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ABSTRACT: In a recent series of papers, it has been
illustrated that a symmetrical quasi-classical (SQC) windowing
model applied to the Meyer−Miller (MM) classical vibronic
Hamiltonian provides an excellent description of a variety of
electronically non-adiabatic benchmark model systems for
which exact quantum results are available for comparison. In
this paper, the SQC/MM approach is used to treat energy
transfer dynamics in site-exciton models of light-harvesting
complexes, and in particular, the well-known 7-state Fenna−
Mathews−Olson (FMO) complex. Again, numerically “exact”
results are available for comparison, here via the hierarchical
equation of motion (HEOM) approach of Ishizaki and
Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM
results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM
approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the
characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional
form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that
the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for
describing the non-adiabatic dynamics of photosynthetic pigment complexes.

1. INTRODUCTION

The Meyer−Miller (MM) classical vibronic Hamiltonian1 maps
the coupled dynamics of nuclear and electronic degrees of
freedom (DOF) in non-adiabatic processes onto a set of
classical “electronic” oscillators with each oscillator representing
the occupation of the various electronic states. In a recent series
of papers, a symmetrical quasi-classical (SQC) windowing
model2 has been described and applied to the MM Hamiltonian
to “quantize” these electronic DOF both initially and finally.3 It
was found that this approach provides a very reasonable
description of non-adiabatic dynamics exhibited in a suite of
standard benchmark model problems for which exact quantum
mechanical (QM) results are available for comparison. Among
the examples were systems exhibiting strong quantum
coherence effects and systems representative of condensed-
phase non-adiabatic dynamics, including some that other simple
approaches have difficulty in describing correctly (e.g., the
asymmetric spin-boson problem3 and the inverted regime4 in
electron transfer processes5).
It was also explained in these recent papers how various

aspects of the SQC/MM model are appealing from a
theoretical perspective, e.g., it has a straightforward theoretical
justification (see section 2 below), and by providing an
equivalent treatment of the electronic and the nuclear DOF

(i.e., via classical mechanics), it is able to describe “quantum”
coherence and decoherence without resorting to any “add ons”
to the theory. The (classical) time evolution of the nuclear and
electronic DOF is continuous at all times (as it is QM’ly), and it
gives equivalent results whether implemented in adiabatic or
diabatic representations. Furthermore, the SQC method of
quantizing the electronic DOF leads to detailed balance being
described correctly, or at least approximately so.6 It was also
emphasized that though the equations of motion that result
from the MM Hamiltonian are “Ehrenfest”, in that the force on
the nuclei at any time is the coherent average of that over all
electronic states, the fact that zero point energy is included in
the electronic oscillators means that there is an ensemble of
trajectories for each initial state (rather than only one trajectory
as in the “Ehrenfest method” itself) and that each final
electronic state is determined by its own fraction of that
ensemble.7 The approach thus does not suffer from the well-
known “Ehrenfest defect” of having all final electronic states
determined by one (average) nuclear trajectory.
However, despite providing a reasonably accurate and

theoretically sound treatment of electronically non-adiabatic
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phenomena, because the SQC/MM approach is trajectory-
based and employs only “ordinary” classical mechanics, it is
quite straightforward to incorporate into the framework of a
standard classical MD simulation. One effectively has only
several additional vibrational-like DOF, one for each electronic
state, which are propagated along with the nuclear DOF via
Hamilton’s equations that result from the MM Hamiltonian.
The SQC/MM model is of course an approximation and will

thus undoubtedly perform better in some applications than in
others; as such, we have sought to test it on as many diverse
benchmark problems as possible and continue to seek ways to
improve it as necessary. Most recently, for example, it was also
pointed out that although the Meyer−Miller (MM) Hamil-
tonian is an exact nuclear-electronic Hamiltonian operator if all
DOF are treated QM’ly (see section 2.1 below), there are in
fact other formally exact representations, and although these
alternative representations are QM’ly equivalent to the MM
Hamiltonian, they are not equivalent to it in their classical
limits, i.e., when quantum operators (in these exact
Hamiltonians) are replaced with ordinary classical variables. It
was in this spirit that we sought to explore one of these
alternative classical representationsin particular, a classical
spin-mapping (SM) model7which was then “quantized” in
the same SQC fashion as the MM Hamiltonian. This work
showed that the new SQC/SM model works reasonably well,
but that it does not perform quite as well as the previous SQC/
MM model over the suite of benchmark problems that were
used to compare the two approaches. Because the SQC/SM
model is new and equally justifiable QM’ly, it remains to be
seen whether this is generally true for all problems.
In this paper, the SQC/MM approach for treating electroni-

