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Abstract

Engineered SpCas9s and AsCas12a cleave fewer off-target genomic sites than wild-type (wt) 

Cas9. However, understanding their fidelity, mechanisms and cleavage outcomes requires 

systematic profiling across mispaired target DNAs. Here we describe NucleaSeq—nuclease 

digestion and deep sequencing—a massively parallel platform that measures the cleavage kinetics 

and time-resolved cleavage products for over 10,000 targets containing mismatches, insertions and 

deletions relative to the guide RNA. Combining cleavage rates and binding specificities on the 

same target libraries, we benchmarked five SpCas9 variants and AsCas12a. A biophysical model 

built from these data sets revealed mechanistic insights into off-target cleavage. Engineered Cas9s, 

especially Cas9-HF1, dramatically increased cleavage specificity but not binding specificity 

compared to wtCas9. Surprisingly, AsCas12a cleavage specificity differed little from that of 

wtCas9. Initial DNA cleavage sites and end trimming varied by nuclease, guide RNA and the 

positions of mispaired nucleotides. More broadly, NucleaSeq enables rapid, quantitative and 

systematic comparisons of specificity and cleavage outcomes across engineered and natural 

nucleases.

CRISPR-associated (Cas) nucleases have revolutionized gene editing. The Streptococcus 
pyogenes (Sp)Cas9 nuclease interrogates genomes by first recognizing a three-nucleotide 

NGG protospacer adjacent motif (PAM), followed by hybridization of its guide RNA with 

a target DNA to form an R-loop1,2. A complete R-loop activates the nuclease domains 

to cleave both strands of the target DNA2-5. Genomic ‘off-target’ sites that are partially 

complementary to the guide RNA can also activate the nuclease, leading to unanticipated 

mutations, large-scale deletions and chromosomal rearrangements6-8.

Engineered Cas9 variants and Acidaminococcus species Cas12a (hereafter Cas12a) cleave 

fewer off-targets than SpCas9 in cells9-20. Currently, nuclease specificity is inferred from 

DNA break repair scars at on- and off-target genomic sites21-23. Such off-target detection 

strategies cannot differentiate enzyme-intrinsic kinetic parameters from factors like the 

nuclease delivery method, exposure time, genetic context, cell cycle phase or DNA break 

repair pathway. Most in vitro next-generation sequencing (NGS)-based strategies are also 

designed to find putative off-target sites in genomes, but they compare read counts rather 

than kinetic rates and fail to identify DNA ends or their processing kinetics22,24-27. To 

directly benchmark and predict the specificities of these enzymes, off-target binding affinity 

and cleavage kinetics need to be compared across a systematic library of off-target DNA 

sequences. Here we describe a new experimental platform that comprehensively measures 

DNA binding and cleavage specificity across synthetic DNA libraries to benchmark 

CRISPR–Cas nucleases.

NucleaSeq is a rapid, massively parallel, in vitro platform that measures the cleavage 

kinetics of CRISPR–Cas nucleases. NucleaSeq captures the time-resolved identities of 

cleaved products for large libraries of guide RNA-matched and mispaired DNA sequences. 

Nuclease binding specificities for these libraries are measured on repurposed NGS 

MiSeq chips via the chip-hybridized association mapping platform (CHAMP)28. Coupling 

NucleaSeq and CHAMP, we evaluated five SpCas9 variants and Cas12a for DNAs 

containing guide-RNA-relative mismatches, insertions and deletions. Engineered Cas9s 
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increase cleavage specificity but not binding specificity. Surprisingly, Cas12a cleaves with 

similar specificity to wtCas9 in vitro, despite its higher specificity in cells12,20,23. The initial 

DNA cleavage site and subsequent end trimming vary with the nuclease, guide RNA and 

positions of RNA–DNA mispairs. Intriguingly, PAM-distal RNA–DNA mispairs generate 

incompatible DNA ends via nuclease end trimming without slowing overall cleavage rates. 

We used our data to train and develop a biophysical model that provides a quantitative 

framework for comparing CRISPR nucleases and reveals mechanistic insights into off-target 

cleavage. More broadly, NucleaSeq and CHAMP enable rapid, quantitative and systematic 

comparisons of the specificities and cleavage products of engineered and natural nucleases.

Results

Measuring off-target binding, cleavage and end trimming by CRISPR nucleases.

We set out to systematically evaluate the DNA cleavage and binding specificities of 

six CRISPR–Cas nucleases: wild-type SpCas9 (wt), four engineered SpCas9s (enhanced 

eSp1.1, high fidelity HF1, hyper-accurate Hypa and relaxed PAM NG) and Cas12a (formerly 

Cpf1) (Fig. 1a, Supplementary Fig. 1a and Supplementary Files 1-3)2,10,13,17,20,29. For 

NucleaSeq, we synthesize libraries comprising more than 104 targets with randomized 5′ 
and 3′ PAMs or up to two mispairing alterations (guide RNA-relative mismatches, insertions 

or deletions) (Fig. 1b,c, Supplementary Fig. 1b and Supplemental File 1). Error-correcting 

barcodes flank each target, to uniquely identify both DNA products after cleavage30. To 

observe single-turnover kinetics, we incubate the library with ten-fold excess guide-RNA-

charged ribonucleoprotein (RNP) for ~16 h (Supplementary Fig. 1c,d). At each time 

point, we quench a reaction sample and de-proteinize it to release DNAs (Fig. 1d and 

Supplementary Fig. 1e). We prepare each time point for NGS; adapter ligation gap-fills 5′ 
DNA overhangs, trims 3′ overhangs and adds time stamp barcodes to each reaction sample 

before pooled sequencing.

The NucleaSeq bioinformatics pipeline (available at https://github.com/finkelsteinlab/

nucleaseq) identifies reads from cut and uncut DNAs by their flanking barcode(s). The read 

counts for each library member are normalized across time points and between replicates by 

comparing to read counts of ~150 negative control DNA sequences that are not recognized 

by any of the nucleases (see Methods). Because Cas9 and Cas12a cleave DNA at a constant 

rate under single-turnover conditions, we fit substrate depletion to single exponential decay 

functions to determine cleavage rates for every target31,32; these span our detectable range 

(kc >10−1 to ~10−5 s−1) with high reproducibility (Fig. 1e,f and Supplementary Fig. 1f)25. As 

expected, all nucleases cleave their matched DNA substrate rapidly (kc ≥0.1 s−1 for wtCas9; 

Fig. 1e). The precise position of the cut site is also identified for both DNA fragments 

(Fig. 1g). Cleavage specificity—the ratio of cleavage rates between mispaired and matched 

targets—intuitively benchmarks nucleases. A low ratio means that the (saturating) nuclease 

cleaves the mispaired target slower than the matched target. Comparing specificities across 

all mismatched target DNAs shows that all engineered Cas9s outperform wtCas9. Cas9-HF1 

shows the greatest specificity against mismatched targets, whereas Cas12a retains similar 

cleavage specificity to wtCas9 (Fig. 1h and Supplementary Fig. 5e).
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We compare cleavage rates to apparent DNA binding affinities measured using CHAMP28 

(Fig. 1i-k and Supplementary Fig. 1g). CHAMP measures the apparent binding affinity 

(ABA) of CRISPR–Cas nucleases to DNA clusters on the surface of regenerated NGS chips. 

ABAs are normalized to matched and unmatched targets and correlate with dCas9 on-rates33 

(r = 0.93; Fig. 1k). Thus, we deem that ABAs capture differences in the on-rates for different 

DNA sequences. By measuring cleavage and binding across the same DNA target libraries, 

NucleaSeq and CHAMP reveal sequence-specific mechanisms of nuclease fidelity.

Cas9 tolerates mismatches better than insertions or deletions.

