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ABSTRACT 

 

Examining Network Connectivity Patterns in Response to ‘Flow’: An fMRI Replication Study 

with Implications for the Synchronization Theory of Flow 

 

by 

Paula Ting Wang 

 

The need to develop a robust neurological measure of flow increases as the practical 

applications of flow become more apparent within the broader communication literature. The 

Synchronization Theory of Flow (Sync Theory; Weber et al., 2009) offers a neurological 

perspective of the ‘flow’ state (Csikszentmihalyi, 1990), hypothesizing that flow co-occurs with 

the synchronization of specific attention and reward networks in the brain. As a small step 

towards better understanding the neurological correlates of flow within the attentional network, 

we attempt to replicate Weber et al. (2018) using a sample size with increased power. The results 

from this study emphasize three primary findings that altogether have implications for Sync 

Theory and our understanding of the neurological basis of flow. First, Weber’s original 

distraction measure is shown to be a better indicator of flow compared to reaction time measures. 

Second, functional connectivity between attentional regions is nonlinearly dependent on 

distraction. Third, Sync Theory’s predictions are demonstrated across some attentional regions, 

but not others. Results from this study are used to supplement our understanding of the 

neurological correlates of flow, extend the findings from Weber et al (2018), and comment on 

the current state of Sync Theory. 
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Introduction 

‘Flow’ is an experiential state characterized by attentional immersion, high productivity, 

and emotional gratification (Csikszentmihalyi, 1990). Flow offers a renewed perspective on how 

individuals maintain attentional focus on challenging tasks for long periods of time, with 

particular emphasis on its positive psychological outcomes. Practical applications of flow have 

provided meaningful contribution to a variety of communication research areas. For instance, 

flow has been used as a theoretical framework to understand the selection and enjoyment of 

entertainment-oriented media such as online gaming (Hsu & Lu, 2004), video games (Triberti & 

Argenton, 2013), and web-surfing (Pace, 2004; Skadberg & Kimmel, 2004). It has also been 

used to explain academic performance in e-learning tools for education (Bassi & Delle Fave, 

2012; Davis & Wong, 2007), performance in workplace settings (Csikszentmihalyi & LeFevre, 

1989; Engeser & Baumann, 2014; Schallberger & Pfister, 2001), cooperation between groups 

(Ghani & Deshpande, 1994; Magyaródi & Oláh, 2015), and as an emotional regulation tool in 

psychiatric rehabilitation (Delle Fave & Massimini, 1992; Massimini et al., 1987). 

Efforts to triangulate a measure of flow using psychophysiological and neuroimaging 

techniques have been driven by concerns surrounding the validity of relying on self-report 

measures alone (Finneran & Zhang, 2002; Nakamura & Csikszentmihalyi, 2002). Subsequent 

research on physiological correlates of flow have demonstrated some valuable findings, such as 

how flow compares to related states of stress, relaxation, and meditation (e.g., Brefczynski-

Lewis et al., 2007; de Manzano et al., 2010; Keller et al., 2011; Peifer et al. 2014), and how 

subjective experiences of ‘effortlessness’ during flow relate to physiological measures of effort 

(e.g., Austin, 2010).  

The Synchronization Theory of Flow (Sync Theory; Weber et al., 2009) offers a 
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neurological perspective of flow. At a neurological level, understanding what flow looks like 

with a dynamic, real-time measure in the brain has implications for a variety of research 

questions, such as testing the length, depth, and stability of flow episodes across various 

conditions and types of distractors. Sync Theory operationalizes flow as the synchronization of 

attention and reward neural networks, which allows for flow to be measured using functional 

magnetic resonance imaging (fMRI) techniques. Recently, Weber et al. (2018) found evidence 

for a distraction-connectivity relationship in attentional components of the brain, which offered 

some critical support for the hypotheses of Sync Theory. However, given their low sample size 

and subsequent low statistical power, it calls to question the replicability of their final results. As 

functional magnetic resonance imaging (fMRI) methods gain traction within the communication 

sciences (Turner et al., 2018; Weber et al., 2015), it becomes increasingly important to likewise 

emphasize good practice in methodological applications of fMRI in communication 

neuroscience. As a burgeoning field, communication neuroscience sits in a unique position that 

allows it to observe and learn from the experiences of its predecessors (Turner et al., 2018) and 

to avoid the pitfalls currently plaguing fMRI studies in neighboring fields (e.g., Francis, 2012; 

Ioannidis, 2005). In particular, the proliferation of underpowered fMRI studies (i.e., with low 

sample size) has contributed to high Type-I error and overestimation of effect sizes in reported 

results (Button et al., 2013).  

This paper therefore serves as a test of Weber and colleagues’ (2018) distraction-

connectivity relationship by replicating their method using a new dataset with a higher sample 

size. Results from this study will be used to supplement our understanding of the neurological 

correlates of flow, extend the findings from Weber et al (2018), and comment on the current state 

of Sync Theory. 
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   The Synchronization Theory of Flow 

Cortical neurons communicate via action potentials, which are electrical impulses 

generated by a sudden shift in the electrical charge of the neuronal membrane. Action potentials 

generated and propagated by groups of cortical neurons can align in frequency and 

spontaneously self-organize into a synchronized oscillatory state. Self-organization and 

spontaneous order are properties of complex systems, whereby individual units of a group 

coordinate their activity without the need for centralized planning. The brain is one of many 

naturally occurring complex systems (Strogatz, 2004), and demonstrates self-organizational 

properties via synchronization of neural oscillations. Neural synchrony has been shown to play 

an important functional role in attention-related outcomes such as stimuli selection and 

behavioral responses (Knudsen, 2007; Salinas & Sejnowski, 2001). For instance, when attending 

to a stimulus, relevant neurons in the V4 visual cortex both increased and synchronized their 

firing rate (Fries et al., 2001; Bichot et al., 2005; Taylor et al., 2005; Womelsdorf et al., 2006), 

which predicted decreased behavioral response times when attending to the target stimulus and 

increased behavioral response times when attending to a distractor stimulus. Moreover, 

synchronization has been shown to be more sensitive than firing rate as a predictor for behavioral 

performance (Womelsdorf et al., 2006).  