cally non-adiabatic processes is applied, in its now standard
formulation (without any modifications), to site-exciton models
of light-harvesting complexes, starting with the 2-site/2-state
examples used by Ishizaki and Fleming to develop their
hierarchical equation of motion (HEOM) approach8 and then
moving on to the well-known 7-state site-exciton model of the
Fenna−Mathews−Olson (FMO) complex (also treated by
Ishizaki and Fleming9 with the HEOM method). Because the
HEOM approach is numerically exact (if enough terms are
maintained in the hierarchical expansion), this provides another
avenue for benchmarking the SQC/MM model. It is noted,
however, that once validated, the SQC/MM technique, because
it constitutes a fully atomistic classical trajectory simulation, is
not limited to particular forms of bath spectral density (SD)
functions and does not even require that the bath environments
coupled at each site be harmonic. It is this generality that is
exciting because many real biochemical systems of interest are
not well-described by SDs having simple analytic functional
forms, and (of course), even the assumption that each site’s
environment is harmonic is not always a good one.
This paper is organized as follows: section 2 provides a brief

overview of the classical Meyer−Miller (MM) vibronic
Hamiltonian and its quantization within the symmetrical
quasi-classical (SQC) framework (a short list of steps for the
SQC procedure is given in Appendix A). Results of applying
the SQC/MM approach are presented in section 3, beginning
with a description of the site-exciton models to be considered;
results for the case of 2-sites/pigments are given in section 3.2
compared against Ishizaki and Fleming’s benchmark HEOM
calculations for 8 different parameter regimes, and section 3.3
follows with a treatment of the 7-site FMO problem (again

with HEOM results shown for comparison). Our conclusions
are summarized in section 4.

2. THEORY
The SQC/MM methodology consists of two basic ingredients:
(i) the Meyer−Miller (MM) classical vibronic Hamiltonian,
which treats nuclear and electronic DOF in a consistent (albeit
classical) unified framework, and (ii) a symmetrical quasi-
classical (SQC) windowing procedure that is used to “quantize”
the electronic DOF embodied as classical oscillators in the MM
Hamiltonian (which is an approximate version of Bohr−
Sommerfeld quantization of classical action variables). Inputs to
the SQC/MM model are the electronic potential energy
surfaces (PES) for the non-adiabatic system to be simulated,
which may come, e.g., from rigorous “quantum chemistry”, less-
rigorous density functional theory (DFT), or from a semi-
empirical force field as generally used in biomolecular
simulation. Notably, these PES “inputs” may represent adiabatic
or diabatic electronic states, as there are both adiabatic and
diabatic versions of the MM Hamiltonian that are formally
equivalent3 (the latter being applied in this paper). The
following two subsections briefly discuss these two ingredients.

2.1. Summary of the Meyer−Miller Hamiltonian. The
physical picture of the electronic DOF provided by the classical
MM Hamiltonian is that each electronic state’s occupation is
represented by a classical harmonic oscillator, the first excited
state and the ground state of each oscillator representing,
respectively, whether the corresponding electronic state is
occupied or unoccupied. In Cartesian oscillator variables, the
MM classical vibronic Hamiltonian is
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is the nuclear kinetic energy, {xk, pk} are the

coordinates and momenta of the “electronic” oscillators,
{Hkk(R)} are the diabatic (in this case) electronic PES
(parametrically dependent on the nuclear coordinates R),
Hk,k′≠k(R) are the non-adiabatic couplings (also potentially
depending on R), and γ is a fixed zero-point energy (ZPE)
parameter chosen between 0 and 1

2
. An equivalent expression in

terms of classical harmonic oscillator action-angle variables is
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and the Cartesian and action-angle electronic variables are
related by the canonical transformation

γ= − +p n q2( ) sin( )k k k (3a)

