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A Divide-and-conquer Algorithm for

Identifying Strongly Connected

Components ?
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aCenter for Communication Research, IDA
bT. J. Watson Research Center, IBM

cDiscrete Algorithms & Math Dept., Sandia National Laboratories
dComputational Research Division. Lawrence Berkeley National Laboratory

Abstract

The strongly connected components of a directed graph can be found in an optimal
linear time, by algorithms based on depth first search. Unfortunately, depth first
search is difficult to parallelize. We describe two divide-and-conquer algorithms for
this problem that have significantly greater potential for parallelization. We show
the expected serial runtime of our simpler algorithm to be O(m log n), for a graph
with n vertices and m edges. We then show that the second algorithm has O(m log n)
worst–case complexity.

Key words: Design of algorithms, analysis of algorithms, graph algorithms,
parallel algorithms, discrete ordinates method.

1 Introduction

The decomposition of a directed graph into strongly connected components is
a fundamental tool in graph theory with applications in compiler analysis, data
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mining, scientific computing, and other areas. Tarjan [18] devised an optimal
O(m + n) algorithm for identifying strongly connected components for a graph
with n vertices and m edges, which is based on depth first search (DFS) of the
graph. Sharir [17]’s algorithm for identifying strongly connected components is
also built on DFS and is widely used in textbooks as an example of the power of
DFS [6]. Recently, Gabow [9] described an algorithm that avoids vertex labeling,
which is again based on DFS.

For large problems, a parallel algorithm for identifying strongly connected com-
ponents would be useful. One application of particular interest to us is discussed
below. Unfortunately, DFS is difficult to parallelize. Reif showed that the lexi-
cographical DFS problem is P -Complete [16]. However, Aggarwal and Ander-
son [1] and Aggarwal et al. [2] describe randomized NC algorithms for finding
a DFS of undirected and directed graphs, respectively. The expected runtime
of this latter algorithm is O(log7 n) and it requires an impractical O(n2.376)
processors. To our knowledge, the deterministic parallel complexity of DFS for
general, directed graphs is an open problem. Chaudhuri and Hagerup studied
the problem for acyclic [5] and planar graphs [11], respectively. More practically,
DFS is a difficult operation to parallelize and we are aware of no algorithms
or implementations that perform well on large numbers of processors. Conse-
quently, the utility of Tarjan’s algorithm in parallel is questionable.

Alternatively, there exist several parallel algorithms for the strongly connected
components problem (SCC) that avoid the use of depth first search. Gazit and
Miller devised an NC algorithm, which is based upon matrix–matrix multipli-
cation [10]. This algorithm requires O(n2.376) processors and O(log2 n) time.
Kao developed a more complicated NC algorithm for planar graphs that re-
quires O(log3 n) time and n/ log n processors [12]. More recently, Bader has
an efficient parallel implementation of SCC for planar graphs [3], which uses
a packed–interval representation of the boundary of a planar graph. When n
is much larger than p, the number of processors, Bader’s approach has been
observed to have an O(n/p) performance in practice [3]. But Bader’s approach
does not apply to general graphs.

Our interest in the SCC problem is motivated by the discrete ordinates method
for modeling radiation transport. In this method, the object to be studied is
modeled as a union of polyhedral finite elements. Each element is a vertex in
our graph and an edge connects any pair of elements that share a face. The
radiation equations are approximated by an angular discretization. For each
angle in the discretization, the edges in the graph are directed to align with the
angle. The computations associated with an element can be performed if all its
predecessors have been completed. Thus, for each angle, the set of computations
are sequenced as a topological sort of the directed graph. A problem arises if the
topological sort cannot be completed, i.e., the graph has a cycle. If cycles exist,
the numerical calculations need to be modified, typically by using old informa-
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tion along one of the edges in each cycle, thereby removing the dependency. So
identifying strongly connected components quickly is essential. Since radiation
transport calculations are computation- and memory-intensive, parallel imple-
mentations are necessary for large problems. Also, since the geometry of the
grid can change after each time-step for some applications, the SCC problem
must be solved in parallel. Efficient parallel implementations of the topological
sort step of the radiation transport problem have been developed for structured
grids, oriented grids that have no cycles [4,7]. Some initial attempts to gener-
alize these techniques to unstructured grids are showing promise [14,15]. It is
these latter efforts that motivated our interest in the SCC problem.