In 2009, Weber and colleagues theorized that neural network synchronization may be an 

explanation for the properties of flow. The first of the four hypotheses for the Synchronization 

Theory of Flow (Sync Theory; Weber et al., 2009) predicted that flow co-occurs with the 

synchrony of specific attention and reward networks.  

H1: If an individual is exposed to flow-inducing stimuli and flow occurs, 

then specific attentional and reward networks synchronize. 
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The second hypothesis of Sync Theory asserts that when antecedent conditions for flow 

are satisfied, the synchronization of specified networks occurs as a discrete state change in time.  

H2: The synchronization of attentional and reward networks occurs in 

discrete states  

In this context, discreteness is a descriptor for how the sudden emergence of synchrony 

results in a dichotomous set of outcomes; neurons are either synchronized or they are not. Given 

that we cannot predict the time point at which spontaneous order emerges, it follows that we do 

not ‘approach synchronization’, and thus we cannot ‘approach flow’. At an undisclosed point in 

time we are in it, otherwise we simply are not. The logic behind discreteness as it is 

characterized in Sync Theory is rooted in complex systems theory, and can be best demonstrated 

via the “Bak Sand Pile Model” (Bak et al., 1987). In this demonstration, a sand pile is built one 

grain at a time. As each grain is added, some existing components of the pile are disrupted but 

the overall structure remains intact. However, at a critical time interval a single grain of sand is 

capable of triggering a sudden collapse in the structural integrity of the sand pile, fundamentally 

altering the dynamics of the sand system. Similarly, Sync Theory hypothesizes that there is an 

unpredictable and narrow window of time within which neural networks will spontaneously 

synchronize, prompting a discrete shift in the cognitive states between non-flow and flow.  

The third and fourth hypotheses of Sync Theory relate flow’s experiential components of 

energetic efficiency and enjoyment with its neural dynamics.  

H3: Network synchronization corresponds to an energetically optimized 

state  

H4: Network synchronization manifests as an enjoyable experience  
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Properties of energetic optimization have found some early support (e.g., Huskey, 

Wilcox et al., 2018). However, the current study will primarily focus on H1 and H2.  

The role of distraction and connectivity in flow 

In their 2018 paper, Weber and colleagues examined the executive attention network and 

found evidence for several claims, including that: (a) connectivity is dependent on distraction, 

(b) the distraction-connectivity relationship is bilinear, and that (c) the shape of the bilinear 

distraction-connectivity relationship differs based on whether the network components were 

related or unrelated to sensorimotor coordination.  

Weber and colleagues (2018) did not intend to specifically test Sync Theory’s predictions 

with their study; however, their findings about a distraction-connectivity relationship in attention 

networks managed to lend credence towards the first and second hypotheses of Sync Theory. 

Weber et al’s (2018) finding that (a) synchronization in attention networks (which is driven by 

connectivity) indeed occurs at a critical level of distraction offers support for Sync Theory’s first 

hypothesis. Moreover, Weber et al’s (2018) finding that (b) the distraction-connectivity 

relationship is bilinear, meaning that connectivity sharply shifts when distraction falls below a 

certain threshold, offers support for Sync Theory’s second hypothesis. Since Sync Theory does 

not speculate about the sensorimotor components of attention, Weber et al’s (2018) finding about  

(c) the sensorimotor dependence of the distraction-connectivity relationship holds no bearing on 

Sync Theory’s predictions.  

However, Weber and colleagues’ (2018) study used a dataset of 13 subjects from the 

University of Tübingen in Germany. Given rising concerns within the field regarding the 

replicability of fMRI studies with lower subject numbers (Turner et al., 2018), this study will aim 

to replicate the results of Weber et al. (2018) using a new dataset of 35 subjects recruited from 
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Ohio State University in the United States. The sections below will describe distraction, its 

relationship with connectivity, and situate all concepts within the realm of flow and Sync 

Theory. In the first section, we describe distraction as it was formulated by Weber et al. (2018), 

and then assert that distraction can be used as a proxy for flow, which was not hypothesized by 

Weber et al. (2018). In the second section, we contextualize Weber et al’s (2018) original claims 

about distraction and connectivity within the realm of flow. Here, we aim to replicate all three 

claims from Weber et al. (2018), but we place greater importance on the claims that inform Sync 

Theory, and lesser importance on the claims that have no bearing to Sync Theory.  

Distraction 

The distraction model 

Distraction (D) is operationally defined as the demand on attentional capacity during a 

primary task activity. In Weber et al. (2018), participants were required to focus on a primary 

video game task while concurrently responding to a secondary distractor task. The distractor task 

involved the presentation of a laser light stimulus into the periphery of a participant’s field of 

vision. Delays between stimulus presentations were randomized following a Poisson distribution 

with an average time delay of 10 seconds. Participants were instructed to respond as quickly as 

possible to the laser light stimulus using a button-press response with their non-dominant hand. 

The button-press ended a stimulus trial and reset the timer for a new delay.  

𝐷 is operationalized as a multiplicative distraction index calculated over a constant 10 

second sliding (or overlapping) window (𝛥𝑡). The index is a function of the mean time interval 

between laser light presentations and mean response time to each presentation such that 

distraction increases when participants respond increasingly faster to increased presentation trials 

of the distractor task. Statistically, we calculate 𝐷 as the inverse of the mean time interval 
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between laser light presentations (𝐼p) multiplied by the mean response time to each presentation 

of the laser light (Ir): 

𝐷𝛥𝑡  =  
1

𝐼𝑝 × 𝐼𝑟
      (1) 

The more laser light presentations (𝐼p → 0) and the faster participants’ response to those 

laser light presentations (Ir → 0) the higher the distraction from the primary experimental task 

and the higher D is within sliding window 𝛥𝑡. Given that humans are resource capacity limited 

(Lang, 2000), an increase in distraction results in a strain on cognitive resources such that the 

participant is forced to divert attentional resources away from a primary task.  

