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Abstract

Covariate Adjustment in Modern Causal Design and Analysis

by

Lauren Diana Liao

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Samuel D. Pimentel, Co-chair

Professor Alejandro Schuler, Co-chair

Clinicians, policymakers, psychologists, and economists often ask causal questions: does this
treatment or intervention cause the observed differences in outcome? If researchers can ob-
serve both outcomes under treatment (intervention or exposure) and control for each unit,
then researchers can directly measure the causal effect. However, the inability to observe
both outcomes forms the fundamental problem of causal inference. Answers to these ques-
tions require formal frameworks to interpret statistical quantity with causality. While the
gold standard of causality stems from randomized controlled trials or experiments due to
treatment assignment randomization, observational studies are increasingly popular for re-
searchers to discover existing phenomena and surveillance to provide real-world evidence.
Covariates, measured alongside treatment and outcome, are used in modern causal inference
to improve analyses in observational and experimental studies. This dissertation proposes
methods to thoughtfully identify and adjust for covariates in observational study design, risk
factor analysis, and randomized trial analysis. In Chapter 2, we advocate for a new visu-
alization tool, the joint variable importance plot, to help researchers prioritize confounders
for adjustment in observational study design. In Chapter 3, we present variable importance
from prediction and as-if causal perspective to evaluate mortality risk factors. Lastly, we
encourage practitioners to adopt prognostic covariate adjustment with efficient estimators
when analyzing small randomized trials in Chapter 4.
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Chapter 1

Introduction

While statisticians traditionally emphasize associations, causality is often the true question
of interest. Causal inference focuses on measuring the impact of treatment or intervention
on an outcome, which can be used to inform economical, political, and clinical decisions. Re-
cent technological advancement lead to the current era of data abundance, such that many
covariates measured prior to treatment became available. Adjusting for these covariates
is important because if the covariates are confounders – meaning they are related to both
treatment assignment and outcome, then they potentially can explain away or mask the true
causal effect. Covariate adjustment can also decrease the estimated variance, thus providing
a more efficient inference. A unique set of challenges arise when considering the interpre-
tation of important covariates in these high-dimensional problems. Especially for methods
that provide valid inference without imposing strong parametric assumptions, careful inter-
pretation of variable importance on these covariates are necessary for better applications on
real-world data.

The three contributions from the dissertation aim to improve causal design and analysis
through covariate adjustment to identify important variables, clarify interpretation, and
reduce uncertainty. This thesis builds on elements of machine learning, variable importance
in prediction and causal interpretation, and leveraging external, historical (prior collected)
data to achieve these goals.

In Chapter 2 we introduce a novel visualization, namely the joint variable importance
plot, to help researchers prioritize covariates in their observational study design. Although
randomized controlled trials (RCTs) or experiments are the gold standard to evaluate a
causal effect due to the randomized treatment assignment, observational studies provide
insights to impact of existing phenomena. Observational study design focuses on estab-
lishing balance, or similar covariate profiles between treated and control groups, prior to
analysis. Note that in an observational context, treated group requires careful definition of
“treatment” since there is no active assignment; alternatively, treated versus controls groups
can be considered as with or without exposure, respectively. We advocate for prioritizing
variables that may be strong confounders as related to both treatment imbalance and out-
come importance (informed by external pilot data) for adjustment in subsequent analysis
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stage. This visualization can be integrated to many modern design approaches in match-
ing, weighting, and regression135. The contents of this chapter have been published in Liao
et al. 73 .

In Chapter 3 we analyze mortality risk factors of those infected by SARS-CoV-2 in
prediction and as-if causal approaches. We apply the super learner88,120 to evaluate risk
factors important to prediction, and targeted maximum likelihood estimation89,118,119 to
further investigate the impact of pre-existing conditions, such as diabetes, hypertension, and
obesity. We not only advocate for using machine learning to model non-linear relationship in
mortality risk estimation but also highlight the importance of different variables throughout
the three phases of COVID-19 pandemic: phase 1 is from March 1st, 2020, to October 31st,
2020, phase 2 is from November 1st, 2020, to March 31st, 2021, and phase 3 is from April 1st,
2021, to November 3rd, 2021. This chapter motivates researchers to use machine learning
to identify those at risk and judiciously interpret risk factors and their importance. The
contents of this chapter have been published in Liao et al. 72 .

Lastly, Chapter 4 we propose prognostic covariate adjustment with efficient estimators
to increase efficiency in small, finite RCTs. Prognostic score formalized by Hansen 49 charac-
terizes predictions using trial covariates from an outcome model extracted from an external
data set. This chapter extends prognostic covariate adjustment with linear estimators104

to adjustment with efficient estimators to include external, historical data and increase effi-
ciency without inflating type I error. We demonstrate empirical and theoretical improvement
using this method to reduce finite sample uncertainty.
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Chapter 2

Prioritizing Variables for
Observational Study Design Using the
Joint Variable Importance Plot

This chapter introduces the joint variable importance plot that visualizes natural prior-
itization of all potential confounders for adjustment in observational study design. The
coauthors are Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, and Samuel D. Pimentel73.
We gratefully acknowledge support from Hellman Fellowship, National Science Foundation
2142146 and DGE 2146752, National Institute of Diabetes and Digestive and Kidney Dis-
eases K01DK120807, National Heart, Lung, and Blood Institute R01HL157666, and Kaiser
Permanente Northern California Community Benefits Program RNG209492. The authors
thank David Bruns-Smith, Avi Feller, Erin Hartman, Melody Y. Huang, Yaxuan Huang,
Sizhu Lu, Arisa Sadeghpour, Andy Shen, and Arnout van Delden for valuable comments.

2.1 Introduction

Researchers often seek to evaluate treatments to understand whether they are beneficial. In
observational (non-randomized) studies, treatments may be confounded, or associated with
other baseline variables so that it is unclear whether to attribute group outcome differences to
treatment or baseline dissimilarity. To reliably estimate an effect, researchers must adjust for
these variables, typically either by modeling their impact on study outcomes or by creating
new comparison groups that eliminate baseline differences or imbalances, for example by
matching or weighting.

One crucial decision is deciding which variables are most important for adjustment. While
creating comparison groups with perfect balance on the joint distribution of all baseline
variables, or conditioning appropriately on this joint distribution in an outcome model, is
sufficient to remove observed sources of confounding, this is impossible in datasets with a
large number of measured variables. Attempting to adjust for too many variables can lead
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to undesirable designs, such as heavily overfitted models, matches with too few subjects to
be useful134, or weighting designs with high-variance weights that hurt precision79. Many
modern causal inference methods are designed with variable prioritization in mind and in-
corporate substantive or data-driven knowledge about which variables are likely to matter
most. These include regularization procedures for outcome regression8, balance tolerances
for weighting13, and covariate distances or balancing constraints for matching14,86,113. How-
ever, there is a need for better data-driven diagnostic tools to guide researcher choices about
prioritization.

Researchers may be tempted to prioritize variables based on standard balance diag-
nostics, including tables of standardized mean differences (SMD) for each variable or Love
plots3,43,50,97,114. These diagnostics are useful for highlighting variables with large imbalances
between treated and control groups. However, prioritizing variables according to their im-
balance ignores important information about the role of each variable in the outcome model.
Variables strongly related to treatment but unrelated to outcomes are not confounders. In
contrast, if variables are strongly associated with the outcome but with only moderate imbal-
ance, they may be strong confounders. When choosing which baseline variables to prioritize
for adjustment, focusing solely on the treatment imbalance can risk ignoring variables that
should take precedence due to their outcome importance.

The joint importance of covariate-treatment and covariate-outcome relationships is a
general principle in observational causal inference, not specific to a particular framework or
set of identification assumptions. For example, outcome regression approaches typically do
not make assumptions about the treatment-covariate relationship, but these relationships
influence treatment effect estimation (see Section 2.2). Similarly, matching and weighting
approaches are typically motivated by models of the treatment variable in covariates, but sim-
ilarity of outcomes within matched pairs or across weighted groups affects residual bias12,100.
Another reason outcome-covariate relationships matter is their influence on sensitivity to
unmeasured bias. In both matching and weighting, increasing homogeneity of the outcomes
via better control for prognostic covariates increases robustness to worst-case confounding
as measured by design sensitivity62,92. Unfortunately design sensitivity is understudied in
observational study design, and diagnostic tools to improve it are badly needed.

To meet these needs we propose selecting high-priority variables for adjustment using
the joint treatment-outcome variable importance plot (jointVIP). JointVIP represents each
variable in two dimensions: one describing treatment model importance as measured by
the SMD, and one describing outcome-model importance, measured by outcome correlation
among controls from a pilot sample (chosen disjointly from the analysis sample to ensure
the integrity of the analysis). In addition, under a set of simple working models, the bias
incurred by ignoring each variable can be derived separately and represented on the plot
using unadjusted bias curves, enhancing opportunities for variable comparisons. We show
an example comparison between the traditional Love plot and jointVIP with a subset of the
baseline variables from the case study (absolute measures shown in Figure 2.1 and signed
measures shown in Appendix A.1).

We illustrate jointVIP in detail in a case study of drug safety for diabetes medication in
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pregnant individuals. Specifically, we use a matched design with refined covariate balance
constraints, which require a prioritized list of variables to be specified for balancing, and
jointVIP provides a principled way to choose this. However, we argue that jointVIP’s value
is not specific to a given estimation strategy or set of identification assumptions.
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Figure 2.1: Comparison between the Love plot and the joint variable importance plot (jointVIP).
Note that some variables (body mass index in the obese category and oral glucose tolerance test for
fasting blood glucose used at gestational diabetes diagnosis) take on much more prominent positions
in jointVIP than in the Love plot, which only displays standardized mean difference values.

2.2 Method

Joint variable importance plot construction

The high-level purpose of the jointVIP is to illustrate two different dimensions of a variable’s
possible role as a confounder – its imbalance, or association with the treatment variable, and
its association with the outcome – on two axes, with each variable plotted as a single point.
We now discuss the specific measures of variable importance on each axis.

For treatment model importance, described by the x-axis, we use SMDs, or differences
between the treated mean and the control mean divided by an estimate of the variable’s
standard deviation. Many different standard deviation estimates have been proposed leading
to slightly different SMD definitions; we focus on a version denoted as the “cross-sample”
SMD, which uses the sample standard deviation of the variable in question computed in
the pilot (control) sample. For more motivation and discussion of the cross-sample SMD,
see Section 2.2. The variant we propose is similar to an effect size estimator from Glass 40 ,
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which standardizes the mean difference by dividing by the standard deviation from the
control group52. SMDs allow intuitive comparisons across variables with very different scales,
including both binary and continuous variables. They are widely used to assess imbalance
and are commonly reported in balance tables or Love plots. Thus, using SMD on the x-axis
allows jointVIP to preserve all information typically contained in the Love plot while adding
new insights.

For outcome model importance, represented on the y-axis, we compute the sample Pear-
son correlation between each variable and the outcome among controls. Sample correlation
is a familiar, bounded quantity and makes sense for relationships not only between two
continuous variables but also between two binary variables (phi coefficient), and between
binary and continuous variables (point biserial correlation)83. The outcome relationship is
calculated only among controls to avoid having to model treatment effects.

It is vital that the outcome correlations be computed in a pilot sample separate from the
data used for the ultimate outcome analysis. Using controls from the analysis sample for
computing outcome correlations can bias treatment effect estimates. For example, suppose
treated and control samples exhibit imbalance on several continuous background variables
(with treated individuals taking larger values), but the study outcome is independent of
all these variables in the population. If we compute sample outcome correlations in the
analysis control sample and form matched pairs based solely on the variable with the largest
such (positive) sample correlation, we essentially match on the variable with the largest
spurious correlation (with the random outcome noise in the current sample). Because of the
imbalance, the matching algorithm will systematically select controls with large values for
the spuriously correlated variable. Hence, the result will have large positive outcome errors
that introduce positive bias into the average outcome for the matched controls. For related
examples see Hansen 49 and Abadie et al. 1 .

To construct a pilot sample, one may select a small (10-20%) portion of the control
sample at random from the full control group. To ensure the pilot sample is drawn from the
portion of the control space most relevant for the observational study, Aikens et al. 5 instead
suggest conducting an initial round of matching on a standard Mahalanobis distance to pair
each treated subject to two controls, then selecting one control from each set at random to
construct the pilot sample. Alternatively, external data separate from the analysis of interest
may be used as a pilot sample.

Addition of unadjusted bias curves for variable comparison

Comparing the relative importance of two distant points on the jointVIP, one with a high
outcome correlation and low SMD, and the other with a high SMD and low outcome corre-
lation, can be difficult. A natural answer lies in the relative sizes of the biases contributed
by ignoring each variable, since our ultimate goal is to avoid biases in treatment effect esti-
mation. We consider each baseline variable and evaluate the bias incurred by omitting this
potential confounder under a simple one-variable model. Inspired by Cinelli and Hazlett 24

and Soriano et al. 110 , we plot these bias estimates as curves on the jointVIP.
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For any baseline variable Xj with j ∈ 1, ..., J), consider the sample least-squares fit of
outcome Y on baseline variable Xj and binary treatment Z:

Y = Zτ0 +Xjβj + ϵ̂ (2.1)

Here ϵ̂ is a residual. In addition, consider two related sample regressions:

Y = Zτ + ê (2.2)

Xj = Z∆j + û (2.3)

Following Cochran’s formula27, we may use (2.3) to rewrite (2.1) and obtain a new repre-
sentation for (2.2):

Y = Xjβj + Zτ0 + ϵ̂ = (Z∆j + û)βj + Zτ0 + ϵ̂ = Z(∆jβj + τ0) + (ûβj + ϵ̂) (2.4)

Since the new error term (ûβj + ϵ̂) is orthogonal to Z by the construction of residuals û
and ϵ̂, we have τ = (∆jβj + τ0) and ê = ûβj + ϵ̂. Note that until now we have made
no model assumptions, merely fit regressions using sample quantities; however, if we add
a working assumption that triples (X, Y, Z) are sampled independently from an infinite
population, with model (2.1) correctly specified (i.e. that E(Y |Xj, Z) = βpop

j Xj + τ popZ for
some parameters βpop

j and τ pop), then the difference

τ − τ0 = ∆jβj (2.5)

is an estimate of the large-sample omitted variable bias (OVB) incurred by estimating treat-
ment effects via regression on Z alone, ignoring Xj.

Importantly for our purposes, the OVB can be rewritten in terms of sample correlation
between Xj and Y and a SMD with normalization by the control standard deviation. The
key is that when equation (2.1) is fit on controls alone (as it will be in our pilot-sample
approach), both (2.1) and (2.3) are simple regressions. We rewrite the corresponding simple
regression equations using familiar simple regression formulae. SYpilot

and SXj,pilot
denote

the standard deviation of the pilot sample for outcome and the standard deviation of the
confounder in question respectively. We include the pilot and analysis notations for clarity.

βj = rXj,pilot,Ypilot

SYpilot

SXj,pilot

(2.6)

∆j = X̄j1,analysis − X̄j0,analysis (2.7)

Using (2.3), we obtain (2.7), where X̄j1,analysis and X̄j0,analysis denote variable j’s sample
means among treated subjects and controls, respectively, in the analysis sample. Substituting
into expression (2.5) and rearranging, we obtain:

∆jβj
SYpilot

= rXj,pilot,Ypilot

(X̄j1,analysis − X̄j0,analysis)

SXj,pilot

(2.8)
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The left-hand side is a conveniently normalized version of the OVB that is invariant to
rescalings of the outcome, and the right-hand side is a product between a sample correlation
computed in the pilot sample and a standardized difference defined as follows:

cross-sample SMD =
X̄j1,analysis − X̄j0,analysis

SXj,pilot

(2.9)

The SMD calculates the difference between treated and control groups from the analysis
sample and is standardized by the standard deviation from the pilot sample. Hence, we
define this SMD as “cross-sample SMD”.

Since the standardized OVB is a product of two terms, level sets for bias take the form
of hyperbolic curves on the jointVIP to demarcate equivalent levels of confounding under
the crude one-confounder models. In addition, a measure of bias may be computed for
any individual variable using its respective SMD and outcome correlation, and color-coding
based on these quantities is used for plotting points. We refer to the marginal bias measure
as “unadjusted bias” to distinguish from the typical multivariate OVB models.

Bias in a finite population framework

The bias analysis of Section 2.2 assumes covariates, treatments, and outcomes are sampled
jointly from an infinite population. Although the case study in Section 2.3 instead uses
a finite population framework, this analysis still turns out be relevant. Given K matched
pairs (with the treated unit indexed k1 in each pair k and the control unit indexed k2),
that unobserved confounding is absent, and that Yki(1) − Yki(0) = τ for all k, i. The bias
of a matched difference-in-means estimator for τ , viewing only Z as a random variable and
holding potential outcomes Y (1), Y (0) and covariates X fixed, can be written as follows:

1

K

K∑
k=1

[Yk1(0)− Yk2(0)](pk1 − pk2) (2.10)

where pki =
λki/(1−λki)

λk1/(1−λk1)+λk2/(1−λk2)
with λki representing the propensity score for unit ki; for

derivations see Sales et al. 100, §4 and Huang and Pimentel 60 . This formula suggests that
attention to covariate-outcome relationships can improve estimation and inference via reduc-
tion in the magnitude of the Yk1(1)− Yk2(0) terms. In principle it would vanish if matching
were exact on the propensity score, but in practice this is implausible45,85. Additionally, if we
consider the expected behavior of this bias when potential outcomes are drawn from a model
and covariate X is ignored, we arrive at an approximate bound that is a rescaled version
of unadjusted bias (see the Appendix A.2 for full derivation). Under similar assumptions,
Rosenbaum 92 shows that reducing the variance of the Yk1(0)−Yk2(0) terms reduces sensitivity
to unmeasured bias, even when propensity score matching is exact. In summary, although in
Section 2.2 we did not explicitly motivate the unadjusted bias curves in the context of biases
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incurred under matched designs nor explicitly invoke the finite-sample framework typically
used to analyze such designs, the tools developed in Section 2.2 retain useful interpretations
from the perspective of matched analysis. We anticipate similar benefits for other causal
inference strategies.

Using jointVIP to guide study design

Once the jointVIP has been created, researchers can select variables with large potential
bias contributions (as measured by the unadjusted bias curves) for adjustment or otherwise
leverage its information to choose tuning parameters. In a matched study, selected variables
might be used to create a Mahalanobis distance48, or their marginal imbalance could be
restricted via fine or refined balance constraints86,128 as in our case study in Section 2.3. In
a study using stable balancing weights inverse values of the outcome correlations plotted on
the y-axis of the jointVIP could be used as balance tolerances133. In outcome regression
settings where the data is too high-dimensional to allow inclusion of all covariates, variables
highlighted by jointVIP could be chosen as regressors. For matched and weighted studies, a
post-design version of the jointVIP can also be created using new SMDs computed on the
matched or weighted data. This can suggest further refinements of the original matching
or weighting specification, or whether residual bias is large enough to require additional
regression adjustment after matching and weighting and which variables should be included
in such an adjustment model91. Table 2.1 summarizes the process of creating and applying
jointVIP for practitioners, and a simulation study in Appendix A.3 empirically demonstrates
the value of this process for bias reduction.

