables and is typically performed using photo-
plethsmography (PPG). In PPG, a light emitting diode (LED) and photodiode are used to
determine the pulsatile volume of blood from each heart beat [7] from which heart rate can
be calculated. Unfortunately, calculating heart rate using PPG can be inaccurate due to
motion and is difficult to perform on the back where Minder is located. Due to these issues
the decision was made to use electrode based electrocardiogram (ECG) system instead. This
allows Minder to accurately measure heart rate at all times using electrodes to record the

hearts electrical activity.

2.2 Processing

In order to find the change in orientation between the current state and the reference state,
we can look at how the gravity vector has moved in comparison to the reference state in
the x, y and z axes. To do this we find the angle of each axis and then find the difference
between the current state and the reference state. For posture, the angle from all 3 axes
are translated to a 2-dimensional plane that is used to determine if the user is in good
or poor posture. To facilitate this processing as well as the control the Minder system a
microcontroller was selected. As the brains of the Minder system, the microcontroller sets
up and retrieves data from the sensors and then processes the data and either stores it or

sends it out to an external device over a communications interface.

1g

v

Figure 2.3: Accelerometer Angles

2.3 Communication

One of the most important aspects of our system is that it allows a user to track their posture
over time. By connecting to an external device such as a phone or computer, the tracking
functionality can be offloaded to a system with a much greater capability to keep track of
a large amount of data as well as allow the user to easily see and interact with their data.
The best method weve found to facilitate this that fits our requirements is Bluetooth Low

Energy (BLE). BLE is a ubiquitous standard that is found on almost all smartphones on the

market as well as most computers. Using BLE allows the Minder system to communicate
with a users phone or computer even when there is no internet access and is designed for
low energy devices, using a lot less energy than traditional Bluetooth communication. The
lower data rates of BLE versus traditional Bluetooth are not an issue for our system as the
amount of data that we are sending when connected to an external device is small with the
only large amount of data communication occurring upon the first resync between Minder

and the external device after they have been disconnected for a period of time.

2.4 Storage

When Minder is not connected to an external device, it needs to save posture, activity and
heart rate data to onboard memory. The structure of the saved data as well as the size
of the onboard memory need to allow the storage for at least a few days of posture data.
Non-Volatile Memory (NVM) is needed to ensure that a loss of power does not cause all the
posture data to be erased. The decision was made to use Flash memory as it is currently one
of the cheapest and most robust forms of NVM on the market. Serial flash was used because
it allows the microcontroller to interface with the flash memory using fewer I/O connections
than parallel flash. The reduction in communication speed by using serial over parallel flash

is not an issue in our system.

2.5 User Interaction

A key part of enabling the user to have better posture is by giving them feedback so they
know when they are in good posture and when they are in poor posture. By using haptic
feedback, the user can immediately feel when they have passed poor posture or very poor
posture thresholds. This feedback can be supplemented with notifications through a phone or
computer app. If the user remains in poor posture, vibration alerts repeat at a customizable

time period. In addition, visual indicators of battery level and external connectivity allow

the user to easily gauge the status of the device.

2.6 Size

The entire system is size constrained by the harness used to attach Minder to the users back
and the current plan is for a final module size of 30mm x 21.5mm. We are designing the
system to be as small as possible while maintaining all of the requirements and functionality

as described above.

2.7 Power

The final design consideration is power. At a minimum, the system needs to be able to last
the length a normal day, usually 16 hours, without needing to be recharged. A good portion
of the battery life is determined by the size of the battery which is weighed against size
constraints. The other portion is in designing the system to be as low power and efficient as
possible. To accomplish this, power consumption is an integral part of every part selection
in order to achieve the lowest possible power draw from the system components. Low power

modes of the system components are also a key part of achieving the desired battery life.

CHAPTER 3

System Approach

The minder system was designed in multiple iterations allowing us to explore different im-
plementations and determine which would work the best. The first board that was designed
was a development board that allowed us to look at two different system approaches. The
first approach used the microcontroller inside the Panasonic PAN1740 Bluetooth device as
the processor for the Minder system. The idea was that the Cortex-MO0 in the Bluetooth
module could perform the central tasks of the Minder system, such as reading and processing
sensor data along with the functions required by the Bluetooth stack. This approach results
in fewer components on the board, saving space as well as energy. The second approach used
an additional microprocessor to perform the central tasks of the Minder system, while the

processor in the Bluetooth device focused solely on the Bluetooth stack and its functionality.

The first board allowed us to identify that approach 2 was preferable because it removed
the complexity caused by modifying the Bluetooth firmware to allow for additional Minder
functionality without impacting the Bluetooth stack. Approach 2 also has the additional
I/O needed to monitor heart rate and gives us flexibility to connect additional components
such as LEDs or other sensors in the future. With the new approach decided and design
issues with the first dev board becoming apparent, it was decided to spin a new dev board
to allow for increased debug ability of connection interfaces as well as the removal of the
wireless recharge and regulation components that were not acting as expected. The next
spin of the board will be a miniaturization of the current dev board 2 design. This will allow

us to test the system design in a similar form to the final product.

CHAPTER 4

System Implementation

4.1 Part Selection

4.1.1 Sensors

The first sensor we used for our system is the STMicroelectronics LSM6DS3H combined 3D
accelerometer and 3D gyroscope inertial module. The advantage of the LSM6DS3H module
is that it has a small package size along with accel, gyro and step counting features and
low power usage. For our system, we used an LGA-14L package with a total size of 2.5 x 3
mm. This fits well with our goal of being able to miniaturize the Minder system as much as

possible.

In addition, the LSM6DS3H has a 2g to 16g accelerometer range and can operate at an
output data rate of up to 6.66 kHz. It also has a gyroscope range of between 125 and 2000
dps which can operate at up to 3.33 kHz. These capabilities are far beyond what is required
for normal operation and gives us flexibility if greater capability is required in the future. In
our typical use case where the user is not looking at the Minder status through the app, the
accelerometer will operate at 10 Hz with the data averaged over 3 seconds. When the user

interface needs to update more quickly, each 10 Hz sample will be sent.