Flow co-occurs with a decrease in distraction 

Antecedent conditions for flow requires a balance between an individual’s skill level and 

the demands of the task (Nakamura & Csikszentmihalyi, 2009), such that the individual is 

neither bored (i.e., task challenge < skill) nor frustrated (i.e., task challenge > skill). While 

studies have traditionally verified the skill-challenge balance using reaction time data, we aim to 

verify distraction as a better indicator for flow compared to traditional reaction time data.  

We predict that distraction is highest when the primary task is both too boring (i.e., task 

challenge < skill) or too frustrating (i.e., task challenge > skill). Given excess attentional capacity 

within the boredom condition, the participant is likely to motivationally disengage from the 

primary task and redistribute attentional resources towards the secondary distractor task (Huskey, 

Craighead et al., 2018; Huskey et al., 2021). This would result in a relatively shorter mean 

response time (Ir) and greater 𝐷. Within the frustration condition, as attentional capacity 

collapses due to cognitive overload, we likewise predict a shorter mean response time (Ir) and 

greater 𝐷. However, when attentional capacity is maximally delegated to the primary task within 



    

8 

 

the balanced condition of flow, we predict a relatively longer mean response time (Ir) to the 

distractor task and therefore smaller 𝐷. Following this logic, propensity for flow is high when 

distraction is low, and low when distraction is high.  

H1a: Distraction will be lowest during the flow condition and highest 

during the frustration and boredom conditions. 

Distraction as a flow indication method deviates from existing studies, which have 

typically predicted flow using reaction time (e.g., Huskey et al., 2021). As seen in Equation 1, 

the distraction model D is a function of response time with the added information of mean time 

interval between stimulus presentations. Given that the distraction takes the inverse of reaction 

time and stimulus presentation intervals, we expect that the relationship between reaction time 

and conditions is the inverse of the relationship between distraction and conditions. As yet, no 

comparison has been done that compares distraction and reaction time as predictors of flow. 

Therefore, the following two hypotheses identify reaction time as an alternative, but less 

powerful predictor for distraction. 

H1b: Reaction time will be highest during the flow condition and lowest 

during the frustration and boredom conditions. 

H2: Distraction is a better predictor for flow compared to reaction time, 

such that the difference between conditions in H1a will be more significant 

compared to the difference between conditions in H1b.  

Having a continuous measure of distraction spanning the time series of the experimental 

paradigm allows us to calculate the statistical dependency between neural time series alongside a 

continuous distraction regressor.  
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The distraction-connectivity relationship 

Synchrony expressed as a sudden acceleration of connectivity 

Sync Theory’s second hypothesis asserts that at the point of entrance of flow, the 

synchronization of specified networks occurs as a discrete state change in time. As specified by 

Sync Theory, the discrete transition between cognitive states of non-flow to flow can be 

operationalized as an acceleration in connectivity strength within and across relevant neural 

networks. Figure 1 depicts Weber and colleague’s (2018) hypothesized relationship between 

network connectivity and distraction, showing a bilinear graph that demonstrates nonlinearity at 

a critical parameter value.  

Figure 1 

The bilinear relationship between network connectivity and distraction from a primary task 

 

Note. The direction of the x-axis has been reversed for ease of interpretation. Distraction values 

decrease as we move from left to right along the axis. While Weber et al. (2018) hypothesized 

the distraction-connectivity relationship, annotations specifying the threshold between non-flow 

and flow were added for this study.  

In Figure 1, as distraction decreases (i.e., propensity for flow increases), network 
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connectivity strength increases somewhat, then increases considerably more when distraction 

falls below a thresholded flow-induction point, triggering the spontaneous synchronization of 

neural networks and entrance into flow. Importantly, the time point and value of network 

connectivity strength at which the thresholded flow-induction point occurs is spontaneous and 

unpredictable.  

Without a known value for the temporal parameter at which flow-induction occurs, it 

becomes difficult to utilize the model in Figure 1 for analysis purposes. We therefore turn to 

Figure 2, which aims to approximate the nature of the bilinear graph in Figure 1 using a 

nonlinear convex curve. Although the relationship hypothesized is that of a bilinear nature 

(Figure 1), we test the relationship using the nonlinear quadratic model (Figure 2). Henceforth, 

all mentions of the distraction-connectivity relationship will use the term ‘nonlinear’. 

Figure 2 

The convex relationship between network connectivity and distraction from a primary task 

 

Note. The direction of the x-axis has been reversed for ease of interpretation. Distraction values 

decrease as we move from left to right along the axis. While Weber et al. (2018) hypothesized 
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the distraction-connectivity relationship, annotations specifying the threshold between non-flow 

and flow were added for this study. 

The psychophysiological interaction model 

To test for the sudden increase in functional connectivity acceleration strength (i.e., 

discrete transition into flow), we approximate the threshold model (Figure 1) using a nonlinear, 

quadratic form of a general linear regression model (Figure 2). This model is based on the 

original Psycho-Physiological Interactions model (PPI; Friston et al., 1997; O’Reilly et al., 

2012), which is generalized as:    

𝑌 =  (𝑃𝑠𝑦)𝛽1 + (𝑃ℎ𝑦)𝛽2 + (𝑃𝑠𝑦 ∗ 𝑃ℎ𝑦)𝛽3 + 𝑒   (2) 

 The PPI model identifies brain regions whose activity depends on an interaction between 

a psychological context (a task) and physiological state (the time course of brain activity) of a 

particular seed region. It can therefore be considered an estimation of the context-dependent 

changes in functional connectivity between brain regions. In this equation, 𝛽1 and 𝛽2 are the 

parameter estimates for the main effects of the psychological (𝑃𝑠𝑦) and physiological (𝑃ℎ𝑦) 

variables respectively, 𝛽3 is the parameter estimate for their interaction (𝑃𝑠𝑦 ∗ 𝑃ℎ𝑦), and 𝑌 is the 

dependent variable. If the interaction term can explain the brain activation of another brain 

region after taking into account the main effects of the psychological and physiological variables, 

then the existence of a task-dependent connectivity between the two brain regions is implied. 

