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ABSTRACT

Microarchitectural security verification of software has seen the

emergence of two broad classes of approaches. The first uses non-

interference-based semantic security properties which are verified

for a given program and a given model of the hardware microarchi-

tecture. The second is based on attack patterns, which, if found in a

program execution, indicates the presence of an exploit. We observe

that while the former uses a formal specification that can capture

several gadget variants targeting the same vulnerability, it is limited

by the scalability of verification. Patterns, while more scalable, must

be currently constructed manually, as they are narrower in scope

and sensitive to gadget-specific structure.

This work develops a technique that, given a non-interference-

based semantic security hyperproperty, automatically generates at-

tack patterns up to a certain complexity parameter (called the skele-

ton size). Thus, we combine the advantages of both approaches: se-

curity can be specified by a hyperproperty that uniformly captures

several gadget variants, while automatically generated patterns can

be used for scalable verification. We implement our approach in a

tool and demonstrate the ability to generate new patterns, (e.g., for

SpectreV1, SpectreV4) and improved scalability using the generated

patterns over hyperproperty-based verification.
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1 INTRODUCTION

Modern processors are packed with performance-improving mi-

croarchitectural mechanisms such as caches, speculation, prefetch-

ing. These lead to subtle microarchitectural-level interactions that

can be exploited by hardware execution attacks to leak sensitive

data from a victim (e.g., [8, 38, 39, 45, 62]). Recently, several tech-

niques have been proposed to detect the presence of such vulnera-

bilities in software and/or verify their absence (e.g. [12, 16, 17, 30,

31, 51, 59]). While sharing the goal of security verification, these

approaches adopt different (hardware) platform models, security

specifications, and have different strengths.

We observe the emergence of two broad classes of approaches

based on the security specification they adopt: semantic hyperprop-

erty (SH) based approaches (e.g., [12, 21, 30–32]) perform verifica-

tion with respect to a hyperproperty-based [15] security specifica-

tion, while attack pattern (AP) based approaches (e.g., [51, 59, 69])

perform verification using patterns that indicate the existence of

an exploit. SH approaches provide advantages of uniform speci-

fication and formal guarantees, while AP approaches have better

scalability. In this work, we enable automated generation of

attack patterns given a hyperproperty-based specification,

thereby combining their strengths.

SH approaches (e.g., [12, 21, 30–32]) identify a transition system-

based platform model and define program security semantically as

a hyperproperty (e.g., non-interference (NI) [15, 28]) over execu-

tions of this transition system. This hyperproperty is verified using

approaches such as model checking [14] or symbolic execution [37].

By semantically characterizing vulnerabilities, hyperproperties al-

low uniform specification: i.e., specification that captures several

exploit gadgets that target the same vulnerability, while differing

in syntactic structure. This results in strong, high-coverage secu-

rity guarantees. However, these approaches are often limited by

scalability owing to microarchitectural platform model complexity.

AP approaches (e.g. [51, 59, 69]) use attack patterns to detect

vulnerabilities. Patterns identify execution fragments that are in-

dicative of an exploit; program executions embedding these patterns

are flagged as vulnerable. Patterns can be defined (and checked)

over a platform model that is more abstract than the microarchi-

tectural models used by SH approaches. This abstraction leads to

simpler verification queries which scale better with program size.

However, each pattern captures specific execution scenarios and is

sensitive to structural variability in exploit gadgets, even when the

gadgets target the same microarchitectural feature. Covering the

attack vector requires an enumeration of all possible patterns that

it encompasses. This can be tedious to perform manually, leading

to incomplete coverage.
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SemPat. The above discussion motivates the question: Can we

combine the scalability of AP approaches with the uniform specifica-

tion and guarantees of SH approaches? This work aims to resolve

this question in the context of microarchitectural vulnerabilities

by developing algorithms to generate attack patterns given a plat-

form model and a non-interference-based hyperproperty. Our key

insight is to use the hyperproperty as the specification against

which to check whether a candidate pattern represents an exploit.

