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Abstract Speaking is a sensorimotor behavior whose neural basis is difficult to study with single

neuron resolution due to the scarcity of human intracortical measurements. We used electrode

arrays to record from the motor cortex ‘hand knob’ in two people with tetraplegia, an area not

previously implicated in speech. Neurons modulated during speaking and during non-speaking

movements of the tongue, lips, and jaw. This challenges whether the conventional model of a

‘motor homunculus’ division by major body regions extends to the single-neuron scale. Spoken

words and syllables could be decoded from single trials, demonstrating the potential of

intracortical recordings for brain-computer interfaces to restore speech. Two neural population

dynamics features previously reported for arm movements were also present during speaking: a

component that was mostly invariant across initiating different words, followed by rotatory

dynamics during speaking. This suggests that common neural dynamical motifs may underlie

movement of arm and speech articulators.

Introduction
Speaking requires coordinating numerous articulator muscles with exquisite timing and precision.

Understanding how the sensorimotor system accomplishes this behavioral feat requires studying its
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neural underpinnings, which are critical for identifying (Tankus and Fried, 2018) and treating the

causes of speech disorders and for building brain-computer interfaces (BCIs) to restore lost speech

(Guenther et al., 2009; Herff and Schultz, 2016). Speaking is also a uniquely human behavior,

which presents a high barrier to electrophysiological investigations. Previous direct neural recordings

during speaking have come from electrocorticography (ECoG) (Bouchard and Chang, 2014;

Cheung et al., 2016; Mugler et al., 2014) or single-unit (SUA) recordings from penetrating electro-

des during the course of clinical treatment for epilepsy (Chan et al., 2014; Creutzfeldt et al., 1989;

Tankus et al., 2012) or deep brain stimulation for Parkinson’s disease (Lipski et al., 2018;

Tankus and Fried, 2018). Such studies have begun to characterize motor cortical population dynam-

ics underlying speech (Bouchard et al., 2013; Chartier et al., 2018; Pei et al., 2011), but not at the

finer spatial scale (compared to ECoG) or across larger neural ensembles (compared to single elec-

trodes) afforded by the high-density intracortical recordings widely used in animal studies

(Allen et al., 2019; Cohen and Maunsell, 2009; Kiani et al., 2014; Smith and Kohn, 2008), includ-

ing those examining arm reaching (Carmena et al., 2003; Churchland et al., 2012; Kaufman et al.,

2016; Maynard et al., 1999).

We studied speech production at this resolution by recording from multielectrode arrays previ-

ously placed in human motor cortex as part of the BrainGate2 BCI clinical trial (Hochberg et al.,

2006). This research context dictated two important elements of the present study’s design. First,

both participants had tetraplegia due to spinal-cord injury but were able to speak; this enabled

observing motor cortical spiking activity during overt speaking, in contrast to earlier studies of

attempted speech by participants unable to speak (Brumberg et al., 2011; Guenther et al., 2009).

However, these participants’ long-term paralysis means that their neurophysiology may differ from

that of people who are able-bodied; we will discuss the need for interpretation caution in the

Discussion.

Second, the electrode arrays were in dorsal ‘hand knob’ area of motor cortex, which we previ-

ously found to strongly modulate to these participants’ attempted movement of their arm and hand

(Ajiboye et al., 2017; Brandman et al., 2018; Pandarinath et al., 2017). Speech-related activity has

not previously been reported in this cortical area, but there are several hints in the literature that

eLife digest Speaking involves some of the most precise and coordinated movements humans

make. Learning how the brain produces speech could lead to better treatments for speech

disorders. But it can be challenging to study. Human speech is unique, limiting what can be learned

from animal studies. There also are few opportunities where it would be safe or ethical to take

measurements from inside a person’s brain while they talk. Most previous studies have recorded

brain activity during speech in patients who have had electrodes placed in the brain for epilepsy or

Parkinson’s disease treatment.

Now, Stavisky et al. show that brain cells that control hand and arm movements are also active

during speech. Two patients who had lost the use of their arms and legs but were able to speak

participated in the study. The two individuals were already enrolled in a pilot clinical trial of a brain-

computer interface to help them control prosthetic devices. As part of this trial, the volunteer

participants had two 100-electrode arrays surgically placed in the part of the brain that controls the

movement of the arms and hands.

This study made the unexpected discovery that brain cells multitask controlling not just arm and

hand movements, but also carry information about movements of the lips, tongue and mouth

necessary for speech. Stavisky et al. also found similarities in the patterns of brain activity during

hand and arm movements and speech.

By analyzing the activity in these brain cells as the two individuals recited words and syllables,

Stavisky et al. were also able to train computers to identify which sound the person spoke from the

brain activity alone. This is a first step towards developing a technology that could synthesize

speech from a person’s brain activity as they try to speak. Much more work is needed to synthesize

continuous speech. But the study provides initial evidence that it might be possible to use

recordings from inside the brain to one day restore speech to individuals who have lost it.
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dorsal motor cortex may have speech-related activity. Although imaging experiments consistently

identify ventral cortical activation during speaking tasks, a meta-analysis of such studies

(Guenther, 2016) indicates that responses are occasionally seen (though not, to our knowledge,

explicitly called out) in dorsal motor cortex. Additionally, behavioral (Gentilucci and Campione,

2011; Vainio et al., 2013), transcranial magnetic stimulation studies (Devlin and Watkins, 2007;

Meister et al., 2003), and electrical stimulation mapping studies (Breshears et al., 2018) have

reported interactions (and interference) between motor control of the hand and mouth. This close

linkage between hand and speech networks has been hypothesized to be due to a need for hand-

mouth coordination and an evolutionary relationship between manual and articulatory gestures

(Gentilucci and Stefani, 2012; Rizzolatti and Arbib, 1998). Here, we explicitly set out to test

whether neuronal firing rates in this dorsal motor cortical area modulated when participants pro-

duced speech and orofacial movements.

Results

Speech-related activity in dorsal motor cortex
We recorded neural activity during speaking from participants ‘T5’ and ‘T8’, who previously had two

arrays each consisting of 96 electrodes placed in the ‘hand knob’ area of motor cortex (Figure 1A,

B). The participants performed a task in which on each trial they heard one of 10 different syllables

or one of 10 short words, and then spoke the prompted sound after hearing a go cue (Figure 1—

figure supplement 1 shows audio spectrograms and reaction times for these tasks). We analyzed

both sortable SUA that could be attributed to an individual neuron’s action potentials (Figure 1C,D),

and ‘threshold crossing’ spikes (TCs) that might come from one or several neurons (Figure 1—figure

supplement 2). Firing rates showed robust changes during speaking of syllables (Figure 1, Fig-

ure 1—figure supplement 2, Video 1) and words (Figure 1—figure supplement 3). Significant

modulation was found during speaking at least one syllable (p<0.05 compared to during silence) in

73/104 T5 electrodes’ TCs (13/22 SUA) and 47/101 T8 electrodes (12/25 SUA). Active neurons were

distributed throughout the area sampled by the arrays, and most modulated to speaking multiple

syllables (Figure 1B and Figure 1—figure supplement 4), suggesting a broadly distributed coding

scheme. This is consistent with previous single neuron recordings in the temporal lobe

(Creutzfeldt et al., 1989; Tankus et al., 2012).

Three observations lead us to believe that this neural activity is related to motor cortical control

of the speech articulators (Chartier et al., 2018; Conant et al., 2018; Mugler et al., 2018) rather

than perception or language. First, modulation was significantly stronger when speaking compared

to after hearing the auditory prompts: the neural population firing rate change compared to the

silent condition was 4.03 times higher after the go cue compared to after the audio prompt for the

T5-syllables dataset, 2.90x for the T8-syllables dataset (Figure 1E), 6.71x higher for the T5-words

dataset, and 2.12x for T8-words (Figure 1—figure supplement 3). Modulation following the audio

prompt, although small, was significant when compared to a 1 s epoch just prior to the prompt

(p<0.01, sign-rank test, all four datasets). In this study, we are unable to disambiguate whether this

prompt-related response reflects auditory perception, movement preparation, or small overt move-

ments preceding vocalization. We will primarily focus on the larger, later neural modulation puta-

tively related to speech production.

Second, analysis of an additional dataset in which participant T5 spoke 41 different phonemes

revealed that neural population activity showed phonemic structure (Figure 1—figure supplement

5): for example, when phonemes were grouped by place of articulation (Bouchard et al., 2013;

Lotte et al., 2015; Moses et al., 2019), population firing rate vectors were significantly more similar

between phonemes within the same group than between phonemes in different groups (p<0.001,

shuffle test). Third, in both participants, 99 of 120 electrodes that were active during speaking sylla-

bles (24 out of 25 sorted neurons) also were active during production of at least one of seven non-

speech orofacial movements (Figure 2 and Figure 2—figure supplement 1). We also observed

weak but significant firing rate correlations with breathing (Figure 2—figure supplement 2). Modu-

lation for speaking was stronger than for unattended breathing (~4.7 x) and instructed breathing

(~2.6 x), and modulation for attempted arm movements was stronger than for speaking and orofacial

movements (~2.8 x, Figure 2—figure supplement 3).
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Figure 1. Speech-related neuronal spiking activity in dorsal motor cortex. (A) Participants heard a syllable or word prompt played from a computer

speaker and were instructed to speak it back after hearing a go cue. Motor cortical signals and audio were simultaneously recorded during the task.

The timeline shows example audio data recorded during one trial. (B) Participants’ MRI-derived brain anatomy. Blue squares mark the locations of the

two chronic 96-electrode arrays. Insets show electrode locations, with shading indicating the number of different syllables for which that electrode

recorded significantly modulated firing rates (darker shading = more syllables). Non-functioning electrodes are shown as smaller dots. CS is central

sulcus. (C) Raster plot showing spike times of an example neuron across multiple trials of participant T5 speaking nine different syllables, or silence.

Data are aligned to the prompt, the go cue, and acoustic onset (AO). (D) Trial-averaged firing rates (mean ± s.e.) for the same neuron and two others.

Insets show these neurons’ action potential waveforms (mean ± s.d.). The electrodes where these neurons were recorded are circled in the panel B

insets using colors corresponding to these waveforms. (E) Time course of overall neural modulation for each syllable after hearing the prompt (left

alignment) and when speaking (right alignment). Population neural distances between the spoken and silent conditions were calculated from TCs using

an unbiased measurement of firing rate vector differences (see Methods). This metric yields signed values near zero when population firing rates are

essentially the same between conditions. Firing rate changes were significantly greater (p < 0.01, sign-rank test) during speech production (comparison

epoch shown by the black window after Go) compared to after hearing the prompt (gray window after Prompt). Each syllable’s mean modulation across

the comparison epoch is shown with the corresponding color’s horizontal tick to the right of the plot. The vertical scale is the same across participants,

revealing the larger speech-related modulation in T5’s recordings.