γ= +x n q2( ) cos( )k k k (3b)

or inversely

γ= + −n p x
1
2

1
2k k k

2 2
(4a)
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The classical action variables {ni} in conjunction with the ZPE
γ-parameter determine the amount of harmonic excitation and
are, of course, the classical analogues of the vibrational quantum
numbers; initially and finally, they are what are “quantized”
about their QM integer values (of 0 or 1) within the SQC
framework (Bohr−Sommerfeld quantization). The electronic
configuration may thus be viewed as a single harmonic
excitation that moves among the different oscillators (each
representing an electronic state) according to Hamiltonian’s
equations as applied to the Hamiltonian given by either eqs 1
or 2. Consistent with this picture, the classical dynamics
preserves the sum of the actions/occupations, ∑k n ̇k = 0, which
is conservation of total probability.
There are (at least) two distinct ways to arrive at the Meyer−

Miller classical Hamiltonian given in eq 1: the more rigorous
approach10 is to begin with the exact QM Hamiltonian operator
in second-quantized form,
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and to represent the creation/annihilation operators in terms of
the raising/lowering operators of harmonic oscillators (i.e.,
bosons, hence “Schwinger bosonization”)
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(in the last step, taking advantage of the commutation relation
[xk̂,p ̂k′] = iδk,k′). Eq 1 is then simply the classical limit one
obtains by replacing the QM operators with ordinary classical
variables (i.e., P̂,R̂,p̂,x ̂ → R,P,p,x) and introducing the variable
γ-parameter.
The original, more intuitive/heuristic approach1 is to define

the classical electronic Hamiltonian as the expectation value of
the electronic energy expanded in a basis of the electronic states
in question (|ψel⟩ = ∑k ck|k⟩) and to express the expansion
coefficients {ck}, the (time-dependent) complex electronic
amplitudes, in terms of real amplitudes and phases (i.e., time-
dependent actions and angles) with the relationship

≡ −c n ek k
iqk. This gives
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A “Langer (like) modification” to the coupling terms,
→ +n nk k

1
2
and adding the classical nuclear kinetic energy

then gives eq 2 (whereby the canonical transformation in eqs 3
and 4 gives eq 1, so long as γ is taken to be 1

2
(in eqs 1 and 2),

as it was in the original version.1

The justification for this heuristic development (and the
insight gained from it) is that, with the definition of classical
actions and angles {nk, qk} as the amplitudes and phases of the
complex QM electronic amplitudes {ck}, for a given nuclear
trajectory, R(t), the classical trajectories generated in terms of
{nk, qk} (using Hamilton’s equations with eq 8) are exactly
equivalent to the propagation of the {ck} with the electronic
Schrödinger equation (note ℏ = 1 throughout):
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(This may be verified by substituting = −c n ek k
iqk into eq 9

and comparing to Hamilton’s equations for the actions and

angles ̇ = − ∂
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H
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el ). In other words, the classical

Meyer−Miller Hamiltonian may be viewed as a rewriting of the
electronic Schrödinger equation in terms of classical action-
angle variables (or Cartesian components), which is why what
is conventionally viewed as “quantum coherence” is captured in
the purely classical motion of these electronic oscillators. See,
for example, the problems treated in ref 3 (as well as the results
in this paper).
For the nuclear DOF, application of Hamilton’s equations,
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i.e., as the electronic occupation-weighted average of the forces
given from the different electronic PES (which are the inputs to
the model). This is in fact the “Ehrenfest force,” but for
(relatively subtle) reasons explained in detail in ref 7, the SQC/
MM approach (being based on the MM Hamiltonian)
overcomes the well-known and inherent deficiencies of the
Ehrenfest approach. The 7-state FMO problem treated in this
paper provides an illustrative example.

2.2. Summary of Symmetrical Quasi-Classical Quan-
tization. The symmetrical quasi-classical (SQC) quantization
model is that the classical actions (which are the classical
analogues of the quantum numbers) corresponding to the DOF
of interest are “quantized” symmetrically (i.e., initially and
finally) by defining “window functions”essentially prelimit
delta functions about the relevant integer values of the action
variablesand applying one at the beginning of a classical
trajectory simulation as well as at the end. This is an
approximate implementation of “Bohr−Sommerfeld quantiza-
tion” as incorporated in Miller’s “classical S-matrix” theory.11

The window functions are narrower than in the original quasi-
classical approach,12 and by applying them symmetrically,
microscopic reversibility is enforced (something not true of the
original quasi-classical trajectory procedure).
The SQC concept was initially demonstrated for the initial

and final vibrational states in reactive scattering calculations for
H + H2, and it was seen to provide an easy improvement over
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results obtained by the traditional quasi-classical trajectory
(QCT) procedure.2 In modeling the much more interesting
case of electronically non-adiabatic processes, the SQC
quantization procedure is applied to the electronic oscillator
DOF of the MM Hamiltonian whose excitations (as described
above) represent the occupations of the electronic states. This
is done by applying to each classical action n in the MM model
a histogram window function