A natural question is how or whether to combine the process just described with the
balance testing approach to study design proposed by Hansen and Bowers 50 for matched
or stratified observational studies. Here the design is improved iteratively until an omnibus
test using all measured covariates fails to reject the hypothesis that treatment is distributed
uniformly within strata. While the jointVIP framework offers important new information
by leveraging outcome-covariate relationships ignored by balance tests, balance tests offer a
clearer ideal benchmark for success in the form of a hypothetical study randomized within
strata, and a single condition to check incorporating all covariates. A researcher might
proceed by requiring the final stratified design both to pass a balance test and to minimize
potential bias as computed under jointVIP to enjoy the benefits of both frameworks. If
this proves impossible, a researcher might instead use jointVIP to select a priority subset
of covariates with highest outcome correlation, and search for a design for which the tests
of Hansen and Bowers 50 fail to detect differences with respect to these variables. For an
interesting related proposal to use prognostic information to construct a test statistic for
balance testing, see Bicalho et al. 16 .

JointVIP can also draw attention to variables with high treatment-model importance
but negligible outcome-model importance, sometimes referred to as instrumental variables
or prods87. Even when all variables could be used for adjustment, it is wise to exclude to
such variables since they can inflate unmeasured confounding bias18,33. JointVIP enables
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1. choose pilot sample define pilot sample either as hold-out set from

main analysis sample or from external historical data

2. create the jointVIP fit outcome correlations from the pilot sample

and compute SMD from the analysis sample

3. identify potential confounders prioritize variables in top right region

of the plot and use bias curves to make fine distinctions

4. adjust for confounders create balance constraints (matching or weighting),

a covariate distance (matching), a regressor

matrix (outcome regression), etc. using chosen variables.

5. (optional) plot post-jointVIP for matching and weighting re-plot with post-design SMD

repeat steps 3-5 repeat as desired

Table 2.1: Suggested procedure for use of the joint variable importance plot. As discussed
in Section 2.2, the pilot sample typically consists of controls only. See Section 2.2 for further
details on practical use of joint variable importance plot.

either excluding such variables or (if it is not entirely clear whether a variable should be
excluded) constructing multiple control groups that adjust for these variables differently87.

Some caution should be exercised when using and interpreting jointVIP. Outcome corre-
lations can change substantially when variables are transformed; outliers may also skew the
means of either treatment or control groups and hence the standardized mean differences.
Blindly using all variables above a bias cutoff may also be suboptimal. For example, if two
variables are near-perfectly collinear, both would be highlighted as priorities in jointVIP,
but adjusting for one may be sufficient to remove bias. Finally, baseline variables that are
absent or rare in the pilot sample may not be well-represented in the plot.

2.3 Case Study

Glyburide as a treatment for gestational diabetes

Due to improved ease of use and lower cost, oral antidiabetic medications, such as glyburide,
are often prescribed compared to the recommended insulin therapy as treatment for gesta-
tional diabetes19. The safety of glyburide, however, remains contentious due to potential
transfer to the fetus through the placenta7. The question remains: does glyburide increase
the risk of adverse perinatal outcomes in real-world settings? We investigate glyburide’s im-
pact on C-section delivery compared to medical nutritional therapy, the universal first-line
therapy in a large, population-based cohort.

The study population consists of Kaiser Permanente Northern California (KPNC) mem-
bers. Individuals who are diagnosed with GDM receive medical nutritional therapy (MNT)



CHAPTER 2. JOINT VARIABLE IMPORTANCE PLOT FOR STUDY DESIGN 11

as the universal first line of therapy. Pharmacologic treatment, including oral antidiabetic
medications (glyburide, metformin, or other) and/or insulin, is prescribed in addition to
MNT if glycemic control goals are not met. Individuals with GDM who received MNT alone
constituted our control group while those who additional received glyburide as the only phar-
macologic therapy constituted our treatment group. There are 54 common variables between
the 2007-2010 data (pilot sample) and 2011-2021 data (analysis sample), including indicators
of missing data as variables. Table 2.2 summarizes selected baseline variables (see Appendix
A.4 for the full data summary). Missing values were imputed separately for each year using
random forest112. Details about the pattern of missing values and the imputation procedure
are reported in Appendix A.5. Our use of KPNC data for this study is approved by the
KPNC Institutional Review Board, which waived the requirement for informed consent from
participants.

Design

Variable selection using jointVIP

JointVIP is constructed using the jointVIP package in R; for a brief software tutorial see
Liao and Pimentel 71 . To ensure particularly stringent control of the propensity score, we
impose a caliper equal to 0.2 standard deviations of the fitted propensity score values in
the entire sample. Using a caliper on the propensity score is a natural choice because our
approach to inference relies on similar propensity scores within matched pairs85. We match
exactly on year to address substantive concerns about potential for temporal shifts in the
standard of care in the absence of reliable outcome correlations.

We address potential bias from additional variables by imposing a series of refined bal-
ance constraints tailored to the outcome. Refined covariate balance enables users to specify
top-priority variables and their interactions to be balanced as though they were the only
variables in the study, with lower-priority variables receiving further attention as possible86.
While this framework offers substantial flexibility to the researcher, it relies on strong sub-
stantive knowledge to specify the balance tiers in a reasonable manner. Frequently it is
not immediately clear how to organize a group of baseline variables into balance tiers in a
principled way. JointVIP offers a data-driven approach in settings where ambiguity remains
even after accounting for substantive knowledge. We specify tiers of variables for refined
covariate balance by identifying sets of variables with high importance. Since the prognostic
score (fit in the pilot sample using LASSO regression) ranks among the variables contributing
the largest unadjusted bias, we include quintiles of the prognostic score in the first balance
tier. We include all variables contributing unadjusted bias greater than or equal to 0.010
with variables in subsequent tiers, with those contributing larger amounts of bias in higher
tiers. Table 2.3 summarizes the chosen balance tiers for the design. Specific potential bias
values can be found in Appendix A.6 column Pre-matched bias. In addition, we discretized
the continuous variable for gestational age at GDM diagnosis for compatibility with refined
covariate balance algorithm.
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Table 2.2: Summary of selected baseline variables for pregnant individuals with gestational
diabetes.

2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Family history of
diabetes = yes (%)

198 (2.6) 1,202 (6.3) 822 (7.6)

OGTT for
fasting blood glucose = abnormal (%)

2,165 (28.8) 3,762 (19.6) 4,512 (41.8)

GDM severity = severe (%) 775 (10.3) 1,744 (9.1) 1,215 (11.3)
GDM diagnosed by the
C-C criteria = yes (%)

7,323 (97.3) 17,303 (90.2) 8,419 (78.1)

Age (%) Under 25 552 (7.3) 1,029 (5.4) 349 (3.2)
Between 25-29 1,665 (22.1) 3,762 (19.6) 1,866 (17.3)
Between 30-34 2,584 (34.3) 7,101 (37.0) 4,165 (38.6)
Over 35 2,725 (36.2) 7,291 (38.0) 4,406 (40.8)

Gestational age at
GDM diagnosis (mean (SD))

26.06 (6.10) 26.86 (6.02) 23.53 (7.12)

History of macrosomia = yes (%) 69 (0.9) 145 (0.8) 147 (1.4)
History of GDM = yes (%) 856 (11.4) 3,401 (17.7) 2,608 (24.2)
Parity (%) 0 3,121 (41.5) 7,611 (39.7) 3,873 (35.9)

1 2,347 (31.2) 6,566 (34.2) 3,994 (37.0)
more than 2 2,058 (27.3) 5,006 (26.1) 2,919 (27.1)

Pre-pregnancy BMI (%) Underweight 100 (1.3) 391 (2.0) 76 (0.7)
Normal 1,921 (25.5) 5,107 (26.6) 1,706 (15.8)
Overweight 2,847 (37.8) 6,369 (33.2) 3,361 (31.2)
Obese 2,658 (35.3) 7,316 (38.1) 5,643 (52.3)

Race/ethnicity (%) Asian or
Pacific Islander

2,919 (38.8) 8,553 (44.6) 4,560 (42.3)

Hispanic 2,322 (30.9) 5,013 (26.1) 2,923 (27.1)
White 1,602 (21.3) 4,090 (21.3) 2,381 (22.1)
Black or
African American

315 (4.2) 736 (3.8) 410 (3.8)

Other or unknown 368 (4.9) 791 (4.1) 512 (4.7)
Pre-pregnancy
pre-diabetes = yes (%)

479 (6.4) 1,802 (9.4) 1,915 (17.8)

Glucose challenge
test value (mean (SD))

169.43 (22.38) 169.71 (22.14) 173.22 (24.32)
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Balance tier C-section delivery
1 Prognostic score quintile
2 OGTT for fasting blood glucose

Obese pre-pregnancy BMI
3 GDM diagnosed by Carpenter-Coustan criteria

Gestational age category at GDM diagnosis
Pre-pregnancy pre-diabetes
Normal pre-pregnancy BMI

Table 2.3: Balance tiers for refined covariate balance for each outcome, chosen using jointVIP
plots.

Matched Design

We conduct matching with refined covariate balance using the rcbalance package in R
and the balance tiers in Table 2.3. Post-matched jointVIP results, reflecting new levels
of balance after matching, are plotted in Figure 2.2.B. For variables that were specified,
post-matched biases are compared to pre-matched biases in Appendix A.6, which shows
all baseline variables and summary measures to have small biases (around 0.005 or less)
post-matching. Note in particular that variables with high outcome correlation are balanced
especially well, a feature of the design that traditional methods based on Love plots are not
equipped to guarantee.
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Figure 2.2: Pre-post match results for Cesarean section delivery.



CHAPTER 2. JOINT VARIABLE IMPORTANCE PLOT FOR STUDY DESIGN 14

2,093 treated subjects are excluded from the match due to caliper and exact matching
constraints, and 8,693 pairs are matched. Those who are excluded tend to have more signs
of severe GDM and higher probability of treatment; it is not surprising that it is difficult
to find comparable controls for matching them (Appendix A.7). We note that the average
risk difference for C-section is best understood not as an estimate of an average treatment
effect on the treated113, but as an average effect on a “marginal” population consisting of
individuals for whom treatment by either arm is reasonably likely44,68,96. This estimand,
while less common in theoretical discussions of causal inference, adheres more closely to the
substantive quantity of interest for physicians who are typically more interested in guidance
for patients with equipoise, and less interested in effects on patients who would clearly be
assigned glyburide or not in the large majority of cases.

Outcome analysis

To perform inference, we index matched pairs by i = 1, · · · , I, and individuals in each
matched pair by k = 1, 2. For a matched pair i, one person is treated with glyburide,
Zik = 1, and the other with MNT, Zik = 0, hence Zi1 + Zi2 = 1. Let Z denote the event
that Zi1 + Zi2 = 1 for each matched pair i. Each subject ik has corresponding potential
outcomes Yik(1) and Yik(0) for treatment with and without glyburide respectively. We collect
quantities fixed in advance of treatment, including potential outcomes and covariates, in the
set F = {(Yik(1), Yik(0),xik), i = 1, · · · , I, k = 1, 2}. Our outcome of interest is a binary
indicator for C-section.

We test the sharp null hypothesis, H0 : Yik(1) = Yik(0) for all i, k. Assuming that paired
subjects are equally likely to receive glyburide, we can test this hypothesis by repeatedly
permuting treatment indicators within pairs (independently across pairs) with probability
1/2; this corresponds to resampling treatment indicators conditional on Z and F . Since
under the sharp null the outcomes remain identical regardless of treatment assignment, we
can compute a test statistic under each permutation using observed outcomes and compare
the actual observed value of the test statistic to this reference distribution to conduct in-
ference. For binary outcomes, in particular, we may apply McNemar’s test78. The above
procedure relies on the assumption Pr(Zik = 1|F ,Z) = 1/2 with independent assignment
for each pair, which is true when unobserved confounding is absent and propensity scores
are matched exactly; it is a quasi-randomization test in the sense of Zhang and Zhao 129 .
In real observational studies this assumption may fail, and sensitivity analysis is needed to
probe the robustness of the initial findings to such failures. We perform sensitivity analysis
as described in Rosenbaum 94 Section 3.

Results

There are 2×8, 693 individuals who are matched in pairs, 6,023 (34.64%) individuals delivered
by C-section. Matched results are shown in Table 2.4. For control (MNT only) individuals,
33.61% delivered by C-section, and for treated (glyburide and MNT) individuals, 35.67%
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Treated with glyburide

C-section not C-section

Control C-section 1078 1844

not C-section 2023 3748

Table 2.4: Matched analysis for Cesarean section delivery.

delivered by C-section (raw treatment-control difference of 2.06%). McNemar’s test yields
a one-sided p-value of 0.0020. Evaluating at significance level 0.05, there is evidence to
reject the null hypothesis under a no unmeasured confounding assumption. However, the
sensitivity analysis produces a threshold Γ of 1.041, which indicates that a very small degree
of unmeasured confounding (the amount needed to shift a a 0.50 probability of treatment
to a 1.041/(1 + 1.041) ≈ 0.51 probability of treatment) can explain away the causal effect
detected. As such we find no substantial evidence that glyburide is causing the increase in
cases of C-section delivery in this study.

2.4 Discussion

JointVIP is a useful tool for selecting variables to balance during the observational study de-
sign phase. One notable advantage over traditional methods is the visual ease of comparison
for marginal relationships of each variable with both the outcome and treatment. Methods
leveraging jointVIP can offer better bias reduction and increased robustness against unmea-
sured confounders92. Several other authors have discussed ideas closely related to jointVIP.
Zhao and Yang 131 propose variable selection for fitting generalized propensity scores using
measures of outcome importance and provide supporting theory suggesting the optimality
of this approach. Aikens et al. 5 and Aikens and Baiocchi 4 construct an alternative design-
stage visualization based partially on a pilot sample incorporating outcomes, the assignment-
control (AC) plot. In contrast to jointVIP however, the AC plot represents subjects rather
than variables on the plot, using the estimated prognostic score and propensity score values
on the axes. AC plots and jointVIP thus provide valuable complementary representations of
observational data. Finally, Cinelli and Hazlett 24 propose a similar contour plot based on
omitted-variable-bias calculations that consider each variable in turn as a potential omitted
confounder, for use in interpreting parameters in sensitivity analysis. For matching and
weighting, the post-match jointVIP has potential to be used in a similar way. However,
additional mathematical work is required to establish a mapping between the ∆j and βj
quantities represented on the jointVIP and the parameters of existing sensitivity analysis
approaches.
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A natural question is why the omitted variable biases for the unadjusted bias curves
should be computed under the one-covariate model in equation (2.1) instead of a model con-
taining all measured covariates. This relates to a larger question about whether to focus on
visualizing marginal measures of association between covariates and treatment or outcome,
or instead to focus on conditional or partial measures that account for other variables. We
focus on marginal measures rather than conditional measures (such as multiple regression
coefficients from models for treatment or outcome and OVB from excluding one variable
from a regression with many covariates), in contrast to previous works such as Cinelli and
Hazlett 24 . While previous authors focused on post-hoc sensitivity analyses in which a single
model had already been chosen for analysis, jointVIP is a pre-analysis tool aimed at helping
select covariates for which to adjust. As such, it is unclear which covariates should be ad-
justed for in computing partial correlations with outcome and treatment. This is especially
true in high-dimensional settings where the number of covariates may exceed the number of
sample points in either the pilot or main analysis sample, in which case partial measures of
association may not be well-defined for some sets of adjustment covariates. We also note that
current standard heuristics emphasize reporting and minimizing SMDs rather than regres-
sion coefficients from a propensity score, so a marginal approach generalizes existing practice
more naturally (as demonstrated above). However, developing a conditional jointVIP is an
interesting topic for future work. For example, a forward-selection method with attention to
multicollinearity could be developed by selecting only one variable for adjustment from the
original jointVIP, then creating a conditional version of jointVIP for the remaining variables
where all plotted measures adjust for the first selected variable, and iterating until a stopping
criterion is reached.

While we focused on using pilot samples consisting only of controls, if extensive treatment
effect heterogeneity is present this approach might underestimate the bias contributed by
individual variables. Instead, one could take a pilot sample from each study arm and fit
distinct treatment and control outcome correlations β

(1)
j and β

(0)
j . A generalized version of

our argument in Section 2.2 due to Zhao and Ding 130 suggests plotting β
(1)
j p0 + β

(0)
j p1 on

the y-axis of the jointVIP, where p1 and p0 are the anticipated proportions of treated and
control subjects in the final design. Of course, it may not be advisable to sacrifice treated
subjects to the pilot sample for such an analysis when treatment is rare.

Another area for future work is generalizing jointVIP to allow for nonlinearity. Pearson
correlation captures linear relationships but may miss strong nonlinear relationships. Non-
linear measures of importance such as the interpretable mean decrease in impurity (MDI+)
derived by Agarwal et al. 2 for random forests, could in principle be used on the y-axis of the
jointVIP. Two primary challenges arise. First is the question of marginal versus conditional
relationships raised above, if nonlinear importance measures vary depending on the other
variables included in the model. Second is the difficulty of deriving nonlinear versions of the
unadjusted bias curves. Statistical interpretation of variable importance in nonlinear models
such as random forest is an active research area and we are not aware of any straightforward
generalization of omitted variable bias for this context.
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Chapter 3

Who Is Most at Risk of Dying If
Infected With SARS-CoV-2? A
Mortality Risk Factor Analysis Using
Machine Learning of COVID-19
Patients Over Time: A Large
Population-Based Cohort Study in
Mexico

In Chapter 1, we discussed variable importance in terms of causal study design. In compari-
son, this chapter focuses on variable importance in relation to the outcome of mortality. Two
aspects are examined in detail: variable predictability and importance in an as-if causal sce-
nario where all the individuals have the preexisting condition versus none of the individuals
have the preexisting condition. For predictability, we hold other variables constant to focus
on the impact of the variable of interest. For as-if scenario, we adjust for baseline character-
istics to focus on the impact of the specific preexisting condition. The coauthors are Alan
E. Hubbard, Juan Pablo Gutiérrez, Arturo Juárez-Flores, Kendall Kikkawa, Ronit Gupta,
Yana Yarmolich, Iván de Jesús Ascencio-Montiel, and Stefano M. Bertozzi72. We thank the
staff of C3.ai Digital Transformation Institute for their technical support and our colleagues
at University of California, Berkeley, the Mexican National Autonomous University, and the
Mexican Social Security Institute (IMSS) for all of the administrative and technical support
that has allowed this collaboration to flourish. In addition, we acknowledge funding from
C3.ai Digital Transformation Institute, National Science Foundation DGE 2146752, and Bill
& Melinda Gates Foundation OPP1165144. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.
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3.1 Introduction