We programmed wtCas9 with two guide RNAs for both binding and cleavage analysis 

(Fig. 2, Supplementary Fig. 2 and Supplementary Table 1). To measure off-target DNA 

binding, increasing concentrations of dCas9 are incubated in regenerated MiSeq chips 

harboring the sequenced DNA library. We detected no DNA binding at the lowest dCas9 

concentration (100 pM), whereas the DNA clusters appeared completely saturated at the 

highest dCas9 concentration (300 nM). Consistent with previous reports in vitro and in 

vivo, dCas9 has a high apparent binding affinity for partially mismatched target DNAs. 

Our results strongly correlate between biological replicates and with the binding affinities 

measured via another high-throughput method (r = 0.93; Fig. 1f and Supplementary Fig. 

1f)33. NucleaSeq cleavage rates for matched DNA (≥0.1 s−1) agree well with gel-based 

measurements (Supplementary Fig. 5a,b) and kinetic rate constants for wtCas9, where 

R-loop propagation is rate limiting3,34,35. Overall, Cas9 bound 70% of library targets with a 

higher affinity than an unmatched target but cleaved just 60% of these targets, indicating that 

a subset of bound DNAs is not cleaved (Supplementary File 2).

Comparisons of wtCas9 binding affinities and cleavage rates for targets harboring single 

mismatches revealed key wtCas9 characteristics (Fig. 2a,b and Supplementary Fig. 2a). 

wtCas9 recognizes a 3′-NGG PAM (and NGA or NAG weakly)31,36-38. Binding and 

cleavage activity varied across three target regions. In the ‘seed’ region (positions 1~9 

relative to the PAM)1,2,36, mismatches can slow cleavage >100-fold from matched target 

levels (<10−3 s−1). From positions 10~17, mismatches minimally affect binding but slow 

cleavage depending on their position and type (~10−1 to 10−3 s−1). Mismatches in the final 

region (~18–20) barely affect Cas9 binding or cleavage (Fig. 2a,b and Supplementary Fig. 

2a)39. These data establish that our integrated platform quantitatively recapitulates binding 

and cleavage by wtCas9.

Two seed mismatches typically block binding and abolish cleavage (Fig. 2c and 

Supplementary Fig. 2b). However, cleavage rates depend on mismatch identity: wtCas9 

has poor affinity for the target with A6G and G2A seed substitutions but cleaves it faster 

than other seed substitution pairs (0.0017 s−1; 90% confidence interval: 0.0015–0.0021 

s−1; Fig. 2c, callouts). (A subset of low binding affinity sequences is still cleaved at 

saturating Cas9 concentration). Targets with paired distal and seed substitutions show 

the broadest ranges and reveal that wtCas9 accommodates rG-dT mismatches (Figs. 2c 

and 5). This thermodynamically stable wobble interaction might form Watson–Crick-like 

mispairs40. Other non-Watson–Crick interactions (rU-dG and rG-dG) are not as well 

tolerated, indicating that Cas9 constrains the RNA–DNA duplex41.
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Few studies have examined how CRISPR nucleases target DNAs with guide-RNA-

relative insertions and deletions (indels), although some are edited very efficiently42,43. 

Our experiments showed that wtCas9 typically cleaves targets with indels slower than 

mismatched targets (Fig. 2 and Supplementary Figs. 2, 3), indicating that they encounter 

additional steric constraints within the R-loop. Deletions in the seed reduce ABAs to near-

background levels but are tolerated with intermediate affinity beyond the 9th PAM-distal 

nucleotide (ΔABAs <0.5). Cleavage rates slow at least 100-fold from matched target rates 

(kc ~10−3 s−1) except for targets with deletions in the final positions (18–20) (Fig. 2d and 

Supplementary Fig. 2c). Like mismatches, cleavage of targets with insertions depends on the 

inserted base’s identity (Fig. 2e and Supplementary Figs. 2d, 3b). Insertions at PAM-distal 

positions (19 and 20) show higher affinity than the matched target (Supplementary Fig. 

3c); these insertions might indicate that nucleotides upstream of the target weakly influence 

interactions with Cas9 (ref. 44). In sum, indels exhibited reduced binding and cleavage 

except at the most PAM-distal R-loop positions.

Cas9 generates staggered overhangs at mispaired targets.

NucleaSeq identifies the 5′ ends of the target strand (TS, PAM-distal cleavage product) 

and non-target strand (NTS, PAM-containing cleavage product) via unique barcodes on 

the left and right sides of each DNA molecule. The single-guide RNA (sgRNA) 1-wtCas9 

RNP generates a blunt DNA end on its matched target. However, an sgRNA 2-wtCas9 

RNP produces 5′ overhangs; the NTS overhang recedes within 15 min, presumably via 

RuvC domain-catalyzed cleavage (trimming) (Fig. 1g). The HNH domain cleaves most TSs 

between nucleotides 3 and 4, but the RuvC domain’s cleavage position, trimming rates 

and trimming extent depend on mispair position and identity (Fig. 2f,g, Supplementary Fig 

2e,f and Supplementary File 3). Near the PAM, deletions bias wtCas9 to cut bluntly, but 

an insertion pushes cleavage of both strands further from the PAM (Supplementary Fig. 

2f). Mispaired targets likely reposition the NTS within the RuvC domain, but the relatively 

mobile HNH domain compensates for TS distortion in a mispair- and sgRNA-specific 

manner.

Engineered Cas9 nucleases improve cleavage but not binding specificity.

We selected three engineered Cas9 variants (Cas9-Enh (eSp1.1), Cas9-HF1 and Cas9-Hypa) 

for comparison to wtCas9 (Fig. 3). Remarkably, engineered dCas9 RNPs bound library 

targets with similar affinities to dCas9’s (r = 0.93–0.96; Fig. 3a). This result is striking 

because Cas9-HF1 and Cas9-Enh were both designed to destabilize nonspecific Cas9-DNA 

interactions and were speculated to reduce both off-target DNA binding and cleavage13,17. 

But all variants improve cleavage specificity: more than 40% of the library is cleaved 

more slowly than with wtCas9 (Fig. 3b). Cas9-HF1 improved specificity the most, followed 

closely by Cas9-Hypa and then Cas9-Enh. This improvement is greatest for targets with 

PAM-distal mispairs (positions 18–20; Fig. 3c and Supplementary Fig. 4). Cas9-HF1 trims 

overhanging sequences more slowly than wtCas9. We rarely observed Cas9-HF1 trim 

targets within our time resolution, unless mispairs occurred near cleavage sites (positions 

1–5)—then cleavage patterns and end-trimming kinetics depend on mispair type (Fig. 3d, 

Supplementary Fig. 4c,d and Supplementary File 3). At position 1, a C-to-T substitution 

produces blunt cuts; a deletion produces (at least) three NTS and two TS cleavage products; 
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and an insertion shifts the cleavage pattern one nucleotide away from the PAM (Fig. 3d, 

right)45. Cas9-HF1 provides the greatest cleavage specificity and the least-trimmed DNA 

ends among these Cas9s (Fig. 3e).

Recent engineering efforts have altered and relaxed SpCas9’s PAM29,37,46,47. To determine 

how PAM relaxation affects targeting, we profiled Cas9-NG (Supplementary Fig. 5)29. 

Cas9-NG cleaves a matched target (NGG PAM) ~ten-fold slower than wtCas9 at 22 °C 

(0.016 ± 0.002 s−1 versus 0.14 ± 0.01 s−1; Supplementary Fig. 5a,b). This slower cleavage 

rate extends to DNAs with alterations outside the PAM, limiting our ability to broadly 

compare Cas9-NG with wtCas9 at 22 °C. Instead, we repeated both wtCas9 and Cas9-NG 

cleavage experiments at 37 °C. wtCas9 cleaves targets faster at 37 °C than at 22 °C, but 

these data sets correlate well (r = 0.7; Supplementary Fig. 5c). Compared to wtCas9, Cas9-

NG cleaves targets with non-NGG PAM sequences more rapidly: rates for targets with NCN 

and NTN PAMs are about 100-fold faster (Supplementary Fig. 5d). Targets with non-PAM 

alterations show similar relative cleavage rates between these nucleases (Supplementary 

Figs. 2b-e, 5d-g and Supplementary File 3). But Cas9-NG more variably cleaves targets 

with non-NGG PAMs or mismatches near the cut site (Supplementary Fig. 5h,i). Cas9-NG 

cleaves matched targets ~ten-fold slower than wtCas9 without improving fidelity but opens 

the target (and off-target) space by recognizing non-NGG PAMs.

