
UC Berkeley
UC Berkeley Previously Published Works

Title
Lifting Micro-Update Models from RTL for Formal Security Analysis

Permalink
https://escholarship.org/uc/item/1j10v0p7

Authors
Godbole, Adwait
Cheang, Kevin
Manerkar, Yatin A
et al.

Publication Date
2024-04-27

DOI
10.1145/3620665.3640418

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j10v0p7
https://escholarship.org/uc/item/1j10v0p7#author
https://escholarship.org
http://www.cdlib.org/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SemPat: From Hyperproperties to Attack Patterns for Scalable
Analysis of Microarchitectural Security

Adwait Godbole
(B)

adwait@berkeley.edu

University of California, Berkeley

Berkeley, CA, USA

Yatin A. Manerkar

manerkar@umich.edu

University of Michigan

Ann Arbor, MI, USA

Sanjit A. Seshia

sseshia@berkeley.edu

University of California, Berkeley

Berkeley, CA, USA

ABSTRACT

Microarchitectural security verification of software has seen the

emergence of two broad classes of approaches. The first uses non-

interference-based semantic security properties which are verified

for a given program and a given model of the hardware microarchi-

tecture. The second is based on attack patterns, which, if found in a

program execution, indicates the presence of an exploit. We observe

that while the former uses a formal specification that can capture

several gadget variants targeting the same vulnerability, it is limited

by the scalability of verification. Patterns, while more scalable, must

be currently constructed manually, as they are narrower in scope

and sensitive to gadget-specific structure.

This work develops a technique that, given a non-interference-

based semantic security hyperproperty, automatically generates at-

tack patterns up to a certain complexity parameter (called the skele-

ton size). Thus, we combine the advantages of both approaches: se-

curity can be specified by a hyperproperty that uniformly captures

several gadget variants, while automatically generated patterns can

be used for scalable verification. We implement our approach in a

tool and demonstrate the ability to generate new patterns, (e.g., for

SpectreV1, SpectreV4) and improved scalability using the generated

patterns over hyperproperty-based verification.

CCS CONCEPTS

• Security and privacy→ Formal security models; Logic and

verification; Side-channel analysis and countermeasures; •

Theory of computation → Verification by model checking.

KEYWORDS

Microarchitectural Security, Hyperproperties, Attack Patterns, Ver-

ification, Side Channels

ACM Reference Format:

Adwait Godbole
(B)

, Yatin A. Manerkar , and Sanjit A. Seshia . 2024.

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis

of Microarchitectural Security. In Proceedings of the 2024 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’24), October

14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3658644.3690214

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the

2024 ACM SIGSAC Conference on Computer and Communications Security (CCS ’24),

October 14–18, 2024, Salt Lake City, UT, USA, https://doi.org/10.1145/3658644.3690214.

1 INTRODUCTION

Modern processors are packed with performance-improving mi-

croarchitectural mechanisms such as caches, speculation, prefetch-

ing. These lead to subtle microarchitectural-level interactions that

can be exploited by hardware execution attacks to leak sensitive

data from a victim (e.g., [8, 38, 39, 45, 62]). Recently, several tech-

niques have been proposed to detect the presence of such vulnera-

bilities in software and/or verify their absence (e.g. [12, 16, 17, 30,

31, 51, 59]). While sharing the goal of security verification, these

approaches adopt different (hardware) platform models, security

specifications, and have different strengths.

We observe the emergence of two broad classes of approaches

based on the security specification they adopt: semantic hyperprop-

erty (SH) based approaches (e.g., [12, 21, 30–32]) perform verifica-

tion with respect to a hyperproperty-based [15] security specifica-

tion, while attack pattern (AP) based approaches (e.g., [51, 59, 69])

perform verification using patterns that indicate the existence of

an exploit. SH approaches provide advantages of uniform speci-

fication and formal guarantees, while AP approaches have better

scalability. In this work, we enable automated generation of

attack patterns given a hyperproperty-based specification,

thereby combining their strengths.

SH approaches (e.g., [12, 21, 30–32]) identify a transition system-

based platform model and define program security semantically as

a hyperproperty (e.g., non-interference (NI) [15, 28]) over execu-

tions of this transition system. This hyperproperty is verified using

approaches such as model checking [14] or symbolic execution [37].

By semantically characterizing vulnerabilities, hyperproperties al-

low uniform specification: i.e., specification that captures several

exploit gadgets that target the same vulnerability, while differing

in syntactic structure. This results in strong, high-coverage secu-

rity guarantees. However, these approaches are often limited by

scalability owing to microarchitectural platform model complexity.

AP approaches (e.g. [51, 59, 69]) use attack patterns to detect

vulnerabilities. Patterns identify execution fragments that are in-

dicative of an exploit; program executions embedding these patterns

are flagged as vulnerable. Patterns can be defined (and checked)

over a platform model that is more abstract than the microarchi-

tectural models used by SH approaches. This abstraction leads to

simpler verification queries which scale better with program size.

However, each pattern captures specific execution scenarios and is

sensitive to structural variability in exploit gadgets, even when the

gadgets target the same microarchitectural feature. Covering the

attack vector requires an enumeration of all possible patterns that

it encompasses. This can be tedious to perform manually, leading

to incomplete coverage.

1

mailto:adwait@berkeley.edu
https://orcid.org/0000-0001-7704-304X
https://orcid.org/0000-0002-6954-2292
https://orcid.org/0000-0001-6190-8707
mailto:adwait@berkeley.edu
https://orcid.org/0000-0001-7704-304X
https://orcid.org/0000-0002-6954-2292
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.1145/3658644.3690214
https://doi.org/10.1145/3658644.3690214

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

SemPat. The above discussion motivates the question: Can we

combine the scalability of AP approaches with the uniform specifica-

tion and guarantees of SH approaches? This work aims to resolve

this question in the context of microarchitectural vulnerabilities

by developing algorithms to generate attack patterns given a plat-

form model and a non-interference-based hyperproperty. Our key

insight is to use the hyperproperty as the specification against

which to check whether a candidate pattern represents an exploit.

Our technique (§5) ensures that the generated patterns capture all

executions in which there is a dependency-closed sub-execution

of size 𝑘 that violates the hyperproperty. This property, termed as

𝑘-completeness (Eq. 1), enables combining formal specification via

hyperproperties with scalable verification via patterns.

Our pattern generation is guided by a grammar (§5.3) that iden-

tifies the space of constraints that patterns are defined over. The

choice of grammar captures the tradeoff between generality and

the precision (false positives) of the generated patterns. Specialized

grammars result in patterns which have fewer false positives but

are microarchitectural-implementation dependent. Our approach

traverses the grammar-induced search space, checking candidates

against the hyperproperty, a la grammar-based synthesis ([2, 36]).

Contributions. Our contributions are as follows:

(1) Formally relating semantic hyperproperty and attack

pattern based approaches: We compare and formally

relate SH and AP approaches to exploit detection. Based on

the insight that hyperproperties can serve as a specification

for patterns, we propose the problem of generating the

latter given the former.

(2) 𝑘-complete automatic pattern generation: We develop

a grammar-based search algorithm for automatic pattern

generation that ensures that the generated patterns capture

all non-interference violations up to a certain complexity

parameter 𝑘 (termed skeleton size).

(3) Implementation and Evaluation - new patterns and

improved verification performance: We develop a pro-

totype tool implementing our pattern generation technique

and for bounded verification of software binaries using the

generated patterns. We evaluate our approach by gener-

ating attack patterns and using them to analyze variants

of Spectre-style exploits. We demonstrate: (a) the ability

to generate previously unknown patterns for existing (e.g.,

Spectre-BCB, Spectre-STL) attacks as well as variants target-

ing alternative (e.g. computation-unit-based) side-channels,

and (b) up to 2 orders-of-magnitude performance improve-

ment on litmus tests with better scaling using the generated

patterns compared to hyperproperty-based analysis.

Outline. In §2 we provide background on SH and AP and moti-

vate our contribution. We provide our programming model in §3,

followed by the problem formulation in §4. In §5 we describe Sem-

Pat, our approach to generate attack patterns based on a semantic

platform model and a non-interference security hyperproperty. We

discuss the evaluation methodology in §6 and present experimental

results in §7. We discuss our approach, and its limitations in §8,

related work in §9, and §10 concludes. For more details we refer to

the extended version of this paper [27].

2 BACKGROUND AND MOTIVATION

2.1 Microarchitectural Execution Attacks

We provide background on microarchitectural execution attacks

using the Spectre Bounds Check Bypass (BCB) vulnerability. We

refer the reader to literature (e.g., [8, 24, 39]) for extensive surveys.

2.1.1 Spectre-BCB. The victimA function in Fig. 1 shows the

Spectre-BCB (also known as SpectreV1) vulnerability gadget. In

Spectre-BCB, an attacker induces an invocation of the victimA
function with an argument i which is out-of-bounds of array

arr1. While architecturally this is an illegal access, branch mis-

speculation can allow arr1[i], followed by arr2[arr1[i] <<
CL_INDEX] to be accessed speculatively. In particular, the second

load leaves a residue in the cache which is a function of the ac-

cessed address (i.e., arr2+arr1[i] << CL_INDEX). This residue is
preserved even after speculative rollback, and can be observed by

the attacker (e.g., using a Prime+Probe primitive [46]). Thus the

attacker can observe the value of arr1[i] for an out-of-bounds

index i, leading to a security vulnerability. The key aspect of this

vulnerability is that it leveragesmicroarchitectural features - branch

(mis)-speculation and cache side-channels - to leak information.

2.1.2 Variant Vulnerabilities. Over the years several variants of

microarchitectural hardware execution attacks have been demon-

strated. These vary both at the software level (e.g., the structure

of the vulnerability gadget occurring in the program library/exe-

cutable) as well as at the microarchitectural level (e.g., the underly-

ing speculative mechanism/side-channel that is exploited).

The function victimC in Fig. 1 shows a variant of victimA,
that replaces a cache-based side channel with a computation unit-

based side channel. Like victimA, victimC also exploits branch

speculation to perform an out-of-bounds load of arr1fp[i] (a

floating-point array). The loaded value is used in a floating-point

multiply operation. If the microarchitectural implementation of

this operation has data-operand dependent timing (e.g., [24, 61])

then an execution time measurement leaks the value of arr1fp[i].
Computation units have been targeted in this manner by previously

demonstrated exploits (e.g., NetSpectre [63] uses AVX-based timing

side channels) as well as conjectured vulnerabilities (e.g., [61]).

2.2 Analyzing Software for Vulnerabilities

Analyzing programs for the existence of microarchitectural vulner-

abilities is an important yet challenging problem.

2.2.1 AP: Attack Pattern-based Analysis. One family of approaches,

which we call AP approaches, detect vulnerabilities using attack

patterns. An attack pattern is a small execution fragment which, if

embedded in some (larger) program execution, indicates the pres-

ence of a vulnerability. Pattern A (Fig. 1) illustrates one such pattern

from existing work [51]. Pattern A matches executions where a

load (A2) is speculatively executed following a branch (A1), and

where the address of a subsequent load (A3) depends on the value

loaded by A2. Fig. 2 (Match A) shows the compiled victimA, and
depicts how the instruction nodes A1, A2, A3 in pattern A match

instructions in the binary execution.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimB (uint32_t i) {
 uint32_t temp1_ = arr1[i];
 if (i < ARR_SIZE)

 temp_ = arr2[temp1_ << CL_INDEX];
}

void victimC (uint32_t i) {
 if (i < ARR_SIZE)

 tempfp_ = arr1fp[i]*SCALAR;
}

void victimD (uint32_t i) {
 float tempfp1_ = arr1fp[i];
 if (i < ARR_SIZE)

 tempfp_ = tempfp1_*SCALAR;
}

A1:Branch A2:Load A3:Load
address
dependency

speculative

B2:BranchB1:Load B3:Load

address dependency

speculativeprogram
order

C1:Branch C2:Load C3:FPMul
data
dependency

speculative

D2:BranchD1:Load D3:FPMul

data dependency

speculativeprogram
order

• Memory outside arr1 and arr2 is secret
• Addresses/tags of cache entries
(cache.tags) are attacker-visible

Vpub = {regs, mem[arr1], mem[arr2],
 cache}
Vobs = {cache.tags}

• Memory outside arr1fp is secret
• Number of multiplier-unit invocations is

attacker-visible state

Vpub = {regs, mem[arr1fp], ...}
Vobs = {#multiplier unit
 invocations}

Pattern A [9]

Pattern B (this work)

Pattern C (this work)

Pattern D (this work)

SNI Hyperproperty HCD

SNI Hyperproperty HAB

Figure 1: Left: Variants of speculative exploits targeting branch (mis)-speculation with cache-based (victimA, victimB) and
computation unit-based (victimC, victimD) side channels. Centre: While attack patterns that can detect these exploits, variants

of the same (Spectre-BCB) vulnerability - victimA and victimB - require different patterns, as do victimC and victimD. In (A, C),

the load arr1[i] is performed within the speculative window (after the branch), while in (B, D) it is before the branch. Right:

Unlike attack patterns, a semantic hyperproperty uniformly characterizes several exploits aimed a particular microarchitectural

vulnerability. The Speculative Non-Interference [31] (SNI) Hyperproperty HAB can identify both victimA and victimB (as well

as others) as exploits, while the SNI Hyperproperty HCD identifies both victimC and victimD. While the hyperproperty changes

with the platform’s microarchitectural features (e.g., speculation and side-channels), it is robust to variances in the exploit

(program) structure itself.