In this paper, we describe simple divide-and-conquer algorithms for finding
strongly connected components. We show one algorithm has expected serial
complexity O(m log n), and a modification has worst case serial complexity
O(m log n). Our approach has good potential for parallelism for two reasons.
First, the divide-and-conquer paradigm generates smaller problems that can be
solved independently. Second, the basic step in our algorithm is a reachabil-
ity analysis, which is similar to topological sort in its parallelizability. In fact,
McLendon, et al. [13] have implemented a parallel version of our algorithm and
they report very encouraging results.

2 Preliminaries

Let G = (V, E) be a directed graph with vertex set V and directed-edge set E.
Let n = |V | and m = |E|. An edge (i, j) ∈ E is directed from vertex i to vertex
j. A vertex v is reachable from a vertex u if there is a sequence of directed edges
(u, x1), (x1, x2), . . . , (xk, v) ∈ E. A vertex is reachable from itself. A strongly
connected component of G is a maximal subset S of V such that each vertex
in S is reachable from every other vertex in S. The set of strongly connected
components of G is denoted SCC(G). Note that SCC(G) is a partition of V .
The unique element of SCC(G) that contains v is denoted SCC(G, v). V \X
denotes the subset of vertices in V which are not in a subset X. The size of
vertex set X is denoted by |X|. Given a vertex v ∈ V , the descendants of v,
Desc(G, v), is the subset of vertices in G that are reachable from v. Similarly,
the predecessors of v, Pred(G, v), is the subset of vertices from which v is
reachable. The set of vertices that is neither reachable from v nor reach v is
called the remainder, denoted by Rem(G, v) = V \ (Desc(G, v) ∪ Pred(G, v)).
Given a graph G = (V, E) and a subset of vertices V ′ ⊆ V , the induced subgraph
G′ = (V ′, E ′) contains all edges of G connecting vertices of V ′, i.e. E ′ = {(u, v) ∈
E : u, v ∈ V ′}. We will use 〈V ′〉 = G′ = (V ′, E ′) to denote the subgraph of G
induced by vertex set V ′.

Lemma 2.1 Let G be a directed graph with vertex v. Then SCC(G, v) =
Desc(G, v)∩Pred(G, v); and every other strongly connected component in SCC(G)
is a strongly connected component of exactly one of 〈Desc(G, v) \ SCC(G, v)〉,
〈Pred(G, v) \ SCC(G, v)〉, or 〈Rem(G, v)〉.
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DCSC(G)
If G has no edges then

forall v ∈ V Output {v}.
Else

Select a random vertex v from V
SCC ← Pred(G, v) ∩Desc(G, v)
Output SCC
DCSC(〈Pred(G, v) \ SCC〉)
DCSC(〈Desc(G, v) \ SCC〉)
DCSC(〈Rem(G, v)〉)

Fig. 1. A divide-and-conquer algorithm that outputs all of the strongly connected
components of a directed graph.

Proof: The equality SCC(G, v) = Desc(G, v) ∩ Pred(G, v) follows immedi-
ately from the definitions. Let u and w be two vertices of the same strongly
connected component in G. By definition, u and w are reachable from each
other. The proof involves establishing u ∈ Desc(G, v) ⇐⇒ w ∈ Desc(G, v) and
u ∈ Pred(G, v) ⇐⇒ w ∈ Pred(G, v), which then implies u ∈ Rem(G, v) ⇐⇒
w ∈ Rem(G, v). Since the proofs of these two statements are symmetric, we
give just the first: If u ∈ Desc(G, v) then u must be reachable from v. But then
w must also be reachable from v, so w ∈ Desc(G, v).

3 A Divide-and-conquer Algorithm

In this section, we describe a divide-and-conquer algorithm that finds all of
the strongly connected components of a directed graph and show that it has
expected run time O(m log n). The algorithm, called DCSC (for Divide-and-
conquer Strong Components), is sketched in Figure 1. The basic idea is to select
an arbitrary vertex v, which we call a pivot vertex, and find its descendant and
predecessor sets. The intersection of the predecessor and descendant sets is
SCC(G, v) by Lemma 2.1. After outputting SCC(G, v), the vertices in G \
SCC(G, v) are divided into three sets: Desc(G, v), Pred(G, v), and Rem(G, v).
By Lemma 2.1, any additional strongly connected component must be entirely
contained within one of these three sets, so we can divide the problem and
recurse.

The run time of the algorithm depends on the choice of the pivot vertex. For
the analysis in the next section, we select the pivot vertex uniformly at random.