Cas12a cleavage specificity.

We assayed Cas12a cleavage using the same libraries as for Cas9 (Fig. 4, Supplementary 

Fig. 1b, Supplementary Fig. 6, Supplementary Table 2 and Supplementary Files 1-3). 

We recovered Cas12a’s 5′-TTTV PAM and found that Cas12a cleaves the same matched 

targets at least ten-fold slower than wtCas9 (Figs. 2b and 4a). For mismatched targets, we 

previously established that cleavage rates correlate strongly with R-loop propagation rates 

(r = 0.91; Fig. 4b)32. Thus, Cas12a cleavage specificity is dominated by rate-limiting (and 

reversible) R-loop propagation followed by rapid DNA cleavage.

Cas12a cleaves mismatched targets depending on mismatch position and base identity 

(compare G and T substitutions at C17; Fig. 4a). Most mismatches at PAM-proximal 

positions 1–8 slow cleavage more than 100-fold over matched target but less than ten-fold 

at positions 9–17. Two PAM-proximal mismatches (positions 1–14) typically rendered 

cleavage undetectable, whereas pairing a PAM-distal mismatch (positions 15–20) with 

a PAM-proximal one changed rates minimally (vertical banding; Fig. 4c). Like wtCas9, 

Cas12a tolerates rG-dT mismatches better than others (Fig. 4c, callout)13,31,48. This 

indicates that both nucleases preferentially stabilize the same specific mismatches within 

their R-loops.

Despite scant evidence on how Cas12a treats targets with guide-RNA-relative deletions or 

insertions, structures suggest that R-loop bulging could accommodate these targets49-51. An 

indel within the first 17 positions typically slows cleavage 10- to 1,000-fold (to detection 

limit; Fig. 4d). These cleavage rates vary widely with base identity (compare insertions at 

A4), reflecting possible protein and base-specific stabilization. Indels (and mismatches) at 

the final positions (18–20) can enhance cleavage rates (Fig. 4a,d and Supplementary Fig. 6a) 

and modulate end trimming by Cas12a (see below).
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Cas12a cleaves and trims both DNA strands in a mispair-specific manner.

Cas12a staggers target cleavage, producing 5′ overhangs20,32. Our data show that Cas12a 

cleaves the NTS at several positions and trims the TS progressively after initial cleavage 

(steady versus time-dependent cut product distributions; Fig. 4e). These results are 

consistent with Cas12a’s ability to trim the NTS and cleave the TS at several positions, 

as detected via radiolabeled oligonucleotides32. Whereas other Cas12a nucleases from 

non-Acidaminococcus species non-specifically nick single- and double-stranded DNAs 

in trans52-55, we found no evidence for this under our experimental conditions (with 

Acidaminococcus species Cas12a) (Supplementary Fig. 7a,b). Thus, Cas12a cleaves and 

trims both DNA strands after establishing an R-loop between the CRISPR RNA (crRNA) 

and the TS DNA.

Cas12a cleaves and trims matched and mismatched targets similarly (Fig. 4f, top)—unless 

mismatches occur near the NTS cleavage site (positions 18–20). Here, Cas12a shifts NTS 

cleavage up to two nucleotides, and mismatch identities becomes critical: at T19, Cas12a 

cleaves an A-substituted target anywhere between nucleotides 16 and 20 but a G-substituted 

target exactly after nucleotide 16 (Fig. 4e). Cas12a cleaves the latter target more uniformly 

than a matched target and trims its TS faster, too.

Targets harboring indels have variable cleavage products. For targets with deletions, Cas12a 

dramatically shifts TS cleavage (compare deletions at positions 4–8 or 16–19 with 9–15; 

Fig. 4f, center). This pattern reminds us of a full R-loop helix turn (10–11 base pairs (bp)), 

implying that one helix face permits guide RNA bulges. Single insertions at positions 1–14 

push Cas12a to cleave both strands one nucleotide over (Fig. 4f, bottom), where insertions 

might bulge from the R-loop to maintain crRNA–DNA register. Taken together, our target 

libraries showcase that Cas12a’s single RuvC nuclease domain flexibly cleaves—and often 

trims—both DNA strands52,53.

A biophysical model for nuclease specificity.

To understand the features governing off-target cleavage, we fit cleavage specificity to 

several biophysical models of increasing complexity (Fig. 5, Supplementary Fig. 8 and 

Methods). For each nuclease, the models were trained on the entire data set, which includes 

two distinct target DNA libraries. Training the models on multiple libraries is essential 

for properly constraining the fit and avoiding target-specific biases for each nuclease56-59. 

Unlike machine learning approaches, our models generate off-target cleavage specificity 

scores from biochemically intuitive parameters60-62. All models combine a position weight 

matrix describing the PAM (Supplementary Fig. 8b) with nuclease-dependent specificity 

penalties describing mispairs along the R-loop (Fig. 5c,d and Supplementary Fig. 8a-c)63. 

The position weight matrix accurately captures nuclease PAM preferences, including Cas9’s 

limited tolerance for A substitutions (for example, NGG→NGA) and Cas12a’s for C 

substitutions (for example, TTTV→TCTV; Supplementary Fig. 8b). Models I-V differ 

in how they parametrize the cleavage penalties associated with mismatches, insertions 

and deletions (Supplementary Fig. 8a,c). For example, the simplest model (I) assigns a 

position-independent penalty for each of the 12 types of possible mismatches, regardless 

of where they occur within the R-loop. Insertions and deletions are treated as long strings 
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of mismatches. This model only correlates to the measured specificity constants for the 

five enzymes with coefficients between 0.60 and 0.68 (Pearson’s r; Supplementary Fig. 8). 

We measured each model’s performance on reducing information loss (using the Akaike 

Information Criterion (AIC)) and capturing experimental cleavage rate variance64.

The best model (V) combines position-dependent penalties for mismatches, insertions and 

deletions with position-independent weights for mismatches and insertions (for example, 

insertion of a dT versus dA anywhere along the R-loop) (Fig. 5a,b). Model V reduces 

information loss over four-fold compared to Model I and increases the correlations with 

our measured rates for all five nucleases from r <0.7 to r >0.9. Model V highlights 

how each position and base identity distinctly affect nuclease specificity. Our biophysical 

model’s PAM-distal position penalties concisely differentiate nucleases (Fig. 5d): Cas9-HF1 

penalizes mispairs and indels the most among engineered Cas9s (for example, all mispairs 

are strongly penalized at the 16th R-loop nucleotide), although Cas9-Hypa is close (they 

share mutation Q695A)10,13. Cas9-Enh only modestly improves mismatch specificity over 

wtCas9 but heavily penalizes PAM-distal indels. Among natural nucleases, Cas12a penalizes 

mismatches in positions 5–8 slightly more than wtCas9 but PAM-distal indels less.

The model weighs mismatch and insertion identities almost identically for each nuclease 

(Fig. 5c and Supplementary Fig. 8c). The following mismatches are most tolerated by both 

Cas9 and Cas12a: rG-dT, rA-dC, rC-dA and rU-dG. These mispairs can adopt both wobble 

and Watson–Crick-like confomers65. The thermodynamics of RNA–DNA duplexes partly 

capture these preferences but cannot capture clashes with (or stabilization by) the RNP41. 