The probability of mortality associated with SARS-CoV-2 infection has varied enormously
over time, among countries, and among population groups within countries106. Interest in
understanding who is at a higher risk of death has grown as this heterogeneity became more
apparent. Identifying people at higher risk of severe disease and death will help health
systems better respond and focus prevention resources on protecting them. We examine
Mexico, a country with a very high reported case-fatality rate (4.7%) among those who have
laboratory-confirmed coronavirus disease 2019 (COVID-19) as of September 23, 202258. Pre-
vious analyses in Mexico have found diabetes, obesity, hypertension, immunosuppression,
and renal disease to be significant risk factors along with age and sex. Multiple authors have
identified obesity and diabetes as important risk factors for mortality11,38,81,108. Escobedo
de-la Peña et al. also found a strong association with hypertension, which is consistent with
results from Giannouchos et al.34,38. Late-stage chronic kidney disease, although less preva-
lent, has also consistently been identified as a COVID-19 mortality risk factor. Older/ male
patients tend to have higher mortality risks than younger/ female patients11,34,38. In a previ-
ous analysis, we found interactions between those comorbidities, suggesting a synergic effect
when having more than one of diabetes, hypertension, and obesity (larger odds ratio when
reporting the 3 conditions vs. one or two)46. We also found that the odds ratio increased by
age group with those over age 80 having 30-fold the risk of those 20 to 2946. One important
consideration is that the prevalence of diabetes and hypertension is positively associated with
age, so it has not been clear how this interaction is related to mortality risk. A more adaptive
analysis performed by Mart́ınez-Mart́ınez et al. developed a prediction model for severity of
COVID-19, defined by hospitalization and/or mortality. They examined the relationship of
14 variables with hospitalization and mortality using interaction terms and splines to account
for non-linear relationships77. The pattern of age, sex, and comorbidities being associated
with higher mortality risk is not specific to Mexico, and the global literature on such associa-
tions is extensive. Researchers have identified old age, diabetes, obesity, chronic renal failure,
and congestive heart failure to be strongly associated with severe infection amongst both
sexes in the Spanish population39. Researchers in Brazil showed that older age, male, kidney
disease, obesity and/ or diabetes are strong predictors of mortality amongst other comor-
bidities such as chronic liver disease, immunosuppression, and cardiovascular disease109,126.
Another study used United Kingdom Biobank data and showed that pre-existing demen-
tia, diabetes, chronic obstructive pulmonary disease (COPD), pneumonia, and depression
were positively associated with risk of hospitalization and death9. An analysis from France
found age, diabetes, hypertension, obesity, cancer, and kidney and lung transplants to be
associated with risk of COVID-19-related hospitalization and mortality, among others105. A
Canadian study reported dementia, chronic kidney disease, cardiovascular disease, diabetes,
COPD, severe mental illness, organ transplant, hypertension, and cancer to be significant
predictors of mortality37. Studies presented here is a non-exhaustive list of research study-
ing COVID-19 risk factors and mortality. Recent meta-analyses and systematic reviews find
significant mortality attributed to these pre-existing conditions6,64,101,106. Our goal in this
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study is not only to predict mortality using demographic factors and comorbidities, but to
show how those predictions change over time in this rapidly evolving pandemic. Although
mortality risk estimation and risk factor identification have been examined in prior studies,
we are concerned about the statistical validity and interpretation of the standard methods. A
commonly used prediction tool, logistic regression, assumes a linear relationship of predictors
against the log odds of mortality risk, but this logit-linear assumption will lead inevitably
to biased estimates of risk (either under- or over-predict the risk) for subsets of the popu-
lation. We instead used flexible, data-adaptive methods that can capture non-linearities in
the dose-response, such as potential nonlinear interactions between the predictors (e.g., the
potential interaction of age and diabetes on predicting death)88,120. The better the model
fits the study population; the more likely estimates are closer to the true joint relationship of
mortality and risk factors. We included pre-existing conditions, demographic variables, the
Mexican state where the patient was treated, and the month that the patient initiated care to
fit our prediction algorithm. We conducted the analysis using an ensemble machine learning
algorithm, super learner, to form optimal combination of predictions from multiple machine
learning methods88,120. We also estimated the comparative importance of variables for mor-
tality risk prediction (holding all other variables constant) by nonparametrically estimating
quantities inspired by causal parameters (parameters that compare so-called counterfactual
distributions, in our case, causal relative risks). The statistical goal is to estimate and pro-
vide robust inference for impact estimates of the predictors without the arbitrary modeling
assumptions that characterize the great majority of prior work84.

3.2 Methods

Study population and design

The study population is drawn from the Mexican Social Security Institute (IMSS), a ver-
tically integrated insurance and health system that provides coverage for over 60 million
private sector employees and their families, including their parents, children and spouse.
IMSS also provided care as part of the COVID-19 response for some non-beneficiaries, who
are also included in the dataset. The data were recorded from March 1st, 2020, to November
3rd, 2021 in a platform called SINOLAVE. They reflect the entire population of 4,482,292
patients who were registered as receiving care for suspected COVID-19 at an IMSS facility.
The dataset and the data entry process have been described previously63. The demographic
variables include age, sex, insured by IMSS, and indigenous status. The data contains
pre-existing conditions reported by the patient or the family at presentation: asthma, car-
diovascular disease, chronic liver disease, chronic obstructive pulmonary disease, diabetes,
hemolytic anemia, human immunodeficiency virus, hypertension, immunosuppression, neuro-
logical disease, obesity, cancer, renal disease and tuberculosis, as well as whether the patient
currently smokes. Patients were asked at presentation about their pre-existing health condi-
tions; these were not ascertained with reference to the patient’s medical record, even for those
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All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

Sample size 1,423,720 303,278 425,698 694,744

Demographic variables
Age in years (mean (SD)) 42.15 (15.70) 46.41 (16.04) 44.89 (16.27) 38.61 (14.34)
Sex = male (%) 729,782 (51.3) 158,248 (52.2) 218,165 (51.2) 353,369 (50.9)
Insured by IMSS = yes (%) 1,358,440 (95.4) 288,588 (95.2) 402,754 (94.6) 667,098 (96.0)
Indigenous = yes (%) 7,381 (0.5) 2,200 (0.7) 1,628 (0.4) 3,553 (0.5)

Pre-existing conditions
Hypertension = yes (%) 228,901 (16.1) 72,615 (23.9) 83,735 (19.7) 72,551 (10.4)
Diabetes = yes (%) 169,869 (11.9) 55,551 (18.3) 61,120 (14.4) 53,198 (7.7)
Obesity = yes (%) 181,736 (12.8) 55,965 (18.5) 60,217 (14.1) 65,554 (9.4)
Smoking = yes (%) 87,161 (6.1) 21,253 (7.0) 28,346 (6.7) 37,562 (5.4)
Asthma = yes (%) 25,297 (1.8) 7,951 (2.6) 7,765 (1.8) 9,581 (1.4)
Renal Disease Diagnosis = yes (%) 24,099 (1.7) 8,912 (2.9) 8,555 (2.0) 6,632 (1.0)

Outcome
Death = yes (%) 149,805 (10.5) 53,530 (17.7) 62,517 (14.7) 33,758 (4.9)

Table 3.1: Summary table of baseline variables and pre-existing conditions

patients insured by the IMSS. The data also includes the Mexican state in which the patient
received care, COVID-19 test results (from both polymerase chain reaction (PCR) tests and
antigen tests), the month that the patient initiated care, and COVID-related mortality. The
outcome, death, is ascertained as COVID-related mortality within this study period between
March 2020 and November 2021; we only consider deaths after patients initiated care. In
addition, we extracted a different dataset from the National Council of Science and Technol-
ogy to determine the dominant circulating variant in each month29. A short summary can
be found in Table 3.1 (Appendix B.1). We define COVID-19 positive as a positive PCR or
antigen test.

From the full data set, we generated an analytic sample (n = 1,423,720) (Appendix B.2).
We exclude those under the age of 20 years, those without any positive COVID-19 test result
from either the PCR or antigen tests, and those with unknown pre-existing conditions. We
also create a phase variable that corresponds to changes in the epidemic curve into three:
phase 1 is from March 1st, 2020, to October 31st, 2020, phase 2 is from November 1st,
2020, to March 31st, 2021, and phase 3 is from April 1st, 2021, to November 3rd, 2021 as
previously described63.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemi-
nation plans of our research.
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Statistical analysis

Mortality risk prediction using super learner (SL)

We predict mortality risks with SL88,120, using predictors: pre-existing conditions, demo-
graphic variables, the Mexican state where the patient was treated, and the month that the
patient initiated care. SL combines a set of user-supplied machine learning algorithms, which
includes both simple, parametric fits and flexible algorithms, to create an optimally-weighted
combination. This optimal fit is found by creating a combination of algorithms that minimize
the cross-validated risk (in our case, the negative log-likelihood). SL has the property that
asymptotically it will perform at least as well as the best fitting algorithm in the library88,120.
Thus, it is important to include a diverse and large set of learners as candidates to ensure
the model can fit complex patterns if warranted, but also, simpler, parametric models if
simpler fits are sufficient. The following learners were included in the SL library: Bayesian
additive regression trees23, Bayesian generalized linear model31, elastic net regression47, em-
pirical mean, generalized additive model74, least absolute shrinkage and selection operator
regression116, logistic regression, multivariate adaptive regression splines36, random forest17,
ridge regression56, and extreme gradient boosting algorithms21. We estimate the prediction
performance, via the AUC, and derive a 95% confidence interval for the estimated AUC66.
We compare the SL fit using all predictors listed above to a logistic regression with only
age entered as a linear term. We compute the AUC for the resulting SL/logistic regression
fits with 3-fold cross validation on the 80%, both on the same data used to estimate SL/l-
ogistic regression models (training AUC), as well as a more realistic assessment by using
the test set – the left-out 20% of the available data (testing AUC). To interpret the final
prediction model generated by the SL fit, we use the permutation-based variable importance
measure to identify variables that influence the SL model’s prediction17. This is performed
by permuting the predictor variables one at a time (keeping the other variables fixed) and
measuring the magnitude of the decline on the predictive performance (as measured by the
change in the average negative log-likelihood). This provides a list of variables ranked by
the relative importance to prediction fit but does not provide information on the variable
impact on mortality, which led us to another measure of relative risk (RR) using targeted
maximum likelihood estimation (TMLE).

Pre-existing condition relative risk estimate through targeted maximum
likelihood estimation

For pre-existing conditions, we estimated a different variable importance measure that is not
focused on prediction accuracy but on estimating potential impacts of pre-existing condi-
tions on mortality risk. The impact is estimated by the RR of adjusted means (adjusted
for baseline confounders) for the population if everyone had the specific pre-existing condi-
tion of interest (the numerator) versus the same population where no one has the specific
pre-existing condition (the denominator). To estimate RRs, we used cross-validated tar-
geted minimum-loss-based estimation (cross-validated TMLE). TMLE is a semiparametric,
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All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)
AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Super learner fit Training: 0.916 Training: 0.887 Training: 0.904 Training: 0.914
(0.915-0.917) (0.885-0.888) (0.903-0.906) (0.913-0.916)
Testing: 0.907 Testing: 0.873 Testing: 0.895 Testing: 0.906
(0.905-0.908) (0.870-0.876) (0.892-0.897) (0.902-0.909)

Age only logistic Training: 0.874 Training: 0.845 Training: 0.868 Training: 0.867
regression fit (0.873-0.875) (0.843-0.846) (0.866-0.870) (0.865-0.869)

Testing: 0.874 Testing: 0.846 Testing: 0.871 Testing: 0.871
(0.872-0.876) (0.842-0.850) (0.868-0.874) (0.866-0.875)

Table 3.2: Prediction results.

substitution estimator that has shown to be asymptotically efficient (unlike the inverse prob-
ability of treatment-weighting estimators90). It also has some robustness advantages over
other semiparametric efficient approaches, such as augmented inverse probability weight-
ing. TMLE estimates parameters that, under certain assumptions, can be interpreted as
potential causal impacts of these factors on mortality, in our case, in the form of a causal
relative risk. Our ensemble machine learning is optimized for prediction, but it does not
directly provide measures of individual variable importance. We augmented our prior SL
analysis using the TMLE to generate interpretable estimates of variable impact with robust
standard errors89,118,119. Both analyses using SL and TMLE are conducted in programming
language R; the code used to conduct this analysis is publicly available on GitHub (link:
https://github.com/ldliao/mexPred).

3.3 Results

Descriptive results show the age distribution of laboratory-confirmed patients across the
three different epidemic phases (Appendix B.3). Phases 1 and 2 have similar distributions,
and there are more young people (under 30) in phase 3. The six most prevalent pre-existing
conditions are hypertension, obesity, diabetes, smoking, asthma, and renal disease (Appendix
B.4). The prevalence of all pre-existing conditions decreased over the three phases, and
prevalence of hypertension, obesity, and diabetes were drastically reduced in phase 3.

Super learner (SL) prediction

SL fit has high prediction accuracy on the testing set (AUC: 0.907 (95% CI: (0.905-0.908))
(Table 3.2). The SL fit leverages multiple machine learning models: the XGBoost models,
generalized additive model, and random forest for prediction (Appendix B.5). The simple
logistic regression has a lower AUC (testing AUC: 0.874 (95% CI: (0.872-0.876)) than the
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SL fit, as expected, as it only uses age as a predictor (Table 3.2). However, the simple
model is already highly predictive, and the difference is small yet significant. The logistic
regression model overpredicts mortality risks for those roughly above age 75 compared to
the SL prediction (Figure 3.1). In line with the simple age-only logistic regression model,
permuted variable importance on the SL fit shows, while holding other variables constant, age
is consistently the most important for SL prediction in average mortality risk (Appendix B.6
and B.7). Having multiple comorbidities can dramatically increase risk for those individuals
(Figure 3.2).
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Figure 3.1: Mortality risk prediction comparing age only logistic regression and super learner.

Relative risks of pre-existing conditions

To assess the impact of each pre-existing condition, we estimate their respective relative risks
(RRs) of mortality, adjusting for demographic variables. We report the estimated RRs in
Table 3, ordered by impact (most to least) (Appendix B.8). The RRs compare the expected
risk if all patients have the pre-existing condition (with) versus if all patients do not have
the condition (without). The highest impact pre-existing condition is renal disease (RR:
3.783, 95% CI: (3.705, 3.862)); diabetes, obesity, and hypertension also have high impact
individually (RR: 1.432-1.847). Minimal differences between the risk estimates are shown
for smoking and asthma (RR: 1.049 and 1.037, respectively).

%% table
The phase analyses indicate pre-existing conditions are especially important in phase 3.

Phase 1 and 2 are very similar in terms of both risk prediction and adjusted mortality risk
estimates. However, in phase 3, age is less important in prediction (Appendix B.7) and RRs
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Figure 3.2: Super learner predicted mortality risk averaged by specific age in two subgroups: those
having all obesity, diabetes, and hypertension pre-existing conditions versus those without.

drastically increase for every comorbidity. The adjusted risks show the decrease for each
pre-existing condition in phase 3 (Appendix B.9).

3.4 Discussion

Our analysis of (> 1.4 million) laboratory-confirmed COVID-19 patients demonstrates that
age is by far the most important predictor of average mortality. For those patients with re-
nal disease, diabetes, hypertension, or obesity, having the comorbidity further increases their
risk of mortality. A patient with diabetes, hypertension, and obesity is roughly comparable
to a patient 20 years older with none of the conditions, based on the predicted mortality
(Figure 3.2). Thus, having a comorbidity increases risk of mortality and should be consid-
ered at any age. The reason that comorbidities add little to the predictive power at younger
ages is that hypertension and diabetes are age-related and the reported onset is often for
those over 30, so the pre-existing conditions are far less prevalent. Our prediction results
using machine learning methods predict better than previous studies, and we demonstrated
the feasibility and robustness of using machine learning methods targeted for prediction and
variable impact. SL model prediction has an AUC of 0.907, which is higher than any previ-
ous Mexican study (AUCs from 0.634 to 0.824)77,125. Although age has been well reported
by previous studies as important [6, 38, 39], our analysis is more robust because we do not
assume a pre-specified functional relationship between the explanatory variables and the
predicted variable, and thereby avoid any arbitrary groupings into age categories. Moreover,
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since those above age 60 have a higher prevalence of comorbidities, relying on simple logistic
regression models can greatly overpredict the average mortality risk for the elder patients.
Our study applies TMLE to estimate the adjusted mortality risk ratios for each comorbidity
to provide more robust impact estimates that respect time ordering and account for back-
ground variables. We find consistent results of comorbidities compared to previous studies,
and present phase analyses highlighting the changes in relative risks over time. Previous re-
sults from logistic regressions indicated odds ratios of 1.458-2.48 for renal disease, 1.237-1.74
for diabetes, 1.173-1.47 for obesity, 1.194-1.315 for hypertension, 0.852-1.02 for smoking, and
0.74-1.420 for asthma54,82,125. Although our analysis is generally consistent with previous
findings, our RR estimations have less uncertainty. Renal disease has the greatest impact on
mortality, followed by diabetes, hypertension, and obesity; smoking and asthma have negligi-
ble impact on mortality risk. This phase-specific analysis produced a seemingly paradoxical
finding. The impact of comorbidities on predicted mortality decreased with time (primarily
between the second and third wave), but the RR on mortality dramatically increased for the
same conditions (Appendix B.8 and B.9). The apparent explanation is that mortality risk
for people without the comorbidities fell faster than for people with them, increasing the
relative risk. The decrease in mortality risk is multifactorial and includes a decrease in sus-
ceptibility over time (due to prior infection and vaccination), improved treatment, enhanced
healthcare response and opportunity to be admitted to a hospital or ICU, and less virulent
viral subtypes. This implies that as herd immunity increases, medical resources should fo-
cus even more on protecting vulnerable people at older age and those with comorbidities
since they are even more likely to experience severe outcomes compared to those who are
younger and/or healthier. Readers should be cautious about extrapolating our findings to
other populations. Although our sample is large and includes patients from all parts of Mex-
ico, most of the patients were IMSS beneficiaries. In order to access IMSS health services,
patients require: a) be a formal-sector worker or retired, b) be a direct dependent of such
an employee, c) be a bachelor or postgraduate student in a public institution, d) voluntarily
enroll by paying a fee. Thus, the IMSS population skews toward the upper half of the in-
come distribution. Populations without similar access to health services may have different
results. It is also important to consider the potential impact of data quality. Pre-existing
conditions were self-reported and likely also inconsistently recorded, perhaps in systematic
ways that could have biased the results. For example, if people with severe diabetes were
more likely to report diabetes as a pre-existing condition, we may overestimate the impact
of diabetes on mortality. It is also important to consider what predictive variables are in-
cluded in this model. We sought to predict risk for an individual in the population using
their characteristics prior to infection. In other words, what is this person’s risk of death
from COVID-19 if they were to be infected? The answer to this question best informs the
question of who should be prioritized for protection against infection or for early therapeutic
interventions following infection. It does not attempt to predict the likely mortality of a
patient who presents to the health services with COVID-19 because information about that
patient’s severity of their COVID-19-related symptoms will represent important additional
predictors of their mortality risk.
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Chapter 4

Prognostic Adjustment With Efficient
Estimators to Unbiasedly Leverage
Historical Data in Randomized Trials

In Chapter 2, we utilized the previously collected (external, pilot) data to inform study
design. In Chapter 3, we investigated the predictive performance and as-if causal importance
of mortality risk factors using machine learning. In this chapter, previously collected external
data, referred to as historical data, is used in conjunction with machine learning to improve
trial analysis in the form of prognostic covariate adjustment. The coauthors are Emilie
Højbjerre-Frandsen, Alan E. Hubbard, and Alejandro Schuler. We would like to thank
study participants and staff for their contributions. This research was conducted on the
Savio computational cluster resource provided by the Berkeley Research Computing program
at the University of California, Berkeley. This computing resource was supported by the UC
Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer. The
authors thank Christopher Paciorek for answering Savio related inquiries. This research was
made possible by funding from the National Science Foundation DGE 2146752 and global
development grant OPP1165144 from the Bill & Melinda Gates Foundation. This research
also received funding from Innovation Fund Denmark (Grant number 2052-00044B) to Novo
Nordisk A/S. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

4.1 Introduction

Practical, financial, and ethical concerns often preclude large randomized trials, which lim-
its their power15,41,115. On the other hand, historical (often observational) data are often
plentiful, and there are many existing methods for including historical data in trial anal-
yses in order to boost power127. “Data fusion” methods simply pool trials with historical
data10,26,107. Bayesian methods, which naturally rely on assumptions in the form of specified
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priors from historical data, are also popular in the literature55,69. Similar problems have also
been addressed in the generalizability and transportability research30,61,107. Recent studies
proposed machine learning methods to integrate prior observational studies into trial anal-
yses67,70. While pooled estimators, which integrate historical data with trial data, are an
active area of research (for example, Dang et al. 28), our focus is solely on improving trial
analysis.