Figure 1 continued on next page
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Speech can be decoded from intracortical activity on individual trials
We next performed a decoding analysis to quantify how much information about the spoken syllable

or word was present in the time-varying neural activity. Multi-class support vector machines were

used to predict the spoken sound (or silence) from single trial TCs and high-frequency LFP power

(Figure 3). Cross-validated prediction accuracies for syllables were 84.6% for T5 (10 classes, mean

chance accuracy was 10.1% across shuffle controls) and 54.7% for T8 (11 classes, chance was 8.6%).

Word decoding accuracies were 83.5% for T5 (11 classes, chance was 9.1%) and 61.5% for T8 (11

classes, chance was 9.3%). We also used the same method to decode neural activity from 0 to 500

ms after the speech prompt and found that classification accuracies were only marginally better than

chance (overall accuracies between 11.1% and 16.6% across the four datasets, p<0.05 versus shuffle

controls in three of the four datasets; Figure 3C gray bars). The much higher neural discriminability

of syllables and words during speaking rather than after hearing the audio prompt is consistent with

the previously enumerated evidence that modulation in this cortical area is related to speech

production.

During speaking, decoding accuracies for all

individual sounds were above chance (p<0.01,

shuffle test). Decoding mistakes (Figure 3B) and

low-dimensional representations (Figure 3A)

tended to follow phonetic similarities (e.g. ba

and ga, a and ae). This observation is consistent

with previous ECoG studies (Bouchard et al.,

2013; Cheung et al., 2016; Livezey et al., 2019;

Moses et al., 2019; Mugler et al., 2014),

although the larger neural differences we

observed between unvoiced k and p and the

beginning of their voiced counterparts at the

start of ga and ba suggests strong laryngeal tun-

ing (Dichter et al., 2018). These neural correlate

similarities may reflect similarities in the underly-

ing articulator movements (Chartier et al., 2018;

Lotte et al., 2015; Mugler et al., 2018).

Neural population dynamics exhibit
low-dimensional structure during
speech
These multielectrode recordings enabled us to

observe motor cortical dynamics during speech

at their fundamental spatiotemporal scale: neu-

ron spiking activity. Specifically, we examined

whether two known key dynamical features of

motor cortex firing rates during arm reaching

were also present during speaking. Importantly,

both of these features were revealed when look-

ing not at individual neurons’ firing rates, but

rather were seen when examining the time

courses of population activity ‘components’ that

Figure 1 continued

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Prompted speaking tasks behavior.

Figure supplement 2. Example threshold crossing spike rates.

Figure supplement 3. Neural activity while speaking short words.

Figure supplement 4. Neural correlates of spoken syllables are not spatially segregated in dorsal motor cortex.

Figure supplement 5. Neural activity shows phonetic structure.

Video 1. Example audio and neural data from eleven

contiguous trials of the prompted syllables speaking

task. The audio track was recorded during the task and

digitized alongside the neural data; it starts with the

two beeps indicating trial start, after which the syllable

prompt was played from computer speakers, followed

by the go cue clicks, and finally the participant

speaking the syllable. The video shows the concurrent

�4.5 � RMS threshold crossing spikes rate on each

electrode. Each circle corresponds to one electrode,

with their spatial layout corresponding to electrodes’

locations in motor cortex as in the Figure 1B inset.

Each electrode’s moment-by-moment color and size

represent its firing rate (soft-normalized with a 10 Hz

offset, smoothed with a 50 ms s.d. Gaussian kernel).

The color map goes from pink (minimum rate across

electrodes) to yellow (maximum rate), while size varies

from small (minimum rate) to large (maximum rate).

Non-functioning electrodes are shown as small gray

dots. To assist the viewer in perceiving the gestalt of

the population activity, a larger central disk shows the

mean firing rate across all functioning electrodes,

without soft-normalization. Data are from the T5-

syllables dataset, trial set #23.

https://elifesciences.org/articles/46015#video1
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act as lower dimensional building blocks (or condensed summaries) of the many individual neurons’

activities (Gallego et al., 2017; Pandarinath et al., 2018; Saxena and Cunningham, 2019). The first

prominent neural population dynamics feature (‘dynamical motif’) we tested for is inspired by previ-

ous nonhuman primate (NHP) experiments showing that the neural state undergoes a rapid change

during movement initiation which is dominated by a condition-invariant signal (CIS) (Kaufman et al.,

2016). In that study, Kaufman and colleagues provide a comprehensive exposition on why a large

neural component that is highly invariant across many different arm reaches is a non-trivial feature of

neural population data and could, despite its non-specificity, be important to the overall computa-

tions being performed. A similar CIS was recently also reported during NHP grasping (Intveld et al.,

2018).

Figure 2. The same motor cortical population is also active during non-speaking orofacial movements. (A) Both participants performed an orofacial

movement task during the same research session as their syllables speaking task. Examples of single neuron firing rates during seven different orofacial

movements are plotted in colors corresponding to the movements in the illustrated legend above. The ‘stay still’ condition is plotted in black. The

same three example neurons from Figure 1D are included here. The other three neurons were chosen to illustrate a variety of observed response

patterns. (B) Electrode array maps indicating the number of different orofacial movements for which a given electrode’s �4.5 � RMS threshold crossing

rates differed significantly from the stay still condition. Data are presented similarly to the Figure 1B insets. Firing rates on most functioning electrodes

modulated for multiple orofacial movements. See Figure 2—figure supplement 1 for individual movements’ electrode response maps. (C) Breakdown

of how many neurons’ (top) and electrodes’ TCs (bottom) exhibited firing rate modulation during speaking syllables only (red), non-speaking orofacial

movements only (blue), both behaviors (purple), or neither behavior (gray). A unit or electrode was deemed to modulate during a behavior if its firing

rate differed significantly from silence/staying still for at least one syllable/movement.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neural correlates of orofacial movements are not spatially segregated in dorsal motor cortex.

Figure supplement 2. Dorsal motor cortex correlates of breathing.

Figure supplement 3. Dorsal motor cortex modulates more strongly during attempted arm and hand movements than orofacial movements and

speaking.
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Figure 3. Speech can be decoded from intracortical activity. (A) To quantify the speech-related information in the

neural population activity, we constructed a feature vector for each trial consisting of each electrode’s spike count

and HLFP power in ten 100 ms bins centered on AO. For visualization, two-dimensional t-SNE projections of this

feature vector are shown for all trials of the T5-syllables dataset. Each point corresponds to one trial. Even in this

two-dimensional view of the underlying high-dimensional neural data, different syllables’ trials are discriminable

and phonetically similar sounds’ clusters are closer together. (B) The high-dimensional neural feature vectors were

classified using a multiclass SVM. Confusion matrices are shown for each participant’s leave-one-trial-out

classification when speaking syllables (top row) and words (bottom row). Each matrix element shows the

percentage of trials of the corresponding row’s sound that were classified as the sound of the corresponding

column. Diagonal elements show correct classifications. (C) Bar heights show overall classification accuracies for

decoding neural activity during speech (black bars, summarizing panel B) and decoding neural activity following

the audio prompt (gray bars). Each small point corresponds to the accuracy for one class (silence, syllable, or

word). Brown boxes show the range of chance performance: each box’s bottom/center/top correspond to

minimum/mean/maximum overall classification accuracy for shuffled labels.
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The second dynamical motif we tested for follows studies of NHP arm reaches (Churchland et al.,

2012; Kaufman et al., 2016) and human point-to-point hand movements (Pandarinath et al.,

2015), which showed that subsequent peri-movement neural ensemble activity is characterized by

orderly rotatory dynamics. That is, a substantial portion of moment-by-moment firing rate changes

can be explained by a simple rotation of the neural state in a plane that summarizes the correlated

activity of groups of neurons. These observations, in concert with neural network modeling

(Kaufman et al., 2016), have led to a model of motor control in which, prior to movement, inputs

specifying the movement goal create attractor dynamics toward an advantageous initial condition

(Shenoy et al., 2013). During movement initiation, a large transient input ‘kicks’ the network into a

different state from which activity evolves according to rotatory dynamics such that muscle activity is

constructed from an oscillatory basis set (akin to composing an arbitrary signal from a Fourier basis

set) (Churchland et al., 2012; Sussillo et al., 2015).

We tested whether motor cortical activity during speaking also exhibits these dynamics by apply-

ing the analytical methods of Churchland et al.

(2012) and Kaufman et al. (2016). These analy-

ses used two different dimensionality reduction

techniques (Cunningham and Yu, 2014) to

reveal latent low-dimensional structure in the

trial-averaged firing rates for different conditions

(here, speaking different words). Both methods

sought to find a modest number of linear

weightings of different electrodes’ firing rates

(forming the aforementioned neural population

activity ‘components’) that capture a large frac-

tion of the overall variance. This is akin to princi-

pal components analysis (PCA), but unlike PCA,

each method also looks for a specific form of

neural population structure: jPCA

(Churchland et al., 2012) seeks components

with rotatory dynamics, whereas dPCA

(Kaufman et al., 2016; Kobak et al., 2016)

decomposes neural activity into CI and condi-

tion-dependent (CD) components. Importantly,

these methods do not spuriously find the sought

dynamical structure when it is not present in the

data (Churchland et al., 2012; Elsayed and

Cunningham, 2017; Kaufman et al., 2016;

Kobak et al., 2016; Pandarinath et al., 2015).

We found that these two prominent popula-

tion dynamics motifs were indeed also present

during speaking. Like in Kaufman et al. (2016),

the largest dPCA component summarizing each

participants’ neural activity during movement ini-

tiation was largely CI: this component was 98.7%

CI in participant T5, and 87.3% CI in participant

T8 (Figure 4A). Figure 4B shows that in T5, this

‘CIS1’ component, which rapidly increased after

the go cue, was essentially identical regardless

of which word was spoken. In T8, the CIS1 was

not as cleanly condition-invariant, but nonethe-

less showed a similar increase following the go

cue for each word. We also found this condition-

invariant neural population activity component in

all four additional datasets that we examined:

T5’s and T8’s syllables task datasets, as well as

two additional replication datasets in which

Figure 4. A condition-invariant signal during speech

initiation. (A) A large component of neural population

activity during speech initiation is a condition-invariant

(CI) neural state change. Firing rates from 200 ms

before to 400 ms after the go cue (participant T5) and

100 ms to 700 ms after the go cue (T8) were

decomposed into dPCA components like in

Kaufman et al. (2016). Each bar shows the relative

variance captured by each dPCA component, which

consists of both CI variance (red) and condition-

dependent (CD) variance (blue). These eight dPCs

captured 45.1% (T5-words) and 8.4% (T8-words) of the

overall neural variance, which includes non-task related

variability (‘noise’). (B) Neural population activity during

speech initiation was projected onto the first dPC

dimension; this ‘CIS1’ is the first component from panel

A. Traces show the trial-averaged CIS1 activity when

speaking different words, denoted by the same colors

as in Figure 3B.