Our technique (§5) ensures that the generated patterns capture all

executions in which there is a dependency-closed sub-execution

of size 𝑘 that violates the hyperproperty. This property, termed as

𝑘-completeness (Eq. 1), enables combining formal specification via

hyperproperties with scalable verification via patterns.

Our pattern generation is guided by a grammar (§5.3) that iden-

tifies the space of constraints that patterns are defined over. The

choice of grammar captures the tradeoff between generality and

the precision (false positives) of the generated patterns. Specialized

grammars result in patterns which have fewer false positives but

are microarchitectural-implementation dependent. Our approach

traverses the grammar-induced search space, checking candidates

against the hyperproperty, a la grammar-based synthesis ([2, 36]).

Contributions. Our contributions are as follows:

(1) Formally relating semantic hyperproperty and attack

pattern based approaches: We compare and formally

relate SH and AP approaches to exploit detection. Based on

the insight that hyperproperties can serve as a specification

for patterns, we propose the problem of generating the

latter given the former.

(2) 𝑘-complete automatic pattern generation: We develop

a grammar-based search algorithm for automatic pattern

generation that ensures that the generated patterns capture

all non-interference violations up to a certain complexity

parameter 𝑘 (termed skeleton size).

(3) Implementation and Evaluation - new patterns and

improved verification performance: We develop a pro-

totype tool implementing our pattern generation technique

and for bounded verification of software binaries using the

generated patterns. We evaluate our approach by gener-

ating attack patterns and using them to analyze variants

of Spectre-style exploits. We demonstrate: (a) the ability

to generate previously unknown patterns for existing (e.g.,

Spectre-BCB, Spectre-STL) attacks as well as variants target-

ing alternative (e.g. computation-unit-based) side-channels,

and (b) up to 2 orders-of-magnitude performance improve-

ment on litmus tests with better scaling using the generated

patterns compared to hyperproperty-based analysis.

Outline. In §2 we provide background on SH and AP and moti-

vate our contribution. We provide our programming model in §3,

followed by the problem formulation in §4. In §5 we describe Sem-

Pat, our approach to generate attack patterns based on a semantic

platform model and a non-interference security hyperproperty. We

discuss the evaluation methodology in §6 and present experimental

results in §7. We discuss our approach, and its limitations in §8,

related work in §9, and §10 concludes. For more details we refer to

the extended version of this paper [27].

2 BACKGROUND AND MOTIVATION

2.1 Microarchitectural Execution Attacks

We provide background on microarchitectural execution attacks

using the Spectre Bounds Check Bypass (BCB) vulnerability. We

refer the reader to literature (e.g., [8, 24, 39]) for extensive surveys.

2.1.1 Spectre-BCB. The victimA function in Fig. 1 shows the

Spectre-BCB (also known as SpectreV1) vulnerability gadget. In

Spectre-BCB, an attacker induces an invocation of the victimA
function with an argument i which is out-of-bounds of array

arr1. While architecturally this is an illegal access, branch mis-

speculation can allow arr1[i], followed by arr2[arr1[i] <<
CL_INDEX] to be accessed speculatively. In particular, the second

load leaves a residue in the cache which is a function of the ac-

cessed address (i.e., arr2+arr1[i] << CL_INDEX). This residue is
preserved even after speculative rollback, and can be observed by

the attacker (e.g., using a Prime+Probe primitive [46]). Thus the

attacker can observe the value of arr1[i] for an out-of-bounds

index i, leading to a security vulnerability. The key aspect of this

vulnerability is that it leveragesmicroarchitectural features - branch

(mis)-speculation and cache side-channels - to leak information.

2.1.2 Variant Vulnerabilities. Over the years several variants of

microarchitectural hardware execution attacks have been demon-

strated. These vary both at the software level (e.g., the structure

of the vulnerability gadget occurring in the program library/exe-

cutable) as well as at the microarchitectural level (e.g., the underly-

ing speculative mechanism/side-channel that is exploited).

