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Abstract

Radiologists can discriminate between normal and abnormal
breast tissue at a glance, suggesting that radiologists might be
using some “global signal” of abnormality. Our study inves-
tigated whether texture descriptions can be used to character-
ize the global signal of abnormality and whether radiologists
use this information during interpretation. Synthetic images
were generated using a texture synthesis algorithm trained on
texture descriptions extracted from sections of mammograms.
Radiologists completed a task that required rating the abnor-
mality of briefly presented tissue sections. When the abnormal
tissue had no visible lesion, radiologists seemed to use texture
descriptions; performance was similar across real and synthe-
sized tissue sections. However, when the abnormal tissue had a
visible lesion, radiologists seemed to rely on additional mech-
anisms beyond the texture descriptions; performance increased
for the real tissue sections. These findings suggest that radiol-
ogists can use texture descriptions as global signals of abnor-
mality in interpretation of breast tissue.
Keywords: texture analysis; medical image perception; visual
search; ROC curves, log likelihood ratios

Introduction
Human observers are able to obtain the “gist” of visual
scenes within milliseconds (Friedman, 1979; Potter, 1976;
Potter & Levy, 1969; Schyns & Oliva, 1994). Humans
can rapidly categorize real world scenes as urban or natu-
ral (Greene & Oliva, 2009), or as indoor or outdoor (Fei-
Fei, Iyer, Koch, & Perona, 2007). In a sense, humans are
experts in categorizing natural scenes. Similarly, radiolo-
gists are experts at categorizing medical images as normal
or abnormal (Evans, Georgian-Smith, Tambouret, Birdwell,
& Wolfe, 2013; Evans, Haygood, Cooper, Culpan, & Wolfe,
2016; Kundel & Nodine, 1975). This ability allows them to
extract necessary information to make quick and accurate di-
agnostic judgments.

Several models have been proposed to explain the search
performance of radiologists, including “two-stage detection
model” (Swensson, 1980), “two-pathway model” (Drew,

Evans, Võ, Jacobson, & Wolfe, 2013; Wolfe, Võ, Evans,
& Greene, 2011), and “global-focal search model” (Kundel,
Nodine, Conant, & Weinstein, 2007; Kundel, Nodine, Thick-
man, & Toto, 1987; Nodine, Kundel, Lauver, & Toto, 1996).
In general, these models propose two separate processes
through which radiologists make diagnostic judgments based
on medical images. First, radiologists rapidly form a global
representation of images. They mark potential areas of ab-
normalities by comparing the present image to their template
of normal and abnormal structures. Then, through further in-
spection of the previously flagged locations, they decide to
categorize images as normal or abnormal.

Single glance studies suggest that expert radiologists can
quickly extract global information from medical images, such
as chest radiographs (Carmody, Nodine, & Kundel, 1980;
Kundel & Nodine, 1975), computed tomography (CT) scans
(Oestmann et al., 1988), and mammograms (Mugglestone,
Gale, Cowley, & Wilson, 1995). There is evidence that radiol-
ogists can discriminate between normal and abnormal breast
tissue after a very short period of exposure (250 ms) although
they are unable to localize the site of abnormality (Evans et
al., 2013). Recently, in a series of experiments, Evans et al.
(2016) demonstrated a similar discrimination performance in
cases where the briefly presented abnormal tissue (500 ms)
had no visible lesion in it. To interpret this ability, authors
suggested that radiologists might be using some signal of ab-
normality that is based on a global image statistic. Radiolo-
gists might be picking up this signal to make rapid and accu-
rate diagnostic judgments. By interpreting thousands of im-
ages over several years, it is possible that radiologists become
sensitive to such signal if it is present in the abnormal tissue.

Our study sought to characterize these global signals of ab-
normality as texture descriptions (i.e., a set of stationary spa-
tial statistics) and to determine whether radiologists rely on
such texture descriptions when discriminating between nor-
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mal and abnormal breast tissue. To test this hypothesis, we
generated synthetic images representing sections of breast tis-
sue using a texture synthesis algorithm (Portilla & Simon-
celli, 2000). The algorithm was trained on texture descrip-
tions extracted from sections of mammograms confirmed via
biopsy to be normal or abnormal. Synthetic images gener-
ated from a common model are physically different but have
the same overall statistics (i.e., texture descriptions), so they
should appear to the viewer as different sections of tissue
from the same breast. Because the texture descriptions of the
real and synthesized sections were identical, any global sta-
tistical signals of abnormality in the real sections were also
present in the synthesized sections. We investigated perfor-
mance of radiologists in a diagnostic task that required rating
the abnormality of briefly presented tissue sections. Our re-
sults showed that radiologists seemed to rely on texture de-
scriptions when the abnormal tissue did not have a visible
lesion. However, radiologists seemed to use additional mech-
anisms beyond the texture description when the abnormal tis-
sue had a visible lesion. Overall, our findings suggest that
radiologists can use texture descriptions as global signals of
abnormality in interpretation of breast tissue.