As mentioned above, this algorithm is amenable to practical parallelization on
two levels. First, the recursive invocations are completely independent and so
can execute independently. Second, the searches for predecessors and descen-
dants allow for much more parallelism than does a depth first search.
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3.1 Complexity of Algorithm DCSC

The cost of algorithm DCSC consists of time spent in predecessor and descen-
dant searches, plus the time to report strongly connected components. The last
term takes linear time in the number of vertices over the course of the algorithm.
The remaining terms can be bounded as follows.

The performance of the algorithm depends on the sizes of the recursive calls,
and hence on the choice of the pivot vertex. The worst case occurs when the
predecessor or descendant set is very large, which leads to Θ(mn) runtime.
The best case occurs when the remainder set is very large, which leads to
Θ(m) runtime. Below we show that by choosing v to be chosen uniformly at
random from V , the expected complexity of the algorithm can be bounded as
Θ(m lg n + n).

Lemma 3.1 For a directed graph G, there is a numbering πG of the vertices
from 1 to n for which the following is true. All vertices vj in 〈Pred(G, v) \
SCC(G, v)〉 satisfy πG(vj) < πG(v); and all vertices vj in 〈Desc(G, v)\SCC(G, v)〉
satisfy πG(vj) > πG(v).

Proof: If G is acyclic, then a topological sort provides a numbering with this
property. If G has cycles, then each strongly connected component can be con-
tracted into a single vertex, and the resulting acyclic graph can be numbered
via topological sort. An ordering of the vertices is obtained by replacing each
strongly connected component by a list of the vertices it contains.

It is important to note that we do not need to construct an ordering with this
property; we just need to know that it exists. In the remainder of this section,
we refer to a vertex ordering according to this lemma as a consistent ordering
of the vertices.

Theorem 3.2 Algorithm DCSC has expected time complexity O(m lg n + n).

Proof: We will show that the expected number of times an edge e is explored
in a descendant search is O(log n). This then holds symmetrically for predecessor
searches and proves the theorem.

Let f(G, e) be the expected number of times edge e gets explored. Let d(r) be
the maximum of f(G, e) over all edges e and all graphs G with r vertices. The
proof of the theorem is established by showing that

d(r) ≤ Hr = 1 + 1/2 + 1/3 + ... + 1/r = Θ(lg r). (1)

How many times does an edge e = (u,w) get explored in descendant searches? It
is last explored when the strongly connected component containing u is discov-
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ered. All other visits occur from searches originating on a vertex v that is before
u in the consistent ordering. There are at most πG(u) − 1 such vertices. Con-
sider the subgraph G′ induced by 〈Desc(G, v) \ SCC(G, v)〉 for such a v. This
subgraph has a consistent ordering in which πG′(u) is at most πG(u) − πG(v).
This leads to the following recurrence for d(n).

d(n)≤ 1 +
1

n

n∑

i=1

d(n− i)

= 1 +
1

n

n−1∑

i=0

d(i) (2)

We claim that Hr = 1 + 1/2 + ... + 1/n satisfies this recursion. It follows that
d(r) ≤ H(r) = Θ(lg n) and the theorem follows.

To show that the quantity dr = Hr satisfies the recursion multiply (2) by r,
and subtract the similar equation with r − 1 replacing r:

r ∗ d(r) = r + d(0) + d(1) + ... + d(r − 2) + d(r − 1)

− [ (r − 1) ∗ d(r − 1) = (r − 1) + d(0) + d(1) + ... + d(r − 2) ].

This yields r ∗ d(r)− (r− 1) ∗ d(r− 1) = r + d(r− 1)− (r− 1), or equivalently,
d(r) = d(r − 1) + 1/r.

3.2 A Tight Example

The following example shows the bound O(m log n) is tight. Start with a di-
rected path of length n. Add edges from the last vertex in the path to a set of r
new vertices. And then add edges from each of these r vertices to a set of r ad-
ditional vertices to form a complete bipartite subgraph Kr,r with

√
n ≤ r ≤ nα

for α < 1.

On this graph, the algorithm will choose a decreasing sequence of vertices on
the path, each exercising the whole bipartite graph, before picking some vertex
in the bipartite graph (and breaking it). For simplicity of notation, let x = 2r.
Let g(n, x) be the expected length of this sequence when the directed path has
length n. We show by induction on n that g(n, 2r) = Hn+2r − H2r, which is
Θ(log n).