10

Figure 4.1: LSM6DS3H Accelerometer and Gyroscope

The final critical component of choosing this part is the low power usage. Using only the
accelerometer in low power mode, at 12.5 Hz, the typical current consumption is only 10
uA. With both the gyroscope and accelerometer being used, the current draw is still low at
0.4mA. This low power consumption allows our system to maintain better battery life and

could allow us to use a smaller battery resulting in a smaller and lighter system.

The other part of our sensor system is the heart rate monitor. In order to sense the
users heart rate, 2 electrodes are attached to the chest to measure the hearts electrical
potential. These two electrodes are connected to an Analog Devices AD8232 IC which
extracts, amplifies and filters biopotential signals in the presence of noisy conditions, such

as those crated by motion (Datasheet). The AD8232 outputs a cleaner Electrocardiogram

11

(ECG) signal which can be read by the microcontroller using an analog-to-digital converter.
By looking at the occurrence of peaks in the ECG signal, we can find the users heart rate.
The AD8232 chip allows us to use a two-electrode configuration, which is more practical
for our system even though it can result in a less clean ECG signals than a three-electrode
configuration. The two electrode configurations can be seen in the figures below. On the
Minder harness an electrode tip is connected to each shoulder strap integrating heart rate
into our system. The AD8232 is also small and power efficient with a package size of 4mm

x 4mm and a typical supply current of 170 uA.

Figure 4.2: AD8232 Heart Rate Monitor Front End

12

Figure 4.3: Three-Electrode Configuration [1]

13

Figure 4.4: Two-Electrode Configuration [1]

4.1.2 Processor

The processor that our system uses is an STMicroelectronics STM32L053C8. It is a 32-bit
ARM Cortex-M0O processor with 64 Kbytes of onboard flash. The main advantage of using
an MO processor is that it is an ultra-low power processor, the most efficient in the M series,
but still has more than enough processing power for our needs. It typically operates at 88
uA /MHz in run mode, meaning that with a clock speed of 32 MHz the current consumption
is a little more than 2.8 mA. It also has a number of low power modes that allow it to go

into a low power state when its capabilities arent being used. In addition to its low power

14

capabilities, the M0 processor also has a small form factor, with the 64-pin ball grid array
(BGA) model we are using having a package area of 5mm x 5mm. The STM32L053C8 is more
than capable of supporting our needs of connecting and reading from sensors, processing the

data and either storing it or transmitting it depending on whether or not the Minder system

is connected to an external device.

-——
Bl
PPor e
o ma
- g
e
Teslivt

E ol
ot ey
ey el

y

‘@‘&‘Q‘l“l

.‘g!\.-.
' N L IR}
I

Figure 4.5: STM32L053C8 Microcontroller

L
§ -
s opml
L ek
*‘
i el
{ i
g
T

-

3

4.1.3 Bluetooth

Our current Minder system uses the Panasonic PAN1740 Bluetooth System on a Chip (SOC).
This module integrates a Dialog 14580 Bluetooth chip with a chip antenna inside a shielded

case, giving us a full Bluetooth system to work with, without the need for external parts or

15

antenna design. Like the other components chosen for the Minder system, the PAN1740 is
both space and power efficient. It has a very small area of 9mm x 9.5mm and has a typical
current draw of 5mA for both transmitting and receiving. The Dialog 14580 Bluetooth chip

contains an internal ARM Corex-MO processor that runs the Bluetooth stack.

Figure 4.6: PAN1740 Bluetooth Module[2]

4.1.4 Flash

As mentioned in the requirements above there is a substantial need for our system to be
able to store collected data if there is no external device connected to the system. Serial
flash storage was selected to meet this need because it is robust, non-volatile and requires
very few pins to control. W25X20CL was selected as the flash component for our system,

because it is fairly large, has a small package footprint and is reasonably power efficient.

16

The W25X20CL is 2,097,152 bits or 262144 bytes in size allowing us to store over 2.5 days
worth of data. The package size is 3.9mm x 4.85mm. At low read speeds of 1 MHz, the
W25X20CL typically consumes 3mA while page writes and block erases typically consume
10 mA. When not in use, the W25X20CL can be put in power-down mode which reduces
the typical current to 1 uA. The W25X20CL can be controlled by the processor using 6 pins,

which is significantly less than a faster parallel flash storage solution.

Figure 4.7: W25X20CL Flash Chip

4.1.5 User Interaction

In order to give the user immediate feedback about poor posture, the Minder system uses
a Linear Resonant Actuator (LRA) to create vibration. In order to drive the LRA, a TI
DRV2605 IC is used which allows the LRA to be easily controlled by the system microcon-

17

troller. It also includes a built-in library of different vibration patterns which allows us to
easily signal different states through vibration. The DRV2605 comes in a small 1.47mm x
1.47mm package and has an average battery current of 2.5mA during operation. In addition,
Cree PLCC4 red, green, blue (RGB) LEDs are used for indication, informing the user about

the power and connection status of the device.

Figure 4.8: Indication RGB LEDs

4.1.6 Power

As a wearable device, Minder is a portable system needs to be able to both charge and run
off of a battery. To do this, our system uses a TT BQ25120 chip to control battery charging
as well as act as a power supply supplying a 3.3 volt rail to all the components on our board.

The BQ25120 uses a switching power supply to increase system efficiency over an LDO. It

18

also has a small BGA package to maximize board space. An additional functionality of our
system is that it is able to charge wirelessly. By using a TT BQ51003 wireless charging IC in
combination with the BQ25120 IC, we are able to easily integrate wireless charging into our
system. Both ICs also uses BGA packaging taking up 1.9mm x 3.0mm and 2.5mm x 2.5mm

of space respectively.