Unfortunately, the aforementioned approaches that rely on validity of historical data
are all sensitive to unobservable selection biases and must therefore be used with extreme
care. The fundamental problem is that the historical population may differ systematically
from the trial population in ways that impact both treatment assignment and outcome.
For example, if the historical population did not have access to a modern standard-of-care,
adding historical controls would artificially make any new drug seem more effective than it
really is. Observable differences in populations can potentially be corrected under reasonable
assumptions, but shifts in unobserved variables are impossible to detect or correct.

We take the approach of covariate adjustment to increase efficiency. In recognition of
using covariates to reduce estimation uncertainty, the U.S. Food and Drug Adminstration
recently released guidance on adjusting for covariates in randomized clinical trials35. See
Van et al. (2023) for summarized methods using covariate adjustment122. Our research
builds on Schuler et al. (2021), who suggest using the historical data to train a prognostic
model that predicts the outcome from baseline covariates104. They then adjust for the
model’s predictions on the trial data in the trial analysis using linear regression, namely the
“prognostic adjustment”. A similar research proposed by Holzhauer and Adewuyi (2023)
recommends using a “super-covariate,” combining multiple prognostic models into a single
covariate for adjustment57. However, both these methods are limited to trial analyses using
linear regression models.

Our task in this paper is to extend the prognostic adjustment approach beyond linear
regression, specifically, to “semiparametrically efficient” estimators. Semiparametrically ef-
ficient estimators are those that attain the semiparametric efficient variance bound, which is
the smallest asymptotic variance that any estimator can attain. The use of efficient estima-
tors thus tends to reduce the uncertainty of the treatment effect estimate. These estimators
leverage machine learning internally to estimate the treatment or the outcome model, or
both; for example, the augmented inverse probability weighting estimator (AIPW) and the
targeted maximum likelihood estimator (TMLE) are commonly used to evaluate the average
treatment effect22,32,42,121? . These estimators have been shown to improve the power of trials
over unadjusted or linearly adjusted estimates98.

In this study, we aim to improve power even further by incorporating historical data via
prognostic adjustment. Our approach guarantees asymptotic efficiency of the trial treat-
ment effect and more importantly, promises benefits in finite-sample efficiency and robust
inference.
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4.2 Framework and notation

We follow the causal inference framework and roadmap from Petersen and van der Laan84.
First, we define each observational unit i ∈ {1, . . . , n}, as an independent, identically dis-
tributed random variable, Oi with true distribution P . In our setting, each random variable
O = (W,A, Y,D) contains associated p baseline covariates W ∈ Rp, a binary treatment indi-
cator A, denoting whether a unit is in the control group (A = 0), or in the treatment group
(A = 1), an outcome Y , and an indicator D denoting whether a unit is in either the trial
(D = 1) or historical (D = 0) data sample.

We will assume that the trial data is generated under the setting of an RCT, such that
P (A = a|W,D = 1) = πa, with some positive constant πa denoting the treatment probability
for a ∈ {0, 1}. Define µa(W ) = EP [Y |A = a,W,D = 1] as the conditional outcome means
per treatment arm in the trial. Let ρd(W ) = E[Y |W,D = d] denote the prognostic score
for a dataset d49. When referenced without subscript (ρ) we are referring to the prognostic
score in the historical data D = 0.

The fundamental problem of causal inference comes from not being able to observe the
outcome under both treatment types. We know that for each individual, Y = Y A, i.e., we
observe the potential outcome corresponding to the observed treatment. To calculate the
causal parameter of interest, we define the (unobservable) causal data to be (Y 1, Y 0, A,W,D),
generated from a causal data generating distribution P ∗. In this study, we are interested in
the causal average treatment effect (ATE) in the trial population:

Ψ∗ = EP ∗ [Y 1 − Y 0|D = 1]

which due to randomization in the trial is equal to the observable quantity:

Ψ = EP [µ1(W )− µ0(W )|D = 1]

where µa(W ) = EP [Y |A = a,W,D = 1] is the conditional mean outcome in treatment arm
a ∈ {0, 1} from the observable data distribution.

Let (W,Y) denote a dataset with observed outcome Y = [Y1, . . . , Yn] and the observed
covariates W = [W1, . . . ,Wn], where (Y,W ) ∈ (R × Rm). Furthermore, let L : (W,Y) 7→ f
denote a machine learning algorithm that maps (W,Y) to a learned function f that estimates
the conditional mean E[Y |W ]. The algorithm Lmay include detailed internal model selection
and parameter tuning, and the algorithm works with predictors and data of any dimension
(i.e., m,n are arbitrary). Let Ỹ,W̃ represent the historical dataset of size ñ, which is a draw

from P ñ(Y,W |D = 0). We use ρ̂0 = L(Ỹ,W̃) (or just ρ̂) to refer to an estimate of prognostic
score learned from the historical data. Let (Y,A,W) represent the trial data set of size n,
which is a draw from Pn(Y,A,W |D = 1). In a slight abuse of notation, let ψ̂ = ψ̂(Y,A,W)
denote the mapping between trial data and our estimate ψ̂ using an efficient estimator. For
example, ψ̂ could denote the cross-fit AIPW estimator described in Schuler (2021)102.?
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4.3 Method

Efficient estimators with prognostic score adjustment

Our proposed method for incorporating historical data with efficient estimators is simple:
we first obtain a prognostic model by performing an outcome prediction to fit the historical
data (D = 0) using a machine learning algorithm ρ̂ = L(Ỹ,W̃). We then calculate the value
of the prognostic score in the trial by feeding in all units’ baseline covariates: R = ρ̂(W).
This prognostic score can be interpreted as a “pre-learned” dimension reduction for the trial
covariates. Lastly, we estimate the ATE from the trial data, augmented with the prognostic
score as an additional covariate, using an efficient estimator: ψ̂(Y,A, [W,Y]).

In practice, we suggest using a cross-validated ensemble algorithm (also called “super-
learner”) for L120. The super learner is known to perform as well as the best machine learning
algorithm included in the library88,120. The library in the super learner should include a
variety of nonparametric and parametric learners, such as gradient boosting, random forest,
elastic net, and linear models88,120.

For an efficient estimator, adding a fixed function of the covariates as an additional
covariate will not change the asymptotic behavior80,99. Thus our approach will never be
worse than ignoring the historical data (as it might be if we pooled the data to learn the
outcome regression). However, it also means that our approach cannot reduce asymptotic
variance (indeed it is impossible to do so without making assumptions).

Nonetheless, we find that the finite-sample variance of efficient estimators is far enough
from the efficiency bound that using the prognostic score as a covariate generally decreases
the variance (without introducing bias) and improves estimation of the standard error. Mech-
anistically, this happens because the prognostic score “jump-starts” the learning curve of the
outcome regression models such that more accurate predictions can be made with fewer trial
data. This is especially true when the outcome-covariate relationship is complex and difficult
to learn from a small trial. A “small” trial refers to a smaller sample size than traditionally
needed for an unadjusted estimator when calculating the desired power. It is well-known
that the performance of efficient estimators in RCTs is dependant on the predictive power of
the outcome regression. Therefore improving this regression (by leveraging historical data)
can reduce variance.

We expect finite-sample benefits as long the trial and historical populations and treat-
ments are similar enough. But even if they are not identical, the prognostic score is still
likely to contain very useful information about the conditional outcome mean.

In the following subsections 4.3 to 4.3, we theoretically show how adjusting for a prog-
nostic score with an efficient estimator can improve estimation in a randomized trial. The
implications are that small-sample point estimation and inference should be improved even
though efficiency gains will diminish asymptotically. In an asymptotic analysis where the
historical data grows much faster than the trial data, we show that using the prognostic
score speeds the decay of the empirical process term in the stochastic decomposition of our
estimator. The implications are that finite-sample point estimation and inference should be
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improved even though efficiency gains will diminish asymptotically. The material assumes
expertise with semiparametric efficiency theory and targeted/double machine learning. We
present our results at a high level and do not present enough background for a casual reader.
Two good starting points for this material are Schuler and van der Laan and Kennedy65,103.
The casual reader may skip this section and if they are comfortable with the above heuristic
explanation of why prognostic adjustment may improve performance.

No asymptotic efficiency gain

Before showing how adjusting for a prognostic score for an efficient estimator can benefit
estimation, we show that adding any prognostic score to an efficient estimator cannot improve
asymptotic efficiency. To see this, we will start by considering the counterfactual means
ψa = E[E[Y |A = a,W ]] = E[µa(W )] for any choice of a ∈ {0, 1}. We will return to the
ATE shortly, but for now, it will make our argument clearer to only consider counterfactual
means. Consider any efficient estimator for ψa in a semiparametric model (known treatment
mechanism) over the trial data (Y,A,W ). The influence function of an estimator completely
determines its asymptotic behavior. By definition, any efficient estimator of E[µa(W )] must
have an influence function equal to the canonical gradient, which is referred to as the efficient
influence function:

ϕa(Y,A,W ) = ((I(A = 0))/πa)(Y − µa(W )) + (µa(W )− ψa)

where I is the indicator function and πa = P (A = a) is the fixed, known propensity score.
Consider now a distribution over (Y,A, [W,R]), where R = g(W ) for any fixed function g
playing the role of a prognostic model. The efficient influence function in this setting is the
same as the above except µa(W ) = E[Y |A = 0,W ] is replaced by µa(W,R) = E[Y |A =
0,W,R]. But since the prognostic score R = g(W ) is a fixed function of the covariates W ,
conditioning on the prognostic score after conditioning on W does nothing, and we obtain
µa(W,R) = µa(W ). Therefore, the prognostic score does not change the influence function
and therefore cannot improve asymptotic efficiency. This holds even if you consider a random
prognostic score learned from external data. The same holds for the ATE parameter since
the efficient influence function in this case is ϕATE = ϕ1 − ϕ0.

The fundamental issue is that the asymptotic efficiency bound cannot be improved with-
out considering a different statistical model, e.g. distributions over (Y,A,W,D). The prob-
lem is that in considering a different model we must also introduce additional assumptions
to maintain identifiability of our trial-population causal parameter. For example, Li et al.
consider precisely this setup and rely on an assumption of “conditional mean equivalence”
E[Y |A,W,D = 1] = E[Y |A,W,D = 0] to maintain identification while improving effi-
ciency70. Similarly, an analysis following Chakrabortty et al. shows that efficiency gains
are also possible if we assume the covariate distributions are the same when conditioning on
D 20. In this paper, we take the covariate adjustment approach, incorporating the external
data without these explicit assumptions and therefore we have to look for benefits in finite
sample improvements.
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Improving point estimation

To understand the benefits of prognostic adjustment we must consider the non-asymptotic
behavior of our estimator. As above we will consider estimation of the treatment-specific
mean ψa, but from now on we will omit the a subscripts to reduce visual clutter.

Consider the following decomposition:

ψ̂ − ψ = Pnϕ+ (Pn − P )(ϕ̂− ϕ) + S − Pnϕ̂

This sort of decomposition is common in the analysis of efficient estimators65,103. As above,
ϕ here denotes the efficient influence function of ψ. We use the empirical process notation
Pnϕ̂ = n−1

∑n
i=1 ϕ̂(Yi, Ai,Wi) to denote a sample mean, Pϕ̂ = E[ϕ̂(Y,A,W )] to denote a

population mean (not averaging over randomness in ϕ̂), and ϕ̂ a plug-in estimate of ϕ with µ
estimated by regression. We will analyze each term and see what difference adjusting for the
prognostic score makes in this general decomposition. Note that for an efficient estimator,
the last term −Pnϕ̂ = 0 by construction. Eliminating this “plug-in bias” term is the purpose
of bias correcting schemes such as TMLE or efficient estimating equations65,103.

Of the remaining terms, the first is the efficient influence function term, Pnϕ. We have
already shown that an efficient estimator leveraging the prognostic score has the same influ-
ence function as one without. It is also known that the remainder term S = [ϕ̂−ϕ]+Pϕ̂ can
be bounded by the product of estimation errors in the outcome and propensity regressions
||µ̂− µ||||π̂ − π||65,103. This is exactly zero in a randomized trial since the propensity score
is known. Therefore both of these terms are unaffected by prognostic adjustment.

That leaves us with only the “empirical process” term (Pn − P )(ϕ̂ − ϕ). With cross-
fitting this term can be shown to be OP (||ϕ̂ − ϕ||n−1/2)65,103. In our setting, the estimated
influence function depends only on the estimated outcome regression and we thus have
(Pn − P )(ϕ̂− ϕ) = OP (||µ̂− µ||n−1/2). This is oP (n

−1/2) in all cases where the regression is
L2 consistent, but the actual rate can be faster depending on how quickly ||µ̂−µ|| converges.
We’ll use tn to denote this rate, i.e., ||µ̂ − µ|| = oP (tn). This is the mechanism by which
prognostic adjustment improves efficient estimators. When the prognostic score is used to
estimate µ̂, the norm ||µ̂− µ|| is generally smaller than it otherwise would be.

We can formalize this asymptotically. Recall that n denotes the trial sample size and ñ
denotes the historical sample size. Consider a historical sample much larger than the trial
in the limit: n/ñ = rn → 0. For example, presume ñ = n2 in which case rn = 1/n. Presume
that the historical distribution of covariates and outcome is the same as that in the trial
control arm, or simply that ρ(w) = µ0(w) (this is a best-case scenario). Presume we have a
learning algorithm L that in some large nonparametric function class can learn functions in
an L2 sense at rate tn. Let ρ̂ñ be the prognostic score learned from the ñ historical samples
using this learner.

Instead of fitting our trial outcome regression with the prognostic score as a covariate,
presume that we directly take µ̂(n,0) = ρ̂ñ. In other words, we use our prognostic model
as the control outcome regression in the trial, ignoring the trial data. That’s sensible in
this hypothetical setting because 1) the prognostic model will indeed converge to the true
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outcome function and 2) the amount of omitted trial data is vanishingly small relative to
the historical data. We can also interpret this as an estimator of E[Y |A = 0,W, ρñ(W )]
in the trial data (i.e., our prognostically adjusted outcome regression): we should expect
that when the prognostic model is good, our learner will simply return the prognostic score
untouched to model the control counterfactual outcome. Or, more formally, if a parametric
learner is used on top of the prognostic score (e.g. a working model Y = β0 + ρ̂(W )) then
the total error will be composed of a root-n term from learning the parameters and a higher
order empirical process term. If we used our learner to fit the outcome regression from trial
data alone, our rate on the L2 norm of the outcome regression would be tn, e.g. n

−1/10 for
example. However, if we use the prognostic score the rate is tñ (ñ instead of n), e.g. ñ−1/10.
But recalling n/ñ = o(rn) (rn = 1/n, for example), we can express tñ as (tnrn)/n. Essentially
we can plug in ñ = n2 into tñ = ñ−1/10 to see tn = (n2)−1/10 = n−1/5. This can dramatically
increase the speed at which ||µ̂ − µ|| → 0 in terms of n and consequently affect the rate of
convergence of the empirical process term, making it decay faster than it would without the
prognostic adjustment.

The result of making the empirical process term higher order is to reduce finite-sample
variance of our point estimate. With cross-fitting the empirical process term is exactly
mean-zero65,103, so finite-sample bias is unaffected.

Improving standard error estimation

We can apply similar arguments to show that performance of the plug-in estimate of asymp-
totic variance Pnϕ̂

2 (based on our estimated influence function ϕ̂) is also improved by prog-
nostic adjustment. The difference between the estimate and the true asymptotic variance
Pϕ2 can be decomposed as

Pnϕ̂
2 − Pϕ2 = (Pn − P )ϕ2 + (Pn − P )(ϕ̂2 − ϕ2) + P (ϕ̂2 − ϕ2)

The first term here is a nice empirical mean which by the central limit goes to zero at a
root-n rate and which is unaffected by prognostic adjustment. The second term is similar to
the empirical process term discussed above in the context of point estimation and by identical
arguments this term decays faster when prognostic adjustment is used (note L2 convergence
of ϕ̂ implies the same for ϕ̂2 under regularity conditions that are satisfied in our setting
because π is a known constant bounded away from 0). This term is always higher-order than
n(− 1/2) and thus asymptotically negligible, but possibly impactful in small, finite samples.
It is also mean-zero. Together, this means that its improved rate with prognostic adjustment
translates to less finite-sample variability in our estimate of the standard error.

The last term is bounded by ||ϕ̂2 − ϕ2|| so this term also decays faster with prognostic
adjustment. This term contributes to both bias and variance of the standard error estimate.
Unlike the equivalent norm that appears in the bound for the empirical process term, the
norm here is not divided by

√
n and so this term may be of leading order (slowest decaying)

in the overall stochastic decomposition and thus asymptotically relevant. Since prognostic
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adjustment increases the rate, the term may go from leading order to higher-order. Therefore
prognostic adjustment may, in some cases, make the plug-in standard error an asymptotically
linear estimator (i.e. standard error of the standard error should decrease at a 1/

√
n rate).

Caveats

Although we do not need additional assumptions for identifiability and thus retain unbiased
estimation in all cases, all of the possible benefits described above do rely on the assumption
that the historical and trial data-generating processes share a control-specific conditional
mean. If this is not the case, then the amount by which the prognostic score speeds conver-
gence of the control outcome regression will be attenuated, but not necessarily eliminated.
For example, if the true outcome regression is the same as the prognostic score up to some
parametric transformation that is learnable at a fast rate by a learner in our library L, then
we should still expect benefits.

Until now we have also focused on the control counterfactual mean. The influence func-
tion for the ATE is the difference of those for the two counterfactual means and consequently
we can decompose the empirical process term into two terms which are OP (||µ̂1 − µ1||n−1/2)
and OP (||µ̂0 − µ0||n−1/2) where µa = E[Y |A = a,W ] denote the counterfactual mean func-
tions. Therefore, the overall order of the empirical process term is dominated by whichever
of these terms is lower-order. For the treatment regression to leverage the historical data,
we need to assume some prognostic information can be transferred from the control to the
treatment arm. For example, we might expect satisfactory information transfer from the
historical data to the trial treatment arm when when there is a constant treatment effect
c (i.e. µ1(w) = µ0(w) + c) or there is some other parametric, easily-learnable relationship
between the two conditional means. Otherwise, the slower convergence rate for µ1 dominates
and we obtain less benefit from prognostic adjustment. A worst-case scenario would be when
the two conditional means depend on mutually exclusive sets of covariates: if this is the case,
no transfer should be possible and benefits should be limited or absent.

Our analysis shows that use of the historical sample via prognostic score adjustment
produces less-variable point estimates in small samples as well as more stable and accurate
estimates of standard error. Unfortunately, asymptotic gains in efficiency are not possible
without further assumptions.