AP-approach Execution model Attack pattern variant

CheckMate [69] 𝜇hb graphs [47] Bad execution patterns

Cats vs. Spectre

[59]

cat [1] based
event structures

sec →∗ Obs paths

Axiomatic HW/SW

Contracts [51]

Leakage containment

models (LCMs)

Transmitters

Table 1: Examples of executionmodelling choices and pattern

variants used in some AP-approaches.

AP approach variants. ExistingAP-based detection approaches iden-

tify a set of such patterns, and then analyze programs for the ex-

istence of pattern embeddings. These approaches model execu-

tions and define patterns either at the architectural [51, 59] or the

microarchitectural [69] level. Architecture-level approaches are

augmented with sufficient microarchitectural detail to capture the

vulnerability-specific features (e.g. xstate from Mosier et. al. [51]).

Table 1 provides a summary of these differences.

Patterns defined at the architectural level abstract away complex

microarchitectural details of the platform. This results in simpler

verification queries, allowing analysis to scale to larger programs

(e.g., see [51, 59]).

Patterns are tied to gadget-specific structure
1
. While attack pattern-

based analysis has the benefit of greater scalability, patterns do

not generalize well to other gadget variants that exploit the same

underlying microarchitectural features. To illustrate this, function

victimB in Fig. 1 is a modified version of victimA, where the load

1
Which is why we call these attack patterns, since they only capture specific attack

executions, and not the common underlying vulnerability.

.victimC:
...
bltu a5,a4,66208;
...
flw fa4,a5,0;
...
fmul fa5,fa4,fa5;
...

66208:

C1:Branch

C2:Load

C3:FPMul

data dep.

spec.

architectural

.victimD:
...

 flw fa5,a5,0;
...
bltu a5,a4,66304;
...
fmul fa5,fa4,fa5;
...

66304:

D1:Load

D2:Branch

D3:FPMul

program order

spec.

architectural

data
dep.

.victimA:
...
bltu a5,a4,66004;
...
lw a5,a5,0;
...
lw a4,a5,0;
...

66004:

A1:Branch

A2:Load

A3:Load

addr. dep.

spec.

architectural

.victimB:
...

 lw a5,a5,0;
...
bltu a5,a4,66120;
...
lw a4,a5,0;
...

66120:

B1:Load

B2:Branch

B3:Load

program order

spec.

architectural

addr.
dep.

Match A

Match C Match D

Match B

Figure 2: Patterns A, B, C, D matched against executions of

programs victimA,victimB,victimC,victimD respectively.

arr1[i] is performed non-speculatively, i.e. before the branch.

Due to this load−branch inversion, pattern A does not match the

execution of victimB, even though both victimA and victimB
exploit the same (Spectre-BCB) mechanism. In Fig. 1 we provide

pattern B that reorders the branch with the first load, and thus can

capture victimB (depicted in Fig. 2 Match B). This highlights the

fact that attack patterns are tied to gadget-specific structure.

2.2.2 SH: Semantic Hyperproperty-based Analysis. Non-interference-

based hyperproperties [15] allow security specifications such as

confidentiality (“secret variables should not affect public outputs”)

and integrity (“public inputs should not affect protected variables”).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

SH-approach Non-interference (NI) variant

A Formal Approach to

to Secure Speculation [12]

Trace-property dependent

observational-determinism

Spectector [31] Speculative non-interference

InSpectre [30] Conditional non-interference

Hardware-software contracts [32] Contract conditioned NI

Automated detection of

speculative attack combinations [21]

Speculative NI

Table 2: Summary of non-interference variants used in some

SH approaches.

SH-approaches, e.g., [12, 30, 31], formulate security semantically

using hyperproperties and verify them against a platform model.

Hyperproperties allow uniform security specification. The hyper-

property HAB (Fig. 1 (right)) specifies the memory outside (public)

arrays arr1, arr2 as being secret, and the cache tags as being public
output. This captures a cache-based side channel where the tags

are attacker-observable (e.g., using Prime+Probe [46]). victimA
violates HAB, since the cache state is tainted with the (specula-

tively loaded) address of the second load which is a value outside

arr1, arr2. Although it has a different structure than victimA,
victimB also violates HAB as it too leaves a cache residue. Thus,

unlike attack patterns, hyperproperties such as HAB are agnostic to

gadget-specific structure. By uniformly capturing several exploit-

variants targetting a particular microarchitectural vulnerability,

SH-approaches provide wide-scoped, strong guarantees.

Hyperproperty verification. SH-approaches base their analysis on

variants of non-interference, which we summarize in Tab. 2, and dis-

cuss in more detail in §4.1. They verify this hyperproperty against

a semantic platform model, which identifies (a) system state (vari-

ables in the system), and (b) execution semantics of operations. Fig.

3 illustrates a platform fragment with register file, memory and

cache state, and load and alu operations. Non-interference-based

hyperproperties can be converted into a single trace property by

performing self-composition, i.e., composing together copies of the

platform ([15, 68]). This single trace property can be checked by

invoking a model checking or software verification procedure.

Self-composition-based verification against a semantic model

has two drawbacks. Firstly, microarchitectural detail in the platform

model results in large verification queries. (e.g., a query for HAB

over the platform from Fig. 3 would have to encode the cache state).

In comparison, architectural level pattern-based queries (e.g., with

pattern A) are smaller, enabling faster verification. Secondly, self-

composition results in a further increase in the state-space (and

query) and consequentially adversely affects performance.

2.3 Why convert from SH to AP?

Manual pattern generation is error-prone. While more scalable, AP

approaches require creation of several patterns, due to their gadget-

specificity. To avoid unsound analysis (e.g., using only pattern A on

victimB), it is important that patterns are not missed, e.g., pattern

B which we have not observed being formulated previously.

1 // System state
2 var regs : [regindex_t]word_t
3 var cData : [index_t]word_t
4 var cTag : [index_t]tag_t
5 var mem : [word_t]word_t
6 // Load operation
7 operation load (rs, rd, imm) {
8 addr = regs[rs] + imm; // Compute the address
9 if (cacheTag(addr_to_tag(addr)) == addr) {
10 ... // Load from cache if hit
11 } else {
12 data = mem[addr]; // Load from memory
13 }
14 regs[rd] = data; // Register writeback
15 }
16

17 // Generic ALU Register -Register operation
18 operation alu (rs1 , rs2 , rd, op) {
19 if (op == ADD) regs[rd] = regs[rs1] + regs[rs2];
20 ...
21 }

Figure 3: Fragment of a platform model with state variables

and load and alu operation semantics.

Moreover, patterns need to be recreated for newer microarchi-

tectures (with newer vulnerabilities). Consider victimC (Fig. 1 left)

which replaces a cache-based side channel (as in victimA) with a

computation unit-based channel. Its variant victimD inverts the

first load and the branch (as in victimB). These examples are in-

spired from [61], which hypothesizes the existence of computation-

unit based side-channels on microarchitectures with data-operand-

dependent timing [24, 35, 61]. Existing work, which targets cache-

based side channels, misses patterns C and D (Fig. 1 center) that

capture victimC and victimD. Automating pattern generation can

make patterns more comprehensive and cover newer microarchi-

tectural features.

Semantic hyperproperties as a specification for automated pattern

generation. In this work, we propose a technique to automatically

generate patterns for a given hyperproperty and microarchitecture.

As an example we were able to automatically generate patterns C

and D from the (shared) hyperproperty HCD.

Our key insight is using the semantic hyperproperty as a spec-

ification to guide pattern generation. Since a hyperproperty can

capture an entire class of exploits targetting a vulnerability, we can

use it to determine whether a given pattern yields an exploit by

checking it against the hyperproperty. By automatically checking

several candidates, we can identify a comprehensive set of patterns

for that hyperproperty. Thus, our technique replaces manual pat-

tern creation with the requirement of specifying a hyperproperty

and platform model. To summarize, by developing an automated

conversion technique from SH-specifications to AP-based patterns,

we combine the low-overhead, uniform specifications and

formal guarantees of SH with the superior verification scala-

bility of AP to get the best of both worlds.

3 SYSTEM MODEL

In this section, we introduce our formal model for hardware plat-

forms, which we later use to develop our problem formulation (§4).

At a high level, the hardware platform is an operational transition

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Variables (arch. and march.) 𝑣 : V = Va ∪ Vm

States

(variable assignments)

𝜎 : Σ = V → D

Operation code op : Op

Instructions inst : Inst = {op(𝜔)}op,𝜔
Full (speculative) semantics T : Inst × Σ → Σ

Non-speculative semantics Tns : Inst × Σ → Σ

Table 3: Platform state and operational semantics.

system over architectural and microarchitectural state variables.

Instructions executed on the platform induce transitions over this

state. We summarize these elements in Table 3.

3.0.1 State. The platform consists of variables V which take values

from a domain D. V includes architectural (Va) and microarchitec-

tural (Vm) variables. The platform state is an assignment to these

variables, 𝜎 : V → D. We denote the set of all assignments as

Σ = V → D.

3.0.2 Instruction semantics. The platform executes a set of instruc-

tions of form inst = op(𝜔), where op is the instruction opcode, and

𝜔 are operands. The platform assigns two transition semantics to

each instruction: a full semantics (allowing speculation) denoted as

T and a non-speculative semantics denoted as Tns. Both semantics

can be viewed as functions taking an instruction and the current

platform state as input and returning the next platform state (ob-

tained after executing the instruction). The full semantics defines

the behaviour when the platform can speculate (not necessarily en-

forcing speculative behaviour at all times) while the non-speculative

semantics defines behaviours when speculation is disabled.

Example 1. For the platform model in Fig. 3, the architectural

and microarchitectural variables are Va = {mem, regs} and Vm =

{cacheTag, cacheData}, with V = Va ∪ Vm. The semantics of the

load instruction updates the register file regs and the cache state

variables (cacheData, cacheTag) as defined in Fig. 3.

3.0.3 Modelling speculation. Instructions, e.g., branches or loads

(store-to-load forwarding), signal that they are initiating specula-

tion by setting a variable spec ∈ V. Internally, the full semantics T
defines instruction behaviour by conditioning on spec: spec being

set implies that the platform is currently speculating. Indeed, spec

can be set only in the full semantics (T) and not in Tns. Prior work
considers specialized semantics that define when spec is set (e.g.,

oracle-based semantics [31]). Since we adopt a hardware-oriented

model, we assume that this is explicitly defined in the transition

semantics of the speculating instruction. Despeculation is assumed

to be similarly defined (this time, however, by unsetting spec).

In our current implementation, we restrict speculation to a single

frame, and do not support nested speculation (e.g., speculative loads

within a branch speculation context). However, this is not a funda-

mental limitation of our approach; extension to nested speculation

is possible by defining a stack of frames storing architectural state.