Figure 4.9: BQ25120 Battery Charging IC

Manufacturer Part Number Function Package Area
STMicroelectronics LSM6DS3H Accel/Gyro 2.5mm x 3mm
Analog Devices AD8232 Heart Rate IC 4mm x 4mm
STMicroelectronics STM32L053C8 Microcontroller 5mm x 5Smm
Panasonic PAN1740 Bluetooth Module 9mm x 9.5mm
Winbond W25X20CL Serial Flash 3.9mm x 4.85mm
Texas Instruments DRV2605 LRA Driver 1.47mm x 1.47mm
Cree PLCC4 CLV1A-FKB | RGB LED 3.2mm x 2.8mm
Texas Instruments BQ51003 Wireless Charging 1.9mm x 3.0mm
Texas Instruments BQ25120 Battery Charging / Regulator | 2.5mm x 2.5mm

Figure 4.10: Parts List

19

4.2 Development Board 1

3.3 Volts

5 Volts

Config 1 |
g

Figure 4.11: Dev Board 1 System Block Diagram

The first development board (Dev Board 1) had two goals. The first was to make sure
that the parts we had chosen worked well and formed a system that behaves as expected,
while the second goal was to determine which one of two approaches worked better. The
first approach was to use a central MCU to perform the main functionality of our system,
gathering and processing data, storing it or sending it over Bluetooth and interacting with
the user. The second approach was to have all of these functions performed by the Cortex-
MO processor inside the Bluetooth module to cut down on space and energy. As can be
seen in the schematics below, the BQ51003 is connected to both a USB connector and a
coil to enable both wired and wireless charging. The output is then fed into the BQ25120
which charges the battery and acts as a regulator supplying power to the rest of the board.
A 3-pin header is used to select either the switching regulator output or the low-dropout

(LDO) regulator output from the BQ25120. Both provide 3.3 volts. The power can then be

20

fed to either the central MCU approach implementation or the BLE only implementation
using another 3-pin header. The I2C control lines for the BQ25120 can be connected to
either implementation through jumpers on another header. A four-pin header connected to
ground was added to make the ground easily accessible. The 3.3-volt power rail (VDD) and
input/output (IO) pins from the BQ25120 are also brought out to headers. In addition, 3
LEDs indicate system power and if power is connected to the central MCU or BLE only

implementation.

USB Wireless Recharge Battery Charger / Buck / LDO System Power Selector

I
i

Figure 4.12: Dev Board 1 Schematic: Power

The central MCU implementation can be seen in the schematics below. It consists of a
STM32L053C8 microcontroller with both high and low frequency external oscillator crystals.
It is connected to the BLE module using UART and the serial flash chip using SPI. The
accelerometer /gyro is connected on the same 12C bus that goes to the BQ25120 module. The
Analog Devices heart rate IC is connected to the STM MCU and uses a 3.5mm audio jack to
connect to the electrodes. Multiple MCU and BLE GPIO have been brought out to headers
along with VDD, BOOTO0, accelerometer pins and ECG pins. Push buttons to reset the
STM MCU and BLE module are located on the top of the board and both microcontrollers
can be programmed using 6-pin programming headers on the board. There are also 2 LEDs

connected to the STM MCU GPIO for use as indicators.

21

/DD _0

o yDD_M
QUL CHG N
vDD_M0 29

ASH_

GO GND GND

e SR o

P-C13_RTC_AF1-WKUP2 |2 GND

PC15-0SC32_OUT

MO BLE GPIO MO BLE SWD

S0F

J:Link
adapter

152CBT6

MO GPIO MO SWD

Go

g

Figure 4.13: Dev Board 1 Schematic: MCU and BLE Central MCU Configuration

22

FLASH Accel

L4

vee MO_ACC_INT2
o ROLD -
g Uk WDD_MO
GND o1 F C31
W25X20CLZP 0.1uF
GND
PAD7
N
N
PADE
x*

Figure 4.14: Dev Board 1 Schematic: Flash and Accel Central MCU Configuration

23

ECG Heart Rate

Il &

'A'A"
A |
|
71
ARAR,

AAAM
Y¥vy

A
/1

=

Figure 4.15: Dev Board 1 Schematic: Heart Rate Central MCU Configuration

The BLE only implementation connects the BLE module to the serial flash using SPI
and to the accelerometer/gyro using 12C. It also has a pushbutton for resets and a 6-pin
programming header. The BLE GPIO, VDD, and accelerometer pins have been brought
out to headers. It also has an indicator LED. The ECG IC could not be connected in this
implementation due to a lack of IO pins on the BLE module. The first development board
was laid out in 4 layers with layers 1, 3, and 4 containing ground plane fill. The board layout
was divided into 3 sections for ease of use. On the left is the power. The USB connector
along with leads for the battery and charging coil are on the left side of the board. The two
TT power ICs are also on the left side along with the power and 10 headers and the power

and [2C selection headers.

24

BLE Flash Accel

J, BLE Accel GPIO
BLE SWD

BT ACC I 0

S el

‘J'U'é- Braccecs 14X

Figure 4.16: Dev Board 1 Schematic: BLE Only Configuration

To the right and towards the top of the board is the central MCU implementation, while
the BLE only implementation is to the right and towards the bottom of the board. This
can be seen in the layout below. The first configuration was tested by running firmware on
the STM MCU in debug mode and watching as the MCU was able to read accelerometer
data. Example firmware was uploaded to the BLE module and the module was able to be
connected to using a phone. Development of BLE firmware for the BLE only configuration
was started but didnt continue once the heart rate and LRA were confirmed as requirements
by the customer since the BLE only configuration did not have enough IO to have both

connected along with the flash and accelerometer.

25

VY av L e

NN NSNS

[o Y e N e Y B T

r 0
LJ

[

I

Figure 4.17: Dev Board 1 Layout: Layer 1

26

1

g

INN Eow
Y = ol
T

harging

ireless C

—~ &
NN
_ o ©
N N\

TRE
D

L
° 4
2 -
+, tem Power

Figure 4.18: Dev Board 1 Layout: Layer 2

27

NN

NI
- o

5

?@%@ SVOY

Ol

e

I_I_I .
% %

£

O

°
_pystemn Power

Figure 4.19: Dev Board 1 Layout: Layer 3

28

@@
BN
I~ 4
B
=~
=N
=
7 R
=4

Figure 4.20: Dev Board 1 Layout: Layer 4

29

ToT-TOT
& IOI 1Ol O
BLEM® |\ ﬁt , BLERST <
#GND
80070
P87
yPB6

YBLE_P@s
)BLE_P3
§BLE_PL ~

sratseass

.
AL

| vt

re_acc_sbo
IMB_ACC_INT2
)r1e_acc_INT

Juop_BLE = ' 9BT_acC_cS
JeLE_P2 » ')BT_acc_spo
JeLe_pe |, 9BT_Acc_INT2
YBLE_P1)8T_ACC_INT
Vi ' VBLE_uPp
- ——
VI denp e
.