However, these benefits are contingent on the extent to which the covariate-outcome
relationships in both treatment arms of the trial are similar to the equivalent relationship
in the historical data. In particular, differences between historical and trial populations
and high heterogeneity of effect may both attenuate benefits. Nonetheless, these problems
can never induce bias. Therefore, relative to alternatives, prognostic adjustment of efficient
estimators provides strict guarantees for type I error, but at the cost of limiting the possible
benefits of using historical data.
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4.4 Simulation study

Setup

This simulation study aims to demonstrate the utility of an efficient estimator with the
addition of a prognostic score. We examine how our method performs in different data
generating scenarios (e.g., heterogeneous vs. constant effect), across different data set sizes,
and when there are distributional shifts from the historical to the trial population. The
simulation study is based on the structural causal model in DGP (4.1) – (4.9). In total there
are 20 observed covariates of various types and a single unobserved covariate.

W1 ∼ Unif(−2, 1) (4.1)

W2 ∼ N (0, 3) (4.2)

W3 ∼ Exp(0.8) (4.3)

W4 ∼ Γ(2, 1) (4.4)

W6 . . .W20 ∼ Unif(0, 1) (4.5)

U ∼ Unif(0, 1) (4.6)

A ∼ Bern(1/2) (4.7)

Y a|W,U = ma(W,U) +N (0, 2) (4.8)

Y = AY 1 + (1− A)Y 0 (4.9)

Notice thatma(W,U) is the mean of the counterfactual conditioned on both the observed and
unobserved covariates. Our observable conditional means are thus µa(W ) = E[ma(W,U)|W ].
We examine two different scenarios for the conditional outcome mean ma. In our “hetero-
geneous effect” simulation:

m1(W,U) = (10× sin(|W1|π))2 + I(U > 1.01)× 8 + I(U > 1.55)× 15− 42 (4.10)

m0(W,U) = 10× sin(|W1|π) + I(U > 1.01)× 8 + I(U > 1.55)× 15 (4.11)

where the I represents the indicator function and propensity score π is written without the
subscript a since the treatment probability is the same. Our “constant effect” simulation is
computed as:

m1(W,U) = 10× sin(|W1|π) + I(U > 1.21)× 20 + I(U > 1.55)× 15− 0.8 (4.12)

m0(W,U) = 10× sin(|W1|π) + I(U > 1.21)× 20 + I(U > 1.55)× 15 (4.13)

To begin, we use the same data generating process (DGP) for the historical and trial pop-
ulations except the fact that A = 0 determinstically in the historical DGP. But in what
follows, we loosen this assumption by changing the historical data generating distribution
with varying degrees of observed and unobserved covariate shifts.

We examine several scenarios: first, we analyze the trial (n = 250) under the hetero-
geneous and constant treatment effect DGPs, where the historical sample (ñ = 1,000) is



CHAPTER 4. PROGNOSTIC ADJUSTMENT WITH EFFICIENT ESTIMATORS 35

from the same DGP (4.1) – (4.9) as the trial sample. Second, we vary the historical and
trial sample sizes for the heterogeneous treatment effect simulation. To vary the historical
sample sizes, we first fix the trial sample size (n = 250) and vary the historical sample size
(with ñ = 100, 250, 500, 750, and 1,000). To vary the trial sample sizes, we first fix the
historical sample size (ñ = 1,000) and vary the trial sample size (with n = 100, 250, 500,
750, and 1,000). We also vary n and ñ = n2 together to demonstrate asymptotic benefits in
the estimation of the standard error (as discussed in Section 4.3).

Third, we examine the effect of distributional shifts between the historical and trial
populations. In these cases, we draw trial data from the DGP (4.1) – (4.9), but draw our
historical data from modified versions. To simulate a “small” observable population shift
we let W1|D = 0 ∼ Unif(−5,−2) and to simulate a “large” observable population shift we
let W1|D = 0 ∼ Unif(−7,−4). To simulate a “small” unobservable population shift we let
U |D = 0 ∼ Unif(0.5, 1.5) and to simulate a “large” unobservable population shift we let
U |D = 0 ∼ Unif(1, 2). The shifts in the unobserved covariate induce shifts in the conditional
mean relationship between the observed covariates and the outcome (see Appendix C.1 for
an explicit explanation).

We consider three estimators for the trial: unadjusted (difference-in-group-means), linear
regression (with Huber-White (robust) standard errors estimator HC3

75,76,124, and targeted
maximum likelihood estimation (TMLE; an efficient estimator? ). All estimators return
an effect estimate and an estimated standard error, which we use to construct Wald 95%
confidence intervals and corresponding p-values. The naive unadjusted estimator cannot
leverage any covariates, but both linear and TMLE estimators can. We compare and con-
trast results from linear and TMLE estimators both with and without the fitted prognostic
score as an adjustment covariate (“fitted”) to compare against Schuler et al (2021)104. We
also consider the oracle version of the prognostic score (“oracle”) for a benchmark compar-
ison; the oracle prognostic score perfectly models the expected control outcome in the trial
E[Y |W,A = 0, D = 0]. Unlike the fit prognostic score, the oracle version is not affected by
random noise in the historical data and it is not sensitive to shifts between historical and trial
populations (indeed it is not affected by the historical data at all). The oracle prognostic
score only serves as a best-case comparison and is infeasible to calculate in practice.

For simplification, we include the same specifications of the discrete super learner (cross-
validated ensemble algorithm) for both the prognostic model and all regressions required by
our efficient estimators. Specifically, we use the discrete super learner – choosing one machine
learning algorithm from a set of algorithms for each cross-fit fold via the lowest cross-validated
mean squared error. The set of algorithms include the linear regression, gradient boosting
with varying tree tuning specifications (xgboost)21, and Multivariate Adaptive Regression
Splines36. Specifications for tuning parameters are in Appendix C.2.

Results

Our results for the heterogeneous effect scenario are summarized in Table 4.1 and Table 4.2.
Results for other DGPs are qualitatively similar so these are reported in Appendix C.3 along
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Prognostic score TMLE linear unadjusted
oracle -0.069 (4.341) 0.034 (9.727) -
fit -0.064 (4.482) 0.025 (9.710) -
none 0.009 (5.691) 0.072 (9.774) 0.153 (9.509)

Table 4.1: Empirical bias and variance for the point estimate of the trial ATE in the het-
erogeneous effect simulation scenario. Results in the table are formatted as “empirical bias
(empirical variance)”.

Table 4.2: Empirical bias and variance for the estimated standard error of the trial ATE
estimate. Results in the table are formatted as “empirical bias (empirical variance)”.

Prognostic score TMLE linear unadjusted
oracle 0.152 (0.003) 0.138 (0.028) -
fit 0.158 (0.005) 0.137 (0.029) -
none 0.180 (0.055) 0.213 (0.026) 0.139 (0.011)

with additional performance metrics.
Table 4.1 illustrates the mean of the empirical bias and empirical variance of the ATE

point estimate across the 200 simulations. The results demonstrate that prognostic adjust-
ment decreases variance relative to vanilla TMLE in the realistic heterogeneous treatment
effect scenario (results are similar in other scenarios). The reduction in variance results in
an increase in an 11% increase in power in this case. In terms of variance reduction, fitting
the prognostic score is almost as good as having the oracle in this most scenarios.

Prognostic adjustment also improves the variance of the linear estimator (corroborating
Schuler et al. (2021)104). But overall TMLE convincingly beats the linear estimator, with or
without prognostic adjustment, except for in the constant effect scenario where the two are
roughly equivalent with prognostic adjustment. The matching or slightly superior perfor-
mance of prognostically adjusted linear regression in the constant effect DGP is consistent
with the optimality property previously discussed in Schuler et al. (2021)104.

Importantly, the variance is not underestimated in any of our simulations meaning that
the coverage was nominal (95%) for all estimators (and thus strict type I error control was
attained; Appendix C.3). Including the prognostic score did not affect coverage in any case,
even when the trial and historical populations were different.

Table 4.2 illustrates the mean of the empirical bias and empirical variance of the estimated
standard error of the ATE estimate. The table corroborates the theoretical findings from
Section 3, namely that the variance of the estimated variance for an efficient estimator
(TMLE) is decreased by prognostic adjustment.

Using larger historical data sets increases the benefits of prognostic adjustment with
efficient estimators. Figure 4.1.A shows a detailed view of this phenomenon in terms of
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decrease in the average estimated standard error as the historical data set grows in size. In
effect, the larger the historical data, the smaller the resulting confidence intervals tend to be
in the trial (while still preserving coverage, see Appendix C.3), for the estimators leveraging
an estimated prognostic score. Figure 4.1.B shows the change in estimated standard error
as the trial size varies. This illustrates that the relative benefit of prognostic adjustment is
larger in smaller trials. Here we see an 11% increase in power comparing the TMLE with
versus without fitted prognostic score when n = 250, but an 80% increase when n = 100.
From Figure 4.1 we again see that the TMLE with the fitted prognostic score performs
almost as well as the TMLE with the oracle prognostic score when the historical sample size
is increased to around 1,000.

Standard error comparison with varying sample sizes
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Figure 4.1: Mean estimated standard errors across estimators when historical and trial sample
sizes are varied using the heterogeneous data generating process. When the historical sample size
is varied (Figure 4.1.A), the trial is fixed at n = 250. When the trial size is varied (Figure 4.1.B),
the historical sample is fixed at ñ = 1000.

When trial sample size n and historical sample size ñ = n2 increase together, our theory
predicts that the plug-in standard error may become asymptotically linear with prognostic
adjustment. This is confirmed by simulation (with 1,000 Monte Carlo simulations): as we
increase n with prognostic adjustment, the empirical variance of the estimated standard
error times n is closer to a flat line which indicates a near-

√
n rate of decay (Figure 4.2).

The same is not true without prognostic adjustment: the variance of the plug-in standard
error from TMLE is greater and falls more slowly.

We also observe that our method is relatively robust to both observed and unobserved
distributional shifts between historical and trial populations (Figure 4.3). When the shifts
are large, the prognostic score may be uninformative (most evident in Figure 4.3.B), but
including it may still improve efficiency (as seen in Figure 4.3.A). We also see that a good
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Figure 4.2: Variance of estimated standard error across estimators when historical and trial sample
sizes are varied using the constant effect data generating process. The historical sample size, ñ is
proportional to trial size n, where (ñ, n) = (n2, n).

prognostic score (no shift in distribution) substantially reduces the variability of the esti-
mated standard error. Variability increases with the magnitude of the covariate shift but
still does not exceed that of TMLE without prognostic adjustment.

Standard error comparison with shifted covariates
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Figure 4.3: Estimated standard errors across estimators when observed (Figure 4.3.A) and unob-
served shifts (Figure 4.3.B) are present in the historical sample relative to the trial sample.
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4.5 Case Study

In this section, we examine the use of TMLE with prognostic covariate adjustment in RCTs
involving people diagnosed with type 2 diabetes (T2D). T2D is a chronic disease with a
progressive deterioration of glucose control. Glucose control is normally evaluated by long-
term blood glucose level, measured by hemoglobin A1C (HbA1C). The analyses are carried
out using data provided by Novo Nordisk A/S originating from 14 previously conducted
RCTs within the field of diabetes, see Appendix C.4 for a full overview of the trials. Our
use of data for this study is approved by Novo Nordisk A/S.

We reanalyse the phase IIIb clinical trial called NN9068-4229, where the trial population
consisted of insulin naive people with T2D25. The participants of this trial were inade-
quately controlled on treatment with SGLT2i, a type of oral anti-diabetic treatment (OAD).
Inadequately controlled was defined as having a HbA1C of 7.0-11.0% (both inclusive). The
aim of the trial was to compare glycemic control of insulin IDegLira versus insulin IGlar as
add-on therapy to SGLT2i in people with T2D. The trial was a 26-week, 1:1 randomized,
active-controlled, open label, treat-to-target trial with 420 enrolled participants. One partic-
ipant was excluded due to non-exposure to trial product, yielding n = 419. The efficacy of
IDegLira was measured by the difference in change from baseline HbA1C to landmark visit
week 26. Our corresponding historical sample came from previously conducted RCTs with
a study population also consisting of insulin naive people with T2D, who were inadequately
controlled on their current OADs. A total of ñ = 3311 participants all receiving insulin
IGlar, were enrolled in the historical sample.

For the trial reanalysis in our study, we included patient measures of their demographic
background, laboratory measures, concomitant medication, and vital signs. The treatment
indicator where only used in the NN9068-4229 trial. For details on the specific measure-
ments, covariate distributions, and imputation of missing covariates see Appendix C.5, C.6,
and C.7. For the continuous covariates we see that the mean and standard deviation are
not particularly different between the historical and new trial sample, meaning that both
resemble a T2D population with uncontrolled glycemic control. Furthermore we see that
the range of continuous covariates for the new trial sample are contained in the range of the
historical sample. This indicates that the trial population is largely similar to the historical
population, at least in terms of observable covariates. For the categorical covariates the
distributions vary between the historical and new trial sample. However, all the categories
in the new trial sample are present in the historical sample.

A linear estimator with baseline HbA1C, region and pre-trial OADs as adjustment co-
variates was used in the original analysis of the primary endpoint in the NN9068-4229 trial.
In this analysis, an average treatment effect estimate of -0.340 (95% confidence interval [-
0.480;-0.200]). In this reanalysis, we report the result of five estimators: unadjusted, linear
regression (adjusting for all available covariates), linear regression with a prognostic score,
TMLE, and TMLE with a prognostic score. For this application, we expanded the library
of the super learner for a more comprehensive set of machine learning models than the sim-
ulation, including random forest17, k-nearest neighbor, and a more comprehensive set of
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tuning parameters for the xgboost model in addition to the previously specified library, see
Appendix C.2. Separately, we obtained the correlation of the fitted prognostic score against
the trial outcome. The prognostic score’s correlation with the outcome is 0.752 with control
subjects and 0.622 with treated subjects, indicating that adjustment for the score should
result in an improvement over unadjusted estimation104.

Table 4.3: Estimates for average treatment effect and with 95% confidence levels of change
in hemoglobin A1C from baseline to week 26 for insulin IDegLira versus insulin IGlar as
add-on therapy to SGLT2i in people with type 2 diabetes.

Prognostic score TMLE linear unadjusted
with -0.351 (s.e. 0.145) -0.355 (s.e. 0.157) -
without -0.369 (s.e. 0.150) -0.355 (s.e. 0.157) -0.248 (0.192)

This is a reanalyses of the NN9068-4229 trial using five different estimators where 1:1
randomization was performed. The total sample size is n = 419.

From Table 4.3, we see that the smallest confidence interval is obtained using TMLE with
prognostic score. All methods obtain similar point estimates except from the unadjusted
estimator. Notice that the linear estimator with or without a prognostic score yields the
same results, since the prognostic model is a linear model in this case (chosen as the model
that yielded lowest MSE from 20-fold cross-validation within the discrete super learner).

Table 4.4: Estimates for average treatment effect and with 95% confidence levels of change
in hemoglobin A1C from baseline to week 26 for insulin IDegLira versus insulin IGlar as
add-on therapy to SGLT2i in people with type 2 diabetes.

Prognostic score TMLE linear unadjusted
with -0.519 (s.e. 0.307) -0.544 (s.e. 0.438) -
without -0.582 (s.e. 0.349) -0.544 (s.e. 0.438) -0.344 (0.399)

This is a reanalyses of the NN9068-4229 trial using five different estimators where 50
participants from the control and treatment group, respectively, were chosen at random
yielding a total sample size of n = 100. The random selection is done 10 times and the

reported numbers are the average of the point estimates and standard error.

As illustrated by the simulation study and the asymptotic analysis in Sections 4.3 and
4.3, the relative benefit of prognostic adjustment is larger in smaller trials. To examine this
result, we sub-sampled from the the NN9068-4229 trial but reanalyzed with selecting 50
participants randomly from each group, resulting in n = 100. This random selection of 50
participants from each group is repeated 10 times and averaged to compute the point estimate
and standard error. The average correlation of the prognostic score with the outcome was
0.790 with control subjects and 0.656 with treated subjects. We see an relatively larger
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reduction in the standard error estimate using TMLE with prognostic covariate adjustment
compared to TMLE without in the reanalysis (Table 4.4).

4.6 Discussion

In this study we demonstrate the utility of incorporating historical data via a prognostic score
in an efficient estimator while maintaining strict type I error control. Using the prognostic
score via covariate adjustment overall improves the performance of the efficient estimator
by decreasing the standard error and improving its estimation. This method is most useful
in randomized trials with small sample sizes. Our proposed method is shown to be robust
against bias even when the historical sample is drawn from a different population.

Prognostic adjustment requires no assumptions to continue to guarantee unbiased causal
effect estimates. However, this comes with a trade-off: without introducing the risk of bias,
there is a limit on how much power can be gained and in what scenarios. For example, the
method of Li et al. (2021) (which imposes an additional assumption) can asymptotically
benefit from the addition of historical data, whereas our method can only provide gains in
small samples70. However, these gains are most important precisely in small samples because
estimated effects are likely to be of borderline significance, whereas effects are more likely to
be clear in very large samples regardless of the estimator used.

Besides being assumption-free, our method has other practical advantages relative to
data fusion approaches. For one, we do not require a single, well-defined treatment in the
historical data. Moreover, we do not require an exact overlap of the covariates measured in
the historical and trial data sets. It is also easy to utilize multiple historical data sets: if
they are believed to be drawn from substantially different populations, separate prognostic
scores can be built from each of them and included as covariates in the trial analysis. As
long as one of these scores is a good approximation of the outcome-covariate relationship in
one or more arms of the trial, there will be added benefits to power.

Prognostic adjustment with efficient estimators can also be used with pre-built or public
prognostic models: the analyst does not need direct access to the historical data if they can
query a model for predictions. This is helpful in cases where data is “federated” and cannot
move (e.g. when privacy must be protected or data has commercial value).

The theory we developed to explain the benefits of prognostic adjustment in the context
of efficient estimation for trials is easily generalizable to estimation of any kind of pathwise
differentiable parameter augmented with transfer learning from an auxiliary dataset. The
specific breakdown of different terms may differ but the overall intuition should be the same:
transfer learning may accelerate the disappearance of higher-order terms that depend on the
error rates of regression estimates.

Our approach is closely related to the transfer learning literature in machine learning.
In transfer learning, the goal is to use a (large) “source” dataset to improve prediction for a
“target” population for which we have only minimal training data117,123,132. In this work we
use a particular method of “transfer” (adjusting for the source/historical model prediction)
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to improve the target (trial) predictions, which drives variance reduction. It should also be
possible to leverage other more direct forms of model transfer for the outcome regression,
such as pre-training a deep learning model on the historical data and then fine-tuning using
the trial data.

Lastly, since we use efficient estimators, we can leverage the results of Schuler (2021) to
prospectively calculate power with prognostic adjustment102. In fact, we suspect the methods
of power calculation described in that work would improve in accuracy with prognostic
adjustment since the outcome regressions are “jump-started” with the prognostic score.
Verification of this fact and empirical demonstration will be left to future work.
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Appendix A Supplementary Material for Chapter 2

A.1 Comparison between the Love plot and the joint
treatment-outcome variable importance plot with signed measures
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Appendix Figure A.1: Comparison between the Love plot and the joint treatment-outcome variable
importance plot with signed measures.