γ
γ= − | − | ≡

<
≥

⎧⎨⎩w n h n N h x
x
x

( )
1

2
( ), where ( )

0 0
1 0N

(11)

which has width 2γ and is centered at the quantum values of the
classical actions N ∈ {1,0} (occupied, unoccupied). Eq 11
windows a single electronic DOF (constraining the associated
action n to lie within [N − γ,N + γ]). For F = 2 electronic
states, the quantum values of the actions corresponding to state
|1⟩ being occupied are (N1,N2) = (1, 0), and likewise, (N1,N2) =
(0, 1) correspond to state |2⟩ being occupied. Thus, the full
window functions representing states |1⟩ and |2⟩ are

= ·| ⟩W n n w n w n( , ) ( ) ( )1 1 2 1 1 0 2 (12a)

= ·| ⟩W n n w n w n( , ) ( ) ( )2 1 2 0 1 1 2 (12b)

Generalizing, for an arbitrary F number of electronic states/
DOF, the action window function representing state |k⟩ is

∏≡ = ·| ⟩
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k k
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where each wNk
(nk) is the single DOF histogram window

function in eq 11.
Within this SQC windowing framework, calculating the

probability of an electronically non-adiabatic transition between
initial state |i⟩ and final state |f⟩ amounts to Monte Carlo
evaluation of the following phase space average for all
energetically feasible final states |k⟩

∫
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(again ℏ = 1), where ρ(P,R) is the initial distribution function
for the G nuclear DOF, andW|i⟩(n) (eq 13) is used as the initial
distribution function for the F electronic DOF. One can sample
initial conditions using these distribution functions, and then
for the electronic DOF, typically converts the initial actions n0
to Cartesian oscillator variables via eq 3 using angles {qk}
chosen randomly between 0 and 2π. Trajectories for the full
system of nuclear and electronic DOF may then be run using
the Cartesian MM Hamiltonian of eq 1 or, as done in this paper
and others,3,5−7 the following symmetrized form may be
employed
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which is obtained by rewriting13 the diagonal terms relative to

the average electronic PES, ̅ ≡ ∑H HR R( ) ( )
F k

F1
kk .

Window functions corresponding to all possible final states
{W|k⟩(n)} are applied to the time-evolved actions n(t)
calculated using eq 4a at each desired final time t for the
ensemble of trajectories. Averaged over the ensemble, this gives
a set of raw transition probabilities {P̃|k⟩←|i⟩(t)} for all possible
final states |k⟩ calculated from a given initial state |i⟩. The
desired |f⟩ ← |i⟩ transition probabilities are obtained by
renormalizing these results

∑= ̃ ̃| ⟩←| ⟩ | ⟩←| ⟩
=

| ⟩←| ⟩P t P t P t( ) ( ) ( )f i f i
k

F
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A compact summary of the SQC quantization procedure is
given in Appendix A.
The remaining point to be considered is the parameter γ,

which is the only user-defined parameter in the SQC/MM
model. In section 2.1, the γ-parameter set the fractional zero-
point energy (ZPE) in the MM Hamiltonians of eqs 1 and 2
and in the action-angle/Cartesian transformation equations of
eqs 3 and 4 (although γ does not appear in the symmetrized
Hamiltonian of eq 15, it still affects the initial conditions
through eq 3). Here in section 2.2, it is seen that the same γ-
parameter defines the width of the symmetrical windowing
functions via eq 11. Thus, through the γ-parameter, the
strictness of the imposed symmetrical quantization condition is
exactly balanced with the specification of fractional ZPE. This
balancing has been found to be an important practical
component of the SQC/MM model.
Finally, although we maintain that γ should be viewed as an

adjustable parameter, in the SQC/MM treatment of all
benchmarks to-date, the same value of γ has been found
empirically to be optimal (or at least very nearly so). This
selected value of γ = (√3 − 1)/2 ≈ 0.366 also has some
theoretical justification (as described in ref 3), and it is the
value of γ used for every calculation presented in this paper as
well.