Method
Participants
A total of twenty-three radiologists participated in the study.
Nineteen radiologists participated in the main experiment and
eight (including four of the radiologists from the main experi-
ment) participated in the control experiment. All participants
had prior experience and training in reading mammograms.

Stimuli and Apparatus
Stimuli were images representing sections of breast tissue
(256× 256 pixels) which have been confirmed via biopsy
to be normal or abnormal. Normal tissue sections were ex-
tracted from non-cancerous breasts. Abnormal tissue sections
were extracted from cancerous breasts, and contained either
a visible lesion (lesion-present) or no lesion (lesion-absent).
In particular, abnormal “lesion-absent” sections were used to
characterize the signal of abnormality in absence of a visible
lesion in the tissue. Clinical breast density ratings confirmed
that the normal and abnormal tissue sections were similar in
breast density (all r < |−0.08|, all p > 0.5).

Synthetic textures were generated using a texture model
(Portilla & Simoncelli, 2000) trained on the real tissue sec-
tions. Figure 1 shows examples of the real and synthesized
tissue sections.

Stimuli were generated and presented using the Psy-
chophysics Toolbox extensions (Brainard, 1997) in MAT-
LAB (Mathworks) on a 24-in LCD monitor with a resolution
of 1920×1080 pixels.

Procedure
Radiologists completed a task that required rating the abnor-
mality of briefly presented tissue sections. At the start of each

Figure 1: Example breast tissue sections, with real tissue on
the left and synthesized tissue on the right.

trial, a fixation cross was presented at the center of the screen.
After the observer initiated the trial by pressing the start but-
ton, the image (i.e., a tissue section) appeared at the center
of the screen for 500 ms, followed by a white noise mask for
500 ms. Then, a response screen with a slider was presented.
The observer was asked to give a rating between 0 and 100
by sliding a bar to indicate the likelihood of recalling the pa-
tient. Once a decision has been made, the observer pressed a
button to log their response. Figure 2 shows the timeline of a
representative trial.

The type of image (real or synthesized) and the type of
tissue (normal or abnormal) were manipulated as within sub-
ject variables while the type of abnormality (lesion-present or
lesion-absent) was manipulated as a between subject variable.

There was a total of 200 trials, divided equally between
the real and synthesized conditions. For each condition, half
of the trials included normal tissue sections while the other
half included abnormal tissue sections, either lesion-present
or lesion-absent. Trials were blocked by the type of image
(real or synthesized) and the presentation order was random-
ized across observers. In each block, the presentation order
of tissue type (normal or abnormal) was also randomized for
each observer.

Breast density estimation In a control experiment, radiol-
ogists were asked to rate the density of briefly presented tis-
sue sections. The procedure was similar to the task in the
main experiment, except for the response screen. The re-
sponse screen included four gray boxes numbered from 1 to
4, indicating BI-RADS breast density scale. Larger numbers
indicated higher breast density. The observer was instructed
to report the density of the tissue by navigating the boxes with
button presses. The chosen box turned to red to indicate cur-
rent choice of the observer. Once a decision has been made,
the observer pressed a button to log their response.

Results
Performance was examined by constructing ROC curves. Be-
cause raw ratings tended to show bimodal distributions for
normal and abnormal cases (see Figure 3), an optimal per-
formance could not be determined using a single criterion.
Therefore, in evaluating ROC curves, we used log likelihood
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Figure 2: Timeline of a representative trial in the abnormality rating task.

ratios (LLRs) as the decision variable. LLRs were calculated
using the formula,

LLR = ln
[

p(x|abnormal)
p(x|normal)

]
, (1)

where x represents the raw ratings.
In order to prevent the possibility of over-fitting, we

smoothed the data by fitting a Gaussian kernel with a band-
width of 5. Figure 4 shows the resulting LLRs for the raw
ratings shown in Figure 3. When the raw ratings were con-
verted into LLRs, curves crossed at a single point (at LLR =
0). As a result, the optimal discrimination performance can
be determined using a single criterion.

Using the smoothed data and LLRs as the decision vari-
ables, performance was characterized by computing the area
under the curve (AUC).

Figure 3: Examples of ratings given by two observers.

Figure 4: Distribution of log likelihood ratios (LLRs) com-
puted from the data shown in Figure 3.

ROC curves and AUCs were computed separately for the
real and synthesized conditions (see Figure 5). When the
abnormal tissue did not contain a visible lesion, the perfor-
mance given by the AUCs was similar across the real (M =
0.64,SE = 0.01) and the synthesized (M = 0.65,SE = 0.01)
conditions, t(10) = 0.40, p = 0.70. However, when the ab-
normal tissue contained a visible lesion, the performance
was better in the real condition (M = 0.83,SE = 0.02) than
in the synthesized condition (M = 0.71,SE = 0.02), t(7) =
5.12, p = 0.001. In particular, performance increased for the
real tissue sections.