3.0.4 Executions. The platform consumes a stream of instructions,

and transitions on them, thereby producing a trace of states. Then,

an input instruction stream 𝐶 = inst0, inst1, . . . , inst𝑛 , starting
in state 𝜎0 leads to a sequence of states 𝜋 = 𝜎0 𝜎1 . . . 𝜎𝑛+1,
where 𝜎𝑖+1 = T(inst𝑖 , 𝜎𝑖) (under the full semantics) and 𝜎𝑖+1 =

Tns (inst𝑖 , 𝜎𝑖) (under the non-speculative semantics). The execution

generated by instruction stream𝐶 from initial state 𝜎 is denoted as

J𝐶K(𝜎). We similarly define non-speculative executions J𝐶Kns (𝜎)
in which instructions follow the Tns transition relation.

4 SPECIFICATIONS AND PROBLEM

FORMULATION

In this section we formalize hyperproperty specifications (§4.1)

and the notion of attack patterns that our approach aims to gener-

ate (§4.2). We then discuss a technical limitation of pattern-based

approaches in §4.3, and formulate the problem statement in §4.4.

4.1 Hyperproperty-based Security Specification

We follow existing work ([15, 31]) to formalize non-interference-

based security specifications.

Non-interference ([15]) states that any pair of executionswhich

begin in states with equivalent values of public (non-secret) variables

(Vpub) continue to have states with equivalent values of observable

variables (Vobs):
2

𝐶 |= NI(Σinit,Vpub,Vobs)
Δ
= ∀𝜎1, 𝜎2 ∈ Σinit .

𝜎1 ≡Vpub 𝜎2 =⇒ J𝐶K(𝜎1) ≡Vobs J𝐶K(𝜎2)
This property is parameterized by the choice of Σinit, Vpub and Vobs
and intuitively says that the observable variables are not affected by

the secret (Vsec = V \ Vpub) variables. Non-interference expresses

security against an attacker that tries to infer the values of Vsec by

observing Vobs.

Speculative non-interference enforces non-interference only

if the program is non-interfering under non-speculative semantics:

𝐶 |= SNI(Σinit,Vpub,Vobs)
Δ
= ∀𝜎1, 𝜎2 ∈ Σinit .

(𝜎1 ≡Vpub 𝜎2 ∧ J𝐶Kns (𝜎1) ≡Vobs J𝐶Kns (𝜎2)) =⇒
J𝐶K(𝜎1) ≡Vobs J𝐶K(𝜎2)

Intuitively, SNI restricts the scope of non-interference enforcement,

we refer the reader to [12, 31] for more details.

Conditional/contract-based non-interference [32] is another vari-

ant which also restricts the scope of non-interference using an ar-

chitectural semantics. It requires that a program be non-interfering

in the full semantics if it is non-interfering in the architectural

semantics. While we focus our presentation on non-interference

our technique also applies to these variants, as demonstrated in §7.

4.2 Attack Pattern-based Security

4.2.1 Patterns. A pattern p is a pair (𝑤,𝜙) of a template𝑤 and a

constraint (𝜙), i.e., a boolean formula. The template is a sequence

over opcodes 𝑤 = op
0
· op

1
· · · op𝑘 that structurally restricts exe-

cutions the pattern can be embedded in, to those with an opcode

2
Here, 𝜎1 ≡

V
′ 𝜎2 for V

′ ⊆ V means that 𝜎1 (𝑣) = 𝜎2 (𝑣) for all 𝑣 ∈ V
′
(the

assignments agree on all variables in V
′
). For traces 𝜋1 and 𝜋2 , 𝜋1 ≡

V
′ 𝜋2 holds if

𝜋1 [𝑖] ≡V
′ 𝜋2 [𝑖] for all 𝑖 .

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

data dependencyprogram order
1:Load0:MulOp 2:MulOp

high result

Figure 4: A pattern for a computation-based side channel.

subsequence matching the template. The constraint (𝜙) further

semantically constrains matching executions to those satisfying it.

Example 2 (MulOp − LdOp − MulOp pattern). The pattern from

Fig. 4 is formalized as (𝑤,𝜙) where,𝑤 = (0 : MulOp) · (1 : LdOp) · (2 :
MulOp) and the constraint is 𝜙 ≡ datadep(1 : LdOp, 2 : MulOp) ∧
highresult(1 : LdOp), i.e., there is a data dependency between the

load and the second multiplication operation, and a the loaded result

is high (secret dependent). Intuitively, this pattern matches executions

satisfying 𝜙 with a MulOp − LdOp − MulOp instruction subsequence.

4.2.2 Execution-embedding. Now we formalize when a pattern

embeds (matches) an execution, which determines which programs

the pattern flags as exploits. Consider pattern p = (𝑤,𝜙) with
template𝑤 = op∗

1
· · · op∗

𝑘
, and an execution 𝜋 = 𝜎0 · 𝜎1 · · ·𝜎𝑛 . Let

the sequence of opcodes in 𝜋 be op
1
· · · op𝑛 , i.e., the transition from

𝜎𝑖 to 𝜎𝑖+1 is performed by executing an instruction with opcode

op𝑖+1. The pattern p embeds in execution 𝜋 at a subsequence given

by indices (𝑖1 < · · · < 𝑖𝑘) if the corresponding opcodes match

the template 𝑤 : op𝑖 𝑗 = op∗
𝑗
for 𝑗 ∈ [1 · · ·𝑘], and the execution

𝜋 satisfies the constraint 𝜙 . We denote the fact that p embeds at

indices (𝑖1, · · · , 𝑖𝑘) in trace 𝜋 as 𝜋 |=(𝑖1,· · · ,𝑖𝑘) (𝑤,𝜙). Execution 𝜋

embeds (𝑤,𝜙) if there is a matching subsequence:

𝜋 |= (𝑤,𝜙) Δ
= ∃𝑖1, · · · , 𝑖𝑘 . 𝜋 |=(𝑖1,· · · ,𝑖𝑘) (𝑤,𝜙)

Attack pattern p = (𝑤,𝜙) matches instruction sequence 𝐶 if

there is some execution of 𝐶 that embeds it:

𝐶 |= p
Δ
= ∃𝜎 ∈ Σinit . J𝐶K(𝜎) |= p

Fig. 2 provides examples of patterns matching instructions.

4.3 Non-interference Violation Skeleton

Given a hyperproperty, we aim to generate a set of patterns such

that any hyperproperty violation is detected by atleast one of the

patterns in this set. However, as illustrated in Example 3 the fact

that patterns have fixed length is a fundamental limitation in the

violations they can detect.

buf1buf0 op1
buf2op2

bufkopk
...

Figure 5: Buffer chain in PlatSynth(𝑘) with operations.

Example 3 (Large skeletons: the PlatSynth(𝑘) platform).
Consider the pedagogical example microarchitecture illustrated in Fig.

5 with 𝑘 + 1 state variables (e.g., buffers): buf0, · · · , buf𝑘 ∈ V, and

𝑘 corresponding operations op
1
, op

2
, · · · , op𝑘 ∈ Op. Operation op𝑖

moves data from buf𝑖−1 to buf𝑖 . Now, consider a non-interference

property with Vpub = {buf1, · · · , buf𝑘 }, and Vobs = {buf𝑘 }. That is
we want to identify whether the secret input buf0 affects the observ-
able output buf𝑘 . While the operation sequence op

1
· · · op𝑘 violates

this property (it moves data from buf0 to buf𝑘), any sequence of

length 𝑘 − 1 or less does not.

Given the possibility of large non-interference violations that

would be greater than the size of any fixed set of patterns, we

qualify our problem statement to detecting those violations with

small skeletons, as we now define.

Consider an instruction sequence 𝐶 = inst0 inst1 · · · , and a

corresponding execution trace 𝜋 = J𝐶K(𝜎). For a trace index 𝑖 , we
denote the variables that inst𝑖 depends on as dep𝜋 (𝑖) ⊆ V. We

denote the last writer of a variable 𝑣 ∈ V at index 𝑖 , denoted as

lw𝜋 (𝑣, 𝑖) ∈ {inst0, · · · , inst𝑖−1} as the last instruction that writes

to 𝑣 before inst𝑖 . Finally, the set of all (instruction) dependencies of
an instruction inst𝑖 is the union of the last writers of all variables it

depends on: idep𝜋 (𝑖) =
⋃

𝑣∈dep𝜋 (𝑖) lw𝜋 (𝑣, 𝑖). For a trace 𝜋 , we say
that 𝑖1, · · · , 𝑖𝑘 is a subsequence that is closed under dependencies if

for all 𝑗 ∈ [1 · · ·𝑘], idep(𝑖 𝑗) ∈ {𝑖1, · · · , 𝑖𝑘 }.

Definition 1 (Skeleton). Suppose the sequence of instructions

inst1 · · · inst𝑛 violates a non-interference property NI. Then, 𝐶 has

an NI-violation skeleton of size 𝑘 , denoted as 𝐶 ̸ |=𝑘 NI if there exist
traces 𝜋1, 𝜋2 with subsequences of length 𝑘 which are closed under

dependencies and also violate NI.

Discussion: The skeleton identifies instruction sub-sequences

that cause the non-interference violation. A length 𝑘 instruction

stream that violates the non-interference property can have multi-

ple skeletons, each of size ≤ 𝑘 . Thus, fixing a skeleton size does not

bound the program size itself, i.e., large programs can have small

skeletons.

4.4 Formal Problem Statement

Formally, given (a) a platform model (with state V and semantics

T), and (b) a non-interference security specification NI(Σinit, Vpub,

and Vobs), and (c) a given skeleton size 𝑘 , we generate a set of

patterns P such that any instruction sequence 𝐶 that violates the

non-interference property with a skeleton of size 𝑘 is detected by

one of the patterns in P:

∀𝐶. 𝐶 ̸ |=𝑘 NI(Σinit,Vpub,Vobs) =⇒ ∃p ∈ P. 𝐶 |= p (1)

We refer to Eq. 1 as the 𝑘-completeness property.

5 THE SEMPAT APPROACH

In this section we discuss our approach to automatically generate

attack patterns satisfying 𝑘-completeness (Eq. 1). We provide an

overview in §5.1, followed by details in §5.2 and §5.4.

5.1 Pattern Generation Overview

Operation. Figure 6 provides a high-level overview of our approach.

We take in a transition system-based platform model (§3), a non-

interference specification (§4.1), a constraint grammar𝐺 and depth

𝑑 . We generate a set of patterns P up to depth 𝑑 , with constraints

sourced from 𝐺 (discussed in §5.3). Our approach has two compo-

nents: template generation (§5.2) and grammar-based specialization

(§5.4). We explain these elements using a running example.

Running Example: Computation Reuse. We use the running example

of the generation of the MulOp − LdOp − MulOp pattern from Fig. 4.

We generate this pattern based on the computation-reuse platform

model (PlatCR), an excerpt of which is provided in Fig. 7. The

PlatCR microarchitecture includes a reuse buffer (reuse_buf) that

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Platform Model Definition (M) (§3)

Non-interference Property (NI) (§4.1)

Grammar (G) (§5.3) and depth d

SemPat Pattern Generation Flow

Template Generation (§5.2) Constraint Specialization (§5.4)
Attack Patterns (§4.2)

Figure 6: The SemPat approach.

1 type rentry_t = record { op1: word_t , op2: word_t ,
result: word_t };

2 var reuse_buf : [instr_ind_t]rentry_t;
3

4 operation mulop (rd, rs1 , rs2) {
5 op1 = regfile[rs1]; op2 = regfile[rs2];
6 // Check for reuse
7 if (∃ i. reuse_buf[i].op1 == op1 &&
8 reuse_buf[i].op2 == op2) {
9 result = reuse_buf[i]. result; // Reuse result
10 } else { // Otherwise invoke multiplier unit
11 result = multiplier(op1 , op2);
12 mulcount = mulcount + 1;
13 }
14 // Replace reuse_buf entry (at index ind_)
15 reuse_buf[ind_] = rentry_t {op1 , op2 , result };
16 regfile[rd] = result;
17 }

Figure 7: PlatCR: Fragment of the computation reuse plat-

form model.

stores the operands and results of previous multiplication (mul) in-
structions. Future mul instructions matching operands of previous

instructions, can reuse results from the buffer instead of reinvok-

ing the multiplier. We encode the security property that secret

data from the memory should not affect the count of multiplier in-

vocations as the property NIPlatCR (initreuse_buf, mem, mulcount)
where initreuse_buf constrains all entries in the reuse_buf to be

initially invalid and mulcount ∈ V counts multiplier invocations.