Pyrimidine insertions are preferred over larger purines. We draw three broad conclusions 

from our model: 1) all engineered Cas9s are more specific than wtCas9; 2) wtCas9 and 

Cas12a have similar cleavage specificities; and 3) mispair positions, not base identities, 

differentiate these nucleases.

We compared our kinetic model to high-throughput in vitro and cellular studies of wtCas9 

and Cas12a specificity1,10,12,13,22,23,66-69 (Fig. 5e and Supplementary Fig. 7c). Although 

previous studies enumerate off-target sites at a single time point after transfection (or RNP 

addition), they do not report kinetic cleavage or end-trimming information. To compare 

different target DNAs, we computed the rank-order correlation coefficient (Spearman’s ρ) 

between values for position-dependent mismatched targets from our model and from each 

previous study (Fig. 5e, top). On average, our wtCas9 model correlates stronger with these 

studies (mean ρ = 0.66 ± 0.19) than with one another independently (ρ = 0.53 ± 0.27), 

showing that our model captures most of the variance in these data sets. Our model also 

positively correlates with Cas12a data sets (Fig. 5e, bottom; ρ = 0.43 ± 0.22; mean ± s.d.).

We used our model to extrapolate the specificity of each nuclease within the human genome 

by predicting off-target sites for 1,000 exomic targets (Fig. 5f). Cas9-HF1 has the fewest 

predicted off-targets, whereas wtCas9 and Cas12a show similar off-target behaviors. Their 

similarity in vitro, but not in cells, suggests that nuclease-extrinsic factors influence Cas12a 

more than wtCas9 (see Discussion)12,20,23. In sum, NucleaSeq and our biophysical model 

provide mechanistic insights into enzyme-intrinsic cleavage rates and cleavage products, 
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allow quantitative comparisons between nucleases and can improve off-target prediction 

algorithms70.

Discussion

NucleaSeq directly compares CRISPR–Cas nucleases by assaying cleavage kinetics, cut site 

distributions and end-trimming rates on designer DNA libraries. Combining high-throughput 

off-target cleavage and binding results, we comprehensively describe Cas9 and Cas12a 

nucleases to reveal their mechanisms. Our resulting biophysical model compares nucleases 

directly, distilling their shared sequence preferences and unique biochemical features. This 

approach can inform both target and nuclease selection for specific applications and improve 

off-target prediction algorithms42,45,71-76.

We report that Cas12a and wtCas9 have remarkably similar in vitro cleavage specificities, 

despite Cas12a’s higher specificity in human cells12,23. This could stem from Cas12a’s 

slower cleavage rates (measured here) affording cellular enzymes time to displace it from 

off-targets (that is, transcription or chromatin remodeling complexes77). Their similar in 

vitro specificity also suggests convergence of these phage defense systems. They share 

mispair tolerances (that is, rG-dT mismatches and pyrimidine insertions) that lower fidelity 

but could enable broader phage recognition. Their RuvC nuclease domains also create 

staggered cuts and trim DNA ends, encouraging error-prone repair of invading nucleic acids.

Engineered Cas9s share similar binding specificities with wtCas9 but dramatically increase 

cleavage specificities against off-targets with PAM-distal mispairs. This improved kinetic 

discrimination likely results from slowing R-loop propagation rates. R-loop propagation is 

rate limiting for Cas9 and Cas12a cleavage and could dominate at sub-saturating cellular 

conditions3,32,33,45. Our in vitro data indicate that slowing the cleavage step increases 

specificity45, consistent with bridge helix regulation of Cas9’s HNH nuclease domain5,78,79. 

In either case, low binding specificity limits Cas9 engineering and dCas9-based applications 

(CRISPRi, CRISPRa and base editing)80-82. Cas12a’s late transition state during R-loop 

formation makes it a strong candidate for applications that require high target-binding 

specificity32.

Our results show that guide RNA sequence affects binding, cleavage and trimming, 

even among Cas9 variants83. Previous studies10,13,17,29 also reported that some guide 

RNAs lower on-target editing by engineered variants as compared to wtCas9, despite 

in vitro specificity gains (Supplementary Fig. 9). Several non-exclusive mechanisms 

likely contribute to this observation: poor RNP assembly of engineered nucleases in 

cells; differential chromatin accessibility of engineered versus wtCas9; less efficient 

dsDNA-opening activity (for example, for relaxed PAM nucleases); and differential 

sgRNA-dependent cleavage and/or end-trimming rates84-89. By performing NucleaSeq with 

differentially active guide RNAs, we hope to improve guide RNA selection models and 

identify goals for enhancing on-target nuclease performance.

Cas12a produced diverse, mispair-dependent cleavage products. PAM-distal mismatched 

targets do not slow cleavage but produce a broader spectrum of single-stranded DNA 
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overhangs. Cellular repair pathways result in distinct repair outcomes for 5′ and 

3′ overhangs90-92. For example, templated insertions are detected at Cas9-generated 

chromosomal double-strand breaks93-95. Therefore, our data suggest that intentionally 

programming Cas12a with PAM-distal mispairs could direct specific cellular repair 

outcomes. We anticipate that large-scale studies comparing matched and mismatched RNA–

DNA repair outcomes will further inform how these cellular processes can be directed. More 

broadly, NucleaSeq and CHAMP can be readily adapted to kinetically profile off-target base 

editing, RNA cleavage and other protein–nucleic acid interactions.

Methods

Oligonucleotides, CRISPR RNA and DNA libraries.

Oligonucleotides were purchased from IDT (see Supplementary Table 1). sgRNAs for Cas9 

and crRNAs for Cas12a were purchased from Synthego (see Supplementary Table 1). 

Pooled oligonucleotide libraries were purchased from CustomArray and Twist Biosciences 

(Supplementary File 1). Libraries were amplified via 12 cycles of PCR with Phusion 

polymerase (NEB).

DNA library design.

Each library contains DNAs that are variations of a matched DNA sequence (defined by 

nuclease PAM preference and RNA guide), termed a ‘modified target’. Modified targets 

include single and double substitutions, insertions or deletions and all sequences with a 

contiguous subsection changed to the complementary bases. Each modified target is flanked 

by the following additional sequence elements necessary for NucleaSeq analysis and NGS 

(5′ to 3′): left primer, left barcode, left buffer, modified target, right buffer, variable-length 

buffer, right barcode and right primer (Supplementary Fig. 1b and Supplementary File 1). 

As controls, we included 146 copies of the matched target. Each copy had a unique left 

and right barcode set. Finally, we included 150 pseudo-random barcoded DNA strands to 

normalize read depth between time points and biological replicates (see below).

Our libraries use unique barcodes appended to either end of each DNA strand30. By 

searching for the barcodes after NGS, any cleaved DNA can be computationally identified 

from a partial fragment after cleavage. These barcodes are 17 bp, uniquely paired, and 

are correctly identified despite any combination of up to two substitutions, insertions or 

deletions in their sequence. Similarly, primer sequences (common across the library) were 

selected that help distinguish left barcodes, right barcodes and cleaved ends. They are 

distinguishable from one another and the cleaved end of any library member cut within 5 bp 

of a canonical cut site.

Flanking each modified target are left and right 5-bp buffer regions held constant for all 

sequences to provide a constant local DNA context for nuclease activity. These buffer 

sequences were randomly generated with nearly equal nucleotide content. Oligos with 

insertions and deletions also included a variable-length buffer to ensure that these oligos 

were the same length as the matched target.
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Protein cloning and purification.

SpCas9 variants were generated via Q5 site-directed mutagenesis (New England Biolabs) 

of a pET-based plasmid (pMJ806)2 (Supplementary Tables 2, 3). Nuclease-dead Cas9 

variants contained the D10A and H840A mutations. Enhanced, HF1 and Hypa Cas9 variants 

harbored the mutations indicated in Supplementary Table 3 (refs. 10,13,17). An N-terminal 

3xFLAG epitope was introduced for fluorescent imaging of nuclease-dead variants via 

CHAMP (see below).