To evaluate how the performance of each individual ob-
server differs from chance levels, we characterized a figure of
merit. For each observer, we created 100 Bootstrapped sam-
ples from the empirical data, derived a ROC for each sample,
and computed the AUC. The 95th percentile of this distribu-
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Figure 5: ROC curves in the real condition (left panel) and in the synthesized condition (right panel), when the abnormal tissue
had no visible lesion (top panel) and when the abnormal tissue had a visible lesion (bottom panel). Thin lines represent the
performance of individual observers. The thick line represents the average performance. The average AUCs are presented at
the bottom right of each plot.

tion were set as the critical value. Figure 6 shows the resulting
ROC curves for two individual observers.

When the abnormal tissue did not contain a visible lesion,
two out of eleven observers performed above chance lev-
els in the real condition while none of the eleven observers
performed above chance levels in the synthesized condition.
However, when a visible lesion was present in the abnormal
tissue sections, all eight observers performed above chance
levels in the real condition while two out of eight observers
performed above chance levels in the synthesized condition.

Finally, to test whether radiologists gave similar ratings to
the real and synthesized tissue sections, we compared the
abnormality ratings. Regardless of the presence of a le-
sion in the tissue, we confirmed that the ratings were similar
across the real and synthesized conditions (all r > 0.27, all
p < 0.001).

Breast density analysis

Prior to this experiment, two radiologists gave clinical den-
sity ratings to the real tissue without any time limitations.

To investigate whether the density of real tissue sections is
perceived similarly in such short presentation, we compared
the average clinical density ratings to the average perceived
density ratings in our experiment. Positive correlations sug-
gested that radiologists perceived the breast density similarly
regardless of the duration of presentation (all r > 0.59, all
p < 0.001).

Next, we investigated whether we were able to represent
the perceived breast density of the real tissue sections in our
synthesis. Comparison of the estimated density ratings across
the real and synthesized conditions revealed a strong positive
correlation (r = 0.66, p < 0.001), suggesting that our synthe-
sis was successful in replicating the breast density.

Discussion
The purpose of the current study was to characterize the
global signals of abnormality in breast tissue as texture de-
scriptions (i.e., a set of stationary spatial statistics) and to de-
termine whether radiologists rely on such texture descriptions
when interpreting breast tissue. Our findings suggest that ra-
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Figure 6: ROC curves for two of the observers. The top panel shows data from an observer when the abnormal tissue had no
visible lesion, in the real condition (left panel) and in the synthesized condition (right panel). The bottom panel shows data
from another observer when the abnormal tissue had a visible lesion, in the real condition (left panel) and in the synthesized
condition (right panel). ROC curves for the Bootstrapped samples (N = 100) are given by the gray lines. The 95% of this
distribution is given by the dashed red line. The empirical ROC curve is given by the blue line. The AUCs for the empirical
(blue) and simulated (red) data are presented at the bottom left of each plot.

diologists can use texture descriptions as global signals of ab-
normality in diagnostic tasks.

When the abnormal tissue had no visible lesion, radiolo-
gists seemed to rely on texture descriptions; performance was
similar across real and synthesized sections. However, when
the abnormal tissue had a visible lesion, radiologists seemed
to use additional mechanisms beyond the texture description.
In particular, the existence of a lesion increased the perfor-
mance only for the real sections. These findings confirm that
radiologists can use texture descriptions as global signals of
abnormality in interpretation of breast tissue.

Breast density judgments confirmed that the synthesized
tissue represented the real tissue in terms of the breast den-
sity. Interestingly, the brief exposure time did not seem to
influence the perception of breast density. Radiologists in-
terpreted the breast density similarly with and without time
limitations.

Using a similar paradigm in a series of experiments, Evans

et al. (2016) showed that radiologists were able to discrimi-
nate between normal and abnormal breast tissue at a glance.
To interpret this ability, they suggested that radiologists might
be using some “global signal” of abnormality. In this study,
we characterized this global signal as texture descriptions
(i.e., a set of stationary spatial statistics) and confirmed that
radiologists rely on such texture descriptions when interpret-
ing abnormal breast tissue without a visible lesion.

In future work, we will examine the particular features of
these texture descriptions that give rise to abnormality judg-
ments. After determining the significant features, we will
generate synthesized images using these particular features.
Then, we will test these images in a similar paradigm where
radiologists are asked to give abnormality judgments.

Overall, these findings contribute to the existing literature
by suggesting texture statistics as global signals of abnormal-
ity in the interpretation of mammograms. There are several
implications for improving detection of breast cancer. First,
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relevant texture features can be used to synthesize “normal”
or “abnormal” images representing breast tissue. These syn-
thesized images can be used to train medical students or used
as learning aids. Second, the features of texture descriptions
can be used to train image classifiers to detect abnormality in
the breast tissue, which ultimately could aid radiologists in
the diagnostic process. Additionally, the synthesized images
can be used in medical image perception research by allow-
ing more control over the tissue samples, and by attenuating
the limitations based on the small number of real cases.
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