Algorithm 1: GenerateTemplates(𝑀 , NI, 𝑑)
Input: Semantic platform definition𝑀 , non-interference property

NI(Vpub,Vobs, Σinit) , depth 𝑑 ∈ N
Output: A set of pattern templates

Data: acc: the accumulated set of pattern templates

1 Function TemplateHelper(𝑤):
/* Search depth not reached? */

2 if |𝑤 | < 𝑑 then

3 for op ∈ Op do

4 if op · 𝑤 propagates taint from V
𝐶
pub to Vobs then

5 if op · 𝑤 ̸ |= NI then acc.append(op · 𝑤)

6 TemplateHelper(op · 𝑤)

/* Search over depth 𝑑 templates */

7 TemplateHelper(𝜖)

8 return acc

5.2 Template Generation

The first phase of our approach uses an overapproximate analysis

to generate templates up to the user-specified depth 𝑑 . This is

performed by the GenerateTemplates procedure (Alg. 1) which

we discuss with an example. GenerateTemplates scans over all

templates starting with size 1 (single operations) up to size 𝑑 . For

each template, we first perform (overapproximate) taint analysis to

check whether the template propagates taint from the secret inputs

(Vsec) to the public outputs (Vobs). This static syntactic taint

analysis requires an imperatively defined platform semantics.

No taint propagation implies that the template does not vio-

late the non-interference property. On the other hand, if the tem-

plate propagates taint, we check if it semantically violates the non-

interference property. We do this by reducing non-interference

(𝐶 |= NI) to a safety query (e.g., [15, 60]), and solving this query

using SMT-based model checking [6, 49].

Example 4 (Template generation for MulOp − LdOp − MulOp).
Consider invoking GenerateTemplates for the PlatCR platform

(Fig. 7) with NIPlatCR as the non-interference property and a search

depth of 3. GenerateTemplates first considers single operation tem-

plates. However, none of them propagate taint from mem to mulcount.
Subsequently, GenerateTemplates finds the two-operation template

LdOp − MulOp does propagate taint from mem to mulcount. However,
this template does not (semantically) violate non-interference as the

reuse_buf is initially empty, and the multiplier must be invoked in

all executions. Eventually, GenerateTemplates considers the size 3
template MulOp−LdOp−MulOp. This template both, propagates taint

and semantically violates NIPlatCR. This is because the first MulOp
‘primes’ the reuse buffer, and the second MulOp uses the primed buffer

entry. This will lead to two executions with different mulcount values,
i.e., a non-interference violation.

GenerateTemplates generates all operation sequences (up to

length 𝑑) that violate the non-interference property:

Lemma 1. For 𝑘 ≤ 𝑑 , if inst1 · · · inst𝑘 ̸ |= NI where instruction
inst𝑖 = op𝑖 (𝜔𝑖), then, op1 · · · op𝑘 ∈ GenerateTemplates(𝑀,NI, 𝑑).

Proof Sketch. The proof of Lemma 1 is a direct consequence

of the algorithm GenerateTemplates and the soundness of a taint-

based overapproximation. We rely on the fact that, if a template𝑤

does not propagate taint from V
𝐶
pub to Vobs, then it also does not

violate the non-interference property NI(Vpub,Vobs, Σinit). □

5.3 Conjunction-based Pattern Grammar

While templates alone are too overapproximate to be useful, aug-

menting (specializing) them with constraints (𝜙) leads to more

precise patterns with fewer false positives. Specialization is per-

formed using the user provided grammar𝐺 that identifies the space

of these constraints.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Algorithm 2: ConstraintSpecialize(𝑀,NI,𝑤,𝐺)

Input: Semantic platform definition𝑀 , non-interference property

NI, pattern template 𝑤, and a grammar𝐺

Output: A set of patterns

Data: acc: an accumulated set of patterns

1 Function ConsHelper(𝜙, 𝑖, 𝐿):
/* Exhausted all atomic predicates? */

2 if 𝑖 > |𝐿 | then acc.append((𝑤,𝜙))
/* Does adding ¬𝐿[𝑖] eliminate all violations? */

3 else if ∀inst1, · · · , inst|𝑤 | . inst1 · · · inst|𝑤 | |=
(𝑤,𝜙 ∧ ¬𝐿[𝑖]) =⇒ inst1, · · · , inst|𝑤 | |= NI

4 then ConsHelper(𝜙 ∧ 𝐿[𝑖], 𝑖 + 1, 𝐿) /* add 𝐿[𝑖] */

5 else ConsHelper(𝜙, 𝑖 + 1, 𝐿); /* skip over 𝐿[𝑖] */

6 𝐿 = ApplyPredicates(𝑤,𝐺) /* Create all atoms in 𝐿 */

7 ConsHelper(true, 0, 𝐿) /* Counterfact. addition */

8 return acc

5.3.1 Conjunction of Predicate Atoms. We consider constraints

which are conjunctions of atoms.
3
That is, 𝜙 has form: 𝜙 =

∧
𝑖 𝑓𝑖 ,

where each 𝑓𝑖 is an atom. These atoms (𝑓𝑖) are generated by applying

predicates from a grammar𝐺 , such as the one in Table 4, which we

use as the default. Each predicate from the grammar is applied to

some number of instructions from the pattern, as indicated by its

arity (e.g., datadep is an arity-2 (binary) predicate). To identify the

instructions a predicate is applied to, we distinguish apart identical

opcodes using their position (e.g., the datadep predicate is applied

to (0 : MulOp), (2 : MulOp) in Example 2).

5.3.2 Precision vs. Robustness Tradeoff. A grammar that only al-

lows high-level (architectural) predicates (e.g., Tab. 4) leads to pat-

terns which are less sensitive to microarchitectural implementation

details, but have more false positives. Conversely, a grammar that

exposes low-level microarchitectural constraints leads to more pre-

cise patterns (with fewer false positives). However, these patterns

are then specific to the platform microarchitecture. Thus, the pat-

tern grammar exposes a tradeoff between the robustness and ex-

pressivity/precision of generated patterns. While our specialization

technique (§5.4) requires a conjunction-based grammar (§5.3.1), we

are not fundamentally limited to the predicates from Table 4. We

explore this further in §7.4 where we augment the default grammar

with additional predicates to improve precision.

5.4 Template Specialization with Predicates

The goal of template specialization is making patterns as precise

as possible using the pattern grammar (§5.3), while ensuring that

they do not miss any violating executions (as required by Eq. 1).

Specialization is performed by invoking the ConstraintSpecialize

procedure (Alg. 2) on every pattern template generated by Gener-

ateTemplates. At a high level, starting with the true constraint
(line 0), ConstraintSpecialize continues adding predicate atoms

to the constraint.

5.4.1 Candidate predicate atoms. As introduced in §5.3, the pattern

constraint is a conjunction of predicate atoms from grammar 𝐺 .

We apply each predicate to operations from the template to get a

3
In formal logic, an atom (atomic formula) is a single (indivisible) logical proposition.

set of atoms. For example, the binary datadep predicate with the

(0 : MulOp)−(1 : LdOp)−(2 : MulOp) template results in three atoms:

datadep(0 : MulOp, 1 : LdOp), datadep(1 : LdOp, 2 : MulOp) or
datadep(0 : MulOp, 2 : MulOp) (we ignore backwards dependencies).
ConstraintSpecialize first collects all such atoms in a list 𝐿 using

the ApplyPredicates helper function (line 6).

5.4.2 Counterfactual-based atom addition. Adding an atom strength-

ens the pattern constraint, resulting in it capturing fewer execu-

tions. To ensure that the generated pattern does not miss any non-

interference violations (and thereby violate Eq. 1) we use counter-

factual atom addition. Counterfactual addition adds an atom only

if adding the negation of the atom leads to only non-violating

executions. Intuitively, if the negation leads to only non-violating

executions, then adding the atom preserves all violating executions:

Observation 1. Consider a pattern (𝑤,𝜙), where |𝑤 | = 𝑘 , and

an atom 𝑓 . We have, for all 𝐶 = inst1 · · · inst𝑘 :(
𝐶 |= (𝑤,𝜙 ∧ ¬𝑓) =⇒ 𝐶 |= NI

)
=⇒(

(𝐶 |= (𝑤,𝜙) ∧𝐶 ̸ |= NI) =⇒ 𝐶 |= (𝑤,𝜙 ∧ 𝑓)
)

For each atom in 𝐿, we check (Alg. 2 line 3) if it satisfies the

counterfactual addition condition, specializing the pattern (line 4)

if so. If not, we skip over it (line 5) and move to the next atom in 𝐿.

Example 5. For the (0 : MulOp) − (1 : LdOp) − (2 : MulOp)
template, ConstraintSpecialize adds the 𝑓 = datadep(1 : LdOp, 2 :
MulOp) atom to the constraint, since if (2 : MulOp) does not depend on
(1 : LdOp), then its operands are not secret, and the non-interference

property is not violated. In a further iteration, ConstraintSpecialize
adds the atom highresult(1 : LdOp) which says that the loaded value

is secret-dependent. Once again, the negation of this would lead to a

non-violating execution. This gives us the final pattern with𝑤 = (0 :
MulOp) − (1 : LdOp) − (2 : MulOp) and 𝜙 = datadep(1 : LdOp, 2 :

MulOp) ∧ highresult(1 : LdOp).
5.4.3 Multiple counterfactuals and branching. Counterfactual ad-

dition relies on a strong condition which may not hold for single

atoms. In such cases, we consider multiple counterfactual atoms:

Observation 2 (Multiple counterfactuals). For pattern (𝑤,𝜙),

atoms {𝑓𝑖 }𝑖 , and for any 𝐶 = inst1 · · · inst |𝑤 | :(
𝐶 |= (𝑤,𝜙 ∧

∧
𝑖

¬𝑓𝑖) =⇒ 𝐶 |= NI
)
=⇒(

(𝐶 |= (𝑤,𝜙) ∧𝐶 ̸ |= NI) =⇒
∨

𝑖
(𝐶 |= (𝑤,𝜙 ∧ 𝑓𝑖))

)
We only prove Observation 2 since it generalizes Observation 1.

Proof of Observation 2. Consider a partially specialized tem-

plate (𝑤,𝜙), and a set of atoms {𝑓𝑖 }𝑖 . We define sets of programs:

𝑆 = {𝐶 | 𝐶 |= (𝑤,𝜙)}, for each 𝑓𝑖 , let 𝑆𝑖 = {𝐶 | 𝐶 |= (𝑤,𝜙 ∧ 𝑓𝑖)}, and
finally,𝑇 = {𝐶 | 𝐶 |= NI}. Then, the set𝑈 = 𝑆 \⋃𝑖 𝑆𝑖 is of programs

satifying,

𝐶 |= (𝑤,𝜙 ∧
∧
𝑖

¬𝑓𝑖)

Now, suppose that the claim was not true. Then there exists

a program 𝐶 , such that (a) 𝐶 ∈ 𝑆 ∩ 𝑇 , and (b) 𝐶 ∉
⋃

𝑖 𝑆𝑖 . Thus,

𝐶 ∈ (𝑆 ∩𝑇 ∩⋃
𝑖 𝑆𝑖), implying (by the definition of𝑈), 𝐶 ∈ 𝑈 ∩𝑇 .