In line with the PPI model, our model of functional connectivity identifies the distraction 

parameter (𝐷) as a psychological regressor, a source region of interest (𝑅𝑂𝐼𝑆) as a physiological 

regressor, and a target region of interest (𝑅𝑂𝐼𝑇) as a dependent variable of interest. Replicating 

the method of Weber et al. (2018), the source and target regions that define the attentional 

network in this paper are theoretically rooted in the executive attention network from Posner and 
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Peterson’s (1990) tripartite theory of attention, and are reliant on functions and localizations 

suggested a priori by Fan et al. (2002, 2005). The equation appears as follows: 

𝑅𝑂𝐼𝑇  = 𝑎 ∗ 𝑅𝑂𝐼𝑆  + 𝑏 ∗ 𝐷 + (𝑐 ∗ 𝐷 + 𝑑 ∗ 𝐷2) ∗ 𝑅𝑂𝐼𝑆  + 𝜖  (3) 

This regression model links the blood-oxygen level dependent (BOLD) signal in the 

target region (𝑅𝑂𝐼𝑇) with that of the source region (𝑅𝑂𝐼𝑆), the distractor parameter (𝐷), as well 

as their linear (𝑅𝑂𝐼𝑆 ∗ 𝐷), and quadratic (𝑅𝑂𝐼𝑆 ∗ 𝐷2) interactions. Of primary importance for our 

analysis are the 𝑐 and 𝑑 coefficients, which are the set of parameter estimates for the linear and 

quadratic interaction terms respectively. The 𝑐 and 𝑑 coefficients are used to measure the type 

and pattern of connectivity between 𝑅𝑂𝐼𝑇  and 𝑅𝑂𝐼𝑆   depending on 𝐷. 

The following three hypotheses aim to verify the nature of the relationship between 

distraction and network connectivity for all pairs of target and source ROIs. The first of the three 

provides a validation that connectivity between these pre-defined regions indeed depends on the 

level of distraction. This hypothesis replicates Weber et al’s (2018) first claim, and, if supported, 

provides further evidence for the first hypothesis of Sync Theory. 

H3 : Connectivity depends on distraction (i.e., c ≠ 0 ) 

The second and third hypotheses validate the convex shape of the curve as depicted in 

Figure 2. We divide these as two hypotheses, as we replicate Weber et al. (2018) by taking into 

account the activation of sensorimotor components of the attentional networks that are activated 

during the button-press distractor task. As distraction increases, participants are expected to 

engage in increased sensorimotor behavior to execute the button-press. Thus, attentional network 

components both related and unrelated to sensorimotor functioning will exhibit opposite 

responses to changing levels of distraction. While connectivity is predicted to decrease with 
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increasing distraction for attentional networks unrelated to sensorimotor coordination (𝑐 < 0), 

connectivity should increase with increasing distraction for attentional networks related to 

sensorimotor coordination (𝑐 > 0). 

H4 : For attentional network components unrelated to sensorimotor coordination, 

the curvature of an “decreasing distraction-increasing connectivity” relation is convex 

(i.e. if c < 0 then d > 0) 

H5 : For attentional network components related to sensorimotor coordination, 

the curvature of an “decreasing distraction-decreasing connectivity” relation is concave 

(i.e. if c > 0 then d < 0) 

Method 

Dataset 

Huskey et al. (2021) collected functional magnetic resonance imaging (fMRI) data using 

a sample of n = 35 participants recruited from Ohio State University and the surrounding 

community. Participants in the fMRI study were right-handed, had normal or corrected to normal 

vision, and did not demonstrate any contraindication to fMRI scanning. Both studies were 

approved by the host University’s Institutional Review Board. The data is organized in 

compliance with the Brain Imaging Data Structure (Gorgolewski et al., 2016) and is available on 

OpenNeuro1. Much like Weber et al. (2018), the Huskey et al. (2021) dataset utilizes a primary 

video game task along with a secondary distractor task.  

 
1 https://doi.org/10.18112/openneuro.ds003358.v1.0.0 
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Primary task 

Participants played Asteroid Impact2, a video game designed for experimental research 

that enables manipulation of in-game difficulty. Consistent with previously validated techniques 

for inducing flow using Asteroid Impact (Huskey, Craighead et al., 2018), participants engaged 

in low-difficulty (i.e., boredom), high-difficulty (i.e., frustration), and balanced challenge-skill 

conditions (i.e., flow). Asteroid Impact is a point-and-click style video game where subjects use 

a cursor to collect crystal-shaped targets located across the screen. At the same time, large 

asteroids bounce around the screen. If the participant’s cursor collides with an asteroid, the 

current game ends. Parameters associated with asteroid size, speed, and target location can be 

seeded and manipulated to alter in-game difficulty, leaving all other conditions exactly constant. 

In the low-difficulty (boredom) condition, the asteroid speed was slow and did not change. In the 

high-difficulty (frustration) condition, asteroid speed was consistently fast. In the balanced-

difficulty (flow) condition, the game started at a moderately high level of asteroid speed and an 

algorithm adjusted asteroid speed based on player performance.  

Distractor task 

Huskey et al.’s (2021) study utilized a similar distractor probe compared to Weber et al. 

(2018). In their study, Huskey and colleagues’ participants were required to respond to an 

audiovisual red light stimulus appearing equally and randomly within one of the four quadrants 

of their screen. Delays in the presentation of the red light stimulus, measured as the inter-

stimulus interval (𝐼𝑆𝐼), were randomized using a truncated Gaussian probability distribution. 

Participants were required to do a button-press with their non-dominant hand. Secondary task 

reaction time (𝑆𝑇𝑅𝑇) was determined as the period spanning the onset of a stimulus onset to the 

 
2 https://github.com/medianeuroscience/asteroid_impact 
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subsequent key/button press.  