The online version of this article includes the following

figure supplement(s) for figure 4:

Figure supplement 1. Further details of neural

population dynamics analyses and additional datasets.

Figure supplement 2. Neural population dynamics

when viewed across a range of reduced

dimensionalities.
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participant T5 spoke just five of the words (Figure 4—figure supplement 1). These results were also

robust across different choices of how many dPCs to summarize the neural population activity with

(Figure 4—figure supplement 2).

We attribute the difference in how condition-invariant the CIS1 component was between the two

participants to the much smaller speech task-related neural modulation recorded in participant T8

compared to in T5, as demonstrated in Figure 1—figure supplement 3B and the lower classification

accuracies of Figure 3. The practical consequence of T8’s substantially weaker speech-related modu-

lation is that much more of the neural population activity that dimensionality reduction tries to sum-

marize was not task-relevant (i.e. is ‘noise’ for the purpose of these analyses). This lower signal-to-

noise ratio can also be appreciated in how the ‘elbow’ of T8’s cumulative neural variance explained

by PCA or dPCA components (Figure 4—figure supplement 1A,B) occurs after fewer components

and explains far less overall variance.

Lastly, we looked for rotatory population dynamics around the time of acoustic onset. Figure 5A

shows ensemble firing rates projected into the top jPCA plane (i.e. the subspace defined by jPC1

and jPC2). In participant T5, all conditions’ neural state trajectories rotated in the same direction

(similarly to Churchland et al., 2012; Pandarinath et al., 2015), and rotatory dynamics could explain

substantial variance in how population activity evolved moment-by-moment during speaking. Appli-

cation of a recent population dynamics hypothesis testing method (Elsayed and Cunningham,

2017) revealed that this rotatory structure was significantly stronger than expected by chance in T5’s

speaking data, but not in T8’s speaking data (Figure 5B) or when this analysis was applied to neural

activity following the audio prompt (Figure 4—figure supplement 1H). As was the case for the con-

dition-invariant dynamics, these results were also consistent across additional datasets (Figure 4—

figure supplement 1E–H) and across the choice of how many PCA dimensions in which to look for

rotatory dynamics (Figure 4—figure supplement 2B). We again attribute the observed between-

participants difference to T8’s smaller measured neural responses during speech, which likely reflect

his older arrays’ lower signal quality. Consistent with this, T8’s BCI computer cursor control perfor-

mance was also substantially worse than T5’s (Pandarinath et al., 2017). Other factors that could

also have contributed to T8’s reduced speech-related neural activity include his tendency to speak

quietly and with less clear enunciation (consistent with Jiang et al., 2016), array placement differen-

ces, and differences in cortical maps between individuals (Farrell et al., 2007).

Videos 2 and 3 show the temporal relationship between these two dynamical motifs – an initial

condition-invariant neural state shift, followed by rotatory dynamics. Neural state rotations occurred

after the condition invariant translation; by comparison, in Kaufman et al. (2016) the neural rota-

tions also lagged the CIS shift, but in the monkey arm reaching data these rotations either partially

overlapped with, or more immediately followed, the CIS shift. We note that existing models of how

a condition-invariant signal ‘kicks’ dynamics into a different state space region where rotatory

dynamics unfold (Kaufman et al., 2016; Sussillo et al., 2015) do not require that the CIS and rota-

tory dynamics must be orthogonal, but in these data we did observed that the CIS1 and jPCA dimen-

sions were largely orthogonal (Figure 4—figure supplement 1E).

Discussion
There are three main findings from this study. First, these data suggest that ‘hand knob’ motor cor-

tex, an area not previously known to be active during speaking (Breshears et al., 2015;

Dichter et al., 2018; Leuthardt et al., 2011; Lotte et al., 2015), may in fact participate, or at least

receive correlates of, neural computations underlying speech production. Speech-related single-neu-

ron modulation might have been missed by previous studies due to the coarser resolution of ECoG

(Chan et al., 2014). If this finding holds true in the wider population, this would underscore that the

familiar ‘motor homunculus’ (Penfield and Boldrey, 1937) is overly simplistic. It is generally recog-

nized that motor cortex does not rigidly follow a sequential point-to-point somatotopy, and indeed,

Penfield and colleagues were aware of this and intended for their diagram to be a simplified sum-

mary of results showing partially overlapping motor fields that also varied substantially across indi-

viduals (Catani, 2017). However, the patchy mosaicism amongst nearby body parts in the current

view of precentral gyrus organization still features a dorsal-to-ventral progression and separation of

the major body regions (leg, arm, head) (Farrell et al., 2007; Schieber, 2001).
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The presence of neurons responding to mouth and tongue movements in the dorsal ‘arm and

hand’ area of motor cortex indicates that sensorimotor maps for different body parts are even more

widespread and overlapping than previously thought. Given our previous finding that activity from

these same arrays encodes intended arm and hand movements (Pandarinath et al., 2017), these

observations are consistent with the hypothesis that the systems for speech and manual gestures are

interlocked (Gentilucci and Stefani, 2012; Rizzolatti and Arbib, 1998; Vainio et al., 2013). How-

ever, emerging work from our group showing that neurons in this area also modulate during

attempted movements of the neck and legs (Willett et al., 2019) suggests that much of the body is

represented (to varying strengths) in dorsal motor cortex. Thus, the observed neural overlap

between hand and speech articulators may be a consequence of distributed whole-body coding,

rather than a privileged speech-manual linkage.

Our data suggest that the observed neural activity reflects movements of the speech articulators

(the tongue, lips, jaw, and larynx): modulation was greater during speaking than after hearing the

prompt; the same neural population modulated during non-speech orofacial movements; and in T5,

the neural correlates of producing different phonemes grouped according to these phonemes’ place

of articulation. We also found that firing rates showed modest correlation with T5’s unattended and

Figure 5. Rotatory neural population dynamics during speech. (A) The top six PCs of the trial-averaged firing rates

from 150 ms before to 100 ms after acoustic onset in the T5-words and T8-words datasets were projected onto the

first jPCA plane like in Churchland et al. (2012). This plane captures 38% of T5’s overall population firing rates

variance, and rotatory dynamics fit the moment-by-moment neural state change with R2 = 0.81 in this plane and

0.61 in the top 6 PCs. In T8, this plane captures 15% of neural variance, with a rotatory dynamics R2 of only 0.32 in

this plane and 0.15 in the top six PCs. (B) Statistical significance testing of rotatory neural dynamics during

speaking. The blue vertical line shows the goodness of fit of explaining the evolution in the top six PC’s neural

state from moment to moment using a rotatory dynamical system. The brown histograms show the distributions of

this same measurement for 1000 neural population control surrogate datasets generated using the tensor

maximum entropy method of Elsayed and Cunningham (2017). These shuffled datasets serve as null hypothesis

distributions that have the same primary statistical structure (mean and covariance) as the original data across

time, electrodes, and word conditions, but not the same higher order statistical structure (e.g. low-dimensional

rotatory dynamics).
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instructed breathing, which invites the question

of how this activity relates to the precise control

of breathing necessary for speaking and whether

breath-related activity differs depending on

behavioral context. A deeper understanding of

how motor cortical spiking activity relates to

complex speaking behavior will require future

work connecting it to continuous articulatory

(Chartier et al., 2018; Conant et al., 2018;

Mugler et al., 2018) and respiratory kinematics

and, ideally, the underlying muscle activations.

An important unanswered question, however,

is to what extent these results were potentially

influenced by cortical remapping due to tetraple-

gia. While we cannot rule this out, we believe

that remapping of face representation to the hand knob area is unlikely. Despite these participants’

many years of paralysis, the sites we recorded from still strongly modulate during attempted hand

and arm movements (Ajiboye et al., 2017; Brandman et al., 2018; Pandarinath et al., 2017). We

also verified in participant T5 that modulation during attempted arm movements was stronger than

during speech production. Our ongoing work also indicates that this area modulates during

attempts to move other body parts (e.g. the leg) which, like the arm, are also paralyzed

(Willett et al., 2019). Taken together, these results are inconsistent with this area being ‘taken over’

by functions related to the participants’ remaining capability to make orofacial movements. Further-

more, motor cortical remapping following arm amputation was recently shown to be smaller than

previously thought (Wesselink et al., 2019), and in particular much smaller than what would be

needed to move lip representations to hand cortex (Makin et al., 2015). On the sensory side,

emerging evidence suggests that cortical reorganization following injury in adults is more limited

than previously thought (Makin and Bensmaia, 2017), and a recent microstimulation study in the

hand somatosensory cortex of a person with tetraplegia did not find functional reorganization

(Flesher et al., 2016). While these threads of evidence argue against remapping, definitively resolv-

ing this ambiguity would require intracortical recording from this eloquent brain area in able-bodied

people.

Video 2. The progression of neural population activity

during the prompted words task is summarized with

dimensionality reduction chosen to highlight the

condition-invariant ‘kick’ after the go cue, followed by

rotatory population dynamics. T5-words dataset neural

state space trajectories are shown from 2.5 s before go

cue to 2.0 s after go. Each trajectory corresponds to

one word condition’s trial-averaged firing rates, aligned

to the go cue. The neural states are projected into a

three-dimensional space consisting of the CIS1
dimension (as in Figure 4) and the first two jPC

dimensions (similar to Figure 5, except that for this

visualization we enforced that the jPC plane be

orthogonal to the CIS1; see Materials and methods).

The trajectories change color based on the task epoch:

gray is before the audio prompt, blue is after the

prompt, and then red-to-green is after the go cue, with

conditions ordered as in Figure 5.

https://elifesciences.org/articles/46015#video2

Video 3. The same neural trajectories as Video 2, but

aligned to acoustic on (AO), are shown from 3.5 s

before AO to 1.0 s after AO.

https://elifesciences.org/articles/46015#video3
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Assuming that these results are not due to injury-related remapping, we are left with the question

of why this speech-related activity is found in dorsal ‘arm and hand’ motor cortex. Speech is spared

following lesions in this area (Chen et al., 2006; Tei, 1999), indicating that it is not necessary for

speech production. Nonetheless, it is possible that dorsal motor cortex plays some supporting role

in speaking, perhaps contributing to more demanding speaking tasks, or that this activity reflects

speech efference copy for coordinating orofacial and upper extremity movements. This would be in

line with theoretical arguments that high dimensional representations resulting from mixed selectiv-

ity – in this case, both within major body regions (a given neuron being tuned for multiple arm move-

ments or for multiple orofacial movements) and across major body regions (neurons being tuned for

both arm and face movements) – enable more complex computations (Fusi et al., 2016) such as

coordinating movements across the body. We anticipate that it will require substantial future work

to understand why speech-related activity co-occurs in the same motor cortical area as arm and

hand movement activity, but that this line of inquiry may reveal important principles of how sensori-

motor control is distributed across the brain (Musall et al., 2019; Stringer et al., 2019).