A.2 Unadjusted bias as normalized expected bias in a finite
population framework

We now show that the change in the expected value of the finite population bias in equation
(10) associated with matching on one additional covariate X is related to the unadjusted
bias formula (8) when outcomes are drawn from a particular distribution. Assume the finite
population framework of Section 2.3 but suppose that in addition all 2K potential outcomes
under control in the study come from the following model:

Y (0) = β0X + ϵ. (14)

Note that this assumption does not change our strategy for inference, which will condition
on the realized values of Y (1) and Y (0); rather, we invoke it only at the design stage (i.e.
prior to observing or using study outcomes from the analysis sample) to help select a match.
Considering hypothetical outcome distributions in this manner in this way is common in
the matching literature, even though outcomes are not considered random for purposes of
inference53,59,95.
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Consider the expected value of expression (10) over all realizations of Y (0)s sampled from
model (14). We rewrite the resulting expression in terms of an expectation over all possible
treatment assignments Zki within matched pairs, conditional on the pairs themselves and
the covariates. The shorthand notations EY and EZ will be used to denote expectations over
these two distinct types of random variation.

EY

[
1

K

K∑
k=1

[Yk1(0)− Yk2(0)](pk1 − pk2)

∣∣∣∣∣X11, . . . , XK2

]

=
1

K

K∑
k=1

EY [Yk1(0)− Yk2(0) | X11, . . . , XK2](pk1 − pk2)

= β0 ·

[
1

K

K∑
k=1

(Xk1 −Xk2)(pk1 − pk2)

]

= β0 · EZ

[
1

K

K∑
k=1

(Xk1 −Xk2)(Zk1 − Zk2)

]
= β0 · EZ

[
X̄1,matched − X̄0,matched

]
(15)

where X̄z,matched indicates the sample mean of covariate values for matched individuals with
observed treatment z.

Now compare this quantity to the unadjusted bias formula (8), which we reprint here for
easier comparison:

∆jβj
SYpilot

= rXj,pilot,Ypilot

(X̄j1,analysis − X̄j0,analysis)

SXj,pilot

The βj and ∆j terms are sample quantities, while the terms in expression (15) are pa-
rameters. However, under model (14) β0 is the expected value of βj. The link between

∆j =
(X̄j1,analysis−X̄j0,analysis)

SXj,pilot

and E
[
X̄1,matched − X̄0,matched

]
is not as immediate; the scaling

factor SXj,pilot
is present in the first term but not the second, and they differ in whether

covariate imbalance is measured before or after matching. However, to construct a design-
stage diagnostic, it is reasonable to view X̄j1,analysis − X̄j0,analysis as an approximation to
X̄1,matched − X̄0,matched in the case where we ignore variable X when matching. Under this
interpretation, we may view unadjusted bias as a normalized estimate of the bias incurred
by ignoring variable X when matching as opposed to matching exactly on it.

A.3 Simulation study

A.3.1 Set up

We conduct a simulation to assess jointVIP’s ability to reduce bias empirically. Our data
generating process is structured with 5 confounders Xs (contribute to both treatment and
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outcome regressions), 30 variables W s contributed to treatment only, 3 variables V s con-
tributed to outcome only, and 30 variables Rs contributing to neither treatment or outcome
dimensions. I denotes the indicator function.

Xi ∼ I(Unif(0, 1) > 0.5) where i ∈ {1, ..., 5}
Wj ∼ I((Unif(0, 1)− 0.4) > 0.5) where j ∈ {1, ..., 30}
Vk ∼ I((Unif(0, 1)) > 0.5) where k ∈ {1, 2, 3}
Rl ∼ I((Unif(0, 1)) > 0.5) where l ∈ {1, ..., 30}

This yields 68 observed covariates in total. The treatment and outcome regressions are
specified linearly with a constant treatment effect of 0.5.

Z ∼ Binom(1,
1

1 + e−((0.2∗
∑5

i=1 Xi)+(0.5∗
∑30

j=1(−1)(j)∗Wj)−3)
)

Y = 3 ∗
3∑

k=1

Vk − 2 ∗
5∑

i=1

Xi + 0.5 ∗ Z + ϵ

Here ϵ denotes random normal noise simulated with mean 0 and standard deviation 0.5. We
take a pilot sample consisting of 4,000 control subjects, and an analysis sample with 3,000
subjects, among whom 292 receive treatment.

A.3.2 Design and estimation

In the simulated dataset, we conduct optimal pair matching using a Mahalanobis distance51.
We conduct a randomization test for the difference-in-mean statistics using a similar formal
framework to the one described in Section 3.3 of the main manuscript, but also invert this
test to construct confidence intervals (CIs) for matched pairs, following Rosenbaum 93).

The key question in this study design is which variables to use when computing the
multivariate matching distance. We test three general strategies: using all available vari-
ables, selecting variables based on imbalance information alone, and selecting variables using
jointVIP. For the latter two approaches, we also consider successive refinements of an initial
match based on computation of post-match versions of the relevant diagnostic.

For adjustment based on imbalance alone, we first generate a traditional Love plot or
balance table using pooled standardized mean difference (SMD) to evaluate imbalance. There
are 68 variables and 24 variables are have measured imbalance above the traditional absolute
0.1 cutoff for pooled SMD. First adjustment for the 24 variables would still leave 15 variables
still imbalanced, including 12 not included in the first Mahalanobis distance. Refining the
original distance to include these 12 additional variables leaves 18 variables still imbalanced,
but all are already present in the Mahalanobis distance so no further refinements are explored.

For adjustment using jointVIP, the researcher would first examine the unadjusted jointVIP
(Supplemental Fig. A.2.A). The unadjusted plot indicates 6 variables needing adjustment
above a 0.01 bias tolerance threshold. After the initial adjustment, the post-match jointVIP
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Appendix Figure A.2: Iterative usage of the joint variable importance plot showing all the variables
are under 0.005 bias curve

(Supplemental Fig. A.2.B) indicates an additional variable to be included as a variable
for tuning using this bias threshold, and a third iteration is suggested by the post-match
jointVIP following this refinement (Supplemental Fig. A.2.C). Note the difference in ap-
proach between jointVIP-based and imbalance-based selection; although unadjusted bias
metrics are under 0.005 for every variable after the final jointVIP refinement (Supplemental
Fig. A.2.D), 28 absolute standardized mean differences remain above the 0.1 cutoff.

Point estimates and confidence intervals for all six matches are reported in Table A.1.
While imbalance-based selection improves on the strategy using all variables (for which
the confidence interval does not even cover the true parameter), jointVIP is by far the
best performer both in terms of smallest bias achieved and shortest confidence interval
constructed. Replication code for the simulation is publicly available on GitHub:
(https://github.com/ldliao/jointVIP/blob/main/paper/simulation/code).

Matched Pairs Design Estimate and CI

Adjust all background variables 0.086 CI:(-0.327, 0.499)
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Adjust with imbalance via pooled SMD
first iteration 0.349 CI:(-0.177, 0.862)

second iteration 0.155 CI:(-0.188, 0.886)

Adjust with bias via jointVIP
first iteration 0.555 CI:(0.239, 0.870)

second iteration 0.515 CI:(0.259, 0.770)

third iteration 0.532 CI:(0.4545, 0.6099)

Appendix Table A.1: Comparing different designs in the simulation, where the true treatment
effect is 0.5.

A.4 Summary of all baseline variables of pregnant individuals
with gestational diabetes

Appendix Table A.2: Summary of all baseline variables of pregnant individuals with gesta-
tional diabetes.

2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Age (%) Under 25 552 (7.3) 1,029 (5.4) 349 (3.2)
Between 25-29 1,665 (22.1) 3,762 (19.6) 1,866 (17.3)
Between 30-34 2,584 (34.3) 7,101 (37.0) 4,165 (38.6)
Over 35 2,725 (36.2) 7,291 (38.0) 4,406 (40.8)

KP member 6 months
prior to pregnancy = yes (%)

5,891 (78.3) 15,752 (82.1) 9,004 (83.5)

Median housing income (%) Less than $ 40,000 892 (11.9) 784 (4.1) 355 (3.3)
$ 40,000 - $ 59,999 1,800 (23.9) 2,807 (14.6) 1,325 (12.3)
$ 60,000 - $ 79,999 1,903 (25.3) 3,769 (19.6) 2,132 (19.8)
$ 80,000 and above 2,931 (38.9) 11,823 (61.6) 6,974 (64.7)

Parity (%) 0 3,121 (41.5) 7,611 (39.7) 3,873 (35.9)
1 2,347 (31.2) 6,566 (34.2) 3,994 (37.0)
2 or more 2,058 (27.3) 5,006 (26.1) 2,919 (27.1)

Pre-pregnancy BMI (%) Underweight 100 (1.3) 391 (2.0) 76 (0.7)
Normal 1,921 (25.5) 5,107 (26.6) 1,706 (15.8)
Overweight 2,847 (37.8) 6,369 (33.2) 3,361 (31.2)
Obese 2,658 (35.3) 7,316 (38.1) 5,643 (52.3)

Race/ethnicity (%) Asian or
Pacific Islander

2,919 (38.8) 8,553 (44.6) 4,560 (42.3)

Hispanic (%) 2,322 (30.9) 5,013 (26.1) 2,923 (27.1)
White (%) 1,602 (21.3) 4,090 (21.3) 2,381 (22.1)
Black or
African American

315 (4.2) 736 (3.8) 410 (3.8)

Other/Unknown (%) 368 (4.9) 791 (4.1) 512 (4.7)
Singleton pregnancy = yes (%) 7,286 (96.8) 18,579 (96.9) 10,567 (98.0)
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Continuation of Table A.2

2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Alcohol consumption
prior to pregnancy = yes (%)

2,915 (38.7) 7,715 (40.2) 4,954 (45.9)

Alcohol consumption
during pregnancy = yes (%)

437 (5.8) 1,893 (9.9) 946 (8.8)

Smoking
prior to pregnancy = yes (%)

611 (8.1) 919 (4.8) 690 (6.4)

Smoking
during pregnancy = yes (%)

207 (2.8) 314 (1.6) 222 (2.1)

Arrythmia diagnosis = yes (%) 52 (0.7) 194 (1.0) 107 (1.0)
Asthma diagnosis = yes (%) 737 (9.8) 2,279 (11.9) 1,507 (14.0)
Chronic hypertension = yes (%) 435 (5.8) 846 (4.4) 591 (5.5)
Depression diagnosis
prior to pregnancy = yes (%)

624 (8.3) 1,538 (8.0) 1,020 (9.5)

Depression diagnosis
during pregnancy = yes (%)

455 (6.0) 2,639 (13.8) 1,626 (15.1)

Dyslipidemia diagnosis = yes (%) 305 (4.1) 1173 (6.1) 861 (8.0)
Family history of
diabetes = yes (%)

198 (2.6) 1202 (6.3) 822 (7.6)

History of
abortive outcome = yes (%)

694 (9.2) 2,253 (11.7) 1,412 (13.1)

History of GDM = yes (%) 856 (11.4) 3,401 (17.7) 2,608 (24.2)
History of macrosomia = yes (%) 69 (0.9) 145 (0.8) 147 (1.4)
Polycystic ovary syndrome
by diagnosis = yes (%)

263 (3.5) 831 (4.3) 653 (6.1)

Pre-pregnancy
pre-diabetes = yes (%)

479 (6.4) 1,802 (9.4) 1,915 (17.8)

Count of blood pressure
measurements taken (mean (SD))

6.21 (9.35) 4.65 (3.49) 5.11 (3.83)

Diastolic blood pressure
prior to pregnancy (mean (SD))

72.89 (8.32) 71.44 (10.15) 72.47 (10.08)

Systolic blood pressure
prior to pregnancy (mean (SD))

116.69 (11.53) 117.26 (13.38) 118.86 (13.36)

Diastolic blood pressure
prior to GDM diagnosis (mean (SD))

68.63 (8.76) 66.82 (9.70) 67.83 (9.59)

Systolic blood pressure
prior to GDM diagnosis (mean (SD))

114.45 (12.17) 114.43 (13.14) 116.37 (12.94)

Average diastolic blood pressure
prior to pregnancy (mean (SD))

72.96 (7.38) 71.26 (8.05) 72.24 (8.06)

Average systolic blood pressure
prior to pregnancy (mean (SD))

117.33 (10.42) 117.14 (11.00) 118.70 (10.98)

Median diastolic blood pressure
prior to pregnancy (mean (SD))

72.98 (7.52) 71.22 (8.26) 72.21 (8.29)

Median systolic blood pressure
prior to pregnancy (mean (SD))

117.16 (10.56) 116.86 (11.23) 118.41 (11.25)

Average diastolic blood pressure
prior to GDM (mean (SD))

69.26 (7.37) 67.68 (8.08) 68.89 (8.18)

Average systolic blood pressure
prior to GDM (mean (SD))

115.11 (10.55) 115.38 (11.15) 117.40 (11.17)
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Continuation of Table A.2

2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Median diastolic blood pressure
prior to GDM (mean (SD))

69.20 (7.55) 67.56 (8.29) 68.80 (8.38)

Median systolic blood pressure
prior to GDM (mean (SD))

114.91 (10.73) 115.13 (11.38) 117.16 (11.40)

Infant sex (%) Female 3,577 (47.5) 9,250 (48.2) 5,145 (47.7)
Male 3,855 (51.2) 9,862 (51.4) 5,605 (52.0)
Unknown 94 (1.2) 71 (0.4) 36 (0.3)

Glucose challenge
test value (mean (SD))

169.43 (22.38) 169.71 (22.14) 173.22 (24.32)

Gestational age at
GDM diagnosis (mean (SD))

26.06 (6.10) 26.86 (6.02) 23.53 (7.12)

Gestational weight gain
up to GDM diagnosis (mean (SD))

15.28 (11.04) 14.82 (10.99) 12.86 (11.35)

Gestational hypertension = yes (%) 385 (5.1) 1,546 (8.1) 884 (8.2)
GDM diagnosed by the
C-C criteria = yes (%)

7,323 (97.3) 17,303 (90.2) 8,419 (78.1)

One-hour OGTT = abnormal (%) 6,536 (86.8) 15,534 (81.0) 8,244 (76.4)
Two-hour OGTT = abnormal (%) 6,662 (88.5) 15,829 (82.5) 7,082 (65.7)
Three-hour OGTT = abnormal (%) 2,875 (38.2) 7,194 (37.5) 2,966 (27.5)
OGTT for
fasting blood glucose = abnormal (%)

2,165 (28.8) 3,762 (19.6) 4,512 (41.8)

GDM severity = severe (%) 775 (10.3) 1,744 (9.1) 1,215 (11.3)

BMI: body mass index, C-C: Carpenter-Coustan, GDM: gestational diabetes, KP: Kaiser Permanente,
OGTT: oral glucose tolerance test, SD: standard deviation.
A normal OGTT fasting blood glucose level is lower than 95 mg/dL.
A normal one-hour OGTT blood glucose level is lower than 180 mg/dL.
A normal two-hour OGTT blood glucose level is lower than 155 mg/dL.
A normal three-hour OGTT blood glucose level is lower than 140 mg/dL.

A.5 Missingness summary and out-of-bag imputation error
estimate

Appendix Table A.3: Missingness summary and out-of-bag imputation error estimate.
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Variables with missingness indicators
2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Gestational weight gain
up to GDM diagnosis (%)

1,391 (18.5) 2,504 (13.1) 1,307 (12.1)

Blood pressure measured
prior to pregnancy (%)

2,988 (39.7) 2,914 (15.2) 1,353 (12.5)

Blood pressure measured
prior to GDM (%)

658 (8.7) 35 (0.2) 46 (0.4)

Pre-pregnancy BMI (%) 1,326 (17.6) 866 (4.5) 350 (3.2)
Glucose challenge test value (%) 204 (2.7) 152 (0.8) 104 (1.0)
Median housing income 4 (0.1) 7 (0.0) 0 (0.0)
Parity1 0 (0.0) 26 (0.0) 13 (0.0)

Out-of-bag imputation error
Year NRMSE PFC
2007 2.14*10-6 7.96*10-2

2008 2.27*10-6 0.00
2009 2.35*10-6 8.02*10-2

2010 2.35*10-6 7.83*10-2

2011 3.83*10-5 1.01*10-1

2012 4.17*10-5 0.00
2013 4.09*10-5 9.73*10-2

2014 4.08*10-5 0.00
2015 4.13*10-5 0.00
2016 4.13*10-5 1.69*10-1

2017 4.04*10-5 8.37*10-2

2018 3.98*10-5 1.76*10-1

2019 3.79*10-5 0.00
2020 3.43*10-5 1.82*10-1

2021 3.28*10-5 1.82*10-1

NOTE: BMI: body mass index, GDM: gestational diabetes, NRMSE: Root mean squared error,
PFC: proportion of falsely classified entries
1Parity is only missing in analysis 2011-2021 dataset. Since the missingness is quite small compared
to data available, this indicator is dropped after imputation.
2007-2010 is the pilot data, and 2011-2021 is the analysis data.
The out-of-bag error imputation is calculated separately for continuous (NRMSE) and categorical
variables (PFC).
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A.6 Pre-and-post match comparison of background variables with
high unadjusted bias

Appendix Table A.4: Pre-and-post match comparison of background variables with high
unadjusted bias.

Caesarean section delivery

Background variable Pre-match bias Post-match bias

Propensity score1 0.074 0.0056
Prognostic score 0.043 0.0025
OGTT for
fasting blood glucose

0.023 0.0000

Obese pre-pregnancy BMI 0.023 0.0000
GDM diagnosed by the
C-C criteria

0.017 0.0001

Gestational age at
GDM diagnosis

0.013 0.0018

Pre-pregnancy pre-diabetes 0.012 0.0005
Normal pre-pregnancy BMI 0.010 0.0001

NOTE: BMI: body mass index, C-C: Carpenter-Coustan, C-section: Cesarean section,
GDM: gestational diabetes, OGTT: oral glucose tolerance test
1Denotes the maximum post-match unadjusted bias for that outcome.

A.7 Summary of all baseline variables of post-match treated
pregnant individuals

Appendix Table A.5: Summary of all baseline variables of post-match treated pregnant
individuals.