The present study will use 𝑆𝑇𝑅𝑇 and 𝐼𝑆𝐼 as input variables within the distraction index 

(see Equation 1). This results in a distraction parameter (D) that serves as a continuous regressor 

for the customized PPI model (see Equation 3). A mean value calculated for 𝑆𝑇𝑅𝑇 will be used 

as the input variable for Ir , and a mean value for 𝐼𝑆𝐼 will be used as the input variable for 𝐼p. In 

line with Weber et al. (2018), the sliding time window for 𝛥𝑡 will be set to 10-s. 

Analysis 

Preprocessing 

Dicoms were converted to NIfTI-1 format using dcm2niix, version v1.0.20190410 

GCC6.3.0. Preprocessing was performed using fMRIPrep 21.0.0 (Esteban et al., 2018), which is 

based on Nipype 1.6.1 (Gorgolewski et al., 2011). T1-weighted structural MRI data were 

collected (256 slices, TR=1900ms, voxel size=1x1x1mm). For each subject, the T1-weighted 

(T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 

(Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs). Volume-based spatial 

normalization to one standard space was performed through nonlinear registration with 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the 

T1w template. 

 Three functional runs were collected (72 slices in interleaved ascending order, 

TR=2000ms, voxel size=2x2x2mm), with 185 functional volumes acquired per run. For each of 

the three BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 
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generated. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) were estimated before any 

spatiotemporal filtering). BOLD runs were slice-time corrected to 0.949s (0.5 of slice acquisition 

range 0s-1.9s). The BOLD time-series were resampled onto their original, native space by 

applying the transforms to correct for head-motion. Confound time-series were derived based on 

head motion parameters, global signal, white matter (WM) and cerebral spinal fluid (CSF). The 

BOLD reference was then co-registered to the T1w reference with boundary-based registration 

(Greve & Fischl, 2009) cost-function. Co-registration was configured with six degrees of 

freedom. The BOLD time-series were then resampled into standard space, generating 

preprocessed BOLD runs in MNI152 space.  

Distraction 

Distraction is calculated by the inverse of the product of the mean time interval between 

laser light presentations and the mean response time to laser light presentations (see Equation 1). 

We then applied a repeated measures ANOVA with condition as the within-subjects factor and 

distraction as the outcome variable. The same analysis was performed using reaction time as the 

outcome variable, and the two models were then compared.  

ROI Coordinates 

Replicating the method of Weber et al. (2018), the ROIs that define the attentional 

network in this paper are reliant on functions and localizations suggested a priori by Fan et al. 

(2002, 2005). Given that all of Huskey et al.’s (2021) and Weber et al.‘s (2018) participants were 

right-handed and since visuospatial attention is right lateralized (Thiebaut de Schotten et al., 

2011), the distractor task was universally conducted with the left hand. For this reason, the 

attentional network is biased toward executive attention components in the right hemisphere. The 



    

17 

 

ROIs are localized according to the suggested anatomical localization in Collins et al. (1994), 

and are represented as standardized Montreal Neurological Institute (MNI) coordinates: [22, −27, 

3] mm for the thalamus (Thal); [16, 4, 44] mm for superior frontal gyrus (SFG); [36, 26, 15] mm 

for superior parts (IFGs) and [34, 20, 5] mm for inferior parts of the inferior frontal gyrus (IFGi); 

[44, −58, 1] mm for lateral parts (FFGl) and [36, −60, 1] mm for medial parts of the fusiform 

gyrus (FFGm); [0, −62, −32] mm for the cerebellum (Cere); [36, −5, 50] mm for middle frontal 

gyrus (MFG); and [6, 36, 26] mm for anterior cingulate cortex (ACC).  

Psychophysiological model 

The analytical model used in the present analysis follows is a customized form of the 

psychophysiological model and follows the standard logic of the general linear model. It includes 

a psychological regressor, a physiological regressor, a linear interaction predictor, and a non-

linear interaction predictor (see Equation 3). All levels of the analyses were written using  

Nipype 1.6.1 (Gorgolewski et al., 2011) pipeline engine in Python.  

Level 1. The preprocessed BOLD functional data was skull-stripped using the functional 

mask generated from fMRIprep. In order to remain agnostic to any possible subsequent analysis, 

fMRIPrep does not perform any denoising (e.g., spatial smoothing) itself. Therefore, after skull-

stripping, we applied spatial smoothing to all functional data with the full width at half maximum 

(FWHM) of the Gaussian kernel set to 6mm. The psychological distraction regressor was mean-

centered and then squared to generate a hyperbolic regressor to be used as input for the nonlinear 

interaction term. Both the squared and non-squared distraction regressors were convolved with 

the canonical haemodynamic response function (HRF) from SPM3. Physiological time series for 

each of the ROI coordinates were extracted using the NiftiSpheresMasker function from Nilearn. 

 
3 https://www.fil.ion.ucl.ac.uk/spm/ 
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Spheres were extracted using a radius of 3mm and then mean-centered. Interaction regressors 

were then generated by multiplying the convolved form of the squared and non-squared 

distraction regressors with each of the physiological time series from each of the ROIs. For de-

noising, we went with a set of nine confound regressors, including six realignment parameters 

(three rotations and three translations), two physiological (white matter and cerebral spinal fluid), 

and global signal regression. This is a set of nuisance regressors that has been widely applied to 

functional connectivity studies (Ciric et al., 2017). Confounding regressors were mean-centered 

and then, along with the psychological distraction regressor, the physiological time series, and 

the interaction regressors, were fed into the level 1 design of the general linear model. Highpass 

filter cutoff was set to 100. 

Level 2. The level 2 analysis combined the results from multiple runs of one subject into 

one statistical parametric map for all nine ROIs relevant for our study. Registered contrast 

parameter estimate files were merged and masked, and then fed into the level 2 design.   

Level 3. The level 3 analysis combined the results from multiple runs of multiple subjects 

into one statistical parametric map for all nine ROIs relevant for our study. Like with the level 2 

design, registered contrast parameter estimate files were merged and masked, and then fed into 

the level 3 design. Final parameter estimates for the interaction regressors across all nine ROIs 

were extracted from the t-statistic map. Significance was calculated using z-statistic values, 

controlling for multiple comparisons using FPR-correction and alpha=0.05.  