Our second main finding is that, based on offline decoding results, intracortical recordings show

promise as signal sources for BCIs to restore speech to people with some forms of anarthria. Decod-

ing the neural correlates of attempted speech production (Brumberg et al., 2011) into audible

sounds or text may be more desirable than approaches that decode covert internal speech

(Leuthardt et al., 2011; Martin et al., 2016) or more abstract elements of language (Chan et al.,

2011; Yang et al., 2017) because decoding attempted movements leverages existing neural

machinery that separates internal monologue and speech preparation from intentional speaking.

The present results compare favorably to previously published decoding accuracies using ECoG

(Mugler et al., 2014; Ramsey et al., 2018) despite our dorsal recording locations likely being sub-

optimal for decoding speech. Multi-electrode arrays placed in ventral motor cortex would be

expected to yield even better decoding accuracies. Furthermore, recent order-of-magnitude advan-

ces in the number of recording sites on intracortical probes (Jun et al., 2017) point to a path that

stretches far forward in terms of scaling the number of distinct sources of information (neurons) for

speech BCIs.

That said, these results are only a first step in establishing the feasibility of speech BCIs using

intracortical electrode arrays. We decoded amongst a limited set of discrete syllables and words in

participants who are able to speak; future studies will be needed to assess how well intracortical sig-

nals can be used to discriminate between a wider set of phonemes (Brumberg et al., 2011;

Mugler et al., 2014), in the absence of overt speech (Brumberg et al., 2011; Martin et al., 2016),

and to synthesize continuous speech (Akbari et al., 2019; Anumanchipalli et al., 2019;

Makin et al., 2019). We also observed worse decoding performance in participant T8, highlighting

the need for future studies in additional participants to sample the distribution of how much speech-

related neural modulation can be expected, and what speech BCI performance these signals can

support.

Our third main finding is that two motor cortical population dynamical motifs present during arm

movements were also significant features of speech activity. We observed a large condition-invariant

change at movement initiation in both participants, and rotatory dynamics during movement genera-

tion in the one of two participants whose arrays recorded substantially more modulation. We specu-

late that these neural state rotations are well-suited for generating descending muscle commands

driving the out-and-back articulator movements that form the kinematic building blocks of speech

(Chartier et al., 2018; Mugler et al., 2018). The presence of these dynamics during both reaching

and speaking could indicate a conserved computational mechanism that is ubiquitously deployed

across multiple behaviors to shift the circuit dynamics from withholding movement to generating the

appropriate muscle commands from an oscillatory basis set. Testing and refining this hypothesis calls

for examining whether these two dynamical motifs are present across an even wider range of behav-

iors and body parts. For instance, there is emerging evidence that rotatory dynamics may be absent

in movements with a greater role of sensory feedback, such as hand grasping (Suresh et al., 2019).

This interpretation should also be tempered by the major unresolved question of whether these

dynamics in dorsal motor cortex play a causal role in speaking and/or echo similar dynamics in other

areas, such as ventral motor cortex, which are more directly involved in speech (Bouchard et al.,

2013). An alternative interpretation is that if dorsal motor cortex merely receives an efference copy

or ‘coordination’ signal about speech articulator movements, its dynamics may resemble those
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during arm reaching because this is what the inherent properties of the local circuit are set up to

generate – even if in the speech case, this activity is not helping construct muscle activities. Testing

these hypotheses will require future research involving recording from the speech articulator muscles

(analogous to recording from arm muscles in Churchland et al., 2012), causally stimulating the cir-

cuit (Dichter et al., 2018), and examining whether these neural ensemble dynamical motifs are pres-

ent during speech production in ventral (speech) motor cortex.

Materials and methods

Participants
The two participants in this study were enrolled in the BrainGate2 Neural Interface System pilot clini-

cal trial (ClinicalTrials.gov Identifier: NCT00912041). The overall purpose of the study is to obtain

preliminary safety information and demonstrate proof of principle that an intracortical brain-com-

puter interface can enable people with tetraplegia to communicate and control external devices.

Permission for the study was granted by the U.S. Food and Drug Administration under an Investiga-

tional Device Exemption ( Caution: Investigational device. Limited by federal law to investigational

use). The study was also approved by the Institutional Review Boards of Stanford University Medical

Center ( protocol #20804), Brown University (# 0809992560), University Hospitals of Cleveland Medi-

cal Center (#04-12-17), Partners HealthCare and Massachusetts General Hospital (#2011P001036),

and the Providence VA Medical Center (#2011–009). Both participants gave informed consent to

the study and publications resulting from the research, including consent to publish photographs

and audiovisual recordings of them.

Participant ‘T5’ (male, right-handed, 64 years old at the time of the study) was diagnosed with C4

AIS-C spinal cord injury 10 years prior to these research sessions. He retained the ability to weakly

flex his left elbow and fingers and some slight and inconsistent residual movement of both the upper

and lower extremities. T5 was able to speak normally and converse naturally without hearing assis-

tance, but had some trouble hearing from his left ear.

Participant ‘T8’ (male, right-handed, 56 years old at the time of the study) was diagnosed with

C4 AIS-A spinal cord injury 11 years prior to these sessions. He retained restricted and non-func-

tional voluntary shoulder girdle motion on both sides, and non-functional voluntary finger extension

on his left side. He had no sensation below the shoulder. T8 was able to speak normally and con-

verse naturally with the assistance of hearing aids in both his ears.

Prompted speaking tasks
Participants performed a syllables task consisting of discrete trials in which they spoke out loud one

of 10 different phonemes or consonant-vowel syllables in response to an auditory prompt. These

prompts were i (as in ‘beet’); ae (as in ‘bat’); a (as in ‘bot’); u (as in ‘boot’); ba; da; ga; sh (as in the

start of ‘shot’), and the unvoiced k and p. All pronunciations were American English. Video 1 pro-

vides a continuous audio recording of one set of each type of syllables task trial.

Participants sat comfortably in a chair facing a microphone in a quiet room. They were instructed

to refrain from attempting movements or speaking during trials except when prompted to speak by

a custom experiment control software written in MATLAB (The Mathworks). During trials, they were

also asked to fixate on the same object in front of them. Each trial began with two beeps to alert

the participant that the trial was starting. Approximately 1 s after the start of the second beep, a

pre-recorded syllable prompt was played via computer speakers. Two clicks played ~2 s after the

start of the prompt served as the go cue that instructed the participant to speak back the prompted

sound. The next trial started 2.8 s after the start of the second click. There was also an eleventh

‘silent’ condition which was identical to the spoken syllables trials, except that instead of playing a

syllable prompt, the speakers played a nearly-silent audio file consisting of ambient background

noise recorded in the same environment as the syllable prompts. The participants had been previ-

ously instructed not to say anything in response to this silent prompt.

The task was performed in blocks consisting of 10 trial sets. Each set contained 11 trials: one trial

of each syllable, plus silence, presented in a randomized order. After the task was explained to each

participant, he was given time to practice a few sets of the task until he indicated that he was ready

to begin data collection. At the end of each set, we paused the task until the participant indicated
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that he was ready to continue. These inter-set pauses typically lasted less than 10 s. Participants per-

formed three consecutive blocks of the task during a research session, with longer pauses of several

minutes between blocks during which we encouraged the participant to rest, adjust his posture for

comfort, and take a drink of water.

Both the audio prompts played by the experiment control computer, and the participant’s voice,

were recorded by the microphone (Shure SM-58). This audio signal was recorded via the analog

input port of the electrophysiology data acquisition system and digitized at 30 ksps together with

the raw neural data (see Neural Recording section). Each trial’s acoustic onset time (AO) was manu-

ally determined by visual and auditory inspection of the recorded audio data. During this review, we

also excluded infrequent trials where the participant spoke at the wrong time or when the trial was

interrupted (for example, if a caregiver entered the room). Isolated sounds can be difficult to dis-

criminate, and our participants sometimes misheard a syllable prompt as a phonetically similar

prompt. In particular, T5 misheard the majority of da prompts as ga (or occasionally as ba). Both par-

ticipants made a few other substitutions between similar syllables. In this study, we were interested

in the neural correlates of preparing and then generating speech, which should reflect the syllable

that the participant perceived. We therefore labeled these misheard trials based on the spoken,

rather than prompted, syllable for subsequent analyses. This left an insufficient number of T5 da tri-

als for subsequent neural analyses; thus, there are 11 conditions shown in T8’s Figure 1 firing rate

plots and Figure 3 confusion matrices, but only 10 conditions for T5. The number of trials analyzed

for each participant, after excluding trials and re-labeling misheard trials as described above, were:

silent (30 trials for T5, 30 trials for T8); i (30, 28); u (30, 31); ae (28, 30); a (30, 30); ba (31, 29); ga (50,

34); da (0, 27); k (30, 27); p (30, 33); sh (30, 30). We refer to these datasets as ‘T5-syllables’ and ‘T8-

syllables’.

Participants also performed a words task which was identical to the syllables task except that they

heard and repeated back one of 10 short words, rather than syllables, in response to the auditory

prompt. Each participant performed three blocks of ten repetitions of each word during one

research session. We refer to these datasets as ‘T5-words’ and ‘T8-words’. Two consecutive trials

were excluded from the T8-words dataset because of a large electrical noise artifact across almost

all electrodes. The specific words, and the number of trials analyzed for each participant, were:

‘beet’ (30 T5 trials, 29 T8 trials); ‘bat’ (30, 29); ‘bot’ (30, 28); ‘boot’ (30, 30); ‘dot’ (30, 29); ‘got’ (29,

29); ‘shot’ (29, 28); ‘keep’ (30, 30); ‘seal’ (30, 30); ‘more’ (30, 30). As with the syllables task, there

was also a silent condition (30 T5 trials, 30 T8 trials). During two additional research sessions (as part

of a follow-up study), participant T5 performed the words task with only five of the 10 words. The

conditions and trial counts in these two replication datasets, which we refer to as ‘T5-5words-A’ and

‘T5-5words-B’, were: ‘seal’ (33 trials in T5-5-words-A, 34 trials in T5-5words-B); ‘shot’ (34, 34); ‘more’

(33, 34); ‘bat’ (34, 33); beet’ (34, 34); and a silent condition (34, 34).

Silent condition trials were assigned a ‘faux AO’ so that neural data from comparable epochs of

silent and spoken trials could be visualized and analyzed (for example, for generating trial-averaged,

AO-aligned firing rates in Figure 1 or for decoding silent trials’ neural activity in Figure 3). Specifi-

cally, each silent trial’s AO was set to equal the mean AO (relative to the go cue) for all the spoken

syllables or words during the same block.