Cas9 protein variants were expressed in BL21 star (DE3) cells (Thermo Fisher Scientific) 

using a previously established protocol with minor modifications2. A 4-L flask containing 

1 L of LB + kanamycin was inoculated with a single colony and then grown to an optical 

density (OD) of 0.6 at 30 °C with shaking. Protein expression was induced with 1 mM 

IPTG for 18 h at 18 °C with shaking. Cells were collected by centrifugation and lysed by 

sonication at 4 °C in lysis buffer (20 mM Tris-Cl, pH 8.0, 250 mM NaCl, 5 mM imidazole, 

5 μM phenylmethylsulphonyl fluoride, 6 units ml−1 DNAse I). The lysate was clarified 

by ultracentrifugation at 35,000 relative centrifugal force (RCF) and then passed over a 

nickel affinity column (HisTrap FF 5 ml, GE Healthcare) and eluted with elution buffer (20 

mM Tris-Cl, pH 8.0, 250 mM NaCl, 250 mM imidazole). The His6-MBP was proteolyzed 

overnight in dialysis buffer (20 mM HEPES-KOH, pH 7.5, 150 mM KCl, 10% glycerol, 1 

mM DTT, 1 mM EDTA) supplemented with TEV protease (0.5 mg per 50 mg of protein). 

The dialyzed protein was resolved on a HiTrap SP FF 5-ml column (GE Healthcare) with a 

linear gradient between buffer A (20 mM HEPES-KOH, pH 7.5, 100 mM KCl) and buffer 

B (20 mM HEPES-KOH, pH 7.5, 1 M KCl). Protein-containing fractions were concentrated 

via dialysis (10 kDa Slide-A-Lyzer, Thermo Fisher Scientific) and then sized on a Superdex 

200 Increase 10/300 column (GE Healthcare) pre-equilibrated into storage buffer (20 mM 

HEPES-KOH,pH 7.5, 500 mM KCl). The protein was snap frozen in liquid nitrogen and 

stored in 10-μl aliquots at −80 °C.

Acidaminococcus sp.—(As) Cas12a was expressed as an N-terminal His6-TwinStrep-

SUMO fusion in a pET19-based plasmid (pIF502)32. The Cas12a fusion protein was 

expressed in BL21 star (DE3) cells (Thermo Fisher Scientific) using a previously established 

protocol with minor modifications32. A 20-ml culture of Terrific Broth (TB) + 50 mg 

ml−1 carbenicillin was inoculated with a single colony and grown overnight at 37 °C with 

shaking. A 4-L flask containing 1 L of TB was inoculated with 10 ml of the starter culture 

and then grown to an OD of 0.6 at 37 °C. Protein expression was induced with 0.5 mM 

IPTG for 24 h at 18 °C. Cells were collected by centrifugation and lysed by sonication at 4 

°C in lysis buffer (20 mM Na-HEPES, pH 8.0, 1 M NaCl, 1 mM EDTA, 5% glycerol, 0.1% 

Tween-20, 1 mM PMSF, 2000 U DNase (GoldBio), 1× HALT protease inhibitor (Thermo 

Fisher Scientific)). The lysate was clarified by ultracentrifugation at 35,000 RCF, applied to 

a hand-packed StrepTactin Superflow gravity column (IBA Lifesciences) and then eluted (20 

mM Na-HEPES, 1 M NaCl, 5 mM desthiobiotin, 5 mM MgCl2, 5% glycerol). The eluate 

was concentrated to less than 1 ml using a 30-kDa MWCO spin concentrator (Millipore); 

SUMO protease was added at 3 μM; and then the eluate was incubated overnight on a 

rotator at 4 °C. The protein was resolved on a HiLoad 16/600 Superdex 200 Column (GE 

Healthcare) pre-equilibrated with storage buffer (20 mM HEPES-KOH, 150 mM KCl, 5 mM 
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MgCl2, 2 mM DTT buffer). The protein was finally snap frozen in liquid nitrogen and stored 

in 10-μl aliquots at −80 °C.

Cas9 and Cas12a RNP complexes were reconstituted by incubating a 2:3 molar ratio of 

apoprotein and RNA (sgRNA and pre-crRNA for Cas9 and Cas12a, respectively) in RNP 

buffer (20 mM HEPES, pH 7.5, 150 mM KCl, 10 mM MgCl2, 2 mM DTT) at room 

temperature for 30 min before each experiment. Reconstituted RNPs were diluted in the 

experimental reaction buffer, used immediately and discarded after the experiment.

NucleaSeq.

DNA libraries were mixed in buffer (20 mM HEPES, pH 7.5, 150 mM KCl, 10 mM MgCl2, 

2 mM DTT) at room temperature with RNP complex to final concentrations of 10 nM and 

100 nM, respectively. Aliquots were transferred to a stop solution (final concentration: 12 

mM EDTA and 12 U proteinase K (Thermo Fisher Scientific)) at the following time points: 

0, 0.2, 0.5, 1, 3, 10, 30, 100, 300 and 1,000 min. The stopped reactions were incubated at 37 

°C for 30 min to remove Cas9 and Cas12a from their DNA substrates. Each time point was 

ethanol precipitated and resuspended in TE buffer. Samples were submitted to the University 

of Texas Genomic Sequencing and Analysis Facility, where sequencing adapters (NEBNext 

Ultra, NEB) were appended. The samples were sequenced on a MiSeq or NextSeq 500 

sequencer (Illumina).

Bioinformatic analysis pipeline.

From each paired-end read pair, we inferred the maximum likelihood full-length sequence 

using the overlapping base pairs as described previously28. Primer and barcode sequences 

were then used to identify the intended sequence identity and, for cleaved products, 

the observed side. Observed and intended sequences were aligned using either global 

alignment96 for uncleaved products or global alignment with cost-free ends97 for cleaved 

products. Throughout this process, sequences were filtered for quality based on length, 

primer and barcode structure and on number of synthesis and sequencing errors. Sequences 

with errors in the target and buffer regions were excluded.

Next, the read counts for each full-length library member in each sample were normalized 

to account for two sources of variation. First, we normalized the total numbers of reads 

across different time points for each sample. Specifically, each member’s read count for 

each sample was normalized by the ratio of total read counts at that time point to the total 

read count of an input control sample (not treated with nuclease). Second, read counts were 

normalized to account for changes due to sampling from a library of changing composition. 

The generation of cleaved products and corresponding depletion of full-length products 

by nuclease activity changes the number of sampled sequences of all species, including 

species unaffected by the nuclease. To account for this, we used the 150 non-target control 

sequences as a reference. For each randomly generated non-target sequence, there is a small 

probability that it will be susceptible to nuclease cleavage. Hence, we used the median 

read count value of all the random sequences as a robust measure of changes due only to 

sampling from a library of changing composition (non-target median). Read counts of each 
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library member at each time point were normalized by the ratio of the non-target median at 

that time point to the non-target median from the control sample.

In addition to the above two steps, cleaved products were normalized to account for 

differences in PCR amplification between cleaved products and full-length oligos. We 

observed that the normalized number of cleaved products should be proportional to the 

depletion of the corresponding full-length oligos. Stated as an equation, let ∣F∣t be the 

number of full-length product reads and ∣ C ∣tside be the number of cleaved product reads on a 

given side at a given time, for a single library member of choice, normalized as above. Then, 

for normalization and proportionality constants Zt
side and kside,

∣ C ∣tside

Ztside = kside 1 −
∣ F ∣t
∣ F ∣0

We choose to set the final normalization constant Ztf
side = 1 and solve the above for kside. 