C-section delivery C-section delivery
included excluded
n = 8,693 n = 2,093

Age (%) Under 25 322 (3.7) 27 (1.3)
Between 25-29 1,522 (17.5) 344 (16.4)
Between 30-34 3,405 (39.2) 760 (36.3)
Over 35 3,444 (39.6) 962 (46.0)

KP member 6 months
prior to pregnancy = yes (%)

7,229 (83.2) 1,775 (84.8)

Median housing income (%) Less than $ 40,000 286 (3.3) 69 (3.3)
$ 40,000 - $ 59,999 1,051 (12.1) 274 (13.1)
$ 60,000 - $ 79,999 1,720 (19.8) 412 (19.7)
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Continuation of Table A.5

C-section delivery C-section delivery
included excluded
n = 8,693 n = 2,093

$ 80,000 and above 5,636 (64.8) 1,338 (63.9)
Parity (%) 0 3,214 (37.0) 659 (31.5)

1 3,203 (36.8) 791 (37.8)
2 or more 2,276 (26.2) 643 (30.7)

Pre-pregnancy BMI (%) Underweight 69 (0.8) 7 (0.3)
Normal 1,612 (18.5) 94 (4.5)
Overweight 2,862 (32.9) 499 (23.8)
Obese 4,150 (47.7) 1,493 (71.3)

Race/ethnicity (%) Asian or
Pacific Islander

3,796 (43.7) 764 (36.5)

Hispanic (%) 2,316 (26.6) 607 (29.0)
White (%) 1,880 (21.6) ) 501 (23.9)
Black or
African American

315 (3.6) 95 (4.5)

Other/Unknown (%) 386 (4.4) 126 (6.0)
Singleton pregnancy = yes (%) 8,508 (97.9) 2,059 (98.4)
Alcohol consumption
prior to pregnancy = yes (%)

3,731 (42.9) 1,223 (58.4)

Alcohol consumption
during pregnancy = yes (%)

750 (8.6) 196 (9.4)

Smoking
prior to pregnancy = yes (%)

467 (5.4) 223 (10.7)

Smoking
during pregnancy = yes (%)

156 (1.8) 66 (3.2)

Arrythmia diagnosis = yes (%) 81 (0.9) 26 (1.2)
Asthma diagnosis = yes (%) 1,138 (13.1) 369 (17.6)
Chronic hypertension = yes (%) 397 (4.6) 194 (9.3)
Depression diagnosis
prior to pregnancy = yes (%)

786 (9.0) 234 (11.2)

Depression diagnosis
during pregnancy = yes (%)

1,230 (14.1) 396 (18.9)

Dyslipidemia diagnosis = yes (%) 619 (7.1) 242 (11.6)
Family history of
diabetes = yes (%)

590 (6.8) 232 (11.1)

History of
abortive outcome = yes (%)

1,102 (12.7) 310 (14.8)

History of GDM = yes (%) 1,930 (22.2) 678 (32.4)
History of macrosomia = yes (%) 105 (1.2) 42 (2.0)
Polycystic ovary syndrome
by diagnosis = yes (%)

468 (5.4) 185 (8.8)

Pre-pregnancy
pre-diabetes = yes (%)

1,213 (14.0) 702 (33.5)

Count of blood pressure
measurements taken (mean (SD))

4.95 (3.58) 5.77 (4.67)
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Continuation of Table A.5

C-section delivery C-section delivery
included excluded
n = 8,693 n = 2,093

Diastolic blood pressure
prior to pregnancy (mean (SD))

72.05 (9.99) 74.21 (10.27)

Systolic blood pressure
prior to pregnancy (mean (SD))

118.10 (13.26) 121.97 (13.30)

Diastolic blood pressure
prior to GDM diagnosis (mean (SD))

67.29 (9.40) 70.04 (10.04)

Systolic blood pressure
prior to GDM diagnosis (mean (SD))

115.50 (12.67) 119.96 (13.46)

Average diastolic blood pressure
prior to pregnancy (mean (SD))

71.77 (7.93) 74.15 (8.29)

Average systolic blood pressure
prior to pregnancy (mean (SD))

117.91 (10.81) 121.98 (11.07)

Median diastolic blood pressure
prior to pregnancy (mean (SD))

71.75 (8.16) 74.15 (8.54))

Median systolic blood pressure
prior to pregnancy (mean (SD))

117.62 (11.06) 121.71 (11.42)

Average diastolic blood pressure
prior to GDM (mean (SD))

68.36 (7.96) 71.06 (8.71)

Average systolic blood pressure
prior to GDM (mean (SD))

116.54 (10.92) 120.99 (11.49)

Median diastolic blood pressure
prior to GDM (mean (SD))

68.27 (8.16) 70.98 (8.89)

Median systolic blood pressure
prior to GDM (mean (SD))

116.27 (11.15) 120.85 (11.67)

Infant sex (%) Female 4,134 (47.6) 1,011 (48.3)
Male 4528 (52.1) 1077 (51.5)
Unknown 31 (0.4) 5 (0.2)

Glucose challenge
test value (mean (SD))

172.47 (23.80) 176.32 (26.16)

Gestational age at
GDM diagnosis (mean (SD))

24.52 (6.57) 19.39 (7.80)

Gestational weight gain
up to GDM diagnosis (mean (SD))

13.63 (11.16) 9.64 (11.56)

Gestational hypertension = yes (%) 634 (7.3) 250 (11.9)
GDM diagnosed by the
C-C criteria = yes (%)

7,107 (81.8) 1,312 (62.7)

One-hour OGTT = abnormal (%) 6,825 (78.5) 1,419 (67.8)
Two-hour OGTT = abnormal (%) 6,146 (70.7) 936 (44.7)
Three-hour OGTT = abnormal (%) 2,575 (29.6) 391 (18.7)
OGTT for
fasting blood glucose = abnormal (%)

3,095 (35.6) 1,417 (67.7)

GDM severity = severe (%) 936 (10.8) 279 (13.3)
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Appendix B Supplementary Material for Chapter 3

B.1 Complete table of baseline variables and preexisting
conditions

Appendix Table B.1: Complete table of baseline variables and preexisting conditions.

All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

sample size 1,423,720 303,278 425,698 694,744

Demographic
variables
Age in years
(mean (SD))

42.15 (15.70) 46.41 (16.04) 44.89 (16.27) 38.61 (14.34)

Sex = male (%) 729,782 (51.3) 158,248 (52.2) 218,165 (51.2) 353,369 (50.9)
Insured by
IMSS = 1 (%))

1,358,440 (95.4) 288,588 (95.2) 402,754 (94.6) 667,098 (96.0)

Indigenous = 1 (%) 7,381 (0.5) 2,200 (0.7) 1,628 (0.4) 3,553 (0.5)
Year-month
patient initiated
care
2020/03 1,061 (0.1) 1,061 (0.3) 0 (0.0) 0 (0.0)
2020/04 10,832 (0.8) 10,832 (3.6) 0 (0.0) 0 (0.0)
2020/05 30,720 (2.2) 30,720 (10.1) 0 (0.0) 0 (0.0)
2020/06 51,079 (3.6) 51,079 (16.8) 0 (0.0) 0 (0.0)
2020/07 60,780 (4.3) 60,780 (20.0) 0 (0.0) 0 (0.0)
2020/08 49,618 (3.5) 49,618 (16.4) 0 (0.0) 0 (0.0)
2020/09 44,758 (3.1) 44,758 (14.8) 0 (0.0) 0 (0.0)
2020/10 54,430 (3.8) 54,430 (17.9) 0 (0.0) 0 (0.0)
2020/11 65,437 (4.6) 0 (0.0) 65,437 (15.4) 0 (0.0)
2020/12 93,748 (6.6) 0 (0.0) 93,748 (22.0) 0 (0.0)
2021/01 145,858 (10.2) 0 (0.0) 145,858 (34.3) 0 (0.0)
2021/02 68,421 (4.8) 0 (0.0) 68,421 (16.1) 0 (0.0)
2021/03 52,234 (3.7) 0 (0.0) 52,234 (12.3) 0 (0.0)
2021/04 35,181 (2.5) 0 (0.0) 0 (0.0) 35,181 (5.1)
2021/05 26,300 (1.8) 0 (0.0) 0 (0.0) 26,300 (3.8)
2021/06 45,986 (3.2) 0 (0.0) 0 (0.0) 45,986 (6.6)
2021/07 170,212 (12.0) 0 (0.0) 0 (0.0) 170,212 (24.5)
2021/08 249,477 (17.5) 0 (0.0) 0 (0.0) 249,477 (35.9)
2021/09 116,569 (8.2) 0 (0.0) 0 (0.0) 116,569 (16.8)
2021/10 48,515 (3.4) 0 (0.0) 0 (0.0) 48,515 (7.0)
2021/11 2,504 (0.2) 0 (0.0) 0 (0.0) 2,504 (0.4)
Mexican states (%)
Aguascalientes 26,420 (1.9) 6,897 (2.3) 12,350 (2.9) 7,173 (1.0)
Baja California 43,925 (3.1) 13,677 (4.5) 14,188 (3.3) 16,060 (2.3)
Baja California Sur 24,521 (1.7) 4,300 (1.4) 5,423 (1.3) 14,798 (2.1)
Campeche 9,557 (0.7) 1,728 (0.6) 765 (0.2) 7,064 (1.0)
CDMX 1 Noroeste 32,552 (2.3) 5,374 (1.8) 13,174 (3.1) 14,004 (2.0)
CDMX 2 Noreste 54,249 (3.8) 11,370 (3.7) 20,273 (4.8) 22,606 (3.3)
CDMX 3 Suroeste 42,896 (3.0) 9,701 (3.2) 17,588 (4.1) 15,607 (2.2)
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Continuation of Table B.1

All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

CDMX 4 Sureste 62,097 (4.4) 13,248 (4.4) 25,899 (6.1) 22,950 (3.3)
Chiapas 14,826 (1.0) 2,836 (0.9) 1,801 (0.4) 10,189 (1.5)
Chihuahua 23,229 (1.6) 6,489 (2.1) 6,879 (1.6) 9,861 (1.4)
Coahuila 48,933 (3.4) 16,355 (5.4) 15,459 (3.6) 17,119 (2.5)
Colima 18,310 (1.3) 2,997 (1.0) 2,633 (0.6) 12,680 (1.8)
Durango 19,738 (1.4) 6,228 (2.1) 6,674 (1.6) 6,836 (1.0)
Guanajuato 61,570 (4.3) 11,595 (3.8) 29,274 (6.9) 20,701 (3.0)
Guerrero 23,871 (1.7) 4,502 (1.5) 3,920 (0.9) 15,449 (2.2)
Hidalgo 23,673 (1.7) 4,658 (1.5) 8,266 (1.9) 10,749 (1.5)
Jalisco 104,054 (7.3) 19,491 (6.4) 27,868 (6.5) 56,695 (8.2)
Mexico Oriente 108,067 (7.6) 20,368 (6.7) 39,633 (9.3) 48,066 (6.9)
Mexico Poniente 48,973 (3.4) 11,632 (3.8) 17,026 (4.0) 20,315 (2.9)
Michoacan 30,570 (2.1) 6,246 (2.1) 7,221 (1.7) 17,103 (2.5)
Morelos 18,797 (1.3) 2,845 (0.9) 6,817 (1.6) 9,135 (1.3)
Nayarit 23,934 (1.7) 3,378 (1.1) 2,994 (0.7) 17,562 (2.5)
Nuevo Leon 105,912 (7.4) 23,776 (7.8) 30,114 (7.1) 52,022 (7.5)
Oaxaca 24,324 (1.7) 4,493 (1.5) 5,391 (1.3) 14,440 (2.1)
Puebla 50,998 (3.6) 9,287 (3.1) 17,932 (4.2) 23,779 (3.4)
Queretaro 41,977 (2.9) 4,707 (1.6) 19,259 (4.5) 18,011 (2.6)
Quintana Roo 38,390 (2.7) 4,607 (1.5) 4,542 (1.1) 29,241 (4.2)
San Luis Potosi 26,118 (1.8) 7,353 (2.4) 7,573 (1.8) 11,192 (1.6)
Sinaloa 44,333 (3.1) 11,030 (3.6) 9,405 (2.2) 23,898 (3.4)
Sonora 27,691 (1.9) 7,245 (2.4) 6,083 (1.4) 14,363 (2.1)
Tabasco 16,004 (1.1) 2,622 (0.9) 1,719 (0.4) 11,663 (1.7)
Tamaulipas 38,941 (2.7) 8,504 (2.8) 7,442 (1.7) 22,995 (3.3)
Tlaxcala 13,809 (1.0) 2,769 (0.9) 4,957 (1.2) 6,083 (0.9)
Veracruz Norte 41,804 (2.9) 10,002 (3.3) 6,801 (1.6) 25,001 (3.6)
Veracruz Sur 35,019 (2.5) 10,292 (3.4) 4,970 (1.2) 19,757 (2.8)
Yucatan 35,126 (2.5) 5,968 (2.0) 5,091 (1.2) 24,067 (3.5)
Zacatecas 18,512 (1.3) 4,708 (1.6) 8,294 (1.9) 5,510 (0.8)
Preexisting
conditions
Asthma = yes (%) 25,297 (1.8) 7,951 (2.6) 7,765 (1.8) 9,581 (1.4)
Cardiovascular
patient disease = yes (%)

17,816 (1.3) 6,643 (2.2) 6,389 (1.5) 4,784 (0.7)

Chronic liver
disease = yes (%)

1,875 (0.1) 710 (0.2) 668 (0.2) 497 (0.1)

COPD = yes (%) 15,390 (1.1) 5,825 (1.9) 5,496 (1.3) 4,069 (0.6)
Diabetes = yes (%) 169,869 (11.9) 55,551 (18.3) 61,120 (14.4) 53,198 (7.7)
Hemolytic

anemia = yes (%)
705 (0.0) 276 (0.1) 246 (0.1) 183 (0.0)

HIV = yes (%) 4,717 (0.3) 1,133 (0.4) 1,425 (0.3) 2,159 (0.3)
Hypertension = yes (%) 228,901 (16.1) 72,615 (23.9) 83,735 (19.7) 72,551 (10.4)
Immunosuppression
= yes (%)

10,434 (0.7) 4,102 (1.4) 3,453 (0.8) 2,879 (0.4)

Neurological
disease = yes (%)

1,645 (0.1) 544 (0.2) 559 (0.1) 542 (0.1)

Obesity = yes (%) 181,736 (12.8) 55,965 (18.5) 60,217 (14.1) 65,554 (9.4)
Smoking = yes (%) 87,161 (6.1) 21,253 (7.0) 28,346 (6.7) 37,562 (5.4)
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Continuation of Table B.1

All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

Cancer
diagnosis = yes (%)

3,751 (0.3) 1,178 (0.4) 1,317 (0.3) 1,256 (0.2)

Renal disease
diagnosis = yes (%)

24,099 (1.7) 8,912 (2.9) 8,555 (2.0) 6,632 (1.0)

Tuberculosis = yes (%) 675 (0.0) 203 (0.1) 218 (0.1) 254 (0.0)

CDMX: Ciudad de México; COPD: Chronic obstructive pulmonary disease;
HIV: human immunodeficiency virus; SD: standard deviation.
Mexican states refer to where the patient was treated.

B.2 Flowchart for analytic sample development

4,482,292 suspected 
COVID-19

1,511,598 got 
tested positive

1,425,693 
age over 20

1,423,720 
���������������

Phase 1 
(2020/03-2020/10)

303,278

Phase 2 
(2020/11-2021/03)

425,698

Phase 3 
(2021/04-2021/11)

694,744 

Dropped 1,973 unknown 
pre-existing conditions

Dropped 85,905 
age less than 20

Dropped 2,067,320 
tested negative

Dropped 903,374 
did not get tested

Appendix Figure B.1: Flowchart for analytic sample development.
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B.3 Age distribution for laboratory-confirmed COVID-19 patients
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Appendix Figure B.2: Age distribution for laboratory-confirmed COVID-19 patients.

B.4 Prevalence of preexisting conditions prevalence over time
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Appendix Figure B.3: Prevalence of preexisting conditions prevalence over time.
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B.5 Weighted combination of the super learner fit

Machine learning candidate algorithm Weights Mean squared error Standard error

Bayesian additive regression trees 0 0.266 0.0002
Bayesian generalized linear model 0 0.067 0.0003
Elastic net regression 0 0.068 0.0004
Empirical mean 0 0.094 0.0005
XGBoost (multiple tuning) 0.596 (combined) 0.065 (on average) 0.0003 (on average)
Generalized additive model 0.222 0.066 0.0004
LASSO regression 0 0.067 0.0004
Logistic regression 0 0.067 0.0004
Multivariate Adaptive Regression Splines 0 0.068 0.0004
Random forest 0.181 0.066 0.0002
Ridge regression 0 0.067 0.0002

Appendix Table B.2: Weighted combination of the super learner fit

B.6 Prediction variable importance predicted using the super
learner fit
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Obesity

Hypertension

Insured by IMSS

Diabetes

Sex

Mexican state
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Year−month patient
initiated care

Age
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Importance

result from super learner fit
Prediction variable importance

Appendix Figure B.4: Prediction variable importance predicted using the super learner fit.
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B.7 Top 5 ranked most important variables for prediction

All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

Rank 1 Age 0.147 Age 0.209 Age 0.208 Age 0.069
Rank 2 Year-month patient

initiated care 0.014)
Renal disease 0.008 Mexican state 0.007 Renal disease 0.004

Rank 3 Renal disease 0.005 Sex 0.007 Renal disease 0.006 Mexican state 0.003
Rank 4 Mexican state 0.004 Year-month patient

initiated care 0.007)
Insured by IMSS 0.006 Diabetes 0.003

Rank 5 Sex 0.004 Mexican state 0.006 Sex 0.006 Insured by IMSS 0.002

Appendix Table B.3: Prediction results.

B.8 Relative risk for each preexisting condition associated with
mortality
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Appendix Figure B.5: Relative risk for each preexisting condition associated with mortality.
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B.9 Targeted maximum likelihood estimation adjusted mortality
risk, with or without the preexisting condition

All time Phase 1 Phase 2 Phase 3
(2020/03-2021/11) (2020/03-2020/10) (2020/11-2021/03) (2021/04-2021/11)

with without with without with without with without

Renal disease 0.381 0.101 0.439 0.170 0.425 0.142 0.305 0.046
Diabetes 0.173 0.094 0.247 0.161 0.214 0.135 0.104 0.041

Hypertension 0.162 0.093 0.231 0.162 0.201 0.134 0.097 0.041
Obesity 0.141 0.099 0.212 0.168 0.177 0.141 0.080 0.045
Smoking 0.110 0.105 0.176 0.176 0.146 0.147 0.056 0.048
Asthma 0.109 0.105 0.166 0.177 0.139 0.147 0.059 0.049

Appendix Table B.4: Targeted maximum likelihood estimation adjusted mortality risk, with
or without the pre-existing condition.
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Appendix C Supplementary Material for Chapter 4

C.1 Expectation calculation when incorporating unobserved
covariate

By definition, an unobserved covariate U is never seen in real data but we include such a variable in simulation.
We aim to demonstrate that even if the outcome model can be learned perfectly from historical data, if there exists
an unobserved shift between the historical and trial sample, then the learned historical outcome model (prognostic
model) can never be equivalent to the trial outcome model. We explicitly write out the expectation of the outcome
Y given treatment A, baseline covariates W , and data set indicator D using an unobserved covariate U .

E[Y |A,W,D = d] =

∫
E[Y |A,W,U = u,D = d]p(u|A,W,D = d)du

A shift in the distribution p(u|A,W,D = 1) ̸= p(u|A,W,D = 0) of the unobserved covariate U will generally
result in unequal conditional expectations, i.e., E[Y |A,W,D = 1] ̸= E[Y |A,W,D = 0].

This shift is the basis of the simulation for Figure 3.B. In our simulation, we have U |A,W,D = 1 ∼ Unif(0, 1) and
U |A,W,D = 0 ∼ Unif(u, u) where the limits underline(u), overline(u) increase or decrease past 0 or 1 depending
on the desired magnitude of covariate shift. The “oracle” prognostic score is given by E[Y |A,W,D = 1], i.e. always
integrating over the correct (trial) density U |A,W,D = 1 ∼ Unif(0, 1).

By framing shifts in the conditional mean as shifts in an unobserved covariate we can directly control the
magnitude of the change instead of manually specifying different conditional mean functions.

C.2 Discrete learner specifications for simulation and case study.

C.2.1 Discrete super learner specifications

Machine learning is performed through discrete super learner that the targeted maximum likelihood estimator in-
ternally leverages. For simplicity, the prognostic model is built using the discrete super learner as well. A discrete
super learner selects from a set of candidate models (i.e., the library) to obtain a single, best prediction model via
cross-validation. In this section, we describe the exact tuning parameters and set up for the simulation and case
study.