Orofacial movement task
Participants also performed an orofacial movement task with a similar trial structure as the syllables

and words tasks. Seven different movement conditions were instructed with auditory prompts:

‘mouth open’, ‘lips forward’, ‘lips back’, ‘tongue right’, ‘tongue down’, ‘tongue up’, and ‘tongue

left’. An additional ‘stay still’ condition was analogous to the silent condition of the syllables and

words tasks. Prior to the first block of the orofacial task, a researcher explained the prompts to the

participant, demonstrated the movements, and ran the participant through a few practice sets. Due

to clinical trial protocols, we did not collect kinematic tracking data such as electromagnetic mid-

sagittal articulography (Chartier et al., 2018) or ultrasound recordings (Conant et al., 2018). A

video recording of the participants’ faces (without markers) did allow the researchers to confirm that

the participants were making the instructed movement with acceptable timing precision. Given this

limitation, we limited our use of these data to broadly testing for neural responses during orofacial

movements, rather than quantifying precise moment-by-moment relationships between neural activ-

ity and kinematics.
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Similar to the syllables and words task, an orofacial movement trial began with two ready beeps,

after which the computer speaker played a movement prompt (e.g. ‘lips forward’). This was followed

by the pair of go clicks; the participants were previously informed that they should begin moving

after the second click. Approximately 1.9 s after the go cue click, the experiment control system

played the verbal command ‘return’, which instructed the participant to return to a neutral orofacial

posture (e.g. close the mouth after ‘mouth open’, move the tongue left after ‘tongue right’). The trial

ended ~1.9 s after the start of ‘return’. The purpose of using a return cue was so that there was a

known epoch after the movement go cue during which we knew that the participant was not yet

returning. The return cue also provided the participant with dedicated time to return to a neutral

orofacial position, so that all trials would start from roughly the same posture. For T8, the ‘return’

instruction was immediately followed by a go click. However, we observed that T8 started the return

movement upon hearing ‘return’ rather than waiting for the go click. We therefore removed the

return go click prior to T5’s research sessions, and instead instructed T5 to start the return move-

ment when he heard ‘return’. In the present study, we did not examine the return portion of the oro-

facial movement task.

Each participant’s orofacial movements and syllables datasets were collected on the same day

during the same research session; three blocks of the orofacial movement task immediately followed

three blocks of the syllables task. We will refer to these orofacial movements task datasets as ‘T5-

movements’ and ‘T8-movements’. No trials were excluded from these datasets; thus, there were 30

trials of each condition for each participant.

Many words task
During an additional research session, participant T5 performed a many words task in which he

spoke 420 unique words (from Angrick et al., 2019) designed to broadly sample American English

phonemes. These words were visually prompted, with one word appearing per trial. Each trial

started with an instruction period in which a red square appeared in the center of a computer screen

facing the participant. White text above the square instructed what word the participant should say

once given a go cue (e.g. ‘Prepare: ‘Dog’’). This instruction period lasted 1.2 to 1.8 s (mean 1.4 s,

exponential distribution) after which the square turned green, the text changed to ‘Go’, and an audi-

ble beep was played. This served as the go cue for T5 to speak out loud the instructed word. A sec-

ond beep occurred 1.5 s later, which marked the end of the trial. The next trial began 1 s later. The

420 words were divided into four sets, with each set spoken during a continuous block of trials with

short breaks between blocks. Each word set was repeated three times during this research session,

with a given set’s words appearing in a different random order during each block. We call this the

‘T5-phonemes’ dataset.

Breath measurement
T5’s breath-related abdomen movements were measured with a piezo respiratory belt transducer

(model MLT1132, ADIntruments). The stretch sensor was wrapped around his abdomen at the point

where it maximally expanded during breathing. Analog voltage signals from the belt were input to

the neural signal processor via one of its analog input channels. These data were digitized at 30 ksps

along with the neural data. Our goal was to test whether there is breath-correlated neural activity

during ‘unattended’ breathing (i.e. natural ‘background’ breathing, when the participant was not

consciously attending to his breath) and during consciously attended ‘instructed’ breathing. Both of

the unattended and instructed conditions were collected during the same research session, and we

refer to this as the ‘T5-breathing’ dataset.

For the unattended breathing condition, we recorded neural and breath proxy measurements

while T5 performed a BCI computer cursor task as part of a different study, and during an interval

where he was resting quietly after completing the BCI task. For the instructed breathing task, we

recorded neural and breath proxy measurements while T5 performed a cued breathing task that fol-

lowed a similar structure as the many words task described in the previous section. On each trial, the

on-screen instruction text was either ‘Prepare: Breathe in’ or ‘Prepare: Breathe out’. The order of

these two trial types was randomized within consecutive two-trial sets, such that breaths in and

breaths out were counterbalanced and no more than two out breaths or two in breaths could be

prompted in a row. After a random delay of 1.2 to 1.6 s (mean 1.4 s, exponential distribution), the
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go cue instructed the participant to breathe in or out according to the instruction. After 1.5 s, an

audible beep and the on-screen text changing to ‘Return’ instructed the participant to return to a

neural lung inflation position. ‘Return’ stayed on screen for 1.5 s, after which the inter-trial interval

was 1 s. A block consisted of 12 trials, after which the participant was given a chance to take a break,

relax, and breathe naturally before the next block. The participant reported that this task was com-

fortable and that he was able to match his breaths to the instructions without difficulty.

Movement comparisons task
The purpose of this task, which was performed on a separate day from the other datasets, was to

compare the neural modulation when making orofacial movements and speaking, versus when

attempting to make arm and hand movements. The task had a similar visually instructed structure to

the instructed breathing task. During the instructed delay period, text displayed the upcoming

movement, for example, ‘Prepare: Say Ba’, or ‘Prepare: Open Hand’. There was also a ‘Prepare: Do

Nothing’ instruction, which otherwise had the same trial structure as the instructed movements.

After a random delay period of between 1400 and 1800 ms, the go cue appeared. During this

epoch, T5 attempted to make the instructed movement as best as he could. This resulted in com-

plete movements for all the orofacial and speaking movements and ‘shoulder shrug’, partial move-

ments for some of the arm movements (e.g. ‘flex elbow in’), and no overt movement for the other

arm movements (e.g. ‘close hand’, ‘thumb up’). We analyzed neural data from 200 ms to 600 ms

after the go cue. We note that insofar as there was somatosensory and proprioceptive feedback

only during the actualized movements, this would be expected to increase the observed neural mod-

ulation to orofacial movements and speaking, and decrease the modulation to attempted arm and

hand movements. The go cue stayed on for 1500 ms. This was followed by a return period in which

the text changed to ‘Return’; during this epoch, the participant was instructed to return his body to

a neutral posture. Thirty-two trials were collected for each movement type. We refer to this as the

‘T5-comparisons’ dataset.

Neural recording
Both participants had two 96-electrode Utah arrays (1.5 mm electrode length, Blackrock Microsys-

tems) neurosurgically placed in dorsal ‘hand knob’ area of the left (motor dominant) hemisphere’s

motor cortex. Surgical targeting was stereotactically guided based on prior functional and structural

imaging (Yousry et al., 1997), and subsequently confirmed by review of intra-operative photo-

graphs. T5 and T8 had arrays placed 14 and 34 months, respectively, prior to the present study’s

prompted words, syllables, and orofacial movements tasks. The T5-breathing and T5-comparisons

datasets were recorded 26 months after array placement, the T5-5words-A and T5-5words-B data-

sets were recorded 28 months after array placement, and the T5-phonemes dataset was recorded

29 months after array placement. Arrays were placed in areas anticipated to have arm movement-

related activity because two goals of the clinical trial are 1) testing the feasibility of intracortical BCI-

based communication using point-and-click keyboards and 2) restoration of reach and grasp function

via control of a robotic arm or functional electrical stimulation. We note that these implant sites are

distinct from the closest known speech area, which is the dorsal laryngeal motor cortex

(Bouchard et al., 2013; Dichter et al., 2018). In this study, we looked for neural correlates of speak-

ing in dorsal motor cortex. To help contextualize the results, here we summarize the other behaviors

associated with modulation of the neural activity recorded by these same arrays. Our previous stud-

ies have reported that T5 and T8 controlled BCI computer cursors by attempting movements of their

arm and hand (Brandman et al., 2018; Pandarinath et al., 2017). T8 was also able to use intended

arm movements to command movements of his own paralyzed arm via functional electrical stimula-

tion (Ajiboye et al., 2017). We also recorded movement task outcome error signals from T5’s arrays;

these signals indicated whether the participant succeeded or failed at acquiring a target using a BCI-

controlled cursor (Even-Chen et al., 2018).

Neural signals were recorded from the arrays using the NeuroPort system (Blackrock Microsys-

tems). Voltage was measured between each of the 96 electrodes’ uninsulated tips and that array’s

reference wire. Wire bundles ran from each array to cranially-implanted connector pedestals. During

research sessions, a ‘patient cable’ with a unity gain pre-amplifier was connected to each array’s cor-

responding pedestal and carried signals to an isolated unity gain front-end amplifier. These signals
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were analog filtered from 0.3 Hz to 7.5 kHz, digitized at 30 kHz (250 nV resolution), and sent to the

neural signal processor via fiber-optic link. As mentioned earlier, amplified analog voltage data from

the microphone were input to the neural signal processor and were digitized time-locked with the

neural signals. All these digitized data were sent over a local network to a connected PC where they

were recorded to disk for subsequent analysis.

The naming scheme for neurons or electrodes in figures is <participant>_<array #>.<electrode

#>. For example, ’neuron T5_2.4’ in Figure 1 refers to a participant T5 neuron identified on the sec-

ond array (which is the more medial of each participant’s two arrays) on electrode #4 (according to

the manufacturer’s electrode numbering scheme).

For both participants, we did not observe major differences between the two arrays, and we con-

firmed that the neural population analyses results (ensemble modulation to speech/movements/

breathing, phoneme neural correlate similarities, speech decoding, condition-invariant and rotatory

population dynamics) were similar when data from each array were analyzed separately. We there-

fore pool together data from both arrays in all the presented results.

Neural signal processing
Neuronal action potentials (spikes) were detected as follows. We first applied a common average re-

referencing to each electrode within an array by subtracting, at each time sample, the mean voltage

across all electrodes on that array. These voltage signals were then filtered with a 250 Hz asymmetric

FIR high-pass filter designed to extract spike activity from this type of array (Masse et al., 2014). To

measure single unit activity (SUA), time-varying voltages were manually ‘spike sorted’ by an experi-

enced neurophysiologist using Plexon Offline Spike Sorter v3. This process identified action poten-

tials belonging to putative individual neurons amongst the high amplitude voltage deviation events.