)|

Figure 4.21: Development Board 1

30

4.3 Development Board 2

3.3 Volts

5 Volts LiPo
Charger

Dev Board 2

Figure 4.22: Dev Board 2 System Block Diagram

usB

The next revision of the development board (Dev Board 2) was designed to make debugging
and development easier. Due to an issue with the TI power ICs resetting every 50 seconds
it was decided that we should use a simple LiPo charging IC and voltage regulator instead.
Because of the importance of getting heart rate information, and the complexity of developing
fully functional firmware that does not interfere with the Bluetooth stack on the BLE module,
we decided that the best path forward was to use the central MCU implementation. Instead
of two indicator LEDs, each connected to a GPIO, two RGB LEDs were added for use
as general purpose indication and power/charging indication. A chip to drive the linear

resonant actuator was also added.

As can be seen on the schematic below, the two PLCC4 LEDs were connected to 6 GPIO
on the STM MCU and a third green LED was used to indicate power. The USB connector
provides power to the Microchip MCP73831 LiPo battery charger which charges the battery,
connected using a 2-pin header. The AP2112 voltage regulator then draws power from the

battery to provide a 3.3-volt rail to the rest of the board.

31

=
Y
Y
=
Y
=

=

L]
i

B et
i Mo
i

Figure 4.23: Dev Board 2 Schematic: Power and LEDs

The STM MCU still connects to the BLE module over UART, but has a 0-ohm resistor
on each line for easy access. This allows easy testing of the Over the Air (OTA) firmware
update protocols that use the UART lines. The STM MCU is connected to the serial flash
using SPI and to the accel/gyro using 12C. It also has only one external oscillator crystal for
the high-speed clock, removing the low-speed oscillator from the previous design. Headers
connecting to ground, VDD, and IO from both the STM MCU and the BLE module are also
on the board. Pushbuttons for resetting the STM and Bluetooth are placed on the back of
the board and the same 6-pin headers for programming from the last revision are included

as well.

32

Crystals
0

ﬁH

e

(GND Headers MCU Headers

BLE GPIO BLE SWD

Figure 4.24: Dev Board 2 Schematic: MCU and BLE

Accel

. (GNC
VLI ~ e N T
/CC | omeps N
T WCC

Figure 4.25: Dev Board 2 Schematic: Flash and Accel/Gyro

Finally, the board also includes the Analog Devices ECG IC and a Linear Resonant Ac-
tuator (LRA) driver that allows for different vibration patters. 0402 resistors and capacitors

as well as non-BGA IC packages were used to make the board easier to assemble and modify.

33

ECG Heart Rate

%—llf
il

LRA Driver

Figure 4.26: Dev Board 2 Schematic: ECG and LRA

The second development board was laid out as a 4-layer board with layers 2 and 4
containing ground planes and layer 3 containing a power plane. Unlike the previous board,
the second dev board was not divided into sections and was designed to be as compact as
possible while maintaining ease of assembly and modification. It is laid out with the STM
centrally located with the battery connector and USB connector on the left side of the board
along with the RGB LEDs. The programming connectors are at the top of the board with
the BLE module and headers on the right side of the board. The 4-pin ground header and
the accel/gyro and heart rate IC are at the bottom of the board. The flash memory and
LRA chips are placed towards the middle as well. Most of the Minder system has been
successfully tested on the second Dev Board. Accelerometer data, step count and heart rate
is able to be successfully read by the STM microcontroller and transmitted over Bluetooth
to a phone. In two 50 step tests, the output step count was accurate to with 3 steps in both
cases. In addition the flash read and write has been tested and the LEDs are able to be

controlled via PWM to produce a variety of colors as well as fade in and out.

34

_PLETX ﬁfﬂ: -

o
=
—

73 151 7Y TR _MCU_RK

e . e

= CEGND ~

(o){o}¢o)ic ffoNo)!

Figure 4.27: Dev Board 2 Layout: Layer 1

35

c —17 1 5\ NG

4o 4b
Y eV

Figure 4.28: Dev Board 2 Layout: Layer 2

36

==

=

‘ u ulin il0n u '

Figure 4.29: Dev Board 2 Layout: Layer 3

37

O

- ey ~—

(ACNONCD

Figure 4.30: Dev Board 2 Layout: Layer 4

38

oA JET
94v-0 7250

LA - »
)

-

Figure 4.31: Development Board 2

39

4.4 Miniaturized Board

3.3 Volts Accel /
Gyro
BQ25120

5 Volts

>H

4fspi

BQ51003
Coil
Miniaturized Board

Figure 4.32: Miniaturized Board System Block Diagram

The final board we are making is a miniaturized version that will act as our initial prototype.
It contains parts from both development boards and is designed to be as small as the final
product will be. The design is currently still under review. Wireless charging has returned
to this board, but the ECG IC has been removed. In addition, instead of brining IO and
power rails out to headers, they are instead brought out to probe points to reduce total area.
Some IC packages are now BGA to reduce area and some resistors and capacitors are now

0201s.

After some digging, it was found that the reason the TT ICs were resetting is that they
have a watchdog timer that resets the chip every 50 seconds if no commands come in over
[2C. With this in mind the ICs have been returned to the miniaturized board. The 2-pin

connector used to connect to the battery has been replaced with solder pads to reduce area.