Plugging this back in and rearranging gives normalization constants:

Ztside =
∣ C ∣tside

∣ C ∣tf
side

1 − ∣ F ∣tf ∕ ∣ F ∣0
1 − ∣ F ∣t ∕ ∣ F ∣0

This is intentionally a function only of ratios of read counts, not absolute read counts. This 

lets us use the median read count ratios from all 146 matched target controls (matched 

target, paired with different barcode sets) to calculate the normalization constants. These 

final normalization constants are then used for all library members. Finally, read counts 

are normalized to range between 0 and 1. For full-length products, we normalize by the fit 

value of reads at time 0. For cleaved products, we normalize first by the sum of all cleaved 

products at all time points and then normalize to set the resulting median sum of all cleaved 

products at the final time point to the depletion of full-length products, 1 − ∣F∣tf/∣F∣0.

The normalized read counts were fit to a single exponential decay. We observed that 

the data were well described by a single exponential, implying a constant reaction rate 

under the single-turnover conditions used in this assay. A small fraction of the starting 

DNA sequences of each species was never cleaved, possibly indicating some hydrolytically 

inactive enzymes. We thus fit for exponential decay with a constant offset. For the 

constant offset, we used the median normalized fraction of uncleaved sequences of the 146 

perfect target sequences at the final time point. Error bars give the s.d. of 50 bootstrap 

measurements, each of which was calculated by resampling the raw read counts with 

replacement, renormalizing and refitting98. Finally, the cleavage specificity for each DNA 

was calculated by dividing the cleavage rate for sequence i by the cleavage rate for the 

matched DNA m (kCi/kCm) for each nuclease, separately (Supplementary File 2).
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Modeling cleavage specificity.

We modeled cleavage specificity (Model V), given as the ratio of the cleavage rate of a given 

sequence s, ks, to the cleavage rate of the matched sequence m, km, as:

log
ks
km

= ∑
i ∈ P

logΛ(i, si) + ∑
i ∈ D

logPD(i) + ∑
i ∈ ℐ

wI(si)logPI(i)

+ ∑
i ∈ ℳ

tM(ri, si)logPM(i)

The terms of the model give cleavage rate penalties for the following sequence alterations 

respectively: suboptimal bases in the PAM, target deletions, target insertions and target 

mismatches, each with a corresponding set of positions with the given sequence alteration 

type: P, D, ℐ and ℳ. For suboptimal PAM bases, the cleavage rate penalty is given by the 

function Λ, a function of both the suboptimal base identity, si, and its position i.

For deletions, insertions and mismatches, the cleavage rate penalty functions PD, PI and 

PM are dependent only on the position i, reflecting the fact that position in the target is 

the primary determinant of the effect of a given sequence alteration. This is intuitive for 

deletions, as they primarily require steric adjustments to realign the matching base pairs. 

For mismatches, position was determined to be the primary determinant of the cleavage rate 

penalty via comparison with other models (see ‘Simplified models’ below). Insertions have 

a weighting function wI to allow for different inserted bases to have different penalties. The 

base identities in the mismatch are modeled via the weighting function tM(ri,si), a function 

of the mismatched guide RNA base ri and target strand base si.

Within the terms for insertion and mismatch penalties, there is an unconstrained degree 

of freedom in the relative magnitudes of the weights relative to the log position penalties. 

To remove this extra degree of freedom, the insertion and mismatch weighting functions 

wI and tM were each constrained to have an average value of 1. This was accomplished 

with Hadamard matrices, made possible because wI and tM have 4 and 12 parameters, 

respectively. Hadamard matrices are maximal-determinant matrices using elements of only 1 

and −1. We used Hadamard matrices with −1 in all elements outside the first row or column 

along diagonals 0, −1, 2, −3, −4, −5, 6, 7, 8, —9 and 10, where 0 is the main diagonal 

and diagonal indices increase up and to the right. We parameterized a constrained length n 
weight vector w with a length (n−1) vector x of free parameters as follows. Let Hn be the n 
× n Hadamard matrix described above. Owing to the inverse identity of Hadamard matrices 

and the first row and column of Hn being composed entirely of 1s, parameterizing with x 
and using the following conversions enforces an average value of 1 in the weights vector w:

n
x = Hnw, w = 1

nHnT
n
x

Cleavage rates that are shorter than the first time point or longer than the last one cannot be 

modeled accurately. Therefore, we constrained the output of our models with the following 

‘bandpass filter’ function:
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B(x) =
x s ≤ x ≤ f
s x < s
f x > f

where s and f are the slowest and fastest detectible cleavage rates, corresponding to half-

lives at our first and last time points.

Ridge regularization of the difference of insertion and mismatch weights from one was used 

to reduce over-fitting of the underlying cleavage data99. Supplementary Fig. 8d shows the fit 

weight values as a function of the regularization parameter λ. The relative parameter values 

appear to stabilize near λ = 103, which we used to fit the model.

Simplified models.

For comparison, we fit our data to four simplified models, each excluding some terms 

and/or factors in the full model above. The first three simplified models did not include 

the insertion or deletion terms, modeling the possibility that the recognition channel does 

not accommodate bulges to realign matching sequences after indels. Under this assumption, 

for example, a sequence with a single insertion between the first and second bases, but 

otherwise perfectly matching, would result in about 75% mismatches due to a forced 

frameshift. These three models were: cleavage rate as a function of only the mismatch 

base pair identities, only the mismatch position or both, as in the full model above. The 

fourth simplified model included insertions and deletions but omitted the insertion weights 

wI. Each simplified model included the PAM term. We numbered the models for reference:

Model I : log
ks
km

= ∑
i ∈ P

logΛ(i, si) + ∑
i ∈ ℳ

logTM(ri, si)

Model II : log
ks
km

= ∑
i ∈ P

logΛ(i, si) + ∑
i ∈ ℳ

logPM(i)

Model III : log
ks
km

= ∑
i ∈ P

logΛ(i, si) + ∑
i ∈ ℳ

tM(ri, si)logPM(i)

Model IV : log
ks
km

= ∑
i ∈ P

logΛ(i, si) + ∑
i ∈ D

logPD(i)

+ ∑
i ∈ ℐ

logPI(i) + ∑
i ∈ ℳ

tM(ri, si)logPM(i)

Model V is the full model above. The mismatching base pairs function in Model I, TM(ri, 

si), is different from the analogous weighting function tM(ri,si) in the other models as it gives 

absolute penalty values, not weights, constrained to an average value of 1.
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Figure 5 compares these models using the AIC64. The substantial improvement in AIC 

between Models I and II demonstrates that position is, in fact, the primary determinant 

of mismatch cleavage rates. Model III demonstrates that including the mismatched base 

pair identities is a useful but relatively small improvement to the position-only model. 

Similarly, Models IV and V show that adding insertions and deletions to the model provides 

a substantial improvement, whereas the addition of insertion weights is a relatively small 

improvement to the model (that is, insertions are weakly sensitive to the inserted base 

identity).

Comparisons to previously published data sets.

To compare the model’s output with previous measures of nuclease specificity, we selected 

in vitro and in vivo published data sets that contained at least one mutation per position in 

the sgRNA (for SpCas9) or crRNA (for Cas12a). We limited analysis to two genes per study. 

Dataset 1 (ref. 69) included representative Homo sapiens (human) genes CLTA1 and CLTA2 
with sgRNA v2.1 and 100 nM wtCas9. Published specificity scores were averaged across all 

single mismatch values at each position. Dataset 2 (ref. 22) used Digenome-seq and included 

sgRNAs targeting human genes HBB and VEGFA. Dataset 3 (ref. 13) used GUIDE-Seq 

to profile indels at human genes VEGFA-2 and EMX1-1. Values were extracted from the 

published heat maps based on RGB values as measured with Fiji100. The measured scores 

were averaged across all single mismatch values at each position. Dataset 4 (ref. 66) in vivo 

log retention scores for human genes UNC-22A and ROL6 were extracted from published 

graphs with a data digitization tool (https://automeris.io/WebPlotDigitizer). The measured 

scores were averaged across all single mismatch values (transitions and transversions) at 

each position. Dataset 5 (ref. 1) used SURVEYOR nuclease to determine the mean cleavage 

results for aggregated human EMX1 targets. Values were extracted from the published heat 

maps based on position-averaged RGB values as measured with Fiji100.