Results 

Distraction as an indicator of flow 

Hypotheses 1a and 1b predicted what distraction and reaction time would look like 

between the conditions of boredom, flow, and frustration. Hypothesis 2 predicted that the 
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differences observed in Hypothesis 1a and 1b would be more significant in the distraction model 

compared to the reaction time model. A repeated-measures ANOVA found that the effect of 

condition (within-subjects factor) was significant for both the distraction (F(2, 68)=15.70, 

η2
G=0.08, p<0.01) and reaction time models (F(2, 68)=3.42,  η2

G=0.025, p=0.04). However, 

distraction exhibited greater effect size and significance (η2
G=0.08, p<0.01) compared to reaction 

time (η2
G=0.025, p=0.04), supporting Hypothesis 2.  

Descriptive statistics show that, across conditions, the mean distraction score from all 

repeated time points and all subjects follow the direction as predicted by Hypothesis 1a 

(MBoredom=0.66,  MFlow=0.59, MFrustration=0.60), in which the mean distraction was lowest for flow 

compared to boredom and frustration. The mean reaction time score from all repeated time 

points and all subjects likewise followed the direction as predicted by Hypothesis 1b 

(MBoredom=534.93, MFlow=588.85, MFrustration=588.12), in which the mean reaction time was 

highest for flow compared to boredom and frustration. To test for significance in the difference 

between conditions, multiple pairwise paired t-tests were conducted between the levels of 

conditions using both distraction and reaction time as outcome variables. P-values were adjusted 

using the FDR correction method. Pairwise differences for distraction were significant between 

the flow-boredom (df=34, t=6.20, padj<0.01) and boredom-frustration (df=34, t=3.68, padj<0.01) 

conditions, but not for the flow-frustration condition (df=34, t=-1.63, padj=0.11). Pairwise 

differences for reaction time were significant between the flow-boredom condition (df=34, t=-

2.58, padj=0.04), but not significant between the boredom-frustration (df=34, t=0.40, padj=0.69) 

and flow-frustration (df=34, t=2.19, padj=0.05) conditions, although the flow-frustration 

condition was closer to approaching significance in the reaction time model compared to the 

distraction model. Pairwise comparisons are visualized in Figure 3. Together, the means and 
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pairwise differences between conditions for distraction and reaction time support Hypotheses 1a 

and 1b, and provide additional support for Hypothesis 2.  

Figure 3  

Pairwise comparisons between conditions for distraction and reaction time

 

Psychophysiological interaction coefficients 

Hypothesis 3, 4, and 5 together examine the linear and nonlinear interaction coefficients 

of the customized psychophysiological interaction model (Equation 3) used to examine the 

convex distraction-connectivity curve (Figure 2) hypothesized by Sync Theory. Results for the 

group level linear (c) and nonlinear (d) interaction coefficients are shown in Table 1.  
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Table 1  

Group-level interaction coefficients for this study 

 

Note. Columns are predicted by rows. For example, ACC~ (c*D + d*D2)*Thal = (0.03*D − 

0.11*D2)*Thal, where 0.03 is the linear interaction coefficient and -0.11 is the nonlinear 

interaction coefficient. Coefficient pairs that exhibit significant opposite signs are colored in 

pairs of green/red, with green denoting sign>0 and red denoting sign<0. Thal, thalamus; SFG, 

superior frontal gyrus; IFGs, superior parts of the inferior frontal gyrus; FFGm, medial parts of 

the fusiform gyrus; IFGi, inferior parts of the inferior frontal gyrus; Cere, cerebellum; MFG, 

middle frontal gyrus; FFGl, lateral parts of the fusiform gyrus; ACC, anterior cingulate cortex.∗p 

< 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 
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Hypothesis 3 predicted that connectivity was dependent on distraction (c≠0). This was 

supported for all values of linear coefficient c. As predicted by Hypothesis 4, the increase in 

connectivity with decreasing distraction indicating a convex curve was found in frontal network 

areas such as SFG-iFGi (c=-0.04, p<0.01; d=0.86, p<0.01) and IFGs-FFGl (c=-0.73, p<0.01; 

d=0.73, p<0.01). Hypothesis 5 predicted that there would be a concave decreasing distraction-

decreasing connectivity in sensorimotor networks, which found support in cerebellar-cortical 

connections reflecting sensorimotor networks such as Cere-FFGm (c=0.58, p<0.01; d=-0.45, 

p<0.01) and Cere-ACC (c=0.05, p<0.01; d=-0.53, p<0.01). These findings generally reflect the 

findings in the Weber et al. (2018) paper, which also indicated that the decreasing distraction-

increasing connectivity model found support mainly in the frontal regions, whereas cerebellar 

connections showed an increase instead.  

These findings lend some credence to the replicability for the decreasing distraction-

increasing connectivity model. However, it must also be pointed out that other findings did not 

replicate the Weber et al. (2018) paper. For instance, Weber et al. (2018) found local frontal 

network connections (IFGs-IFGi, IFGi-IFGs, IFGi-MFG, SFG-MFG, ACC-MFG) and thalamo-

frontal connections (Thal-SFG, Thal-MFG) showed a decrease in connectivity (c<0) that 

revealed a significant convex relationship (d>0), supporting Hypothesis 5. However our study 

did not find these effects. Instead, we found support for a concave decreasing distraction-

decreasing connectivity (c>0, d<0) in some local frontal connections (IFGi-IFGs, SFG-MFG) 

and thalamo-frontal connections (ACC-Thal, SFG-Thal, Thal-IFGs).  

Figure 4 provides a visualization of the expected patterns between the possible 

combinations of positive and negative values for the c and d coefficients.  
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Figure 4 

Visualization of the possible combinations of positive and negative coefficients for the linear and 

the nonlinear interaction terms 

 

Note. The direction of the x-axis has been reversed for ease of interpretation. Distraction 

values decrease as we move from left to right along the axis. Weber et al. (2018) hypothesized 

c<0, d>0 for connections unrelated to sensorimotor coordination (red line), and c>0, d<0 for 

connections related to sensorimotor coordination (blue line).  