C.2.2 Simulation set up

Cross-validation: 5-fold cross-validation is used to select the best candidate learner in the library for historical
sample size 1,000, and 10-fold cross-validation for historical sample size less than 1,000.
Cross-fit: 5-fold Cross-fitting is employed.
Discrete super learner library: Multivariate Adaptive Regression Splines with the highest interaction to be to the
3rd degree, linear regression, extreme gradient boosting with specifications: learning rate 0.1, tree depth 3, crossed
with trees specified 25 to 500 by 25 increments. Cases with fitted prognostic score include an augmented library that
includes candidate learners with prognostic score in addition.
Discrete super learner specifications: loss function is specified to be the mean square error loss.

C.2.3 Case study set up

Cross-validation: 20-fold cross-validation is used to select the best candidate learner in the library.
Cross-fit: 20-fold Cross-fitting is employed.
Discrete super learner library: Multivariate Adaptive Regression Splines with the highest interaction to be to
the 3rd degree, logistic regression, extreme gradient boosting with specifications: learning rate 0.1, tree depths 3, 5,
and 10, crossed with trees specified 25 to 500 by 25 increments, random forest with trees specified 25 to 500 by 25
increments, k-nearest neighbor of specification 3, 4, 5, 7, and 9 number of nearest neighbors, k. Cases with fitted
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prognostic score include an augmented library that includes candidate learners with prognostic score in addition to
without.
Discrete super learner specifications: loss function is specified to be the mean log likelihood loss.
Selected prognostic model: The selected learner from 20-fold cross validation is a linear regression model for both
the reanalyses with n = 419 and n = 100.

C.3 Simulation results for different data generation processes

Appendix Table C.1: Mean of empirically estimated bias, variance, and standard errors
of them for the targeted maximum likelihood estimator with or without prognostic score
across different DGPs. For all the scenarios the conditional means are shared with the
heterogeneous effect DGP, except for the constant effect DGP. Unless otherwise specified
(ñ, n) = (1000, 250).

Scenario Estimator prog. Bias Var. SE bias SE var. RMSE power coverage

heterogeneous effect

TMLE none 0.009 5.691 0.180 0.055 2.380 0.645 0.960
TMLE fitted -0.064 4.482 0.158 0.005 2.113 0.720 0.975
TMLE oracle -0.069 4.341 0.152 0.003 2.080 0.745 0.985
linear none 0.009 9.774 0.213 0.026 3.119 0.405 0.950
linear fitted -0.064 9.710 0.137 0.029 3.108 0.420 0.945
linear oracle -0.069 9.727 0.138 0.028 3.111 0.420 0.945
unadjusted none 0.153 9.509 0.139 0.011 3.080 0.435 0.950

constant effect

TMLE none 0.027 0.119 -0.010 0.001 0.345 0.655 0.945
TMLE fitted 0.025 0.067 0.028 0.000 0.260 0.790 0.970
TMLE oracle 0.034 0.074 0.005 0.000 0.273 0.780 0.960
linear none 0.032 0.427 0.014 0.001 0.653 0.240 0.940
linear fitted 0.023 0.069 0.014 0.000 0.263 0.800 0.970
linear oracle 0.025 0.060 0.020 0.000 0.246 0.840 0.970
unadjusted none 0.067 0.857 -0.037 0.001 0.926 0.150 0.945

small observed shift

TMLE none -0.001 5.699 0.178 0.055 2.381 0.640 0.960
TMLE fitted -0.096 4.851 0.187 0.038 2.199 0.715 0.970
TMLE oracle -0.074 4.411 0.133 0.003 2.096 0.740 0.985
linear none 0.071 9.771 0.213 0.025 3.119 0.405 0.950
linear fitted 0.094 9.835 0.205 0.026 3.130 0.405 0.950
linear oracle 0.025 9.702 0.142 0.028 3.107 0.415 0.945
unadjusted none 0.153 9.509 0.139 0.011 3.080 0.435 0.950

small unobserved shift

TMLE none -0.032 5.803 0.155 0.050 2.403 0.640 0.950
TMLE fitted -0.026 5.346 0.108 0.015 2.306 0.695 0.975
TMLE oracle -0.076 4.434 0.129 0.003 2.102 0.745 0.985
linear none 0.058 9.992 0.174 0.025 3.154 0.390 0.940
linear fitted -0.039 9.998 0.106 0.027 3.154 0.410 0.935
linear oracle -0.022 9.774 0.128 0.027 3.119 0.390 0.935
unadjusted none 0.118 9.314 0.173 0.010 3.046 0.425 0.950

small historical sample
(ñ, n) = (100, 250)

TMLE none 0.143 7.301 -0.154 0.039 2.699 0.690 0.930
TMLE fitted 0.121 6.006 -0.074 0.017 2.448 0.735 0.925
TMLE oracle 0.104 5.208 -0.046 0.004 2.279 0.755 0.935
linear none 0.234 11.884 -0.097 0.027 3.447 0.440 0.935
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Continuation of Table C.1

Scenario Estimator prog. Bias Var. SE bias SE var. RMSE power coverage

linear fitted 0.090 11.499 -0.093 0.028 3.384 0.430 0.955
linear oracle 0.093 11.309 -0.091 0.027 3.356 0.425 0.950
unadjusted none 0.146 10.439 -0.009 0.010 3.226 0.425 0.960

small trial sample
(ñ, n) = (1000, 100)

TMLE none 0.758 24.859 0.366 0.237 5.031 0.215 0.960
TMLE fitted 0.155 14.698 -0.116 0.039 3.827 0.380 0.955
TMLE oracle 0.092 14.016 -0.083 0.041 3.736 0.365 0.960
linear none 0.647 30.222 0.208 0.285 5.522 0.200 0.940
linear fitted 0.607 30.267 0.080 0.336 5.521 0.210 0.945
linear oracle 0.620 30.279 0.088 0.326 5.524 0.205 0.950
unadjusted none 0.670 21.590 0.468 0.076 4.683 0.205 0.970]

C.4 Case study data summary

Data
name

Trial ID Duration Titration
target

(mmol/L)

Blinding
type

test testNumber of
participants

test

test randomized completed

New RCT NN9068-4229 26 weeks 4.0-5.0 Open-label 210 206
NN9068-4228 104 weeks 4.0-5.0 Open-label 504 481
NN1250-3579 52 weeks 4.0-5.0 Open-label 257 197
NN1250-3586 26 weeks 4.0-5.0 Open-label 146 136
NN1250-3672 26 weeks 4.0-5.0 Open-label 230 201
NN1250-3718 26 weeks 4.0-5.0 Open-label 234 209
NN1250-3724 26 weeks 4.0-5.0 Open-label 230 206
NN1250-3587 26 weeks 4.0-5.0 Open-label 278 254

Historical NN9535-3625 30 weeks 4.0-5.5 Open-label 365 343
NN2211-1697 26 weeks ≤ 5.0 Double-blinded 34 219
NN5401-3590 26 weeks 3.9-5.0 Open-label 264 232
NN5401-3726 26 weeks 3.9-5.0 Open-label extension

of 3590
209

NN5401-3896 26 weeks 3.9-5.0 Open-label 149 137
NN1436-4383 26 weeks 4.4-7.2 Double-blinded 122 119
NN1436-4465 16 weeks 4.4-7.2 Open-label 51 51
NN1436-4477 78 weeks 4.4-7.2 Open-label 492 477

Appendix Table C.2: Summary of case study data provided by Novo Nordisk A/S. The new
RCT data is highlighted in grey. The historical data consists of all the data sets that are
not highlighted. The number of participants refers to the number of participants receiving
the existing daily insulin treatment IGlar.
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C.5 Summary of continuous measurements of the baseline

Appendix Table C.3: Summary of the continuous baseline covariates.

Historical sample New random trial sample

sample size 3311 419

age (years)
N 3311 419
mean (SD) 57.34 (9.92) 56.67 (10.28)
median 58.00 58.00
min; max 21.00; 85.00 25.00; 83.00

alanine aminotransferase (U/L)
N 3303 419
mean (SD) 29.51 (17.97) 26.63 (15.48)
median 25.00 23.00
min; max 2.50; 333.00 6.00; 138.00

albumin (g/dL)
N 3306 419
mean (SD) 4.48 (0.28) 4.51 (0.25)
median 4.50 4.50
min; max 2.50; 5.90 3.80; 5.20

alkaline phosphatase (U/L)
N 3305 419
mean (SD) 75.99 (23.50) 71.82 (22.31)
median 73.00 68.00
min; max 19.00; 261.00 20.00; 196.00

aspartate aminotransferase (U/L)
N 3299 419
mean (SD) 23.22 (12.13) 21.38 (9.86)
median 20.00 19.00
min; max 6.00; 227.00 6.00; 89.00

basophils blood (%)
N 3284 419
mean (SD) 0.53 (0.38) 0.39 (0.22)
median 0.40 0.40
min; max 0.00; 4.40 0.00; 1.60

body mass index (kg/m2)
N 3309 419
mean (SD) 30.72 (5.69) 31.22 (4.82)
median 30.22 31.00
min; max 16.01; 56.39 20.00; 43.30

body weight (kg)
N 3309 419
mean (SD) 86.27 (19.82) 88.30 (17.41)
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Continuation of Table C.3

Historical sample New random trial sample

median 84.90 86.30
min; max 36.30; 171.70 50.98; 145.33

change from baseline to week 26 HbA1c
N 2642 399
mean (SD) -1.48 (1.01) -1.81 (1.01)
median -1.40 -1.70
min; max -5.30; 2.60 -6.20 ; 1.20

creatinine (umol/L)
N 3308 419
mean (SD) 74.14 (18.56) 73.60 (15.64)
median 72.00 72.00
min; max 23.00; 409.00 36.00; 121.00

diabetes duration (years)
N 3311 419
mean (SD) 9.67 (6.36) 9.55 (6.26)
median 8.67 8.47
min; max 0.30; 49.65 0.44; 34.24

diastolic blood pressure (mmHg)
N 3309 419
mean (SD) 78.85 (8.53) 79.12 (8.37)
median 80.00 80.00
min; max 47.00; 116.00 57.00; 109.00

eosinophils Blood (%)
N 3284 419
mean (SD) 2.65 (2.35) 2.56 (2.06)
median 2.10 2.00
min; max 0.00; 43.70 0.00; 15.20

erythrocytes (1012/L)
N 3297 419
mean (SD) 4.68 (0.45) 5.08 (0.48)
median 4.70 5.00
min; max 3.10; 7.40 3.60; 7.50

fasting plasma glucose (mmol/L)
N 3268 411
mean (SD) 9.81 (2.65) 9.55 (2.53)
median 9.50 9.20
min; max 2.70; 22.60 3.60; 29.20

haematocrit blood (%)
N 3264 419
mean (SD) 42.49 (4.16) 45.28 (4.24)
median 42.50 45.50
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Continuation of Table C.3

Historical sample New random trial sample

min; max 22.80; 60.50 31.20; 58.40

hemoglobin A1C at baseline (%)
N 3311 419
mean (SD) 8.39 (0.92) 8.28 (1.01)
median 8.30 8.10
min; max 6.60; 12.80 6.50; 13.50

high density lipoprotein cholesterol (mmol/L)
N 3277 410
mean (SD) 1.18 (0.33) 1.21 (0.35)
median 1.14 1.14
min; max 0.21; 3.99 0.31; 2.69

height (m)
N 3311 419
mean (SD) 1.67 (0.10) 1.68 (0.09)
median 1.67 1.68
min; max 1.36; 2.03 1.43; 2.01

low density lipoprotein cholesterol (mmol/L)
N 3270 409
mean (SD) 2.46 (0.94) 2.42 (1.01)
median 2.36 2.28
min; max 0.00; 6.73 0.10; 7.10

leukocytes (109/L)
N 3297 419
mean (SD) 7.33 (1.93) 7.93 (2.04)
median 7.10 7.80
min; max 2.80; 17.60 3.60; 15.80

lymphocytes blood (%)
N 3284 419
mean (SD) 30.00 (7.88) 29.39 (7.66)
median 29.70 28.70
min; max 4.60; 71.00 10.70; 55.10

monocytes blood (%)
N 3284 419
mean (SD) 5.88 (2.19) 5.83 (2.30)
median 5.70 5.70
min; max 0.00; 21.70 0.50; 17.20

neutrophils blood (%)
N 3284 419
mean (SD) 60.93 (8.68) 61.83 (9.00)
median 61.10 62.20
min; max 16.60; 91.60 25.20; 86.50
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Continuation of Table C.3

Historical sample New random trial sample

potassium (mmol/L)
N 3304 419
mean (SD) 4.48 (0.42) 4.53 (0.41)
median 4.49 4.50
min; max 3.10; 7.00 3.30; 6.50

pulse (beats/min)
N 3310 419
mean (SD) 75.31 (10.00) 75.56 (9.34)
median 75.00 76.00
min; max 45.50; 118.00 52.00; 108.00

sodium (mmol/L)
N 3303 419
mean (SD) 139.73 (2.81) 140.19 (2.44)
median 140.00 140.00
min; max 121.00; 154.00 132.00; 148.00

systolic blood pressure (mmHg)
N 3309 419
mean (SD) 131.53 (14.40) 129.69 (13.69)
median 131.00 130.00
min; max 90.00; 200.00 96.00; 171.00

thrombocytes (109/L)
N 3269 419
mean (SD) 240.18 (64.34) 244.27 (64.91)
median 233.00 242.00
min; max 13.00; 611.00 63.00; 477.00

total bilirubin (umol/L)
N 3304 419
mean (SD) 8.10 (4.33) 8.12 (4.73)
median 7.00 7.00
min; max 0.00; 36.00 1.00; 33.00

total cholesterol (mmol/L)
N 3284 410
mean (SD) 4.54 (1.13) 4.59 (1.28)
median 4.43 4.43
min; max 0.93; 13.93 2.02; 11.37

triglycerides (mmol/L)
N 3279 410
mean (SD) 2.07 (1.78) 2.23 (2.36)
median 1.65 1.70
min; max 0.24; 34.25 0.38; 27.80
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C.6 Summary of categorical baseline covariates of the case study

Appendix Table C.4: Summary of the continuous baseline covariates.

Historical sample New random trial sample
N (%) N (%)

sample size 3311 419

sex
female 1480 (44.7) 173 (41.3)
male 1831 (55.3) 246 (58.7)

race
Asian 820 (24.8) 65 (15.5)
Black or African American 183 (5.5) < 5
Other 67 (2.0) < 5
White 2241 (67.7) 346 (82.6)

smoking status
current 241 (7.3) 53 (12.6)
never 910 (27.5) 249 (59.4)
previous 378 (11.4) 116 (27.7)

region
Asia 748 (22.6) 57 (13.6)
Europe 1303 (39.4) 228 (54.4)
North America 1015 (30.7) 89 (21.2)
South Africa 91 (2.7) 0
South America 154 (4.7) 45 (10.7)

ethnicity
Hispanic or Latino 461 (13.9) 68 (16.2)
not Hispanic or Latino 2806 (84.7) 351 (83.8)

titration target
3.9-5.0 mmol/l 410 (12.4) 0
4.0-5.0 mmol/l 2236 (67.5) 419 (100.0)
4.4-7.2 mmol/l 665 (20.1) 0

blinding
double-blinded 122 (3.7) 0
open-label 3189 (96.3) 419 (100.0)

Biguanides
yes (continued in trial) 2873 (86.8) 369 (88.1)
yes (discontinued in trial) 248 (7.5) 27 (6.4)
no 190 (5.7) 23 (5.5)

Sulfonylureas
yes (continued in trial) 436 (13.2) < 5
yes (discontinued in trial) 1485 (44.9) 0
no 1390 (42.0) > 414
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Continuation of Table C.4

Historical sample New random trial sample
N (%) N (%)

DPP4
yes (continued in trial) 278 (8.4) < 5
yes (discontinued in trial) 361 (10.9) > 123
no 2672 (80.7) > 285

other blood glucose
lowering drugs

yes (continued in trial) < 5 0
yes (discontinued in trial) > 79 0
no > 3220 419 (100.0)

Alpha Glucosidase inhibitor
yes (continued in trial) 87 (2.6) 0
yes (discontinued in trial) 69 (2.1) 0
no 3155 (95.3) 419 (100.0)

combination of blood
glucose lowering drug

yes (continued in trial) 32 (1.0) 0
yes (discontinued in trial) 36 (1.1) 8 (1.9)
no 3243 (97.9) 411 (98.1)

Thiazolidinediones
yes (continued in trial) 78 (2.4) 20 (4.8)
yes (discontinued in trial) 29 (0.9) 0
no 3204 (96.8) 399 (95.2)

SGLT2i
yes (continued in trial) 175 (5.3) > 383
yes (discontinued in trial) 15 (0.5) > 25
no 3121 (94.3) < 5

GLP-1 receptor agonist
yes (continued in trial) 79 (2.4) 0
yes (discontinued in trial) 13 (0.4) 0
no 3219 (97.2) 419 (100.0)

C.7 Missing pattern of the case study

To clean and curate the 14 data sets we imputed the HbA1C at week 26 value. For the historical sample the
imputation was made using an ANCOVA model with last observed HbA1C measurement before landmark
visit, time point of last measurement, baseline HbA1C, discontinuation prior to week 26 indicator and
study-id as adjustment covariates. For the new trial data a similar approach was employed. However, in this
case the last observed HbA1C measurement before landmark visit week 26, time point of last measurement,
baseline HbA1C, discontinuation prior to week 26 indicator, region, treatment indicator and pre-study OADs
were used as adjustment covariates. This was done in order to use a similar imputation as used in the original
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analysis.
After imputing the HbA1C at week 26 value a total 94.4% of the participants had complete data for

the combined historical and new trial data. The missingness of the covariates is displayed below. For the
covariates we included missingness indicators and respectively imputed covariates using random forest111.
This was done seperately on the historical and new trial data. The normalized root mean square error was
0.218 for continuous covariates and proportion of falsely classified is 0.004 for the historical data sample. The
normalized root mean square error was 0.010 for continuous covariates and proportion of falsely classified
is 0.023 for the new trial data. The missingness indicators of the historical sample did all overlap with the
missingness indicators from NN9068-4229 trial. Since some of the covariates had near zero variance, were
colinear or had large absolute correlation with each other we removed some of the covariates.

Appendix Figure C.1: Number of missing covariates (left) and combination of missingness of co-
variates (right).

Due to near zero variance, collinearity or high absolute correlation between the covariates, we excluded
some of the values. Thus the baseline covariates used in the model where reduced to the following:

• age

• diabetes duration

• body mass index

• HbA1C

• height

• weight

• Alanine aminotransferase

• Albumin

• Alkaline phosphatase

• Aspartate aminotransferase

• Basophils

• Creatinine

• Eosinophils

• Erythrocytes
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• fasting plasma glucose

• Haematocrit

• HDL cholesterol

• LDL cholesterol

• Leukocytes

• Lymphocytes

• Monocytes

• Potassium

• Sodium

• Thrombosytes

• Total bilirubin

• Total cholesterol

• Triglycerides

• Diastolic blood pressure

• pulse

• Systolic blood pressure

• country

• sex

• race

• smoking status

• region

• ethnicity

• Biguanides

• DPP4

• SGLT2I

• Previous OADs
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