Occasionally, the same action potential can be recorded on multiple electrodes (this could happen if

a neuron is very large, if an axon passes multiple electrodes, or if there is some electrical cross-talk

in the recording hardware). To prevent creating duplicate single neuron units, we excluded ‘cross-

talk units’ if their spike time series (using 1 ms binning) had greater than 0.5 correlation with another

unit’s. When this happened, we kept the unit with the better spike sorting isolation. Unless otherwise

stated, time-varying firing rate plots, also known as peristimulus time histograms (such as in

Figure 1D) were constructed by smoothing spike trains with a 25 ms s.d. Gaussian kernel and aver-

aging continuous-valued firing rates across trials of the same behavioral condition.

Spike sorting allows us to make statements about the properties of individual motor cortical neu-

rons (for example, how many syllables they modulate to, as in Figure 1—figure supplement 4B).

However, a limitation of spike sorting is that action potential event ‘clusters’ with insufficient isola-

tion from other clusters are discarded. For chronic multielectrode array recordings, this can mean

that activity recorded from the majority of electrodes is not analyzed, despite these neural signals

having a strong relationship with the behavior of interest. This problem is particularly acute in human

neuroscience, where replacing arrays, or using newer methods that provide a higher SUA yield (for

example high-density probes or optical imaging), is not currently possible. Relaxing the constraint

that action potential events must be unambiguously from the same neuron and instead analyzing

voltage threshold crossings (TCs) is an effective way to substantially increase the information yield of

chronic electrode arrays. In this study, we examined TCs in a number of analyses. Decoding TCs or

other non-SUA signals has become standard practice in the intracortical BCI field (e.g.

Ajiboye et al., 2017; Brandman et al., 2018; Collinger et al., 2013; Even-Chen et al., 2018;

Pandarinath et al., 2017). This method also provides information about the dynamics of the neural

state (i.e. it can be used to make scientific statements about ensemble activity under many condi-

tions) despite combining spikes that may arise from one or more neurons; we provide empirical and

theoretical justifications in Trautmann et al. (2019). In the present study, when we refer to an ‘elec-

trode’s’ firing rate, we mean TCs recorded from that electrode. When we refer to a neuron’s firing

rate, we mean sorted single unit activity. Figure 1—figure supplement 2 shows example TCs firing

rates, including from the same electrodes that the example neurons in Figure 1 were sorted from.

A threshold of �4.5 � root mean square (RMS) voltage was used for all analyses and visualizations

except for the t-SNE visualization and decoding analyses shown in Figure 3. This threshold choice is

somewhat arbitrary but is conservative; it accepts large voltage deviations indicative of action poten-

tials from one or a few neurons near the electrode tip. For the Figure 3 analyses, we used a more

relaxed threshold of �3.5 � RMS because we found that this led to slightly better classification
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performance in a separate pilot dataset (consisting of T5 speaking five words and syllables, collected

a month prior to the datasets reported here) which we used for choosing hyperparameters. The bet-

ter performance of a less restrictive voltage threshold is consistent with collecting more information

by accepting spikes from a potentially larger pool of neurons (Oby et al., 2016). This trade-off was

acceptable because for these engineering-minded decoding analyses, we were less concerned about

the possibility of missing tuning selectivity or fast firing rate details due to combining spikes from

more neurons.

Electrodes with TCs firing rates of less than 1 Hz (at a �4.5 � RMS threshold) were considered

non-functioning and were excluded from analyses unless there was well-isolated SUA on the elec-

trode. This electrode exclusion applied to both spikes and the local field potential signal described

below. Electrodes having TCs time series with greater than 0.5 correlation with another electrode’s

were marked for cross-talk de-duplication. To determine which electrode to keep, we chose the one

that had the fewest spikes co-occurring (1 ms bins) with the other electrode(s)’ (i.e. we kept the elec-

trode with putatively more unique information).

For the neural decoding analyses (Figure 3), we also extracted a high-frequency local field poten-

tial (HLFP) feature from each electrode by taking the power of the voltage after filtering from 125 to

5000 Hz (third-order bandpass Butterworth causal filtering forward in time). HLFP is believed to con-

tain substantial power from action potentials (Waldert et al., 2013); we view this feature as captur-

ing spiking ‘hash’, that is multiunit activity local to the electrode with contributions from smaller-

amplitude and more distant action potentials than TCs. Our previous study found that this signal is

highly informative about hand movement intentions and is useful for real-time BCI applications

(Pandarinath et al., 2017). This feature has some similarities to the ‘high gamma’ activity examined

by ECoG studies; the definition of high gamma varies in exact frequency from study to study, but

generally has a lower cutoff between 65 and 85 Hz and an upper cutoff between 125 and 250 Hz

(Bouchard et al., 2013; Chartier et al., 2018; Cheung et al., 2016; Dichter et al., 2018;

Martin et al., 2014; Mugler et al., 2014; Ramsey et al., 2018). However, the intracortical HLFP in

this study should not be viewed as being the exact same as ECoG high gamma activity due to differ-

ences in electrode location, electrode geometry, and HLFP’s higher frequency range.

Task-related neural modulation
To quantify which electrodes’ spiking activity changed during speaking (Figure 1B insets, Figure 1—

figure supplement 4), we calculated each electrode’s mean firing rate from 0.5 s before to 0.5 s

after AO, yielding one datum per electrode, per trial. For each syllable, a rank-sum test was then

used to determine whether there was a significant change in the distribution of single-trial firing

rates when speaking the syllable compared to the silent condition (p<0.05, Bonferroni corrected for

the number of syllables). To identify which electrodes responded to orofacial movements (Figure 2,

Figure 2—figure supplement 1) we performed a similar analysis, except that the analysis epoch was

from 0.5 s before to 0.5 s after the go cue. This epoch captures strong modulation, as can be seen

by the example firing rate plots in Figure 2. We note that firing rate changes preceding the go cue

indicate either substantial movement preparation activity, or that the participants were ‘jumping the

gun’ and started moving in anticipation of the go cue; either way, this response indicates modulation

related to making orofacial movements. In lieu of a silent condition, the movement conditions’ firing

rate distributions were compared to that of the ‘stay still’ condition. The same methods were used

to quantify which single neurons’ activities changed during speaking or orofacial movements; for

this, we analyzed SUA rather than electrodes’ �4.5 � RMS TCs.

Neural population modulation
To measure the differences in neural modulation across the recorded population following the audio

prompt and following the go cue (‘population modulation’ in Figure 1E, Figure 1—figure supple-

ment 3B), at each time point (aligned to either the audio prompt or the go cue) we quantified the

differences between the firing rate vector for a given spoken condition yspeak (for example, the vec-

tor of firing rates across the ga syllable trials, where each element of the vector is the firing rate for

one electrode) and ysilent, the firing rate vector for the silent condition. Importantly, however, we

did not simply use ||yspeak — ysilent||, the Euclidean norm of the vector difference between these two

conditions’ trial-averaged firing rates. The problem with that approach is that a vector norm always
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yields a non-negative value, meaning that if it is used to measure neural activity differences, the met-

ric will be upwardly biased: it will return a positive value instead of 0 even when population firing

rates for the two conditions are essentially the same. This is because estimates of firing rates for two

sets of trials, even if they are drawn from the same underlying distribution (i.e. from the same behav-

ioral context) will inevitably differ, even just slightly, resulting in a positive vector difference norm.

This problem becomes worse when dealing with lower trial counts and low firing rates, and makes it

difficult to distinguish weak population modulation from noise.

To avoid this issue and better estimate neural population activity differences, we used a cross-val-

idated variant of the vector difference norm; we will refer to this metric as the ‘neural distance’. For

N1 trials from condition 1 (for example, saying ga) and N2 trials from condition 2 (for example, silent

trials), we calculate a less biased estimate of the squared vector norm of the difference in the two

conditions’ mean firing rates using:
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which leaves one trial out from each condition when calculating the differences in means. Critically,

the dot product is taken between firing rates computed from fully non-overlapping sets of trials, and

can be negative. To convert this to a signed distance more analogous to a Euclidean vector norm,

we define the final neural distance metric as d¼ sign Dð Þ
ffiffiffiffiffiffiffi

Dj j
p

.

This cross-validated neural distance has units of Hz; much like with a standard Euclidean vector

norm, having more electrodes, and these electrodes having larger firing rate differences between

the two conditions, will both result in larger overall distances. Unlike a Euclidean vector norm, our

population neural distance metric can produce negative values. This is required for the metric to be

unbiased and should be interpreted as evidence that the true distance between the two distribu-

tions’ population firing rates is near zero. A benefit of allowing negative values is that time-averaging

across an epoch of essentially no underlying firing rate differences will give a mean distance close to

zero. The derivation of this metric is described in detail in Willett et al. (2019), and a software

implementation is available at https://github.com/fwillett/cvVectorStats.

For statistical testing, we compared the time-average of this neural distance across two compari-

son epochs: a prompt epoch (0 to 1 s after the audio prompt) and a speaking epoch (0 to 1.75 s

after the go cue for T5, 0.5 to 1.75 s after go for T8). We chose a later speaking epoch start for T8

to better match this participant’s delayed speech-related modulation, which could reflect less antici-

patory preparation prior to the (predictable) go cue time, and/or the reduced speech-related modu-

lation recorded on T8’s arrays. This resulted in one datum for each epoch per speech condition,

for example 10 pairs of (prompt, speech) value pairs corresponding to each syllable. We compared

the resulting prompt and speech epoch distributions with a Wilcoxon signed-rank test. The same

procedure was used to compare the prompt epoch neural population modulation to a ‘baseline’

epoch consisting of the 1 s leading up to the audio prompt.

When we report the ratio between population modulation during the go epoch and during the

prompt epoch, this ratio was computed after taking the mean modulation across all syllables/words

for each epoch.

Comparing different phonemes’ neural correlates
To generate Figure 1—figure supplement 5, we first manually segmented each word spoken in the

T5-phonemes dataset into its constituent phonemes using the Praat software package

(Boersma and Weenink, 2019). This resulted in 3892 total phonemes. The number of occurrences

across the 41 unique phonemes ranged between 14 (/ɔ/) and 239 (/t/), with a median of 80 occur-

rences. For each unique phoneme, we isolated a 150 ms window of TCs centered around the onset

of each instance of that phoneme. This produced an (# instances) � electrodes firing rate matrix for

each phoneme. We used these data matrices to calculate the neural population activity difference

between all pairs of phonemes using the cross-validated neural distance metric described in the

‘Neural population modulation’ section. This resulted in the matrix of phoneme pair neural distances

in Figure 1—figure supplement 5A. Within-phoneme neural distances (the diagonal elements of

the distance matrix) were calculated by comparing half of the instances of a given phoneme with the
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other half; the distances shown are the mean distances across 20 such random splits of each

phoneme.