3. RESULTS

The primary aim of this paper is to apply the SQC/MM
approach as just described to the commonly used “site-exciton”
(SE) framework for modeling (electronically non-adiabatic)
site-to-site energy transfer dynamics in light-harvesting/photo-
synthetic pigment complexes. These models were used by
Ishizaki and Fleming to develop their hierarchical equation of
motion (HEOM) approach8 and also to model the well-known
Fenna−Mathews−Olson (FMO) complex.9 Section 3.1
describes the SE framework in the simplest terms possible as
it relates to application of the SQC/MM approach. Section 3.2
presents the SQC/MM treatment of the site-exciton model for
2-states over a wide variety of parameter regimes (8 total).
Section 3.3 treats the 7-state FMO problem. Ishizaki and
Fleming’s HEOM results are presented for comparison for all
examples.

3.1. Site-Exciton Models. Within the general site-exciton
(SE) framework,8 each pigment site is modeled as a pair of site-
localized electronic states (ground and excited) non-adiabati-
cally coupled to each other and also coupled to a harmonic bath
particular to that site (i.e., not coupled to the other sites).
Considering just the subspace of single site excitations, the kth
electronic state for the entire pigment complex (of F electronic
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states) then represents a configuration with a single excitation
at the kth pigment site (thereby, the different electronic states
of the entire pigment complex describe energy transfer from
site to site). For F = 2 sites/states, the diabatic electronic
Hamiltonian’s matrix elements corresponding to this model are
therefore

≡
ϵ
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where {ϵk} are the site energies, {Jkk′} the non-adiabatic
couplings (assumed to be constants), and
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Thus, for F = 2 sites, the problem is not very much unlike the
well-known “spin-boson” (SB) model treated with the SQC/
MM approach in ref 3, though here in this SE framework each
cite is coupled to its own bath, and so there are a pair of bath
terms appearing in each diagonal element of the 2-site
electronic Hamiltonian matrix (only one of which is excited
in each matrix element). As with the SB model, quantum
coherence effects appear in the SE framework when there is a
sufficiently low temperature relative to the non-adiabatic
coupling and energetic separation between the states, as
effectively set through the thermal distribution given to the
initial bath oscillator coordinates {Qξ} and momenta {Pξ}
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.

In Ishizaki and Fleming’s model, the bath frequencies {ωξ}
are assumed to be distributed according to a (standard) Debye
spectral density (SD),

ω λ
ωω

ω ω
=

+
J( ) 2 c

c
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having characteristic frequency ωc (the frequency of the SD’s
peak), and also parametrized by the bath’s “reorganization
energy” λ.14 The coupling constants D ≡ {Dξ} in eq 17 are set
by the definition of the reorganization energy

∑λ ω≡
ξ

ξ ξD
1
2

2 2

(21)

and its relationship to J(ω) implicit in eq 20

∫λ
π

ω
ω

ω=
∞ J1 ( )

d
0 (22)

Discretizing eq 22 and equating the terms with eq 21 gives the
bath coupling constants as

π
ω ω ω= Δξ ξ ξD J

2
( ) / 3

(23)

See ref 8 for further details.
For an arbitrary F number of pigment sites, eq 17 generalizes

in the obvious way. Note that only one site-specific harmonic
bath in each diagonal element is excited (i.e., displaced by D).
For example, in the F = 7 site/state FMO problem treated
below, the electronic Hamiltonian matrix’s kth diagonal
element is

∑= ϵ + − +
′≠

=
′H h hQ P Q D P Q( ) ( , ) ( , )k k k bath

k

k k

F

bath
k

,
( )

7
( )

(24)

which corresponds to a single excitation on the kth pigment
site.
All the calculations presented in this paper employed G =

200 bath modes per site (see eq 18). Thus, for 2 sites, the
calculations employed 2 × G = 400 nuclear DOF plus F = 2
electronic DOF, and for the 7-site FMO model, 7 × G = 1400
nuclear DOF plus F = 7 electronic DOF.