40

Wireless Recharge Battery Charger / Buck / LDO

2
i

Figure 4.33: Miniaturized Board Schematic: Power

This board matches the previous board in that it uses the same STM microcontroller
which connects up to the flash memory over SPI and the accel/gyro over 12C. It still connects
to the BLE module over UART but connects to a different set of UART pins on the BLE
module due to issues using the BLE serial bootloader on the previously connected UART
pins. Both the STM and BLE 6-pin programming headers remain, but the holes that were

used to secure the programmer in place have been removed to reduce their footprint.

‘MCU BLE SWD
| MCU SWD T
— e I¥ = : . :4%‘1* " '_*:
; H i — P 2y 1
f_i—u F — = T:“—I\Il BLE
Lrystals | [o ! T—F
[| | =it w3 T, | 4
FDI PP g [4 %‘r—j —% HE — e
L . ,: P P ATl

Figure 4.34: Miniaturized Board Schematic: MCU and BLE

41

The STM also connects to the RGB LEDs and LRA driver as before.

Status LEDs

vee J: LAS H

VCC
UG
SPI1 CS i o B
L d oo som [EAsH HOID
‘E‘E[é_l%‘u_\li‘tf | Do HID e otk Cci9
h 4 T’:» w(~<:\ “:Ejizg)“]
GN DI 0.1uF
W25X20CLUX
GND

GND

LRA Driver

vCC

vCC

M

INT/TRIG @UT+ ::H?
QuT- —l“ LRA_PAD+
7N\

LRA_PAD-

GND

Figure 4.35: Miniaturized Board Schematic: Flash, Accel/Gyro and LRA
The miniaturized board is still 4-layers but now has dimensions of 30mm x 21.5mm

instead of the 88mm x 61mm of the first dev board and 48.5mm x 42.2mm of the second

dev board. The preliminary layout can be seen below.

42

Figure 4.36: Miniaturized Board Layout: Layer 1

43

Figure 4.37: Miniaturized Board Layout: Layer 2

44

Figure 4.38: Miniaturized Board Layout: Layer 3

45

-
N
i
]
—]
N
i
| —:

L LA

T

Figure 4.39: Miniaturized Board Layout: Layer 4

46

CHAPTER 5

Embedded Software Systems

The Minder firmware is a central part of our system, interacting with the other parts on the
board to accomplish the systems core functionality. The firmware on the STM microcon-
troller reads in information from the accelerometer and gyroscope sensors and processes it
to determine whether or not the user is in good or poor posture. Using information from
the BLE module, the STM firmware determines if Minder is connected to an external device
and either sends the gathered data to that device or stores it in the onboard flash memory
accordingly. The firmware also interacts with the user either through vibration using the

linear resonant actuator, the RGB LEDs or the push button.

The firmware on the Bluetooth Low Energy module, on the other hand implements two
different functionalities. It facilitates a BLE connection between the STM microcontroller
and an external device allowing data and commands to be passed between them and allows
for the Over the Air firmware update functionality that allows us to update the Minder

firmware on the STM microcontroller over a Bluetooth connection.

5.1 STM Firmware

As mentioned above, the firmware on the STM microcontroller is a critical part of the Min-
der system. Its first important function is communicating with the sensors to set them up
properly and acquire data. An [2C interface is used to communicate with the accelerome-
ter/gyroscope chip. New data is measured and collected every 100 ms and then read out by

the STM microcontroller over the I2C interface. At the moment, only accelerometer data is

47

used to calculate posture, but gyroscope data may be sent to an external device if requested.
Step data is also collected from the accelerometer/gyroscope. In order to find the users cur-
rent posture, the gravity vector is used. First a reference position is found for good posture
by looking at the angle of the x, y, and z axes while the user sits up straight. After this, the
change in the angle can be found for all three axes by subtracting the current angle from
the reference angle. By looking at the difference in angle for both forward and back, and
left and right, we can determine if the user is leaning in a direction indicating poor posture.

The angle for each axis is typically calculated using the equations below.

A
6 = tan! a
JAYZ + Az
A
Y = tan™! z
JAXZ + Az°
A
@ = tan~! Z
JAXZ + Ay°

Figure 5.1: Accelerometer Angle Equations [3]
The issue with using these equations, however, is that calculating arctangent directly

is a slower and more computationally intensive process than using the simplified equations

described below. By instead using the simplified equations, we can closely approximate the

48

tangent calculations as long as we scale the acceleration vector to the expected 1g.

Once the angles have been calculated, the STM firmware determines whether an external
device is connected based on a GPIO connected to the Bluetooth module. When the line
is high, it indicates that there is an external device connected and the firmware should
send the posture, heart rate and step data out over Bluetooth. When an external device is
not connected, the STM stores the collected data to the serial flash memory following the

protocol shown below. Once the external device is reconnected, the firmware will read the

Figure 5.2: Simplified Accelerometer Angle Equations

90

Ax

JAXZ + Ay? + AS?

data back from the flash memory and send it to the external device over Bluetooth.

2 Bytes

3 Bytes

1 Byte

2 Bytes

60 Bytes

2 Bytes

Timestamp

X, Y, Z Calibration

Data

Heart Rate

Step Count

20 Samples of 3s average X,
Y, Z Accel Data

Good Posture %

49

Figure 5.3: On Board Storage Format

The other health data collected by the firmware is heart rate data. The STM analog-
to-digital converter (ADC) is used to read in the analog data from the Analog Devices IC
and then processed to determine the users current heart rate. Finally, the firmware has to
interact with the user such as using the LRA to vibrate when certain conditions are met,
such as when the user goes from good to poor posture or when the user connects their phone
to Minder over Bluetooth. The RGB LEDs are used to indicate the current charge state and
remaining battery life as well as indicate if an external device is connected over Bluetooth.