The function victimC in Fig. 1 shows a variant of victimA,
that replaces a cache-based side channel with a computation unit-

based side channel. Like victimA, victimC also exploits branch

speculation to perform an out-of-bounds load of arr1fp[i] (a

floating-point array). The loaded value is used in a floating-point

multiply operation. If the microarchitectural implementation of

this operation has data-operand dependent timing (e.g., [24, 61])

then an execution time measurement leaks the value of arr1fp[i].
Computation units have been targeted in this manner by previously

demonstrated exploits (e.g., NetSpectre [63] uses AVX-based timing

side channels) as well as conjectured vulnerabilities (e.g., [61]).

2.2 Analyzing Software for Vulnerabilities

Analyzing programs for the existence of microarchitectural vulner-

abilities is an important yet challenging problem.

2.2.1 AP: Attack Pattern-based Analysis. One family of approaches,

which we call AP approaches, detect vulnerabilities using attack

patterns. An attack pattern is a small execution fragment which, if

embedded in some (larger) program execution, indicates the pres-

ence of a vulnerability. Pattern A (Fig. 1) illustrates one such pattern

from existing work [51]. Pattern A matches executions where a

load (A2) is speculatively executed following a branch (A1), and

where the address of a subsequent load (A3) depends on the value

loaded by A2. Fig. 2 (Match A) shows the compiled victimA, and
depicts how the instruction nodes A1, A2, A3 in pattern A match

instructions in the binary execution.

2
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void victimA (uint32_t i) {
 if (i < ARR_SIZE) 

    temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimB (uint32_t i) {
 uint32_t temp1_ = arr1[i];
 if (i < ARR_SIZE) 

    temp_ = arr2[temp1_ << CL_INDEX];
}

void victimC (uint32_t i) {
 if (i < ARR_SIZE) 

    tempfp_ = arr1fp[i]*SCALAR;
}

void victimD (uint32_t i) {
 float tempfp1_ = arr1fp[i];
 if (i < ARR_SIZE) 

    tempfp_ = tempfp1_*SCALAR;
}

A1:Branch A2:Load A3:Load
address
dependency

speculative

B2:BranchB1:Load B3:Load

address dependency

speculativeprogram
order

C1:Branch C2:Load C3:FPMul
data
dependency

speculative

D2:BranchD1:Load D3:FPMul

data dependency

speculativeprogram
order

• Memory outside arr1 and  arr2 is secret
• Addresses/tags of cache entries 
(cache.tags) are attacker-visible

Vpub = {regs, mem[arr1], mem[arr2],
          cache}
Vobs = {cache.tags}

• Memory outside arr1fp is secret
• Number of multiplier-unit invocations is 

attacker-visible state

Vpub = {regs, mem[arr1fp], ...}
Vobs = {#multiplier unit
         invocations}

Pattern A [9]

Pattern B (this work)

Pattern C (this work)

Pattern D (this work)

SNI Hyperproperty HCD

SNI Hyperproperty HAB

Figure 1: Left: Variants of speculative exploits targeting branch (mis)-speculation with cache-based (victimA, victimB) and
computation unit-based (victimC, victimD) side channels. Centre: While attack patterns that can detect these exploits, variants

of the same (Spectre-BCB) vulnerability - victimA and victimB - require different patterns, as do victimC and victimD. In (A, C),

the load arr1[i] is performed within the speculative window (after the branch), while in (B, D) it is before the branch. Right:

Unlike attack patterns, a semantic hyperproperty uniformly characterizes several exploits aimed a particular microarchitectural

vulnerability. The Speculative Non-Interference [31] (SNI) Hyperproperty HAB can identify both victimA and victimB (as well

as others) as exploits, while the SNI Hyperproperty HCD identifies both victimC and victimD. While the hyperproperty changes

with the platform’s microarchitectural features (e.g., speculation and side-channels), it is robust to variances in the exploit

(program) structure itself.

AP-approach Execution model Attack pattern variant

CheckMate [69] 𝜇hb graphs [47] Bad execution patterns

Cats vs. Spectre

[59]

cat [1] based
event structures

sec →∗ Obs paths

Axiomatic HW/SW

Contracts [51]

Leakage containment

models (LCMs)

Transmitters

Table 1: Examples of executionmodelling choices and pattern

variants used in some AP-approaches.