We may write g(n, x) as

g(n, x) =
n∑

i=1

1

n + x
[1 + g(i− 1, x)]. (3)
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Note that g(1, x) = 1
x+1

. Use induction to replace g(i−1, x) in (3) with Hi−1+x−
Hx to get

g(n, x) =
n

n + x
+

1

n + x

n−1∑

i=1

n− i

x + i

=
1

n + x
+

n−1∑

i=1

[
1

n + x
+

n− i

(x + i)(n + x)
]

=
1

n + x
+

n−1∑

i=1

1

x + i
= Hn+x −Hx.

4 A Worst Case O(m log n)-time Algorithm

In this section, we modify the algorithm from §3 to achieve a worst case
O(m log n) time complexity. The basic observation here is that we don’t need to
find both the predecessor and descendant sets, but rather just the intersection of
these two sets, which gives SCC(G, v). This intersection can be found by first
finding the predecessor (or the descendant) set completely, and then search-
ing for descendants within the predecessor set. Once we have Pred(G, v) (or
Desc(G, v)) and SCC(G, v), the algorithm can recurse on 〈Pred(v) \ SCC(v)〉
and 〈G \ Pred(v)〉. Choosing the smaller of the predecessor or the descendant
sets will be more efficient, since it decomposes the problem with less work.
However, we don’t know which set is smaller, so instead, we will simultaneously
search for both and abandon the second search when the first one finishes. In
this modified algorithm, the work for each decomposition is proportional to the
smaller of the number of edges in the predecessor set and the number of edges in
the descendant set, whereas it is proportional to the sum of the number of edges
in these two sets in the original algorithm. The resulting algorithm WDCSC
is sketched in Figure 2. The algorithm is somewhat more complex than that
of §3, and its parallelization would be more difficult, but it has a deterministic
performance guarantee.

Theorem 4.1 Algorithm WDCSC runs in worst case O(m log n)-time.

Proof: Let T (m) be the run time of WDCSC on a graph with m edges. Let
s to denote the total number of edges in the subgraph induced by the vertex
set SCC(G, v). Let p denote the total number of edges in the subgraph induced
by the vertex set Pred(G, v), minus s. Symmetrically, let d denote the total
number of edges in the subgraph induced by the vertex set Desc(G, v), minus
s. By symmetry, we can assume p ≤ d. Then T (m) can be expressed as

T (m) ≤ T (p) + T (m− p− s) + c2(p + s), (4)
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WDCSC(G)
If G is not empty then

Select v uniformly at random from V
Simultaneously search for Pred(G, v) and Desc(G, v)
If Pred(G, v) finishes first

Search for Desc(G, v) only in Pred(G, v).
SCC ← Desc(G, v) ∩ Pred(G, v).
WDCSC(〈Pred(G, v) \ SCC〉)
WDCSC(〈V \ Pred(G, v)〉)

Else If Desc(G, v) finishes first
Search for Pred(G, v) only in Desc(G, v).
SCC ← Desc(G, v) ∩ Pred(G, v).
WDCSC(〈Desc(G, v) \ SCC〉)
WDCSC(〈V \Desc(G, v)〉)

Output Pred(G, v) ∩Desc(G, v)

Fig. 2. A worst case O(m log n) time algorithm to find strongly connected components

where c2 is a constant ≥ 0, since the amount of work in one iteration is propor-
tional to the minimum of the number of edges in the predecessor set and the
number of edges in the descendant set. That is, the number of steps is twice
p + s until the algorithm completes one search, and then it is at most s. Note
that by hypothesis p ≤ m/2. We use induction to show T (m) = c1m log m for
some constant c1 ≥ 0.

T (m)≤T (p) + T (m− p− s) + c2(p + s)

≤ c1p lg p + c1(m− p− s) lg(m− p− s) + c2(p + s)

≤ c1p lg p + c1(m− p− s) lg m + c2(p + s)

= c1m lg m + [c1p lg p− c1(p + s) lg m + c2(p + s)]

= c1m lg m + [p(c1 lg(p/m) + c2) + s(c2 − c1 lg m)]

To finish the proof, it suffices to show that the term in brackets p(c1 lg(p/m) +
c2) + s(c2 − c1 lg m) is not positive. As it turns out, we can choose c1 such that
each of the two terms inside the brackets is negative: Recall that p < m/2; thus
lg(p/m) ≤ −1, and the first term is negative. For c1 ≥ 2c2, the second term will
also be negative.
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