Finally, the user can interact with the firmware using the pushbutton to change modes.

read data from accel/gyro
read data from heart rate
process data to find angles and posture
if(Bluetooth == connected)
send data over Bluetooth
else
store data in flash

W N

] Oy N Wb

0O

S if (posture == bad)
10 vibrate
12 if(battery = low)

set LED to red

W

Figure 5.4: STM Firmware Psudocode

5.2 Bluetooth Firmware

Bluetooth is one of the most important parts of the Minder system allowing it to send
collected data to a users cellphone or computer. As mentioned previously, we are using a

PAN 1740 Bluetooth module containing a Dialog DA14580 chipset to facilitate Bluetooth

20

connectivity. The Generic Access Profile (GAP) sets the requirements and procedures needed
for two devices to advertise and connect using Bluetooth. As described in GAP, a device
connecting over Bluetooth is either a central device or a peripheral device, with the central
device scans for advertising packets initiates BLE connections. In our system, a phone or
computer will typically take the roll of the central device. A peripheral device on the other
hand, periodically sends advertising packets and accepts incoming connections. Minder is a
peripheral device. In addition to the GAP, there is also a Generic Attribute (GATT) profile.
GATT profiles contain services and characteristics as can be seen in the figure below. A
service and characteristic have their own 128-bit unique universally unique identifier (UUID).
Each service can contain several characteristics which act as data fields. Each characteristic
can have one or more properties such as read, write, and notify that dictate how they can

be interacted with.

[PROFILE i
[SERVICE)
[CHARACTERISTIC N
[CHARACTERISTIC |
[CHARACTERISTIC N
- ~
~ B

SERVICE
(CHARACTERISTIC J
(CHARACTERISTIC]
- _J
-)

Figure 5.5: GATT Block Diagram [4]

o1

For our system, we have modified an existing custom service created by Dialog called
the Serial Port Service (SPS). SPS emulates RS-232 communication, allowing bytes to be
sent between Minder and a central device using two characteristics, one for sending and
one for receiving. A third characteristic that controlled hardware and software defined flow
control was disabled since we are using neither. Characteristic attributes such as the UUID,
name and properties can be modified in the sps_server.c file. Settings such as configuring
GPIO and what UART port is being used can be changed in the user_periph_setup.c and
user_periph_setup.h files. One of the GPIO on the BLE module is used to indicate when
a central device is connected over Bluetooth. To accomplish this, the connection handler
located in user_sps_device./c was modified to set the GPIO high, while the disconnection

handler was modified to set the GPIO low.

52

00000 AT&RT 7 12:16 AM R 12%C >

< Back Peripheral Clone

Minder

UUID: C230FD11-C761-3C08-
B7C8-853D19009268

Connected

ADVERTISEMENT DATA Show

UUID: 0783B0O3E-8535-
B5A0-7140-A304D2495CB7/

Server TX Data

Properties: Notify
UUID: 0783B0O3E-8535-B5A0-7140-A304D2495CB8

Server RX Data

Properties: Write Without Response
UUID: 0783B0O3E-8535-B5A0-7140-A304D2495CBA

nfo (. PunchThrough Log

Figure 5.6: Minder BLE Connection as Seen from a Users Phone

93

5.3 Over the Air Update

Over the air update functionality is one of the most parts of the Minder system, allowing
end users to easily update the firmware on their devices without having to plug their device
in or use a programmer. Instead, a program on their computer will use a USB dongle to
transmit the updated code to the Minder device over Bluetooth. This is possible because
the STM microcontroller has a preloaded bootloader which is stored in the internal boot
ROM memory (system memory) [8]. The bootloader allows us to download an application
program into the internal Flash memory using a serial connection. In our case, we are using
the USART connection between the Bluetooth module and the STM microcontroller. The
bootloader can be entered into by booting the microcontroller from system memory. This is
accomplished by pulling the BOOTO pin high and setting the nBOOT1 bit high upon start
up.

To facilitate activating the STM bootloader, the reset and BOOTO pins of the STM
microcontroller are connected to general purpose 10 (GPIO) on the Bluetooth module. When
a command comes in over Bluetooth indicating that an OTA update is being initialized, the
Bluetooth module will pull the BOOTO pin high and then reset the STM module to boot
it into the bootloader. Once this is done commands and data can be sent over Bluetooth
to update the firmware of the STM microcontroller. The STM bootloader has a set of
commands that can be used when it is activated, as can be seen in the table below. By using
these commands, we can read, write and erase the flash memory allowing us to remove the

current firmware and update to the new firmware.

o4

Command("

Command code

Command description

Gets the version and the allowed commands supported

@)

Get 0x00 by the current version of the bootloader

Get Version & Read 0x01 Gets the bootloader version and the Read Protection

Protection Status(? status of the Flash memory

Get ID? 0x02 Gets the chip ID

3) Reads up to 256 bytes of memory starting from an

Read Memory et address specified by the application

Go® 0x21 Jumps to user application code located in the internal
Flash memory or in SRAM

. 3) Writes up to 256 bytes to the RAM or Flash memory

Wiite Memory 0x31 starting from an address specified by the application

Erase®(*) 0x43 Erases from one to all the Flash memory pages
Erases from one to all the Flash memory pages using

Extended Erase®® | 0x44 two byte addressing mode (available only for v3.0 usart
bootloader versions and above).

Write Protect 0x63 Enables the write protection for some sectors

Write Unprotect 0x73 Disables the write protection for all Flash memory sectors

Readout Protect 0x82 Enables the read protection

Readout Unprotect® | 0x92 Disables the read protection

1. If a denied command is received or an error occurs during the command execution, the bootloader sends
NACK byte and goes back to command checking.

2. Read protection = When the RDP (read Erotection) option is active, only this limited subset of commands is

available. All other commands are NAC

ed and have no effect on the device. Once the RDP has been

removed, the other commands become active.

3. Refer to STM32 product datasheets and to the “STM32 microcontroller system memory boot mode”
application note (AN2606) to know which memory areas are valid for these commands.

4. Erase (x043) and Extended Erase (0x44) are exclusive. A device may support either the Erase command
or the Extended Erase command but not both.