AP approach variants. ExistingAP-based detection approaches iden-

tify a set of such patterns, and then analyze programs for the ex-

istence of pattern embeddings. These approaches model execu-

tions and define patterns either at the architectural [51, 59] or the

microarchitectural [69] level. Architecture-level approaches are

augmented with sufficient microarchitectural detail to capture the

vulnerability-specific features (e.g. xstate from Mosier et. al. [51]).

Table 1 provides a summary of these differences.

Patterns defined at the architectural level abstract away complex

microarchitectural details of the platform. This results in simpler

verification queries, allowing analysis to scale to larger programs

(e.g., see [51, 59]).

Patterns are tied to gadget-specific structure
1
. While attack pattern-

based analysis has the benefit of greater scalability, patterns do

not generalize well to other gadget variants that exploit the same

underlying microarchitectural features. To illustrate this, function

victimB in Fig. 1 is a modified version of victimA, where the load

1
Which is why we call these attack patterns, since they only capture specific attack

executions, and not the common underlying vulnerability.

.victimC:
...
bltu a5,a4,66208;
...
flw fa4,a5,0;
...
fmul fa5,fa4,fa5;
...

66208:

C1:Branch

C2:Load

C3:FPMul

data dep.

spec.

architectural

.victimD:
...

  flw fa5,a5,0;
...
bltu a5,a4,66304;
...
fmul fa5,fa4,fa5;
...

66304:

D1:Load

D2:Branch

D3:FPMul

program   order

spec.

architectural

data 
dep.

.victimA:
...
bltu a5,a4,66004;
...
lw a5,a5,0;
...
lw a4,a5,0;
...

66004:

A1:Branch

A2:Load

A3:Load

addr. dep.

spec.

architectural

.victimB:
...

  lw a5,a5,0;
...
bltu a5,a4,66120;
...
lw a4,a5,0;
...

66120:

B1:Load

B2:Branch

B3:Load

program   order

spec.

architectural

addr.
dep.

Match A

Match C Match D

Match B

Figure 2: Patterns A, B, C, D matched against executions of

programs victimA,victimB,victimC,victimD respectively.

arr1[i] is performed non-speculatively, i.e. before the branch.

Due to this load−branch inversion, pattern A does not match the

execution of victimB, even though both victimA and victimB
exploit the same (Spectre-BCB) mechanism. In Fig. 1 we provide

pattern B that reorders the branch with the first load, and thus can

capture victimB (depicted in Fig. 2 Match B). This highlights the

fact that attack patterns are tied to gadget-specific structure.

2.2.2 SH: Semantic Hyperproperty-based Analysis. Non-interference-

based hyperproperties [15] allow security specifications such as

confidentiality (“secret variables should not affect public outputs”)

and integrity (“public inputs should not affect protected variables”).

3
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464

SH-approach Non-interference (NI) variant

A Formal Approach to

to Secure Speculation [12]

Trace-property dependent

observational-determinism

Spectector [31] Speculative non-interference

InSpectre [30] Conditional non-interference

Hardware-software contracts [32] Contract conditioned NI

Automated detection of

speculative attack combinations [21]

Speculative NI

Table 2: Summary of non-interference variants used in some

SH approaches.

SH-approaches, e.g., [12, 30, 31], formulate security semantically

using hyperproperties and verify them against a platform model.

Hyperproperties allow uniform security specification. The hyper-

property HAB (Fig. 1 (right)) specifies the memory outside (public)

arrays arr1, arr2 as being secret, and the cache tags as being public
output. This captures a cache-based side channel where the tags

are attacker-observable (e.g., using Prime+Probe [46]). victimA
violates HAB, since the cache state is tainted with the (specula-

tively loaded) address of the second load which is a value outside

arr1, arr2. Although it has a different structure than victimA,
victimB also violates HAB as it too leaves a cache residue. Thus,

unlike attack patterns, hyperproperties such as HAB are agnostic to

gadget-specific structure. By uniformly capturing several exploit-

variants targetting a particular microarchitectural vulnerability,

SH-approaches provide wide-scoped, strong guarantees.