However, this means that the antecedent of the claim (which is

𝑈 ∪𝑇) does not hold, leading to a contradiction. □

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Predicate Atom Meaning Encoding (assuming RISC-V ISA)

datadep(inst1, inst2) Data operand of inst2 depends on result of inst1 Last write to inst2 .rs1 or inst2 .rs2 is by inst1
addrdep(inst1, inst2) Address operand of inst2 depends on result of inst1 Last write to inst2 .rs1 is by inst1
sameaddr(inst1, inst2) Address operands of inst1 and inst2 are the same inst2 .addr = inst1 .addr (for memory operations)

diffaddr(inst1, inst2) Address operands of inst1 and inst2 are different inst2 .addr ≠ inst1 .addr (for memory operations)

srcdatareg (inst1) Data operand is read from register reg e.g., inst1 .rs1 = reg, inst1 .rs2 = reg (depends on opcode)

srcaddrreg (inst1) Address operand is read from register reg inst1 .rs1 = reg (for memory operations)

destregreg (inst1) Result is written to a register reg inst1 .rd = reg

speculative(inst) Instruction inst initiates speculation inst sets the spec variable
lowoperands(inst1) Operands of inst1 is independent of Vsec (= V \ Vpub) e.g., 𝜎1 (regfile[rs1]) = 𝜎2 (regfile[rs1]) (depends on opcode)

lowresult(inst1) Result of inst1 is independent of Vsec (= V \ Vpub) 𝜎1 (regfile[rd]) = 𝜎2 (regfile[rd])
Table 4: Pattern predicate grammar: we generate patterns with constraints as conjunctions of these predicate atoms.

Considering multiple counterfactuals {𝑓𝑖 } results in a disjunctive
branching (bolded

∨
𝑖) over atoms. ConstraintSpecialize recur-

sively invokes ConsHelper on (𝑤,𝜙 ∧ 𝑓𝑖) for each 𝑖 . This is sound
as the collection of patterns together continue to cover all violat-

ing executions. We do not include multi-counterfactuals in Alg. 2

pseudocode for brevity; please refer to [26] for more details.

Example 6 (Multiple counterfactuals for PlatSynth). Con-

sider the platform PlatSynth(𝑘) from Ex. 3, with parameter 𝑘 = 2

and grammar depth 𝑑 = 3. GenerateTemplates returns the tem-

plate (0 : op
0
) − (1 : op

0
) − (2 : op

1
) for which neither atom

datadep(0 : op
0
, 2 : op

1
) nor datadep(1 : op

0
, 2 : op

1
) can be added

alone. This is because, even if one is negated, the other might be true,

leading to a non-interference violation. However, on adding both nega-

tions, the violation is blocked. Our approach then will branch and

specialize each case further.

By Lem. 1 and Obs. 1,2, we have 𝑘-completeness of our approach

up to skeleton size 𝑘 = 𝑑 . This is formalized in Theorem 1.

Theorem 1. Let𝑊 = GenerateTemplates(𝑀,NI, 𝑑) be the tem-

plates for depth 𝑑 , and let P𝑖 = ConstraintSpecialize(𝑀,NI,𝑤𝑖 ,𝐺)
be the specialized patterns for each𝑤𝑖 ∈𝑊 . Then, for all instruction

sequences 𝐶 = inst1 · · · inst𝑘 , with 𝑘 ≤ 𝑑 , we have:

𝐶 ̸ |= NI =⇒ ∃p ∈
⋃
𝑖

P𝑖 . 𝐶 |= p

Proof of Theorem 1. Theorem 1 is proven by induction on

the number of specialization iterations. Suppose ConstraintSpe-

cialize is invoked with arguments (𝑤,NI, 𝑀,𝐺). We claim that in

Algorithm 2, at each recursive call of ConsHelper with arguments

(𝜙, 𝑖, 𝐿), the following property holds:

∀𝐶. (𝐶 |= (𝑤, true) ∧𝐶 ̸ |= NI)
=⇒ ∃(𝑤,𝜙 ′) ∈ acc ∪ {(𝑤,𝜙)}. 𝐶 |= (𝑤,𝜙 ′)

I.e., the partially specialized patterns maintained in the acc queue

form an overapproxiation of the violating programs for skeleton𝑤 .

Base case: ConsHelper(true, 0, 𝐿) trivially implies the property.

Inductive step: Let the property hold for ConsHelper(𝜙, 𝑖, 𝐿).
Then, either we (a) add (𝑤,𝜙) to acc, (b) we skip over 𝐿[𝑖] or (c)
reinvoke ConsHelper with an incremented 𝑖 . The property holds

immediately in cases (a) and (c). In case (b), we note that the set

of programs 𝐶 that satisfying (𝑤,𝜙) and violating NI is identical
to those that violate (𝑤,𝜙 ∧ 𝐿[𝑖]) due to Observation 1. A similar

argument holds for the multi-counterfactual case (using Obs. 2).

Therefore, by induction, the property holds for all recursive

calls of ConsHelper, and hence, the final set of patterns in acc
(when there are no more calls to ConsHelper) is a 𝑘-complete set

of patterns for𝑤 . □

5.4.4 Atom addition order.

6 EVALUATION METHODOLOGY

6.1 Tool Prototype

We implement our approach in a prototype tool SECANT. SECANT

allows us to generate patterns, and analyze program binaries using

these patterns. For pattern generation, SECANT allows the user

to specify the platform description (§3), and the non-interference

specification (§4.1). By default pattern generation uses the predicate

grammar from Tab. 4. However, we also allow the user specify

custom predicates. Based on these inputs the tool generates a set of

patterns as described in §5. The resulting patterns can be inspected

by the user, and used for binary analysis. Analysis can either be

performed using patterns or the hyperproperty specification. We

discuss the details of this analysis in §6.3.

SECANT uses the UCLID5 [58] verification engine as the back-

end model checker for both, the non-interference checks involved

in pattern generation as well as binary analysis. UCLID5 inter-

nally compiles model checking queries into SMT [5, 6] queries, and

invokes an SMT solver (e.g. Z3 [20], CVC5 [4]) on them.

6.2 Platform Designs

While users can specify their own platform models, we describe

the models considered in our experimentation.

6.2.1 PlatCR: Computation Reuse. The computation reuse plat-

form (PlatCR, Fig. 7) was introduced in §5.1. It is based on microar-

chitectural optimizations that enable dynamic reuse of results of

previous high-latency computations. Our model includes a reuse

buffer (reuse_buf), which records operands and results of multi-

ply operations, which are then reused by future operations with

matching operands. Dynamic (in-hardware) optimization schemes

have been proposed in the literature (e.g., [11, 52, 66]) and also have

been hypothesized to be vulnerable to computational side-channel

attacks [61]. Our model is based on the scheme proposed in [66].

6.2.2 PlatSS: Store Optimization. The store optimization platform

(PlatSS) models microarchitectural optimizations related to the

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1 type lsqc_entry_t = record { valid: boolean ,
2 is_load: boolean , addr: word_t , data: word_t }
3 var lsqc : [lsqc_index_t]lsqc_entry_t;
4 var lptr : lsqc_index_t; // Pointer into LSQC
5 var lscount : int; // Number of memory accesses
6

7 operation store (rs2 , rs1 , imm) {
8 addr = addrgen(regfile[rs1], imm);
9 data = regfile[rs2];
10 if (lsqc[lptr].valid && lsqc[lptr].addr == addr
11 && lsqc[lptr].data == data) {
12 // Store squashing (silent store)
13 } else { // Perform memory access
14 mem[addr] = data; lscount += 1;
15 lsqc = ... // Update the lsqc
16 }
17 }
18 operation load (rd, rs1 , imm) {
19 addr = addrgen(regfile[rs1], imm)
20 if (lsqc[lptr].addr == addr && lsqc[lptr].valid){
21 data = lsqc[lptr].data; // Data forwarding
22 } else { // Perform memory access
23 data = mem[data]; lscount += 1;
24 lsqc = ... // Update the LSQC
25 }
26 regfile[rd] = data;
27 }

Figure 8: PlatSS: Excerpt of the abstract platform modelling

load-store optimizations in the microarchitecture.

store unit in the memory hierarchy. PlatSS models the silent stores

[42, 43] and store-to-load forwarding optimizations. The former

squashes (makes silent) stores that would rewrite the same value

to the memory. Store-to-load forwarding serves store values to

subsequent loads on the same address. While these optimizations

have several implementation variants (e.g. [64, 65, 67]), we base our

model on the relatively simple LSQ cache (load-store queue cache)

[44] which allows combining these optimizations.

We illustrate the LSQ cache through an excerpt of our model in

Fig. 8. The LSQ cache is a FIFO buffer that records load and store

requests. On a load, the buffer is checked for store requests to the

same address. If there exists such a request (with no subsequent

stores to the same address), then the load can be sourced with

this store. On a store too, the buffer is checked for a request, and

the store is squashed (silenced) if the request payload matches the

value written by the store. If a valid entry is not found, the new

load/store performs a full memory request as usual and the LSQ

cache is updated.

6.2.3 Speculation primitives. In addition to the above optimiza-

tions, our consider platform models have branch and store-to-

load forwarding speculative features. We model speculation non-

deterministically, abstracting away from the speculative choice

mechanism (e.g. branch predictor). An instruction that speculates

moves the platform into speculative mode by setting the spec vari-

able (described in §3). Our current implementation only supports a

single speculative frame. For example, we do not allow speculating

on loads within a branch speculation context. However, this is not

a fundamental limitation of our approach.

data
dependency

same
address

1:Load0:Store 2:Mul
high result

Pattern E

Figure 9: Pattern generated for the STL platform (§7.1).

void test1 (uint32_t idx) { // INSECURE
 // Bounds-check-bypass
 if (idx < arr_size)
- temp &= arr2[arr [idx] << CL_WIDTH];
+ temp &= arr[idx] * SCALAR;
 }

void test2 (uint32_t idx) { // INSECURE
 idx = idx & (arr_size - 1);
 /* Access overwritten secret */
- temp &= arr2[arr[idx] << CL_WIDTH];
+ temp &= arr[idx] * SCALAR;
 }

Figure 10: Modification of SpectreV1 (left) and SpectreV4

(right) litmus tests from [16] to target a computation-unit

side channel (instead of cache-based side channel).

6.3 Binary Analysis

We disassemble the binary using riscv64-unknown-elf-objdump
and obtain the control flow graph (CFG). We unroll the CFG up to a

fixed depth, starting from the function entry point. We instrument

the unrolling at the branch instructions with assumptions corre-

sponding to the branch condition, allowing bypassing the condition

when speculating (i.e., if spec is set). For example “if (x == 0)
stmt” is instrumented as “assume(x == 0 || spec); stmt”. Each
unrolling is analyzed independently w.r.t. a pattern/hyperproperty.

Pattern-based analysis. Given an unrolling, the pattern-based

analysis implements the pattern check described in §2.2.1. That is,

we first identify all subsequences in that unrolling that match the

pattern template. For each such subsequence, we formulate an SMT

query that checks whether the subsequence satisfies the pattern

constraint, and solve it using the UCLID5 model checker [58].

Hyperproperty-based analysis.The hyperproperty-based anal-

ysis follows existing approaches (e.g., [12, 31]). We encode the hy-

perproperty as a safety property over a self-composition ([15, 68])

of the platform model executing the (identical) unrolled programs.

We then use UCLID5 to formulate and solve the resulting query.

7 EXPERIMENTAL RESULTS

Experimental Setup. We perform experiments on a machine with

an Intel i9-10900X CPU with 64GB RAM running Ubuntu 20.04.

As discussed in §6, we use the UCLID5 model checker [58] and Z3

(version 4.8.7) [20] as the back-end SMT solver for the queries that

UCLID5 generates. We mention timeouts for each experiment in

its respective section.

Research Questions. We aim to answer the following questions

through the evaluation: (a) Can our approach generate new pat-

terns, can these patterns be used to detect attacks, do they provide

performance advantages? (b) How well does our approach scale

with platform complexity, and the pattern generation search depth?

(c) How does the choice of grammar affect false positives?

7.1 RQ1: Can we generate patterns for new

vulnerability variants?