When the STM microcontroller first enters the bootloader mode, it waits for a 0x7F byte
to be received on one of its USART Rx pins. The 0x7F byte tells the STM microcontroller
what USART port it will be using as well as what baud rate the communication will be
performed at. In response, the bootloader will send back an acknowledgement (ACK) byte

of 0x79. The negative-acknowledgement (NACK) byte is 0x1F. For communication safety,

Figure 5.7: STM Bootloader Commands [5]

95

all communications from the programming source to the STM device are verified by using
a checksum at specified points in the communication. Safety is also maintained by each
command being a byte and its compliment, and by using even parity. The checksum is
calculated by XORing all of the data bytes sent in a packet. The checksum byte is then sent
directly after all the data bytes in a packet, and when the checksum byte is XORed with
all the data bytes in the packet, the end result will be 0x00. If the end result is not 0x00 it
indicates that a transmission error has occurred and the last packet or command will have

to be resent. When this happens a NACK byte is sent back to the programming source.

The first step in updating the firmware is to erase the pages of flash where the new
firmware needs to be written. For the STM32L053C8 microcontroller, the Extended Erase
Memory command is used which allows the programming source to erase pages of Flash
memory using two bytes addressing mode. Each page of flash in the STM contains 128
bytes. There are 512 pages of flash on the STM32L053C8 giving it a total of 64 Kbytes of
Flash memory. The number of pages that need to be erased can be calculated by dividing
the size of the updated firmware by 128 bytes and rounding up. The command sequence to
erase the flash can be seen in the figure below. First the command bytes 0x44 0xBB are sent
to indicate Extended Erase. After the ACK is received, the programming source sends 2
bytes indicating the number of pages to be erased. For the OTA update, pages are typically
erased in blocks of 10. Next, he programming source sends the page numbers to be erased
with each page coded on two bytes. Finally, the checksum is sent. An example Extended

Erase sequence can be seen in the figure below.

o6

Send 0x44 + 0xBB
NACK
Wait for ACK or NACK
ACK
ves Special Erase ? NO
[Send the number of pages
y to be erased N (on two
Send Special Erase cmd: bytes) MSB first
0xFFFF = Mass erase \
OxFFFE = Bank1 erase S TE iR
page numbers
OxFFFD = Bank2 erase
(0xFFFO 10 QeFFFC are resanved) (each on h;%:yles. MS8
Send the checksum of the two Send byte checksum of all
bytes sent bytes (N (2 bytes),
2x(N+1) bytes)
NACK

Wait for ACK or NACK

Figure 5.8: Flash Extended Erase Sequence [5]

o7

ByteNo | STMTX STM RX Notes

1-2 44 BB Command Bytes

3 ACK = 0x79 or NACK = Ox1F Response

4-25 0009 00 0A000B0O00OCO0 | Number of pages to be
ODOOOEOOOF00100011 | erased followed by page
00120013 numbers to be erased

26 08 Checksum

27 ACK = 0x79 or NACK = Ox1F

Figure 5.9: Example Flash Extended Erase

The next step is to write to the flash pages that were just erased using the Write Memory
command. The command sequence can be seen in the figure below. First the command bytes
0x31 0xCE are sent to indicate Write Memory. After the ACK is received a 4 byte memory
start address is sent along with a checksum. For the STM32L053C8, the flash memory has
a starting address of 0x08000000. If an ACK is received after sending the start address, a
byte is sent indicating the number of bytes to be written. For the OTA update, typically one
page (128 bytes) are written at a time. The data bytes are then sent followed by a checksum

byte. An example Write Memory sequence can be seen in the figure below.

o8

Start WM(1)

'

Send 0x31+0xCE

Send the start address (4 bytes)
& checksum

Send the number of bytes to be written
(1 byte), the data (N + 1 bytes)®® and checksum

ait for AC NACK

or NV "

-

ACK §*
End of WM(")

ail4641b

1. WM = Write Memory.
2. N+1 should always be a multiple of 4.

Figure 5.10: Flash Write Memory Sequence [5]

29

ByteNo | STMTX STM RX Notes

1-2 31CE Command Bytes

3 ACK = 0x79 or NACK = Ox1F Response

4-7 08 00 00 00 Four-byte address

8 08 Checksum

9 ACK = 0x79 or NACK = Ox1F Response

10 04 Number of bytes to write
11-15 0102030405 Bytes to be written

16 01 Checksum

17 ACK = 0x79 or NACK = Ox1F

Figure 5.11: Example Flash Write Memory

For additional safety, the updated firmware can be read back once it has been written by
using the Read Memory command. The command sequence can be seen in the figure below.
First the command bytes 0x11 OxEE are sent. Once an ACK byte is received, a 4-byte
memory start address is sent along with the checksum byte. If the address and checksum
are valid, the microcontroller will respond with an ACK byte after which the programming
source will send the number of bytes to be read and a checksum byte. If the checksum is
valid, the STM will send back an ACK byte along with all of the data bytes requested. An

example Read Memory sequence can be seen in the figure below.

60

Start RM(1)

v

Send 0x11+0xEE

Wait for ACK NACK

or NACK

Send the start address (4 bytes) with
checksum

Wait for ACK NACK

or NACK

Send the number of bytes to be read (1 byte)
and a checksum (1 byte)

Wait for ACK
or NACK

NACK

Receive data from the BL

I

End of RM(1)

al14637

1. RM = Read Memory.

Figure 5.12: Flash Read Memory Sequence [5]

61

Byte No | STMTX STM RX Notes

1-2 11 EE Command Bytes

3 ACK = 0x79 or NACK = Ox1F Response

4-7 08 00 00 00 Four-byte address

8 08 Checksum

9 ACK = 0x79 or NACK = Ox1F Response

10 04 Number of bytes to read
11 FB Checksum

12 ACK = 0x79 or NACK = Ox1F Response

13-17 0102030405 Read bytes

Figure 5.13

Once the updated firmware has been written to flash and verified, the Go command is
used to start the execution of the downloaded code. When the Go command is executed, the
bootloader will set the peripheral registers used by the bootloader to their default values,
initialize the main stack pointer in the user application and jump to the memory location
received +4 bytes. The command sequence can be seen in the figure below. First the
command bytes 0x21 0xDE are sent.
source sends a 4 byte start address and a checksum byte. For the OTA update, the start
address will be the same as the start address for writing to flash, 0x08000000. If the start

address and checksum are valid, an ACK byte is sent back and the Go command starts to

execute.