Importantly, some findings of ours unrelated to Weber and colleague’s (2018) 

hypothesises may lend some support to Sync Theory’s predictions. Weber et al. (2018) did not 

hypothesize about a concave decreasing distraction-increasing connectivity relationship (black 

line), nor a convex decreasing distraction-decreasing connectivity relationship (green line). Sync 

Theory implies that there will be an increase in connectivity following decreasing distraction 

(c<0), but does not specify whether connectivity will increase at an increasing rate (convex, d>0) 

or increase at a decreasing rate (concave, d<0). We see that there is a significant increase in 
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connectivity (c<0) with a concave pattern (d<0) in many thalamic connections, which provides 

some further support for Sync Theory. This includes thalamo-frontal regions IFGi-Thal (c=-0.2, 

p<0.01; d=-0.78, p<0.01) and MFG-Thal (c=-0.15, p<0.01; d=-1.78, p<0.01), thalamo-

occipitotemporal regions FFGm-Thal (c=-0.38, p<0.01; d=-1.41, p<0.01) and FFGl-Thal (c=-

0.72, p<0.01; d=-1.32, p<0.01), and the thalamo-cerebellar connection Cere-Thal (c=-0.27, 

p<0.01; d=-0.82, p<0.01).  

For comparison purposes, results for the group level linear (c) and nonlinear (d) 

interaction coefficients from the Weber et al. (2018) paper are shown in Table 2.  
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Table 2 

Group-level interaction coefficients for Weber et al., (2018)

 

Note. Columns are predicted by rows. For example, ACC~ (c*D + d*D2)*Thal = (0.03*D − 

0.11*D2)*Thal, where 0.03 is the linear interaction coefficient and -0.11 is the nonlinear 

interaction coefficient. Coefficient pairs that exhibit significant opposite signs are colored in 

pairs of green/red, with green denoting sign>0 and red denoting sign<0. Thal, thalamus; SFG, 

superior frontal gyrus; IFGs, superior parts of the inferior frontal gyrus; FFGm, medial parts of 

the fusiform gyrus; IFGi, inferior parts of the inferior frontal gyrus; Cere, cerebellum; MFG, 

middle frontal gyrus; FFGl, lateral parts of the fusiform gyrus; ACC, anterior cingulate cortex.∗p 

< 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 
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Discussion 

In replicating Weber et al.’s (2018) paper, which had only a sample size of 13, this study 

aims to test the decreasing distraction-increasing connectivity relationship in the attentional 

system, using a higher powered sample size of 35. For this study, we situated the distraction-

connectivity relationship within the context of flow and its implications for the hypotheses of 

Sync Theory. The results from our replication study emphasize three primary findings that 

altogether have implications for Sync Theory and our understanding of the neurological basis of 

flow. First, distraction is shown to be a better indicator of flow compared to reaction time. It is 

therefore recommended that those conducting behavioral analyses for flow using reaction time 

measures should adopt the distraction model in the analytical process. The distraction model 

requires two considerations in design and data collection: to be able to (1) collect reaction time 

data at a second-by-second rate, (2) and to collect second-by-second data on the interval period 

between stimulus presentations. Reaction time and stimulus interval can then be easily used as 

input for calculating distraction.  

Second, our study successfully replicated the nonlinearity of the distraction-connectivity 

relationship, but the shape of the nonlinearity was different. Echoing Weber et al. (2018), our 

results indicate a significant dependence between attentional connectivity and distraction, which 

corroborates the existence of a connectivity shift given decreasing levels of distraction. 

Moreover, we found significant coefficients for the nonlinear interaction term, indicating the 

presence of nonlinearity in the distraction-connectivity dependence. However, the shape of the 

nonlinear connectivity shift – in terms of whether it increased/decreased given decreasing 

distraction and whether it exhibited a convex/concave nature – differed. Our replication was 

successful for a few frontal (SFG-IFGi, IFGs-FFGl) and cerebellar (Cere-ACC, Cere-FFGm) 
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connections; however, many more connections in the frontal and thalamo-frontal regions did not 

replicate. Interestingly, the implication of an opposite effect, as opposed to no effect, in the failed 

replication connections call into question the validity of the Weber et al. (2018) findings and re-

emphasize the need and importance of replication. 

Third, some but not all attentional network connections exhibit the connectivity pattern 

that we would expect from flow. According to Sync Theory’s second hypothesis, the transition 

into flow is understood as the sudden, discrete synchronization of attentional and reward 

networks, which in our study is operationalized as a sudden, exponential shift in connectivity. 

We would therefore expect that decreasing distraction leads to increasing connectivity, 

regardless of whether it was convex or concave in nature. Figure 5 depicts the significant 

connections in our findings on the executive attention network, categorized by the sign of the 

coefficients of the linear and nonlinear interaction terms. It is clear from the distribution of these 

connections across the top (c<0) and bottom (c>0) rows that not all areas of the executive 

attention network follow the increasing-connectivity pattern as hypothesized by Sync Theory.  
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Figure 5 

Significant patterns of connectivity in the executive attention network categorized by their linear 

and nonlinear coefficient signs in response to decreasing distraction 

 

The expected pattern existed in some thalamic and frontal connections; however, many 

cerebellar and occipitotemporal connections found a decreasing connectivity pattern instead. 

Here we come to a critical flaw in Sync Theory.  