To relate these neural distances to known differences in the speech articulator movements

required to produce the phonemes, we grouped phonemes by their place of articulation as in

Moses et al. (2019). We then compared within-group neural distances to between-groups neural

distances (Figure 1—figure supplement 5B). Every pair of phonemes in the Figure 1—figure sup-

plement 5A neural distance matrix contributes one datum to either the red distribution in that fig-

ure’s panel B (if the two phonemes are in the same articulatory grouping) or to the black distribution

(if the two phonemes are in different groups). The exception to this is that the three phonemes that

are sole members of their own lonely groups were not included in this analysis. The summary statistic

of this comparison was the difference between the mean of within-group neural distances and the

mean of between-groups neural distances. This statistic was compared against a null distribution

built by taking the same summary metric after shuffling neural distance matrix rows and columns,

repeated 10,000 times. This null distribution assumes that the phonemes are grouped arbitrarily (but

with the same number and sizes of groups), and not according to place of articulation. Comparing

the true within-group versus between-groups difference to this null distribution (Figure 1—figure

supplement 5C) provides a p-value for rejecting the null hypothesis that phoneme neural distances

are no more correlated with articulatory grouping than expected by chance.

The dendrogram shown in Figure 1—figure supplement 5D was generated by applying the

widely used ‘unweighted pair group method with arithmetic mean’ (UPGMA) hierarchical clustering

algorithm (Sokal and Michener, 1958) to the phoneme neural distance matrix.

Breath-related neural modulation
To generate breath-triggered firing rates (Figure 2—figure supplement 2), we first identified breath

peak times from the breath belt stretch transducer measurements. The belt signals were pre-proc-

essed by removing rare outlier values (>50 mV difference between consecutive samples) and then

low-pass filtering (3 Hz pass-band) the signal both forwards and backwards in time to avoid introduc-

ing a phase shift. An example of this filtered signal is shown in Figure 2—figure supplement 2A.

Breath peaks were then found using the MATLAB findpeaks function, with key parameters of Min-

PeakDistance = 1 s, and MinPeakProminence = 0.3�B, where B is the median of all peak prominences

found by first running findpeaks using MinPeakDistance = 5 s (in other words, we required a peak to

be at least 30% of the prominence of the ‘big’ peaks in the data).

Breath peak-aligned firing rates were calculated by treating each identified breath peak as one

trial, and trial averaging across neural snippets aligned to each breath peak time. Each TCs’ or

SUA’s breath-related modulation depth was defined as the maximum – minimum firing rate

observed in the interval from 2 s before the breath peak to 1.5 s after the breath peak. To calculate

whether a given modulation depth was statistically significant, we used a shuffle control in which we

compared the true data’s modulation depth to the distribution of modulation depths observed over

1001 random shuffles in which faux peak breath times were uniformly drawn from the data duration.

For comparing breath-related and speaking-related modulation depths (Figure 2—figure supple-

ment 2F), we defined a given electrode’s speech modulation depth in the T5-syllables dataset as its

maximum – minimum firing rate from 2.5 s before acoustic onset to 1 s after acoustic onset.

Arm and hand versus orofacial and speaking movements comparisons
The neural ensemble modulation comparisons presented in Figure 2—figure supplement 3 were

calculated as follows: mean TCs firing rates for each T5-comparisons dataset instructed movement

condition were calculated for each electrode from 200 to 600 ms after the go cue. The resulting fir-

ing rate vectors were compared to firing rate vectors similarly constructed from the ‘do nothing’

condition. Modulation was calculated by taking the unbiased neural distance between these firing

rate vectors as described above in the ‘Neural population modulation’ section.

Single-trial low-dimensional neural state projections
To visualize single-trial high dimensional neural data (Figure 3A), we used t-distributed stochastic

neighbor embedding (tSNE), a dimensionally reduction technique which seeks to represent high-

dimensional vectors (such as our time-varying, multielectrode neural data) in a low-dimensional
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space (such as a 2D plot that can be easily visualized). The tSNE algorithm finds a nonlinear mapping

such that similar high-dimensional feature vectors end up close together in the low-dimensional

view, while dissimilar vectors end up far apart (Van Der Maaten and Hinton, 2008). A neural feature

vector was constructed for each trial as follows: for each functioning electrode, spike rates and HLFP

power were calculated in ten 100 ms bins that spanned from 0.5 s before to 0.5 s after AO. These

features were concatenated into a vector; for example, for the T5-syllables dataset, a single trial’s

neural data were represented as a 104 electrodes � 2 features per electrode �10 time bins = 2080

dimensional vector. All trials’ feature vectors were then projected into a 2D space using the tsne

function in MATLAB R2017b’s Statistics and Machine Learning Toolbox with NumDimensions = 2;

Perplexity = 15 (this is the number of local neighbors examined for each datum); Algorithm = exact

(suitable for our relatively small dataset); and Standardize = true (this z-scores the input data, which

was desirable due to the variability between different electrodes and the vastly different scales

between spike rates and HLFP power). All other algorithm parameters were set to their defaults.

Figure 3A does not have axis labels because t-SNE does not return meaningful axes or units; only

the relative distances between points have meaning.

Speech decoding
We evaluated how well the identity of the syllable or word being spoken could be decoded from

neural data by classifying single trial neural data. Neural feature vectors were constructed for each

trial as described above. These vectors were then associated with a class label, which was the sound

being spoken (i.e. word, syllable, or silence). We trained support vector machines (SVMs), a standard

classification tool, to predict the class label from a ‘new’ neural feature vector which the classifier

had not been trained on. Prediction accuracies were cross-validated using a leave-one-trial-out para-

digm in which the classifier was trained on all trials except the trial being classified, and this was

repeated for all trials in a dataset. Multiclass classification was achieved using the error-correcting

output code (ECOC) technique, which trains multiple binary SVMs between all pairs of labels, that is

a one-versus-one coding design. When classifying new input data, the ECOC technique picks the

class that minimizes the sum of losses over the set of binary SVM classifiers. Specifically, we used

MATLAB R2017b’s implementation: a multiclass model object was fit (fitcecoc) using the SVM tem-

plate (templateSVM). Key parameters were to use a linear kernel; OutlierFraction = 0.05 (expecting

5% of data points to be outliers); and Standardize = true (which z-scores the neural features based

on the training data). All other parameters were set to their default values. We note that we did not

heavily optimize our classification method; rather, our goal here was to use a standard tool to gauge

the classification performance that these intracortical neural signals support. More sophisticated

machine learning techniques (e.g. Angrick et al., 2019; Livezey et al., 2019) are likely to provide

additional improvements.

To measure chance prediction performance, we used a shuffle test in which we randomly per-

muted the class labels associated with all trials’ neural data. The same classifier training and leave-

one-out prediction process was then repeated on these shuffled data 101 times.

Neural population dynamics
An underlying motivation for the neural population dynamics analyses described in the next several

sections is the idea that the activity of many thousands or millions of neurons in a circuit (of which

we can only measure on the order of 100 neurons in humans with current technology) can be sum-

marized by the time-varying activity of a handful of latent ‘components’. In this framing, individual

neurons’ firing rates reflect various mixtures of these underlying components; in all the analyses we

used, this mapping from components to firing rates is assumed to be linear. These components are

not meant as discrete physical ‘things’ in the brain, but rather are mathematical abstractions which

capture meaningful patterns in the activities of networks of neurons. They are useful insofar as they

can help generate hypotheses about the computations neural populations are performing by

describing their prominent activity patterns. To this end, not only can latent components succinctly

describe the ‘neural state’ (i.e. the firing rate of all neurons at a given moment in time), but further-

more, the time evolution of these components is often more conducive to interpretation and under-

standing than more complex descriptions of all the individual neurons’ firing rates.
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Here, we built on previous studies showing that these components’ changes over time can be

effectively modeled as a lawful time-varying oscillatory dynamical system (Churchland et al., 2012;

Pandarinath et al., 2015), and that they reveal a simple population-level pattern in which there is a

stereotyped response at the initiation of many different movements (Kaufman et al., 2016). This

‘dynamical system’ framework is extensively reviewed in Shenoy et al. (2013) as well in the two key

studies that inspire the neural population dynamics analyses of the present study (Churchland et al.,

2012; Kaufman et al., 2016). We looked for the aforementioned dynamical motifs using two differ-

ent dimensionality reduction techniques that were specifically designed to reveal the presence (or

absence) of these population dynamics features.

For these analyses, we primarily examined the prompted word speaking task datasets because

this was a more naturalistic behavior than the prompted syllables speaking task. Participants

reported that it was more difficult to discriminate syllables than words, and that speaking stand-

alone syllables felt somewhat awkward, whereas saying words was easy. Consequently, a practical

benefit of the words task over the syllables task is that behavior was more stereotyped across trials,

which facilitates precise trial-averaging, and there were very few mis-heard or mis-spoken words.

Results for the same analyses applied to the syllables task data are shown in Figure 4—figure sup-

plement 1.

Both of these neural population state analyses were performed on TCs, which contained more

information about the neural population state than the more limited number of recorded SUA. All

electrodes with TCs firing rates greater than 1 Hz were included. The Churchland-Cunningham and

Kaufman studies analyzed a combination of both SUA from single-electrode recordings and TCs

from multielectrode recordings, depending on the dataset, while Pandarinath et al. (2015) also ana-

lyzed just TCs. To avoid cumbersome switching of terms when describing our methods and compar-

ing them to those of these previous studies, we will use the generic term ‘unit’ to refer to a single

channel of neural information, whether it be SUA or TCs.

Condition-invariant signal
The first population dynamics motif we tested for was a specific form of population-level structure at

the initiation of movement: a large condition-invariant signal, previously described in Kaufman et al.

(2016). We closely followed Kaufman and colleagues’ analysis methods, adapting them as necessary

for these human speaking datasets. As in Kaufman et al. (2016), spike trains were trial-averaged

within a behavioral condition (in our case, speaking one of the 10 different words), smoothed with a

28 ms s.d. Gaussian, and ‘soft normalized’ with a 5 Hz offset. Normalization means that each unit’s

firing rate was normalized by its range across all times and conditions. This prevents units with very

high firing rates from dominating the estimate of neural population state (Pandarinath et al., 2018).

The ‘soft’ refers to adding an offset (5 Hz in these analyses) to the denominator to reduce the influ-

ence of units with very small modulation. Trial-averaged firing rates were calculated from a speech

initiation epoch of 200 ms before go cue to 400 ms after the go cue for T5, and 100 ms to 700 ms

after the go cue for T8. T8’s epoch was shifted later relative to T5’s to account for T8’s later neural

population activity divergence from the silent condition (Figure 1—figure supplement 3B). This

yields a N � C � T data tensor, where N is the number of units, C is the number of word conditions

(10), and T is the number of time samples (600, using 1 ms sliding bins).