3.2. Results for the 2-Site Model. For the 2-state
problem, 8 parameter regimes were considered, as done in
ref 8, consisting of 2 values of the bath characteristic frequency
ωc, and for each ωc, 4 values of the reorganization energy λ, all
at a temperature of 300 K and with the non-adiabatic coupling
equaling the difference in site energies (J12 = ϵ1 − ϵ2 = 100
cm−1).
Figure 1 plots the decay of the initial excitation of electronic

state 1 as a function of time for ωc = 53.08 cm−1

(corresponding to a bath time constant of τ = 1/ωc = 100
femptoseconds) for the 4 progressively increasing values of λ (=
2, 20, 100, and 500 cm−1) as indicated in the figure. It is seen
that the agreement between the SQC/MM calculations and the
exact HEOM results is excellent over all 4 regimes. For small λ,
the results exhibit significant long-lived oscillations in the
transition probabilities, which represent “quantum” coherence
between the two electronic states, though it is noted that this
electronic coherence is well-replicated here with the purely
classical SQC/MM approach (as it was with the spin-boson
problems in ref 3). The electronic coherence exhibited in
Figure 1 becomes less pronounced as λ is increased because the
stronger bath coupling damps the recrossing dynamics, and at λ
= 500 cm−1, the decay is fully monotonic. In each case, the
SQC/MM calculations capture the periodicity of the electronic
coherence structure as well as the degree to which it is damped
with increasing λ. Ironically, it is only in the regime where the
electronic coherence is fully damped (λ = 500) where there is
seen to be any real deviation between the SQC/MM and
HEOM results.
Figure 2 presents analogous results for the harmonic baths

having a much lower characteristic frequency of ωc = 10.61
cm−1 (corresponding to a bath time constant of τ = 1/ωc = 500
femptoseconds) and for the same four progressively increasing
values of λ (as in Figure 1). Again, it is seen that the SQC/MM
approach is in excellent agreement with Ishizaki and Fleming’s
exact HEOM results. Relative to Figure 1, for some examples,
the duration of the electronic coherence structure is extended
because the characteristic frequency of the bath is further from
resonance with the frequency of the coherence structure (as
determined by the site-energies ϵ1 and ϵ2 in conjunction with
the non-adiabatic coupling J12). Nevertheless, the results are
quite similar, exhibiting the same damping of the electronic
coherence structure with increasing λ, and once again, it is seen
that the only SQC/MM calculation displaying any appreciable
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deviation from the HEOM results corresponds to the highest
value of λ = 500 though, as in Figure 1, the deviation is quite
minor.
3.3. Results for the 7-State FMO Pigment Complex.

Although newer model Hamiltonians for the Fenna−
Mathews−Olson (FMO) complex have been advocated in
the literature (for instance, involving an additional electronic
state, more realistic SD functions, etc.), the focus here is on the
well-known 7-state model used by Ishizaki and Fleming:9 with
exact HEOM results available for comparison, it serves as a

reliable benchmark with which to begin to evaluate the SQC/
MM methodology’s potential for treating higher numbers of
non-adiabatically coupled electronic states. (We note that more
recent and more refined HEOM calculations for this model
have been carried out by Wilkins and Dattani in ref 15, but for
this 7-site model, their results are essentially identical to those
of ref 9.)
As described in section 3.1, this 7-state FMO model is

analogous to the 2-state problem treated in section 3.2: in
particular, each state corresponds to a single excitation located
on one of the 7 pigment sites, and the model assumes no
coupling between harmonic baths associated with different sites
with each bath being described by a Debye SD as given in eq
20. As indicated in section 3.1, the form of the Hamiltonian is
the 7-state generalization of eq 17 (i.e., with diagonal elements
as shown in eq 24). As given in ref 9, the site energies {ϵk} and
non-adiabatic couplings {Jk,k′} are (in cm−1)

ϵ ⋯

ϵ ⋮

⋮ ⋱ ⋮
⋯ ⋯ ϵ

≡

− − − −
−

− − −
− − − − −

− − −
− − −
− − −

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

J J

J

J

12410 87.7 5.5 5.9 6.7 13.7 9.9
87.7 12530 30.8 8.2 0.7 11.8 4.3
5.5 30.8 12210 53.5 2.2 9.6 6.0
5.9 8.2 53.5 12320 70.7 17.0 63.3

6.7 0.7 2.2 70.7 12480 81.1 1.3
13.7 11.8 9.6 17.0 81.1 12630 39.7
9.9 4.3 6.0 63.3 1.3 39.7 12440

1 12 17

21 2

71 7

(25)