To answer RQ1, we considered two extensions to the computa-

tion reuse platform (PlatCR) introduced in §6. In these extensions

we modeled branch speculation and store-to-load forwarding re-

spectively (as discussed in §6.2.3). We then generated patterns for

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

br:
1 a

0
br:

1 a
1

br:
2 a

0
br:

2 a
1

br:
3 a

0
br:

3 a
1

br:
4 a

0
br:

4 a
1

br:
5 a

0
br:

5 a
1

br:
5b

 a0

br:
5b

 a1
br:

6 a
0

br:
6 a

1
br:

7 a
0

br:
7 a

1
br:

8 a
0

br:
8 a

1
stl:

1
stl:

2
stl:

3
stl:

4

Test case (and platform configuration used)

101

102

103

Ru
nt

im
e

(s
) l

og
 sc

al
e

Approach used
Pattern
Hyperproperty

Figure 11: Verification of Branch and STL speculation litmus tests (see Fig. 10) with hyperproperties and generated patterns.

these platforms based on the speculative non-interference property

HCD (§2). We used a reuse_buf of size 4 (i.e., 4 buffer entries), and

grammar search depth 𝑑 = 3.

Platform

Gen. time

(ww=16)

Gen. time

(ww=20)

Gen. time

(ww=24)

Gen. time

(ww=32)

Branch + CR – 69s

STL + CR 92s 334s TO (1 hour)

Table 5: Generation times for branch speculation and store-

to-load forwarding patterns.

Our approach was able to generate patterns C and D (Fig. 1) for

branch speculation with the computation-unit side channel. For

store-to-load forwarding, we obtain pattern E (Fig. 9). This pattern

corresponds to the situation where the load address matches the

store. However, it is served from memory instead, while the store

is in the store buffer and has not propagated to memory.

We provide generation run times in Table 5. The STL+CR gen-

eration times out on one non-interference query with a platform

word width of 32 bits, hence, we use lower word widths. We believe

that this is an underlying issue with the back-end Z3 solver. The

same hyperproperty (HCD) was used for both (Branch and STL)

cases, demonstrating that hyperproperties allow uniform vulnera-

bility specification. This demonstrates the ability of our approach to

generate new patterns.

7.2 RQ2: Can the generated patterns efficiently

find exploits or prove their absence?

To answer RQ2, we evaluate whether the generated patterns pro-

vide advantages over hyperproperty-based detection. For this, we

considered modified versions of Spectre V1 and V4 litmus tests

from [16, 38]. For each test, we replaced the secret-dependent load

instruction with a multiply instruction that targets the computation-

unit side channel.We call these examples SpectreV1-CR and SpectreV4-

CR respectively, and illustrate two examples (one for V1 and one

for V4) in Fig. 10. We consider 9 such tests (8 unsafe, 1 safe) for

SpectreV1-CR and 4 tests (all unsafe) for SpectreV4-CR.

We then evaluated both hyperproperty-based and pattern-based

detection approaches on these tests with a timeout of 15 minutes

per test. We provide the results in Fig. 11. For each SpectreV1-CR

variant test, we considered two platform configurations: one with

a non-associative cache, (denoted as br:<n> a0) and one with an

associative cache (these are marked as br:<n> a1). The pattern-
based approach verifies all test cases correctly within (∼5 seconds).

1 2 3 4 5 6
Set index width

101

102

103

Ge
ne

ra
tio

n
tim

e
(s

) l
og

 sc
al

e

(a) Gen. time vs. set index width
Pattern depth

depth 3
depth 4

1 2 3 4 5 6
Way index width

101

102

103

Ge
ne

ra
tio

n
tim

e
(s

) l
og

 sc
al

e

(b) Gen. time vs. way index width
Pattern depth

depth 3
depth 4

2 4 8 16 32 64
reuse_buf size

101

102

103
Ge

ne
ra

tio
n

tim
e

(s
) l

og
 sc

al
e

(c) Gen. time vs. reuse_buf size

Pattern depth
depth 3
depth 4

2 3 4 5 6 7 8
Microarchitectural depth

101

102

Ge
ne

ra
tio

n
tim

e
(s

) l
og

 sc
al

e

1 1 1 1 1 1 1
4

5
6

7
8

9
10

11

20

30

42

56
72

90

(d) Gen. time vs. grammar depth
Grammar depth

pdepth+0
pdepth+1
pdepth+2

Figure 12: Scalability of pattern generation vs. platform com-

plexity and grammar depth: (a, b) varying set and way in-

dex width of the LSQ Cache (Fig. 8), (c) varying size of the

reuse buffer (reuse_buf in Fig. 7), and (d) generation time and

number of generated patterns for PlatSynth with varying

microarchitectural (pdep) and grammar (gdep) depths (Ex. 3).

In contrast, the hyperproperty-based approach often takes upwards

of 2 minutes, with some timeouts (e.g., br:2, br:3).
In certain cases (e.g., br:1, br:4) the hyperproperty-based check

run time differs between the two cache configurations. We observe

convergence with the non-associative cache (a0), while timing out

with the associative cache (a1). Since the pattern-based approach

operates over architectural state, it is resilient to these (microar-

chitectural) differences. This experiment demonstrates how, by ab-

stracting away complex platform microarchitecture, patterns enable

security verification that scales much better that hyperproperties.

7.3 RQ3: How well does pattern generation

scale?

We now explore the scalability of our approach with the complexity

of the platform and the depth of the pattern grammar.

7.3.1 Scalability with model parameters. To evaluate this, we ex-

periment on the PlatSS (§6.2.2) and PlatCR (§6.2.1) platforms.

For PlatSS, we specify a non-interference hyperproperty with

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0:Ld 1:St 2:Ld
diff address

addr dependency (secret dep. load)

Pattern F

0:Ld 1:St 2:Ld
diff set index

addr dependency (secret dep. load)

Pattern G

Figure 13: (F) Pattern using default grammar (Tab. 4). (G)

More precise pattern after adding the diffindex predicate.

void test_K (uint32_t idx) {
 // Address (A) = (arr1+idx)
 _temp = arr1[idx]; // Ld0: LSQC Index = A[SET_W+1:2]
 arr1[idx+(1<<K)] = 0; // St0: LSQC Index = (A+(1<<K))[SET_W+1:2]
 _temp1 = arr2[_temp]; // Ld1

}

Figure 14: Example illustrating false positives with patterns.

Vsec = {mem}, as the secret input, and Vobs = {lscount} (num-

ber of memory operations propagating to memory) as the public

output. For PlatCR, we specify a non-interference property with

Vsec = {mem}, and Vobs = {mulcount}, i.e., number of multiplier in-

vocations as the public output. We vary size parameters of the LSQ

cache (§6.2.2) and reuse buffer (§6.2.1) components respectively.

For the LSQ cache we sweep through the set index width (same

associativity, larger number of sets), and the way index width (same

sets, larger associativity) and present results in Fig. 12 (a, b). For the

reuse buffer, we sweep through different buffer sizes and present

the results in Fig. 12 (c). We perform generation with depths 3 and

4, and a timeout of 30 minutes.

Observations: In Fig. 12(a, b), we observe a more rapid increase

in generation time with way index width as compared to the set

indexwidth. Our hypothesis is that a larger number of sets increases

the width of indexing bitvectors, while larger associativity increases

the number case-splits (conditionals) since ways are iterated over.

The former increase is slower due to the use of word-level reasoning

in SMT solvers, while the latter has an explicit if-then-else encoding,

and hence a larger formula. We observe a similar increase for the

reuse buffer. In general, the run time depends on how efficiently the

back-end SMT solver reasons about themicroarchitectural structure.

While the run time increases exponentially, our approach generates

patterns on the order of minutes for realistic sizes.

7.3.2 Scalability with search depth. In order to investigate the scal-

ability of our approach with the depth of the grammar, we perform

experimentation with the PlatSynth(𝑘) platform (Ex. 3). This

platform is parameterized by a platform depth pdep(= 𝑘), which
is the number of microarchitectural buffers. The non-interference

property specifies buf0 as the secret input, and bufpdep−1 as public
output. We apply our approach to this platform for grammar depths

gdep ∈ {pdep, pdep + 1, pdep + 2} for varying values of pdep.
Fig. 12(d) presents the run times as well as the number of patterns

generated. For the gdep = pdep case, we generate only one pattern

with skeleton op
1
· · · oppdep and constraint ∧𝑖datadep(op𝑖 , op𝑖+1)

signifying data propagation through these operations.With a higher

gdep, multiple instruction sequences can lead to a violation due

to redundancy. Capturing all violations requires branching with

multiple counterfactuals (Ex. 6). We need 2-counterfactuals for

gdep = pdep+1 and 3-counterfactuals for gdep = pdep+2. Branch-
ing leads to a run time blowup as evidenced in Fig. 12(d).

Check

Result with test_K (Fig. 14) and SET_W set index
K > SET_W + 2 K ≤ SET_W + 2

Hyperproperty SAFE UNSAFE

Pat. F (Fig. 13) UNSAFE UNSAFE

Pat. G (Fig. 13) SAFE UNSAFE

Table 6: Precision of patterns on test_K (Fig. 14).

7.4 RQ4: How does the choice of grammar affect

false positives?

To explore this, we consider a variant of the PlatSS platform. As

in the original model (Fig. 8), a load is sourced from the LSQ cache

if there exists a valid entry with the same address. Otherwise, it is

sourced from memory and updates the LSQ cache. However, in this

variant, a store invalidates all LSQ entries with the same set index

(to avoid loading stale values). We perform pattern generation with

the memory access count (lscount) as public output, with gram-

mar depth 3. We get pattern F (Fig. 13) with an address dependency

between (0:Ld) and (2:Ld), (as in SpectreV1), and where the inter-

vening store (1:St) does not invalidate the LSQ entry (captured by

diffaddr). If 1:St invalidated the LSQ entry, 2:Ld would access the
memory in all executions, leading to no violating behaviors.

This pattern flags the code in Fig. 14 due to a match on instruc-

tions Ld0, St0, Ld1. While the addresses of the store and the first

load (Fig. 14) are different, their set indices are a slice (sub-word) of

the address and hence can be identical. Thus, under the condition

that K > SET_W+ 2, the store will be in the same set as the first load,

and the LSQ entry will be invalidated. Hence, under this condition,

test_K is in fact safe, and pattern F produces a false positive.

To address this, we can add a new predicate diffindex to the

grammar. diffindex checks if the set indices (defined as an address

slice) of two memory instructions are different. Pattern generation

with this augmented grammar results in pattern G (Fig. 13). This

pattern only flags test_K if K ≤ SET_W+2, and is hencemore precise.

We summarize these observations in Tab. 6. Thus, grammars over

(high-level) architectural state result in patterns with more false

positives. The choice of grammar exposes a precision-complexity

tradeoff - more precise patterns can be generated at the cost of a

carefully tailored, microarchitecture-specific grammar.

8 DISCUSSION AND LIMITATIONS

Applicability and Scope. We have applied pattern generation to

speculative (e.g., §7.1, Fig. 9) and non-speculative (e.g., §7.3, Fig.

13) execution, and multiple side channels (§6.2.1, §6.2.2). Crucially,

this is possible due to the power of non-interference-based speci-

fications: they can express varied attacker scenarios (e.g., secure-

programming, constant-time [9, 32]) and platform semantics. While

our approach is general, it requires formulating non-interference

specifications that accurately capture the threat model. While this

requires much care and expertise, the effort in developing these

specifications can be amortized over patterns generated, and subse-

quently, programs verified/exploits found.

Platform complexity. Our evaluation (§7) considers abstract plat-

form models (ref. §6) that are similar to those adopted in previous

SH approaches (e.g., [12, 31, 78]). While these abstract models ex-

pose security relevant microarchitectural detail, they are much

simpler than full processor RTL. Larger designs will result in more

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

costly analysis (for both, taint analysis andmodel-checking required

in the non-interference checks).

In this paper our focus has been identifying core theory and

techniques for pattern generation. The main requirement of our

approach is a platform model that is amenable to static taint analy-

sis and symbolic model-checking. These can be performed on RTL

using off-the-shelf verification tools (e.g., JasperGold, Yosys/Sym-

biYosys [13, 77]). Applying our approach to RTL hardware is an

impactful direction for future work. Further, techniques extracting

abstract models from RTL (e.g., [26, 78]) could aid in this direction.

Pattern Grammar and False Positives. While patterns using architec-

ture level predicates aremore robust/microarchitecture-independent,

they lead to more false positives. As demonstrated in §7.4, using

specialized grammars that expose microarchitectural execution de-

tails (e.g., cache-indexing, replacement/prediction policies) helps

reduce false positives. However, this is at the cost of (a) less per-

formant analysis (it is abstraction that makes pattern-based ap-

proaches scale) and (b) more microarchitecture-dependent patterns.