Hyperproperty verification. SH-approaches base their analysis on

variants of non-interference, which we summarize in Tab. 2, and dis-

cuss in more detail in §4.1. They verify this hyperproperty against

a semantic platform model, which identifies (a) system state (vari-

ables in the system), and (b) execution semantics of operations. Fig.

3 illustrates a platform fragment with register file, memory and

cache state, and load and alu operations. Non-interference-based

hyperproperties can be converted into a single trace property by

performing self-composition, i.e., composing together copies of the

platform ([15, 68]). This single trace property can be checked by

invoking a model checking or software verification procedure.

Self-composition-based verification against a semantic model

has two drawbacks. Firstly, microarchitectural detail in the platform

model results in large verification queries. (e.g., a query for HAB

over the platform from Fig. 3 would have to encode the cache state).

In comparison, architectural level pattern-based queries (e.g., with

pattern A) are smaller, enabling faster verification. Secondly, self-

composition results in a further increase in the state-space (and

query) and consequentially adversely affects performance.

2.3 Why convert from SH to AP?

Manual pattern generation is error-prone. While more scalable, AP

approaches require creation of several patterns, due to their gadget-

specificity. To avoid unsound analysis (e.g., using only pattern A on

victimB), it is important that patterns are not missed, e.g., pattern

B which we have not observed being formulated previously.

1 // System state
2 var regs : [regindex_t]word_t
3 var cData : [index_t]word_t
4 var cTag : [index_t]tag_t
5 var mem : [word_t]word_t
6 // Load operation
7 operation load (rs, rd, imm) {
8 addr = regs[rs] + imm; // Compute the address
9 if (cacheTag(addr_to_tag(addr)) == addr) {
10 ... // Load from cache if hit
11 } else {
12 data = mem[addr]; // Load from memory
13 }
14 regs[rd] = data; // Register writeback
15 }
16

17 // Generic ALU Register -Register operation
18 operation alu (rs1 , rs2 , rd, op) {
19 if (op == ADD) regs[rd] = regs[rs1] + regs[rs2];
20 ...
21 }

Figure 3: Fragment of a platform model with state variables

and load and alu operation semantics.

Moreover, patterns need to be recreated for newer microarchi-

tectures (with newer vulnerabilities). Consider victimC (Fig. 1 left)

which replaces a cache-based side channel (as in victimA) with a

computation unit-based channel. Its variant victimD inverts the

first load and the branch (as in victimB). These examples are in-

spired from [61], which hypothesizes the existence of computation-

unit based side-channels on microarchitectures with data-operand-

dependent timing [24, 35, 61]. Existing work, which targets cache-

based side channels, misses patterns C and D (Fig. 1 center) that

capture victimC and victimD. Automating pattern generation can

make patterns more comprehensive and cover newer microarchi-

tectural features.

Semantic hyperproperties as a specification for automated pattern

generation. In this work, we propose a technique to automatically

generate patterns for a given hyperproperty and microarchitecture.

As an example we were able to automatically generate patterns C

and D from the (shared) hyperproperty HCD.

Our key insight is using the semantic hyperproperty as a spec-

ification to guide pattern generation. Since a hyperproperty can

capture an entire class of exploits targetting a vulnerability, we can

use it to determine whether a given pattern yields an exploit by

checking it against the hyperproperty. By automatically checking

several candidates, we can identify a comprehensive set of patterns

for that hyperproperty. Thus, our technique replaces manual pat-

tern creation with the requirement of specifying a hyperproperty

and platform model. To summarize, by developing an automated

conversion technique from SH-specifications to AP-based patterns,

we combine the low-overhead, uniform specifications and

formal guarantees of SH with the superior verification scala-

bility of AP to get the best of both worlds.

3 SYSTEM MODEL

In this section, we introduce our formal model for hardware plat-

forms, which we later use to develop our problem formulation (§4).