Because of the larger number of electronic states and non-
adiabatic couplings involved in the dynamics (at least
potentially), one would generally think that this 7-state
problem poses a significantly more challenging benchmark for
any simple classical technique to treat properly. It does
represent the first reported application by the authors here of
the SQC/MM approach to a system having more than 2
electronic states, though it is noted that Tao and co-workers
have successfully applied16 the SQC/MM methodology to
models of singlet fission, which involve more than 2 electronic
states. However, it turns out that in moving from 2 to 7
electronic states, no modification to the original SQC/MM
methodology set forth in ref 3 (and described above in section
2) was required to obtain reasonable results; even the
previously used value of γ = 0.366 was found to be optimal
(or nearly so).
Two 7-state SQC/MM calculations are presented here in

Figures 3 and 4 corresponding to two different initial electronic
configurations. Both exhibit significant, but distinctly different,
electronic coherence structures between the different states,
which is enhanced by the low temperature of 77 K. Other
parameters are the same between the two calculations, as
indicated in the figure captions, including the bath characteristic
frequency of ωc = 106.14 cm−1 (corresponding to τ = 1/ωc =
50 femptoseconds), which represents a shorter time scale than
that shown in the 2-state examples.
Figure 3 plots the populations of the 7 electronic states as a

function of time after the modeled pigment complex is
initialized in electronic state 1. Results are shown for both

Figure 1. SQC/MM versus HEOM results for 2-state site-exciton
model (T = 300 K, ϵ1 − ϵ2 = J12 = 100 cm−1, ωc = 53.08 cm−1; see
Figure 4 of ref 8).

Figure 2. SQC/MM versus HEOM results for 2-state site-exciton
model (with parameters the same as Figure 1 except ωc = 10.61 cm−1;
see Figure 6 of ref 8).
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the SQC/MM approach and the HEOM technique. The results
exhibit significant long-lived coherence structure between
electronic states resulting in significant population transfer
from state 1 to state 3, and to a lesser degree to state 4, over the
course of the 1 picosecond duration plotted in the figure.
Overall, the SQC/MM calculation shows remarkable agree-
ment with the exact HEOM results, capturing (probably most
importantly) the transfer of the initial electronic excitation from
state 1 to states 2−4 (with state 2 serving as a bridge between
state 1 and states 3 and 4). There is one significant discrepancy
between the two calculations, and that is the long time decay of
the population of initial state 1, which is seen to fall a bit too
fast in the SQC result relative to the HEOM calculation.
Accompanying the greater decay is a slight population bleed
into several other states, principally states 3−5 and 7; the effect
is small but clearly present (and note that renormalization in
the SQC approach forces the sum of the populations to be
unity at all times). Nevertheless, the transfer of electronic
excitation to states 2−4 is still quite well-described when
compared to the exact HEOM result.
Figure 4 shows the analogous SQC/MM calculation when

the system is initialized with the electronic excitation localized
on pigment 6. In this case, the time-evolution of the electronic

coherence structure and the overall multistate dynamics appear
far more complex than what is seen in Figure 3: here, 4 of the 7
states exhibit significant coherence structure in the first 200
femptoseconds, and all 7 states have received a not insignificant
portion of the initial electronic excitation by the end of the 1
picosecond simulation. Nevertheless, despite the intricacy of
the dynamics in this case, the SQC calculation does a
remarkable job of replicating the HEOM result, again providing
an excellent description of the transfer of electronic excitation
to sites 3 and 4 and not exhibiting any obvious substantial
deviation from the exact result.
In summary, Figures 3 and 4 provide a good example of the

SQC/MM approach applied to a vibronic system having many
coupled electronic states that exhibit complex multistate non-
adiabatic dynamics, and the results demonstrate (as has now
been demonstrated in numerous examples for the case of 2
electronic states) that a very reasonable description of
condensed-phase “quantum” coherence effects may be achieved
with the SQC/MM technique despite its simplicity and reliance
solely on “ordinary” classical mechanics. These are encouraging
results, but it should still be borne in mind that for higher
numbers of electronic states, in principle, a larger fraction of
trajectories will be excluded by the SQC windowing procedure.

Figure 3. SQC/MM and HEOM results for 7-state FMO model (T = 77 K, λ = 35 cm−1, ωc = 106.14 cm−1, {ϵk} and {Jk,k′} given in eq 25; see Figure
2a of ref 9).