Very little specificity was provided in Weber and colleagues’ (2009) original conception 

of Sync Theory regarding the subcomponents of attention and reward networks that should or 

should not be implicated within flow. Attention network theory (Posner & Petersen, 1990) posits 

that there are three distinct forms of attention – alerting, orienting, and executive attention – that 

dissociate neuroanatomically into three independent “attention networks” (Posner & Rothbart, 

2007). Research into the specific neural structures that make up attention (e.g., Corbetta & 

Shulman, 2002; Fox et al., 2006; Power et al., 2011; Thomas et al., 2011; Vincent et al., 2008; 
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Vossel et al., 2014) have localized attention across the extended fronto-parietal network (EFPN), 

which includes the dorsal network, the ventral network, and the control network. Attempts to 

integrate Posner and Petersen’s tripartite classification of attention across the EFPN have led to 

assertions that each of the three attention networks correspond to activation within the sub-

networks of the EFPN (Petersen & Posner, 2012; Xuan et al., 2016). It is currently unclear 

whether flow is implicated within all areas of some attention networks but not others, or only 

some areas of all three attention networks, or all areas of all attention networks.  

A similar criticism can be made in relation to the reward system. Research on 

neural processing of rewards (e.g., Berridge & Kringelbach, 2015; Richard et al., 2013) 

has localized the reward system with robust consensus to areas across the cortex, basal 

ganglia and thalamus. These areas include the ventral tegmental area, the dorsal (i.e., 

caudate and putamen) and ventral (i.e. nucleus accumbens) stratum, substantia nigra, 

dorsal and ventral pallidum, hippocampus, hypothalamus, thalamus, amygdala, prefrontal 

cortex, anterior cingulate cortex, and insular cortex. Like with the attention system, it is 

unclear whether all or only some of these reward processing areas should be implicated 

within flow. Moreover, for both attention and reward areas, it is also unclear whether the 

theorized synchronization occurs only within existing networks, only across networks, or 

both within and across networks.  

Moreover, while Sync Theory predicts that flow occurs at the discrete synchronization of 

attentional and reward networks, our study, as did Weber et al’s (2018) study, only examined the 

executive attention network. We therefore do not yet know whether the decreasing distraction-

increasing connectivity curve may be replicated within-and-between orienting and alerting 

regions of attention, as well as other reward structures in the brain. To clarify the ambiguities 
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surrounding Sync Theory, future research should aim to specify a network in which the 

decreasing distraction-increasing connectivity pattern holds true for all flow situations. 

Researchers should utilize new regions of interest that correspond to other areas of the extended 

fronto-parietal network (EFPN), distinguishing the patterns of connectivity within-and-across the 

dorsal network, ventral network, and the control network. Furthermore, research should uncover 

the connectivity pattern within-and-across attention and reward networks with an overall goal to 

implicate a specific flow-attention-reward network that can be used to measure length, depth, 

and stability of flow depending on its network connectivity strength.  

Recently, Huskey et al. (2021) called for a revision of Sync Theory that also takes into 

account evidence for high flexibility in attentional connectivity during flow. In their paper, 

flexibility was defined as the ability for neural networks to be functionally reconfigured during 

psychological states. The evidence for high flexibility during flow suggests that functional 

connectivity during flow is dynamic, and not relegated to a single, static functional structure. 

Research that maps the temporally-dependent changes in network connectivity strength - beyond 

the initial transition as tested by our study - may also provide further insight into the dynamic 

role of attentional activation during flow.  

Limitations 

Despite the fact that distraction, compared to reaction time, was able to unveil greater 

difference between flow-boredom and boredom-frustration conditions, it was not able to 

demonstrate significant difference between the flow-frustration conditions. In fact, distraction 

found less of a difference between flow-frustration compared to reaction time. However, this 

finding should not be attributed to a fault of the model and is more likely due to experimental 

error. Given increasing use in media-based technology, increasing complexity in modern gaming 
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architecture, and overall increased exposure and normalization of gaming as a pastime, people 

have become more proficient at coordinating movements on a computer. Video gaming has 

become a core part of the developmental experience in the United States, with 91-99% of 

children and adolescents playing video games for at least one hour per day4. Even individuals 

who may not identify gaming as a common pastime, will still spend upwards of eight hours on 

digital media per day5. Asteroid Impact is a simple point-and-click style video game that harkens 

back to the asteroids-type arcade style of gaming that was popular in the 80s. While difficulty in 

Asteroid Impact can be manipulated via asteroid speed, an argument can be made that due to the 

inflated proficiency towards navigating interactive media for both gaming and non-gaming 

individuals, it can be difficult to create a truly challenging experience using gaming architecture 

that appears too simplistic.  

Secondly, there were small differences in Huskey et al.’s (2021) and Weber et al.’s 

(2018) operationalization of the distractor tasks. Huskey et al. (2021) had an audiovisual red light 

stimulus appearing equally and randomly within one of the four quadrants of the participants’ 

screens. On the other hand, Weber and colleagues (2018) distractor task was a visual-only light 

point projected by a red laser, which always appeared on the upper right corner of the screen. 

Therefore, Huskey et al.’s (2021) distractor task – which became the dataset for this study – may 

have induced greater distraction for two reasons: (1) the involvement of an audio component 

may have invoked a stronger orienting response, and (2) the randomness of the quadrant in 

which the stimulus appeared may have reduced spatial predictability, thereby requiring greater 

cognitive resources in order to respond.  

 
4 https://www.statista.com/statistics/189582/age-of-us-video-game-players/ 
5 https://www.insiderintelligence.com/insights/us-time-spent-with-media/ 
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Conclusion 

The need to develop a robust neurological measure of flow increases as the practical 

applications of flow become more apparent within the broader communication literature. As a 

small step towards better understanding the neurological correlates of flow within the attentional 

network of the brain, we attempt to replicate Weber et al. (2018) using a sample size with 

increased power. Our replication was partially successful, as we found that there is indeed a 

significant exponential shift in connectivity given changes in an individual’s level of distraction, 

and that the shape of the connectivity shift is mostly nonlinear. However, results demonstrating 

the direction and nature of the connectivity shift did not replicate, which calls into question the 

validity of Weber et al’s (2018) findings. Our study further discussed the implications of our 

findings on Sync Theory’s hypotheses. In demonstrating that only some network connections 

exhibited an increasing-connectivity shift, we lend only partial support for Hypothesis 2 of Sync 

Theory. We call for further clarification and specificity as to which connective areas should 

follow the increasing-connectivity pattern of a discrete transition into flow, and which should 

not.  
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