Dataset 6 (ref. 10) used a T7E1 reporter assay and included representative human genes 

FANCF-1 and FANCF-4. Percent of modification for each gene was extracted from the 

published heat maps based on RGB values as measured with Fiji for wtCas9 (ref. 100). 

Dataset 7 (ref. 23) used BLISS to generate composite mismatch tolerances for each guide 

position. Values were extracted from the published graph via digitization. Dataset 8 (ref. 
67) relative indel frequency values at each position were extracted from the published graph 

via digitization. Dataset 9 (ref. 68) used a T7E1 reporter assay and included representative 

human gene DNMT1, sites 1 and 3. Percent of modification for each gene was extracted 

from the published graphs via digitization. Because the measure and distribution of data 

varied from study to study, a non-parametric correlation was used (only requires ordinal 

data). Each data set was compared to one another and to our model’s average positional 

mismatch penalty to generate Spearman’s rank correlation coefficients (ρ). The average 

mismatch penalty is denoted as PM in Model V.

To understand how the on-target activities of engineered Cas9 variants compare with wtCas9 

in published data sets, we collected data from four previous studies. Dataset 3 (ref. 13) 

reported on the ability of wtCas9 and Cas9-HF1 to target 32 sites using a T7E1 reporter 

assay. Values were obtained from the publication’s Supplementary Table 3. Dataset 6 (ref. 
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10) reported on the ability of wtCas9, Cas9-Enh and Cas9-HF1 to target 12 sites using an 

eGFP disruption assay. Values were extracted from the published graph via digitization. 

Dataset 10 (ref. 17) reported on the ability of wtCas9 and Cas9-Enh to target 24 sites by 

measuring indel formation in treated HEK293 cells. Data were not replicated. Dataset 11 

(ref. 29) reported on the ability of wtCas9 and Cas9-NG to target 17 sites by measuring indel 

formation in treated HEK293 cells.

CHAMP.

DNA libraries were sequenced on a MiSeq using 2 × 75 paired-end chemistry (v3, Illumina). 

Sequenced MiSeq chips were stored at 4 °C in storage buffer (10 mM Tris-Cl, pH 8.0, 1 mM 

EDTA, 500 mM NaCl) until needed for CHAMP.

Chips were regenerated similarly to our previous strategy28. Each chip was loaded into a 

custom microscope stage adapter, with temperature controlled by a custom heating element. 

All solutions were pumped through the chip at 100 μl min−1 using a syringe pump (Legato 

210, KD Scientific), with reagents added via an electronic injection manifold (Rheodyne 

MXP9900). Chip DNAs were made single stranded with 500 μl of 60% DMSO and then 

washed with 500 μl of TE buffer. An unlabeled regeneration primer (user DNA specific) 

and a digoxygenin labeled primer (PhiX DNA specific, for alignment) were annealed over 

an 85–40 °C temperature gradient (30 min) in hybridization buffer (75 mM tri-sodium 

citrate, pH 7.0, 750 mM NaCl, 0.1% Tween-20), and then excess primers were removed at 

40 °C with 1 ml of wash buffer (4.5 mM trisodium citrate, pH 7.0, 45 mM NaCl, 0.1% 

Tween-20). Annealed primers were extended at 60 °C using 0.08 U μl−1 Bst 2.0 WarmStart 

DNA polymerase (New England Biolabs) and 0.8 mM dNTPs in isothermal amplification 

buffer (20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 0.1% 

Tween-20) and then washed with 500 μl of wash buffer. Using 100 μl of 500 ng ml−1 

rabbit anti-digoxigenin monoclonal antibody (Life Technologies) and 100 μl of 500 ng 

ml−1 Alexa488-conjugated goat anti-rabbit antibody (Thermo Fisher Scientific), PhiX DNA 

clusters were fluorescently labeled as markers for subsequent image alignment. The MiSeq 

chips were imaged on a Ti-E microscope (Nikon) in a prism-TIRF configuration28. Images 

were acquired in OME-TIFF format (uncompressed TIFF plus XML metadata) using the 

Micro-Manager software101.

The dCas9/sgRNA RNP complex was diluted to concentrations of 0.1, 0.3, 1, 3, 10, 30, 100 

and 300 nM in CHAMP buffer (20 mM Tris-HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2, 

5% glycerol, 0.2 mg ml−1 BSA, 0.1% Tween-20, 1 mM DTT). Starting with the lowest 

concentration, 100 μl of RNP complex was injected into the regenerated MiSeq chip at room 

temperature and incubated for 10 min. Then, 300 μl of CHAMP buffer containing 4 nM 

Alexa488-conjugated anti-FLAG antibody (Alexa Fluor 488 antibody labeling kit, Thermo 

Fisher Scientific; monoclonal BioM2, Sigma-Aldrich) was injected to wash off unbound 

RNP and label DNA-bound RNP complex. The chip was then imaged over 420 fields of 

view with ten frames of 50 ms each while illuminated with 10 mW of laser power, as 

measured at the front face of the prism. Collected images were processed via the CHAMP 

bioinformatic software for downstream analysis28.
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Nuclease active site titration.

ATTO647N-labeled target DNA was generated with 20 rounds of PCR using Q5 DNA 

polymerase (NEB) and oligonucleotides 365, 460 and 371. The DNA was diluted in series 

from 512 nM to 4 nM in reaction buffer (20 mM HEPES, pH 7.5, 150 mM KCl, 10 

mM MgCl2, 2 mM DTT). RNP complexes were formed by mixing protein and RNA (256 

nM:384 nM) and incubating for 30 min at room temperature in the same buffer conditions. 

Equal volumes of RNP and ATTO647N-labeled matched DNA dilutions were combined and 

then incubated for 30 min at room temperature. The reaction was halted by the addition of 

a stop solution (40 mM EDTA and 50 U proteinase K (Thermo Fisher Scientific)), and a 

30-min incubation at 37 °C removed RNPs from their DNA substrates. All samples were run 

in a 10% polyacrylamide native gel and then imaged using a Typhoon FLA9500 gel scanner 

(GE Healthcare).

Statistics.

As stated in the figure legends, we compared normally distributed data sets using the 

Pearson product moment correlation; other data sets were compared using the Spearman 

rank-order correlation. Values were calculated in Python version 2.7 using the SciPy Stats 

package. Error bars were calculated from independent experiments as either s.d. or s.e.m. by 

using all data (reported as n) or bootstrapping as stated in the figure legends. Bootstrapping 

was performed with previously described methods98 and implemented as described in 

CHAMP version 0.9.3 and NucleaSeq version 0.3 software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Overview of the integrated NucleaSeq and CHAMP platform.
a, Crystal structures and domain maps of Cas9 and Cas12a RNP complexes (Protein Data 

Bank: 5F9R and 5B43). Stars: engineered Cas9 mutation sites. Scissors: cleavage sites. b, 

For NucleaSeq, a CRISPR–Cas nuclease digests a synthesized library of mispaired target 

DNAs under single-turnover conditions. DNAs contain unique left and right barcodes. 