Figure 4. SQC/MM and HEOM results for 7-state FMO model (same as Figure 3 except initialized with site 6 electronically excited; see Figure 2b
of ref 9).
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For these 7-state calculations, only approximately 20% of
trajectories are used at a particular time to calculate the
electronic state populations (though different trajectories may
be used at different times), whereas for the 2-state calculations
presented in section 3.2, approximately 60% of trajectories fall
within an electronic state window function at any particular
time. These are reasonable fractions (particularly as the SQC/
MM approach is being extended here to higher numbers of
electronic states without any modification), but it is too early to
make any generalizations in this regard.
Finally, it is also interesting to see the result one obtains by

applying the conventional Ehrenfest approach to the 7-state
FMO model. Figure 5 shows the Ehrenfest result when the
system is initialized in state 1 (as in Figure 3) side-by-side with
the exact HEOM result (from Figure 3). From the comparison,
one may conclude that the Ehrenfest approach provides a
reasonable description of the electronic coherence structure
between states 1 and 2 for short times, but that it fails to
capture the transfer of electronic excitation to site 3 over the
course of the simulation. More precisely, instead of
preferentially routing electronic excitation to site 3, and to a
lesser extent to site 4, the Ehrenfest approach appears to direct
excitation to sites 3−7 more or less equivalently, thus
qualitatively missing an essential feature of the FMO complex’s
excitation transfer dynamics; one that is well-described in the
SQC/MM calculations.

4. SUMMARY AND CONCLUSIONS

The SQC/MM approach presents a simple methodology for
the treatment of electronically non-adiabatic processes within
the context of classical MD simulation, treating electronic and
nuclear degrees of freedom equivalently (via classical
mechanics) and thus dynamically consistently. The goal of
this work was to apply the SQC/MM approach to the site-
exciton framework that is commonly used to model light-
harvesting complexes. The results reported here demonstrate
for the case of 2 pigments/sites over a wide parameter regime
that the SQC/MM approach provides a robust and accurate
description of these models. More challenging, of course, is the
treatment of higher numbers of pigment sites, and the
modeling of multiple site-to-site excitation transfer. Here, it is
demonstrated in the context of the 7-state site-exciton model
for the FMO complex that the SQC/MM approach is able to
handle the case of multisite excitation transfer, and although the

results are not absolutely perfect, they do demonstrate the
essential features shown in the exact HEOM results, and for the
most part with good quantitative accuracy. This is an
encouraging finding because up to this point the SQC/MM
approach has been benchmarked only against exact results for
2-state models (though others have applied it to higher
numbers of states), and no adjustments to the model were
needed (even the same value of γ was used) to generate the 7-
state results reported here. What is most encouraging about
these results, however, is that they suggest the possibility of
performing full atomistic trajectory simulations for these site-
exciton models, which may incorporate more realistic spectral
densities (whether derived experimentally or developed
computationally), the use of nonharmonic potential functions,
and other modifications to make these multistate site-exciton
models more closely resemble true light-harvesting pigment
complexes.
Finally, we comment on the number of classical trajectories

used to obtain the results presented in the figures above. For
the 2-state examples, the results in Figures 1 and 2 were
generated from 1 × 105 trajectories; for the 7-state FMO
problem, 2.5 × 105 trajectories were used to generate Figures 3
and 4. Although these are not trivial numbers, it should be
understood that no attempt was made to minimize the number
of trajectories used in these calculations, the primary purpose of
this paper being to definitively evaluate the accuracy of the
SQC/MM approach for the treatment of the popular site-
exciton model. That being said, we have found it generally to be
the case (with the SQC/MM approach) that “rough” results
may be generated with just a few thousand trajectories. Here,
for example, treating the 7-state FMO problem, 2000−5000
trajectories were enough to gauge the general characteristics of
the results, which is encouraging when one considers that these
7-state calculations involved a phase-space average over 1400
nuclear DOF. Naturally, one expects that clever importance
sampling would improve the statistics significantly, though
again, that is beyond the scope of the work done here.

APPENDIX A. STEPS TO APPLY THE MM/SQC
APPROACH

To calculate a non-adiabatic transition probability:
I. Evaluate by Monte Carlo (for all energetically feasible final

states |k⟩)

Figure 5. Same as Figure 3 but using the conventional Ehrenfest method.
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DOF, (b) W|i⟩(n0) for the F initial actions n0 (q0 chosen
randomly [0,2π]) [eq 13]

(ii) Convert {nk(0), qk(0)} to {pk(0), xk(0)} [eq 3]
(iii) Propagate to time t using the full MM Hamiltonian [eq

15]
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