: Example Read Write Memory

62

Once the ACK byte is received the programming

Start Go)

Send 0x21 + 0xDE

v

Wait for ACK NACK

or NACK

Send the Start Address
(4 bytes + checksum)

Wait for ACK NACK

or NACK

ACK

End of Go

Figure 5.14: Flash Go Sequence [5]

5.4 BLE Bootloader

63

al14638d

In addition to the bootloader on the STM microcontroller, there is also a bootloader inside
the Cortex-MO processor on the Bluetooth Low Energy Module. While this feature will not
be used in the final version of the Minder system, it was an invaluable tool for creating a
flexible development platform to test out all of the components of the second development
board. The BLE module doesnt have any rewritable memory, it can only be used by writing
an application to One-Time Programmable(OTP) memory or directly to RAM. With these

restrictions, the dev board either needs to be reprogrammed every time the module loses

power or use the OTP memory so that the firmware is always available, but it can never
be changed on that board. To get around this, we used the STM microcontroller to serially
send the firmware to the bootloader on the BLE module which then wrote it to RAM. To
get the BLE firmware accessible to the STM microcontroller, the BLE firmware was first
converted to a single binary (.bin) file using the fromelf.exe program to convert it from the

.axf file output from Keil.

C:\Keil\ARM\ARMCC\bin\fromelf.exe --bincombined --output=myprog.bin myprog.axf

Figure 5.15: FROMELF.exe Command

A python script was then used to convert the hex values in the .bin file to a long string with
each byte prefixed by Ox and separated by commas. Unfortunately, due to size restrictions
the BLE firmware data cannot be stored as part of the operational STM firmware. Instead
another program was written to program the BLE firmware data into the serial flash so it

was then accessible to the regular STM firmware.

When the BLE module first turns on, it first checks to see if something has been written
to OTP. If not, it then checks each of the 11 serial interfaces to see if something is connected.

The steps and interfaces can be seen in the table below.

64

Pin g M::tler § MisPtler g UART § S?anIe § 12¢
P00 SCK SCK TX SCK SCL
PO_1 CS > RX ° SDA
PO _2 MISO TX SCL
PO_3) Cs) MOSI ! RX . CS ° SDA
PO_4 TX SCL
P0O_5 MOSI > RX MISO 10 SDA
P0O_6 MISO TX MOSI SCL
PO_7 ° RX H SDA

Our system connects to the BLE module using UART. Initially, we tried to access the
bootloader using UART2 on pins P0_2 and P0_3 because that interface has a baud rate
of 115200 which is the rate our normal communications operate at. Due to an unresolved
hardware issue on the BLE module, however, while we could successfully communicate with
the bootloader and send it the firmware data, the BLE module would not reset correctly
afterwards. By switching to UART3 on pins P0_4 and P0_5, the baud rate had to be adjusted
to 57600, but we were successfully able to load the firmware and reset the module, starting

the execution of the code. The process of loading the firmware using the bootloader can be

Figure 5.16: BLE Bootloader Port Sequence [6]

seen in the figure below. The UART parameters used are 8 bits, 1 stop bit, no parity.

65

BLE ST

0x02 >
& 0x01
¢ # of Bytes LSB
< # of Bytes MSB
0Ox06 or Ox15 >
< Data
CRC value >
& 0x06

Figure 5.17: BLE Bootloader Load Firmware Sequence

When the bootloader cycles to the UART connection we are using, it will first send a 0x02
byte. The programming source will then reply with a 0x01 start of header byte followed by
2 bytes indicating the length of code to be downloaded. The first byte is the least significant

66

byte (LSB) and the second byte is the most significant byte (MSB). The BLE bootloader
will then reply either ACK or NACK with the ACK byte equal to 0x06 and the NACK
byte 0x15. If an ACK is received from the BLE bootloader, the programming source will
then send all bytes of the firmware data over UART. The BLE bootloader will then reply
with a CRC value that is calculated by XORing all of the received data bytes, in a similar
manner to the STM checksum. If the CRC value is valid, the programming source sends an
ACK byte and the BLE module applies a software reset and starts to execute the uploaded

firmware code.

67

CHAPTER 6

Conclusion and Future Work

This thesis presents the development path of Minder from concept to prototyping and minia-
turization. Through the use of the two development boards, we have been able to test and
verify that the individual components of the Minder system perform as expected. Currently
the Minder system on Dev Board 2 can read from the accelerometer and heart rate sen-
sors, process the accel data to find posture, transmit data over BLE to a phone, read and
write its flash memory and notify the user using either LEDs or an attached linear actuator.
Currently, more development is needed to modify the BLE firmware to fully implement the
OTA functionality. The hardware is properly connected on the miniaturized board, but the
ability of the BLE module to identify a message indicating a OTA transmission and restart

the STM in bootloader mode has not been implemented.

Finishing the miniaturization is the next step in completing the system and bringing it
to market. Once a miniaturized board is assembled and brought up, we can begin testing
the complete system functionality which will validate our system design or identify areas of

the hardware and firmware in need of improvement.

68

REFERENCES

Heart Risk Warner. Meassure ecg, arrythmia detection.
Panasonic. Moving forward with bluetooth low energy.

Analog Devices. Application Note AN-1057 - Using an Accelerometer for Inclination
Sensing.

Adafruit. Introduction to bluetooth low energy.

STMicroelectronics. Application Note AN3155 - USART protocol used in the STM32
bootloader.

Dialog. Application Note AN-B-001 - Booting from serial interfaces v2.0.pdf.

N. H. Mahmood, N. Uyop, N. Zulkarnain, F. K. Che Harun, M. F. Kamarudin, and
A. Linoby. Led indicator for heart rate monitoring system in sport application. In 2011

IEEFE 7Tth International Colloquium on Signal Processing and its Applications, pages 64—
66, 2011.

STMicroelectronics. Application Note AN2606 - STM32 microcontroller system memory
boot mode.

69