We used demixed principal components analysis (dPCA), a dimensionality-reduction technique

developed by Kobak et al. (2016), to look for condition-invariant activity patterns in these high-

dimensional neural recordings. This dimensionality reduction method is conceptually similar to PCA,

in that it finds a specified number of dPC ‘components’ that can be thought of as ‘building blocks’

from which the responses of individual units can be composed. As with PCA, dPCA attempts to

compress the data by identifying dimensions that capture a large fraction of the variance. This takes

advantage of the fact that unless the responses of neurons are all independent from one another

(which in practice is not the case), then most of the variance of the full population response can be

accurately reconstructed as a weighted sum of a smaller number of dPC components. Where dPCA

differs from PCA is that it can explicitly attempt to find components that marginalize variance attrib-

utable to different parameters of the experiment (such as time or task variables). This is possible

because dPCA is a supervised method that trades off finding dimensions that maximize variance in

favor of finding dimensions that partition the variance based on labeled properties of the data.
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In our case, this ‘demixing’ was attempted between: 1) condition and condition + time interac-

tions, which together form the condition-dependent (CD) components of the neural population

activity; and 2) time only, which forms condition-invariant (CI) components. In other words, dPCA

sought a set of components of the population activity for which the time-varying neural responses

during producing different words look the same, and also for another set of components which vary

across speaking conditions (i.e. are ‘tuned’ for what word is being spoken). Importantly, such vari-

ance marginalization (i.e. demixing the parameters) may not be achievable; it depends on the struc-

ture of the data itself. Each component that dPCA returns is associated both with how much overall

neural variance it captures (the lengths of the bars in Figure 4A), and how much of this variance is CI

or CD (red and blue fraction of each bar, respectively). Thus, the success of this demixing can be

examined based on how purely CI or CD each component is. This in turn reveals whether there exists

a large and almost completely condition-invariant component of the population neural activity.

Kaufman and colleagues used an earlier version of the dPCA method and code package, called

‘dPCA-2011’ (Brendel et al., 2011). We used the MATLAB implementation of ‘dPCA-2015’

(Kobak et al., 2016), downloaded from https://github.com/machenslab/dPCA. This is an updated,

improved, and widely adopted version of the technique which was not yet available at the time

when the Kaufman et al. (2016) analyses were performed. We specified that dPCA should return

eight total components, which was less than then 10 to 12 used in Kaufman et al. (2016). This

reflects the reduced complexity of our datasets, in the sense that they had fewer conditions (10 ver-

sus 27–108) and fewer units (96–106 versus 116–213). We also repeated the analyses using 2 to 12

dPCs and observed very similar results. Default dpca function parameters were used, with parame-

ters numRep = 10 (repetitions for regularization cross-validation) and simultaneous = true (indicating

that the single-trial neural data were simultaneously recorded across electrodes) for the dpca_opti-

mizeLambda and dpca_getNoiseCovariance functions.

Unlike the dPCA-2011 used by Kaufman et al. (2016), dPCA-2015 does not enforce that the neu-

ral dimensions found for capturing variance attributable to different parameters (here, the CI and

CD components) be orthogonal. For example, while the first three (largely CI) components for T5 in

Figure 4A are orthogonal by construction (as are the five largely CD components), these CI and CD

components need not be orthogonal. We quantified the angles between the demixed principal axes

(the dPCA encoder dimensions), and the (related but distinct degree of correlation between the

resulting dPCA components, using the methods described in Kobak et al. (2016) and implemented

in the dPCA code pack. Unlike Kobak et al. (2016), we used a p-value threshold of 0.01 rather than

0.001 for the Kendall rank correlation coefficient test between each pair of dimensions’ electrode

weightings vectors. This means that we were more conservative in the sense that we were more

likely to flag neural dimensions as non-orthogonal. For measuring the angle between the CIS1
dimension and the first jPC plane (Figure 4—figure supplement 1E), we used the subspacea pack-

age for MATLAB, downloaded from https://www.mathworks.com/matlabcentral/fileexchange/55-

subspacea-m (Knyazev and Argentati, 2002). To test whether the CIS1 was significantly non-orthog-

onal to each of the jPCA dimensions individually, we used the same Kendall rank correlation test as

described above.

Rotatory dynamics
The second form of neural population structure we tested for was rotatory (i.e. oscillatory) low-

dimensional dynamics. We applied methods previously developed to identify and quantify rotatory

dynamics in motor cortex during NHP arm reaching (Churchland et al., 2012). These methods were

also recently applied to show rotatory dynamics during hand movements of BrainGate2 study partici-

pants (Pandarinath et al., 2015). Churchland, Cunningham and colleagues introduced the jPCA

dimensionality reduction technique for this purpose; we employed their MATLAB analysis package,

downloaded from https://churchland.zuckermaninstitute.columbia.edu/content/code.

Trial-averaged firing rates for each word speaking condition were generated from 150 ms before

to 100 ms after acoustic onset to capture an epoch when speech-producing articulator movements

were being produced. Following Churchland et al. (2012) and Pandarinath et al. (2015), these fir-

ing rates were soft-normalized with a 10 Hz offset and smoothed with a Gaussian kernel; we used a

30 ms s.d. kernel as in Pandarinath et al. (2015). These firing rates were ‘centered’ by subtracting

the across-condition mean firing rate of each unit at each time point, and then sampled every 10 ms.

The dimensionality of these data was reduced via PCA to six; this ensured that rotatory dynamics
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would be sought within population activity components that were strongly present in the data. jPCA

was then used to find planes with rotatory structure within this six-dimensional subspace. The jPCs

are found by fitting the following linear dynamical system:

_x¼Mskew x (2)

where x is the neural state (i.e. the PCA dimensionality-reduced population firing rate) at a given

time, _x is its time derivative, and Mskew is constrained to be a skew-symmetric matrix. The first jPCA

plane, which has the strongest rotatory dynamics, is defined by the two complex eigenvectors of

Mskew with the largest eigenvalues. The choice of real vectors jPC1 and jPC2 within this plane is arbi-

trary and, following convention, were chosen such that conditions’ activities are maximally spread

along jPC1 at the start of the analysis epoch. Figure 5A plots the trial-averaged population activity

during speaking each word (after subtracting the across-conditions mean) in this top jPCA plane.

The red/black/green color of each word condition’s neural trajectory corresponds to its projection

along jPC1 at the start of the epoch; this display style is intended to assist in observing that ampli-

tude and phase tend to unfold lawfully from the initial neural state. It is worth emphasizing that each

jPC is simply a linear weighting of different units’ firing rates, and that the six jPCs form an orthonor-

mal basis set that spans the same subspace as the top six PCs. The strength of rotatory dynamics

was quantified as the goodness of fit for Equation 2 for a 2 � 2 Mskew in the first jPCA plane, and

for a 6 � 6 Mskew in the 6-dimensional subspace defined by the top 6 PCs of the data. Figure 5B

reports this 6D fit quality.

Statistical testing of rotatory dynamics
To calculate the statistical significance of rotatory population dynamics structure in our data, we

applied the ‘neural population control’ approach developed by Elsayed and Cunningham

(Elsayed and Cunningham, 2017). This method was developed to address a potential concern that

many specific phenomena that an experimenter could test for (such as fitting low-dimensional rota-

tory dynamics to neural data) can be found ‘by chance’ in a sufficiently high-dimensional, complex

dataset such as the time-varying firing rates of many neurons. To address this, the method tests

whether an observed feature of the population activity is ‘novel’ in the sense that it cannot be trivi-

ally predicted from known simpler features in the data. This is achieved by constructing surrogate

datasets with simple population structure (in the form of means and correlations across time, neu-

rons, and behavioral conditions) matched to the real data. If the neural recordings contain popula-

tion-level structure that is coordinated above and beyond these first- and second-order features,

then the quantification method used to describe this structure should return a stronger read-out

when applied to the original dataset than to the surrogate datasets.

In our case, we used this approach to test whether it is ‘surprising’ to see rotatory dynamics in

neural population data, given the particular smoothness across time, units, and word speaking con-

ditions present in these data. A similar approach was used in Elsayed and Cunningham (2017) to

further validate the original rotatory dynamics finding of Churchland et al. (2012). We used the

MATLAB code associated with Elsayed and Cunningham (2017) from https://github.com/gamalel-

din/TME to generate 1000 surrogate datasets with time, neuron, and condition means and covari-

ance matched to the real data using the tensor maximum entropy algorithm (‘surrogate-TNC’ flag in

fitMaxEntropy). We then ran the same jPCA analyses described above on these surrogate datasets

and recorded the rotation dynamics goodness of fit for the best Mskew matrix found for each surro-

gate dataset. This distribution of surrogate dataset R2 values serves as a null distribution for signifi-

cance testing: we calculated a p-value by counting how many of the surrogate datasets’ R2

exceeded that of the true original dataset.

Neural state trajectory videos
The goal of Videos 2 and 3 is to visualize how participant T5’s neural population activity undergoes

a condition-invariant ‘kick’ after the go cue (Figure 4) followed by rotatory dynamics around acoustic

onset (Figure 5). To do so, we projected the ensemble neural activity during speaking short words

into a lower dimensional neural state space designed to capture both the prominent condition-

invariant component (hence, CIS1 is one of the three projection dimensions) and rotatory dynamics

(hence, the remaining two dimensions are the top jPCA plane). Plotting the word conditions’ neural
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state trajectories in the same state space required harmonizing the slightly different pre-processing

used in the dPCA (Figure 4) and jPCA (Figure 5) analyses. Specifically, the trial-averaged neural tra-

jectories in these videos were generated using the 30 ms s.d. Gaussian smoothing and 5 Hz soft-nor-

malization parameters from the dPCA analysis. The CIS1 dimension was found by applying dPCA to

the same time epoch as in Figure 4 (200 ms before go to 400 ms after go), and the jPC1 and jPC2

dimensions were found by applying jPCA to the same time epoch as in Figure 5 (150 ms before to

100 ms after acoustic on).

To facilitate viewing the neural state trajectories in three (orthogonal) dimensions consisting of

[CIS1, jPC1, jPC2], for these videos only we enforced that jPC1 and jPC2 be orthogonal to CIS1
(empirically, without this constraint the top jPCA plane was 75˚ from the CIS1, as shown in Figure 4—

figure supplement 1E). To do so, prior to running jPCA, the trial-averaged firing rates were pro-

jected into the null space of the CIS1 (the orthogonal complement of the first column of the encoder

matrix returned by dPCA). That is, instead of jPCA operating on the E = 96 electrodes firing rates, it

operated on a 96�1 = 95 dimensional projection of the firing rates. The overall consequence of

these decisions is that in these videos, the neural state is projected onto the exact same CIS1 dimen-

sion as in Figure 4, whereas the jPC1 and jPC2 dimensions differ slightly from Figure 5 due to the

aforementioned spike train pre-processing differences and CIS1 orthogonalization.
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