Opinion in literature is divided on whether or not to expose mi-

croarchitectural detail to software analyses (e.g., [10]). We view

the grammar as a tradeoff: a generic grammar leads to abstract

and thus efficient analysis at the cost of more false positives, while

a specialized grammar is more precise at the cost of being more

microarchitecture-specific. While our current approach requires a

user-specified grammar (Fig. 6), future work could automate this,

e.g., by using counter-example guided predicate discovery [3, 18].

9 RELATEDWORK

Microarchitectural optimizations and vulnerabilities. Our work tar-

gets hardware execution vulnerabilities, from Spectre and Melt-

down and their variants [39, 40, 45, 63] to more recent attacks (e.g.,

targeting store/line-fill buffers [8, 48, 62, 72]). Good overviews of

these vulnerabilities may be found in [7, 24, 34]. These vulnera-

bilities are possible because of microarchitectural optimizations

such as instruction reuse [66] and silent stores [42, 44] which we

have used in our experiments. Attacks exploiting these mechanisms

were hypothesized in [61] among which some have recently been

demonstrated on actual hardware (e.g., [50]).

Software Analysis. Several approaches perform software analysis,

adopting different specifications, models, and techniques.

Semantic hyperproperty-based verification. Semantic hyperproperty-

based approaches (e.g., [12, 21, 30, 31]) formulate security as a hy-

perproperty [15, 41, 60, 68] over executions of the program on an

abstract platform model. These serve as inputs to our approach.

Symbolic software analysis. While the earlier works develop

high-level hyperproperties that capture varied microarchitectural

mechanisms, other approaches adopt more specific security mod-

els (e.g., constant-time execution). This allows them to develop

specialized and more efficient analysis techniques (see [25] for a

systematic evaluation and comparison), based on symbolic execu-

tion (SE) [19, 33, 37, 74] or relational symbolic execution (RelSE)

[16, 17, 23]. Our work is orthogonal to these; our main goal is

pattern generation, not binary analysis. Our approach is also not

limited to a specific (e.g., constant-time) leakage model. We can

perform generation for new vulnerabilities/leakage models as long

as they are representable using a non-interference property.

Pattern-based detection. Previous work performing pattern-based

detection (e.g., [51, 59, 69]) manually defines patterns. We develop

an approach to systematically generate patterns that are complete

(up to a skeleton size), thus complementing these approaches.

Microarchitectural verification/abstraction. The patterns that we

generate can be thought of as software-side abstractions extracted

based on our semantic platform analysis.

Contract-based abstractions. Approaches (e.g., [32, 75]) develop

security contracts at the hardware/software interface. By proving

that (a) the hardware refines the contract and (b) software satisfies

the contract, these approaches guarantee software security. While

the contract can also be viewed as a hardware/software abstraction,

it is of a different nature than the patterns we generate.

Security verification/side-channel analysis. Several approaches

directly verify hardware RTL w.r.t. security properties either for-

mally (using symbolic techniques) [22, 71, 73] or using faster but

incomplete techniques (e.g., fuzzing) [54–56, 70]. Finally, there are

approaches that perform automated extraction/validation of side-

channels with white/black box designs [29, 53, 57, 76]. While this

too can be seen as extracting security relevant hardware abstrac-

tions, it needs to be paired with software analysis techniques to be

useful for software security verification.

10 CONCLUSION

In this work, we presented an approach to convert a given plat-

form model and non-interference-based security hyperproperty

into a set of attack patterns. Our automatic generation approach

improves on manual pattern creation (which can result in missed

patterns) by guaranteeing that the generated patterns capture all

non-interference violations up to a certain size. We implemented

our approach in a prototype tool. Our evaluation resulted in the

identification of, to our knowledge, previously unknown patterns

for Spectre BCB and Spectre STL, and other vulnerability variants.

We also demonstrated improved verification performance using

generated patterns as compared to the original hyperproperty. By

providing a systematic way to generate patterns, ourwork combines

the best of both worlds: formal guarantees of hyperproperty-based

specification and scalability of pattern-based verification.

REFERENCES

[1] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.

Program. Lang. Syst. 36, 2, Article 7 (Jul 2014), 74 pages. https://doi.org/10.1145/

2627752

[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-

ina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal

Methods in Computer-Aided Design. IEEE, 1–8. https://doi.org/10.1109/fmcad.

2013.6679385

[3] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. 2001.

Automatic predicate abstraction of C programs. In Proceedings of the ACM SIG-

PLAN 2001 Conference on Programming Language Design and Implementation

(Snowbird, Utah, USA) (PLDI ’01). Association for Computing Machinery, New

York, NY, USA, 203–213. https://doi.org/10.1145/378795.378846

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, AbdalrhmanMohamed, Mudathir Mohamed, Aina Niemetz, Andres

Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare

Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems.

13

https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1109/fmcad.2013.6679385
https://doi.org/10.1109/fmcad.2013.6679385
https://doi.org/10.1145/378795.378846

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Springer International Publishing, 415–442. https://doi.org/10.1007/978-3-030-

99524-9_24

[5] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo

Theories Library (SMT-LIB). www.SMT-LIB.org.
[6] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009.

Satisfiability Modulo Theories. In Handbook of Satisfiability.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A

Systematic Evaluation of Transient Execution Attacks and Defenses. (Aug. 2019),

249–266. https://www.usenix.org/conference/usenixsecurity19/presentation/

canella

[8] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina

Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van

Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data onMeltdown-resistant CPUs.

Proceedings of the 2019 ACM SIGSACConference on Computer and Communications

Security (2019).

[9] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time foundations for

the new spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’20). ACM. https:

//doi.org/10.1145/3385412.3385970

[10] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian

Stefan. 2022. SoK: Practical Foundations for Software Spectre Defenses. In 2022

IEEE Symposium on Security and Privacy (SP). IEEE, 666–680. https://doi.org/10.

1109/sp46214.2022.9833707

[11] Desiree Charles, Ali R. Hurson, and Narayanan Vijaykrishnan. 2002. Improving

ILP with instruction-reuse cache hierarchy. Fifth International Conference on

Algorithms and Architectures for Parallel Processing, 2002. Proceedings. (2002),

206–213.

[12] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.

2019. A Formal Approach to Secure Speculation. In 2019 IEEE 32nd Computer

Security Foundations Symposium (CSF). IEEE, 288–28815. https://doi.org/10.1109/

csf.2019.00027

[13] Claire Wolf, et. al. 2022. SymbiYosys. https://github.com/YosysHQ/sby.

[14] Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model checking

and abstraction. ACM Trans. Program. Lang. Syst. 16, 5 (Sep. 1994), 1512–1542.

https://doi.org/10.1145/186025.186051

[15] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. 2008 21st

IEEE Computer Security Foundations Symposium (2008), 51–65.

[16] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the

Haunter - Efficient Relational Symbolic Execution for Spectre with Haunted

RelSE. Proceedings 2021 Network and Distributed System Security Symposium

(2021). https://api.semanticscholar.org/CorpusID:231878700

[17] Lesly-AnnDaniel, Sébastien Bardin, and Tamara Rezk. 2023. Binsec/Rel: Symbolic

Binary Analyzer for Security with Applications to Constant-Time and Secret-

Erasure. ACM Trans. Priv. Secur. 26, 2, Article 11 (Apr 2023), 42 pages. https:

//doi.org/10.1145/3563037

[18] Satyaki Das and David L. Dill. 2002. Counter-Example Based Predicate Dis-

covery in Predicate Abstraction. In Formal Methods in Computer-Aided Design,

Mark D. Aagaard and John W. O’Leary (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 19–32. https://doi.org/10.1145/378795.378846

[19] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,

Marie-Laure Potet, and Jean-Yves Marion. 2016. BINSEC/SE: A Dynamic Sym-

bolic Execution Toolkit for Binary-Level Analysis. 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering (SANER) 1 (2016),

653–656. https://api.semanticscholar.org/CorpusID:7488274

[20] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient

SMT Solver. In International Conference on Tools and Algorithms for Construction

and Analysis of Systems.

[21] Xaver Fabian, Marco Guarnieri, andMarco Patrignani. 2022. Automatic Detection

of Speculative Execution Combinations. Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security (2022).

[22] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark W. Barrett, Subhasish

Mitra, and Wolfgang Kunz. 2018. Processor Hardware Security Vulnerabili-

ties and their Detection by Unique Program Execution Checking. 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE) (2018), 994–999.

[23] Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. 2019. Relational

Symbolic Execution. In Proceedings of the 21st International Symposium on

Principles and Practice of Declarative Programming (PPDP ’19). ACM. https:

//doi.org/10.1145/3354166.3354175

[24] Qian Ge, Yuval Yarom, David A. Cock, and Gernot Heiser. 2018. A survey

of microarchitectural timing attacks and countermeasures on contemporary

hardware. J. Cryptogr. Eng. 8, 1 (2018), 1–27. https://doi.org/10.1007/S13389-

016-0141-6

[25] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel,

Sébastien Bardin, and Clémentine Maurice. 2023. A Systematic Evaluation

of Automated Tools for Side-Channel Vulnerabilities Detection in Crypto-

graphic Libraries. In Proceedings of the 2023 ACM SIGSAC Conference on Com-

puter and Communications Security (Copenhagen, Denmark) (CCS ’23). Asso-

ciation for Computing Machinery, New York, NY, USA, 1690–1704. https:

//doi.org/10.1145/3576915.3623112

[26] Adwait Godbole, Kevin Cheang, Yatin A. Manerkar, and Sanjit A. Seshia. 2024.

Lifting Micro-Update Models from RTL for Formal Security Analysis. In Pro-

ceedings of the 29th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (AS-

PLOS ’24). Association for Computing Machinery, New York, NY, USA, 631–648.

https://doi.org/10.1145/3620665.3640418

[27] Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia. 2024. SemPat: Using

Hyperproperty-based Semantic Analysis to Generate Microarchitectural Attack

Patterns. arXiv preprint arXiv: 2406.05403 (2024).

[28] Joseph A. Goguen and José Meseguer. 1984. Unwinding and Inference Control.

1984 IEEE Symposium on Security and Privacy (1984), 75–75.

[29] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.

2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity

Microarchitectures. In 27th Annual Network and Distributed System Security Sym-

posium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet

Society. https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-

blackbox-side-channel-synthesis-on-commodity-microarchitectures/

[30] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking

and Fixing Microarchitectural Vulnerabilities by Formal Analysis. In Proceedings

of the 2020 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’20). ACM. https://doi.org/10.1145/3372297.3417246

[31] Marco Guarnieri, Boris Köpf, José Francisco Morales, Jan Reineke, and Andrés

Sánchez. 2020. Spectector: Principled Detection of Speculative Information

Flows. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19. https:

//doi.org/10.1109/sp40000.2020.00011

[32] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

Software Contracts for Secure Speculation. 2021 IEEE Symposium on Security

and Privacy (SP) (2021), 1868–1883.

[33] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,

and Zhiqiang Zuo. 2019. SPECUSYM: Speculative Symbolic Execution for Cache

Timing Leak Detection. 2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE) (2019), 1235–1247. https://api.semanticscholar.org/CorpusID:

207869919

[34] Guangyuan Hu, Zecheng He, and Ruby B. Lee. 2021. SoK: Hardware Defenses

Against Speculative Execution Attacks. In 2021 International Symposium on

Secure and Private Execution Environment Design (SEED). IEEE, 108–120. https:

//doi.org/10.1109/seed51797.2021.00023

[35] Intel. 2023. Data Operand Independent Timing Instruction Set Architecture

(ISA) Guidance. https://www.intel.com/content/www/us/en/developer/

articles/technical/software-security-guidance/best-practices/data-operand-

independent-timing-isa-guidance.html Accessed: 2023-11-23.

[36] Susmit Jha and Sanjit A. Seshia. 2015. A theory of formal synthesis via inductive

learning. Acta Informatica 54 (2015), 693–726.