Time point barcodes are added before NGS. NGS chips are recovered to profile DNA 

binding specificity via CHAMP. c, DNA libraries include targets with randomized PAMs 

or up to two guide-RNA-relative alterations. Right, read distribution by target type for 

CHAMP. d, A wtCas9 nuclease reaction time course (sgRNA 1) resolved by capillary 

electrophoresis. Each sample was run separately—two independent replicates for each. e, 

Cleavage rates are computed by fitting single exponential functions (lines) to uncut DNA 

depletions (circles). f, Cleavage rate reproducibility for wtCas9-sgRNA1 experiments. The 

gray area contains targets with rates beyond the experimental dynamic range. r: Pearson’s 

correlation coefficient excluding gray area. g, Cut DNA fragments from matched DNAs 

(black in diagram) report the time-dependent distribution of Cas9-generated cut sites in 

the TSs and NTSs. wtCas9-sgRNA1 cuts bluntly between the 3rd and 4th nucleotides 

(left). wtCas9-sgRNA2 produces a one-nucleotide 5′ overhang and then trims it off the 

NTS (right). Colors: cut positions (triangles in diagram). Error bars: median ± s.e.m. of 

n = 146 guide-RNA-matched library members. h, Ranked relative cleavage rates of all 

library members for all five nucleases. Limit: relative cleavage rate beyond detection limit. 

i, CHAMP reports the apparent binding affinity of nuclease-inactive CRISPR enzymes. 
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Library DNAs on the surface of an NGS chip are incubated with increasing concentrations 

of a fluorescent dCas9 (cyan puncta). Their sequences are bioinformatically determined by 

comparison to the NGS output. Scale bar, 50 μm; inset, 5 μm. j, ABAs are computed by 

fitting Hill functions (lines) to mean fluorescence DNA clusters intensities (circles). AU, 

arbitrary fluorescence units. Median ± s.d. from bootstrap analysis of n ≥ 5 DNA clusters for 

each target. k, Correlation of dCas9 ΔABAs measured with CHAMP to dCas9 on-rates from 

a high-throughput assay33. ΔABA, change in apparent binding affinity from the matched 

target, normalized to that of a scrambled DNA. r: Pearson’s correlation coefficient. x axis: 

median ± s.d. from bootstrap analysis of n ≥ 5 DNA clusters for each target. y axis: median 

± s.e.m. of n ≥ 6 for each target DNA33.
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Fig. 2 ∣. Comprehensive analysis of off-target wtCas9 DNA binding and cleavage.
a, dCas9 ΔABAs for targets with one sgRNA1-relative mismatch. Dashed line: normalized 

matched target ΔABA (0); solid line: scrambled DNA ΔABA (negative control, 1). Median 

± s.d. from bootstrap analysis of n ≥ 5 DNA clusters for each target. b, Cas9 cleavage 

rates for the same targets as in a. Dashed line: cleavage rate of the matched target; solid 

line: limit of detection for the slowest-cleaving targets. Error bars: s.d. from 50 bootstrap 

analysis measurements. c, ΔABAs (upper, grays) and cleavage rates (lower, blues) for targets 

containing two sgRNA1-relative mismatches. Black boxes expanded in callouts. d, dCas9 

ΔABAs (upper, median ± s.d. from bootstrap analysis of n ≥ 5 DNA clusters for each target) 

and Cas9 cleavage rates (lower, error bars: s.d. from 50 bootstrap analysis measurements) 

for targets containing one sgRNA1-relative deletion or (e) insertion. f, Normalized reads for 

the TS and NTS of DNAs containing either a mismatch at position 3 (C3T or A3T) or a 

deletion at position 1 compared to sgRNA1 (left) or sgRNA2 (right). Error bars: maximum 

s.d. for cut products from cleavage of 146 matched DNA controls. g, Average cut site 

positions for each strand (TS and NTS) from DNAs containing one mismatch relative to 

sgRNA 1 (upper) or sgRNA 2 (lower). Range: earliest time point with more than 33% cut 

reads (open diamonds) to final time point (filled diamonds). Dashed and solid horizontal 

lines: mean cut site positions for 146 matched DNAs (M) at early and late time points.
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Fig. 3 ∣. Comparison of engineered Cas9 nucleases.
a,b, Two-dimensional density plots correlate Cas9-HF1 ΔABAs (a) and cleavage rates (b) 

with those from wtCas9, Cas9-Enh and Cas9-Hypa (sgRNA1). Histograms: all ΔABAs 

or cleavage rates for the respective nuclease. r: Pearson’s correlation coefficient. c, The 

ratio of Cas9-HF1 to wtCas9 cleavage specificities for targets with two sgRNA1-relative 

mismatches. Red: slower cleavage by Cas9-HF1; blue: slower cleavage by wtCas9. Black-

outlined range expanded in callout. d, Cas9-HF1 cleavage patterns on the TS and NTS of 

select target DNAs (sgRNA1). Normalized counts of cut products comprising ≥10% of the 

total cut reads at any time point. Error bars: maximum s.d. for cut products from cleavage 

of 146 matched DNA controls. e, Average cut site positions generated by Cas9-HF1 for 

each strand (TS and NTS) for targets containing one sgRNA-relative mismatch. Range: 

earliest timepoint with more than 33% cut reads (open diamonds) to final time point (filled 

diamonds). Dashed and solid horizontal lines: mean cut site positions for 146 matched 

DNAs (M) at early and late time points.
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Fig. 4 ∣. Comprehensive analysis of off-target Cas12a cleavage.
a, Cas12a cleavage rates for DNAs containing one crRNA3-relative mismatch. Dashed line: 

cleavage rate of the matched target. Solid line: limit of detection for the slowest-cleaving 

targets. Error bars: s.d. from 50 bootstrap analysis measurements. b, Total cleavage rate 

compared to reported target strand cleavage (left) and R-loop propagation (right) rates32. 

Total cleavage rates error bars: s.d. from 50 bootstrap analysis measurements. TS cleavage 

and R-loop propagation rate error bars: rate from a hyperbolic fit ± s.d. from n = 3 

independent experiments. r: Pearson’s correlation coefficient. c, Cleavage rates for targets 

with two crRNA3-relative mismatches. Black box expanded in callout. d, Cleavage rates 

for DNAs containing one crRNA3-relative deletion (upper) or insertion (lower). Error bars: 

s.d. from 50 bootstrap analysis measurements. Nucleotides inserted to the left of the given 

positions. e, Normalized reads for the TSs and NTSs of the indicated targets. Parenthesis: 

crRNA. Error bars: maximum s.d. for cut products from cleavage of 146 matched DNA 

controls. f, Average cut site positions for each strand (TS and NTS) from DNAs with one 

crRNA3-relative mismatch (upper), deletion (middle) or insertion (lower). Range: earliest 

time point with more than 33% cut reads (open diamonds) to final time point (filled 

diamonds). Dashed and solid horizontal lines: mean cut site positions for 146 matched 

DNAs (M) at early and late time points.
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Fig. 5 ∣. Statistical modeling of CRISPR–Cas nuclease cleavage.
a, AIC values for five biophysical models relying on the indicated sequence parameters. 

The most detailed model (V) has the lowest AIC (information loss)—that is, the best 

goodness of fit. R-loop position-specific parameters reduce the AIC most. b, Correlation 

between measured and modeled cleavage rates for Cas9-HF1 (left, red) and Cas12a (right, 

purple) using model V. Histograms: distributions of fit or measured values beyond the 

upper and lower detection limits. Percentages: quantity of data with one or both values 

beyond detection limits. r: Pearson’s correlation coefficient. c, Base identity-dependent 

weights for mismatches and insertions averaged across all Cas9 and Cas12a enzymes. See 

Supplementary Fig. 8 and text for additional information. d, Modeled specificity penalties 

for one guide-RNA-relative mismatch (upper), insertion (middle) or deletion (lower). PAMs 

are oriented left for comparison. Arrows and dashed lines: values below the detection limit. 

e, The predicted reduction in mismatch-dependent cleavage rates correlates with previous 

high-throughput measurements of reduced edit efficiencies for wtCas9 (blue) and Cas12a 

(purple). See Methods for associated data. ρ: Spearman’s correlation coefficient. f, The 

number of off-target sites in the human genome with a predicted cleavage specificity greater 

than the indicated specificity threshold. For each nuclease, n = 1,000 targets, selected 

randomly from exomic DNA. The cleavage specificities of the potential off-target cleavage 

sites across the genome were calculated using model V. Top whisker (maxima): top of 90% 

confidence interval; top box: third quartile; center line: median; lower box: second quartile; 

lower whisker (minima): bottom of 90% confidence interval.
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