[37] James C. King. 1976. Symbolic execution and program testing. Commun. ACM

19, 7 (Jul 1976), 385–394. https://doi.org/10.1145/360248.360252

[38] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s C/C++ Compiler. https:

//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

[39] Paul C. Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Michael Hamburg,

Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval

Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. 2019 IEEE

Symposium on Security and Privacy (SP) (2019), 1–19.

[40] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. 2024. Spectre Returns! Speculation Attacks Using the Return

Stack Buffer. IEEE Design & Test 41, 2, 47–55. https://doi.org/10.1109/mdat.2024.

3352537

[41] Elisavet Kozyri, Stephen Chong, and Andrew C. Myers. 2022. Expressing Infor-

mation Flow Properties. Found. Trends Priv. Secur. 3 (2022), 1–102.

[42] Kevin M. Lepak, Gordon B. Bell, and Mikko H. Lipasti. 2001. Silent Stores and

Store Value Locality. IEEE Trans. Computers 50 (2001), 1174–1190.

[43] Kevin M. Lepak and Mikko H. Lipasti. 2000. On the value locality of store in-

structions. Proceedings of 27th International Symposium on Computer Architecture

(IEEE Cat. No.RS00201) (2000), 182–191.

[44] Kevin M. Lepak and Mikko H. Lipasti. 2000. Silent stores for free. Proceedings

33rd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33

2000 (2000), 22–31.

[45] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul C. Kocher, Daniel Genkin, Yuval

Yarom, and Michael Hamburg. 2018. Meltdown: Reading Kernel Memory from

User Space. In USENIX Security Symposium.

[46] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on

Security and Privacy. IEEE, 605–622. https://doi.org/10.1109/sp.2015.43

14

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/sp46214.2022.9833707
https://doi.org/10.1109/sp46214.2022.9833707
https://doi.org/10.1109/csf.2019.00027
https://doi.org/10.1109/csf.2019.00027
https://github.com/YosysHQ/sby
https://doi.org/10.1145/186025.186051
https://api.semanticscholar.org/CorpusID:231878700
https://doi.org/10.1145/3563037
https://doi.org/10.1145/3563037
https://doi.org/10.1145/378795.378846
https://api.semanticscholar.org/CorpusID:7488274
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1007/S13389-016-0141-6
https://doi.org/10.1007/S13389-016-0141-6
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1145/3620665.3640418
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/sp40000.2020.00011
https://doi.org/10.1109/sp40000.2020.00011
https://api.semanticscholar.org/CorpusID:207869919
https://api.semanticscholar.org/CorpusID:207869919
https://doi.org/10.1109/seed51797.2021.00023
https://doi.org/10.1109/seed51797.2021.00023
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://doi.org/10.1145/360248.360252
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://doi.org/10.1109/mdat.2024.3352537
https://doi.org/10.1109/mdat.2024.3352537
https://doi.org/10.1109/sp.2015.43

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

[47] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee.

2016. COATCheck: Verifying Memory Ordering at the Hardware-OS Interface. In

Proceedings of the Twenty-First International Conference on Architectural Support

for Programming Languages and Operating Systems (Atlanta, Georgia, USA)

(ASPLOS ’16). Association for Computing Machinery, New York, NY, USA, 233–

247. https://doi.org/10.1145/2872362.2872399

[48] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution

Using Return Stack Buffers. Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (2018). https://api.semanticscholar.org/

CorpusID:51804116

[49] Kenneth L. McMillan. 1993. Symbolic model checking. Kluwer. https://doi.org/

10.1007/978-1-4615-3190-6_3

[50] Daniel Moghimi. 2023. Downfall: Exploiting Speculative Data Gathering. In

32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,

Anaheim, CA, 7179–7193. https://www.usenix.org/conference/usenixsecurity23/

presentation/moghimi

[51] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. 2022.

Axiomatic hardware-software contracts for security. In Proceedings of the 49th

Annual International Symposium on Computer Architecture (ISCA ’22). ACM.

https://doi.org/10.1145/3470496.3527412

[52] Onur Mutlu, Hyesoon Kim, Jared Stark, and Yale N. Patt. 2005. On Reusing the

Results of Pre-Executed Instructions in a Runahead Execution Processor. IEEE

Computer Architecture Letters 4 (2005), 2–2.

[53] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and Swen

Jacobs. 2020. Validation of Abstract Side-Channel Models for Computer Ar-

chitectures. Computer Aided Verification 12224 (2020), 225 – 248. https:

//api.semanticscholar.org/CorpusID:211567271

[54] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2018. DifFuzz: Dif-

ferential Fuzzing for Side-Channel Analysis. 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE) (2018), 176–187.

[55] Yannic Noller and Saeid Tizpaz-Niari. 2021. QFuzz: quantitative fuzzing for side

channels. Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis (2021).

[56] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. 2022.

Revizor: testing black-box CPUs against speculation contracts. (Feb. 2022).

https://doi.org/10.1145/3503222.3507729

[57] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein. 2023.

Hide and Seek with Spectres: Efficient discovery of speculative information leaks

with random testing. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE.

https://doi.org/10.1109/sp46215.2023.10179391

[58] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin

Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia.

2022. UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis. In

34th International Conference on Computer Aided Verification (CAV) (Lecture Notes

in Computer Science, Vol. 13371). Springer, 538–551.

[59] Hernán Ponce-de Leon and Johannes Kinder. 2022. Cats vs. Spectre: AnAxiomatic

Approach to Modeling Speculative Execution Attacks. (May 2022). https:

//doi.org/10.1109/sp46214.2022.9833774

[60] John Rushby. 1992. Noninterference, Transitivity, and Channel-Control Security

Policies. Technical Report. http://www.csl.sri.com/papers/csl-92-2/

[61] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline

Trippel, Adam Morrison, David Kohlbrenner, and Christopher W. Fletcher. 2021.

Opening Pandora’s Box: A Systematic Study of NewWays Microarchitecture Can

Leak Private Data. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 347–360. https://doi.org/10.1109/isca52012.

2021.00035

[62] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-

Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’19). ACM. https://doi.org/10.

1145/3319535.3354252

[63] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2019. Net-

Spectre: Read Arbitrary Memory over Network. ArXiv abs/1807.10535 (2019).

[64] Tingting Sha, Milo M.K. Martin, and Amir Roth. 2006. NoSQ: Store-Load

Communication without a Store Queue. 2006 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’06) 27, 1, 285–296. https:

//doi.org/10.1109/mm.2007.17

[65] Tingting Sha, Milo M. K. Martin, and Amir Roth. 2005. Scalable store-load

forwarding via store queue index prediction. 38th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’05) (2005), 12 pp.–170.

[66] Avinash Sodani and Gurindar S. Sohi. 1997. Dynamic Instruction Reuse. Confer-

ence Proceedings. The 24th Annual International Symposium on Computer Archi-

tecture (1997), 194–205.

[67] Samantika Subramaniam and Gabriel Loh. 2006. Fire-and-Forget: Load/Store

Scheduling with No Store Queue at All. In 2006 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’06). IEEE, 273–284. https:

//doi.org/10.1109/micro.2006.26

[68] Tachio Terauchi and Alex Aiken. 2005. Secure Information Flow as a Safety

Problem. In Proceedings of the 12th International Conference on Static Analysis

(London, UK) (SAS’05). Springer-Verlag, Berlin, Heidelberg, 352–367. https:

//doi.org/10.1007/11547662_24

[69] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Security Ver-

ification via Automatic Hardware-Aware Exploit Synthesis: The CheckMate

Approach. IEEE Micro 39 (2019), 84–93.

[70] Aakash Tyagi, Addison Crump, Ahmad-Reza Sadeghi, Garrett Persyn, Jeyavi-

jayan Rajendran, Patrick Jauernig, and Rahul Kande. 2022. TheHuzz: Instruction

Fuzzing of Processors Using Golden-Reference Models for Finding Software-

Exploitable Vulnerabilities. ArXiv abs/2201.09941 (2022).

[71] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. 2021.

Solver-Aided Constant-Time Hardware Verification. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security (Virtual

Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New

York, NY, USA, 429–444. https://doi.org/10.1145/3460120.3484810

[72] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:

Rogue In-Flight Data Load. In 2019 IEEE Symposium on Security and Privacy (SP).

IEEE, 88–105. https://doi.org/10.1109/sp.2019.00087

[73] Klaus von Gleissenthall, Rami Gökhan Kici, Deian Stefan, and Ranjit Jhala. 2019.

IODINE: Verifying Constant-Time Execution of Hardware. ArXiv abs/1910.03111

(2019). https://api.semanticscholar.org/CorpusID:197672843

[74] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,

and Abhik Roychoudhury. 2020. KLEESpectre: Detecting Information Leakage

through Speculative Cache Attacks via Symbolic Execution. ACM Transactions

on Software Engineering and Methodology 29, 3 (June 2020), 1–31. https://doi.

org/10.1145/3385897

[75] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke, and Marco

Guarnieri. 2023. Specification and Verification of Side-channel Security for Open-

source Processors via Leakage Contracts. In Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security (, Copenhagen, Denmark,)

(CCS ’23). Association for Computing Machinery, New York, NY, USA, 2128–2142.

https://doi.org/10.1145/3576915.3623192

[76] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian

Rossow. 2021. Osiris: Automated Discovery of Microarchitectural Side Channels.

In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,

1415–1432. https://www.usenix.org/conference/usenixsecurity21/presentation/

weber

[77] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-A Free Verilog

Synthesis Suite.

[78] Yu Zeng, Aarti Gupta, and Sharad Malik. 2022. Automatic generation of

architecture-level models from RTL designs for processors and accelerators.

In Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test

in Europe (Antwerp, Belgium) (DATE ’22). European Design and Automation

Association, Leuven, BEL, 460–465.

15

https://doi.org/10.1145/2872362.2872399
https://api.semanticscholar.org/CorpusID:51804116
https://api.semanticscholar.org/CorpusID:51804116
https://doi.org/10.1007/978-1-4615-3190-6_3
https://doi.org/10.1007/978-1-4615-3190-6_3
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://doi.org/10.1145/3470496.3527412
https://api.semanticscholar.org/CorpusID:211567271
https://api.semanticscholar.org/CorpusID:211567271
https://doi.org/10.1145/3503222.3507729
https://doi.org/10.1109/sp46215.2023.10179391
https://doi.org/10.1109/sp46214.2022.9833774
https://doi.org/10.1109/sp46214.2022.9833774
http://www.csl.sri.com/papers/csl-92-2/
https://doi.org/10.1109/isca52012.2021.00035
https://doi.org/10.1109/isca52012.2021.00035
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1109/mm.2007.17
https://doi.org/10.1109/mm.2007.17
https://doi.org/10.1109/micro.2006.26
https://doi.org/10.1109/micro.2006.26
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24
https://doi.org/10.1145/3460120.3484810
https://doi.org/10.1109/sp.2019.00087
https://api.semanticscholar.org/CorpusID:197672843
https://doi.org/10.1145/3385897
https://doi.org/10.1145/3385897
https://doi.org/10.1145/3576915.3623192
https://www.usenix.org/conference/usenixsecurity21/presentation/weber
https://www.usenix.org/conference/usenixsecurity21/presentation/weber

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Microarchitectural Execution Attacks
	2.2 Analyzing Software for Vulnerabilities
	2.3 Why convert from SH to AP?

	3 System Model
	4 Specifications and Problem Formulation
	4.1 Hyperproperty-based Security Specification
	4.2 Attack Pattern-based Security
	4.3 Non-interference Violation Skeleton
	4.4 Formal Problem Statement

	5 The SemPat Approach
	5.1 Pattern Generation Overview
	5.2 Template Generation
	5.3 Conjunction-based Pattern Grammar
	5.4 Template Specialization with Predicates

	6 Evaluation Methodology
	6.1 Tool Prototype
	6.2 Platform Designs
	6.3 Binary Analysis

	7 Experimental Results
	7.1 RQ1: Can we generate patterns for new vulnerability variants?
	7.2 RQ2: Can the generated patterns efficiently find exploits or prove their absence?
	7.3 RQ3: How well does pattern generation scale?
	7.4 RQ4: How does the choice of grammar affect false positives?

	8 Discussion and Limitations
	9 Related Work
	10 Conclusion
	References