At a high level, the hardware platform is an operational transition

4
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Variables (arch. and march.) 𝑣 : V = Va ∪ Vm

States

(variable assignments)

𝜎 : Σ = V → D

Operation code op : Op

Instructions inst : Inst = {op(𝜔)}op,𝜔
Full (speculative) semantics T : Inst × Σ → Σ

Non-speculative semantics Tns : Inst × Σ → Σ

Table 3: Platform state and operational semantics.

system over architectural and microarchitectural state variables.

Instructions executed on the platform induce transitions over this

state. We summarize these elements in Table 3.

3.0.1 State. The platform consists of variables V which take values

from a domain D. V includes architectural (Va) and microarchitec-

tural (Vm) variables. The platform state is an assignment to these

variables, 𝜎 : V → D. We denote the set of all assignments as

Σ = V → D.

3.0.2 Instruction semantics. The platform executes a set of instruc-

tions of form inst = op(𝜔), where op is the instruction opcode, and

𝜔 are operands. The platform assigns two transition semantics to

each instruction: a full semantics (allowing speculation) denoted as

T and a non-speculative semantics denoted as Tns. Both semantics

can be viewed as functions taking an instruction and the current

platform state as input and returning the next platform state (ob-

tained after executing the instruction). The full semantics defines

the behaviour when the platform can speculate (not necessarily en-

forcing speculative behaviour at all times) while the non-speculative

semantics defines behaviours when speculation is disabled.

Example 1. For the platform model in Fig. 3, the architectural

and microarchitectural variables are Va = {mem, regs} and Vm =

{cacheTag, cacheData}, with V = Va ∪ Vm. The semantics of the

load instruction updates the register file regs and the cache state

variables (cacheData, cacheTag) as defined in Fig. 3.

3.0.3 Modelling speculation. Instructions, e.g., branches or loads

(store-to-load forwarding), signal that they are initiating specula-

tion by setting a variable spec ∈ V. Internally, the full semantics T
defines instruction behaviour by conditioning on spec: spec being

set implies that the platform is currently speculating. Indeed, spec

can be set only in the full semantics (T) and not in Tns. Prior work
considers specialized semantics that define when spec is set (e.g.,

oracle-based semantics [31]). Since we adopt a hardware-oriented

model, we assume that this is explicitly defined in the transition

semantics of the speculating instruction. Despeculation is assumed

to be similarly defined (this time, however, by unsetting spec).

In our current implementation, we restrict speculation to a single

frame, and do not support nested speculation (e.g., speculative loads

within a branch speculation context). However, this is not a funda-

mental limitation of our approach; extension to nested speculation

is possible by defining a stack of frames storing architectural state.

3.0.4 Executions. The platform consumes a stream of instructions,

and transitions on them, thereby producing a trace of states. Then,

an input instruction stream 𝐶 = inst0, inst1, . . . , inst𝑛 , starting
in state 𝜎0 leads to a sequence of states 𝜋 = 𝜎0 𝜎1 . . . 𝜎𝑛+1,
where 𝜎𝑖+1 = T(inst𝑖 , 𝜎𝑖 ) (under the full semantics) and 𝜎𝑖+1 =

Tns (inst𝑖 , 𝜎𝑖 ) (under the non-speculative semantics). The execution

generated by instruction stream𝐶 from initial state 𝜎 is denoted as

J𝐶K(𝜎). We similarly define non-speculative executions J𝐶Kns (𝜎)
in which instructions follow the Tns transition relation.

4 SPECIFICATIONS AND PROBLEM

FORMULATION

In this section we formalize hyperproperty specifications (§4.1)

and the notion of attack patterns that our approach aims to gener-

ate (§4.2). We then discuss a technical limitation of pattern-based

approaches in §4.3, and formulate the problem statement in §4.4.

4.1 Hyperproperty-based Security Specification

We follow existing work ([15, 31]) to formalize non-interference-

based security specifications.

Non-interference ([15]) states that any pair of executionswhich

begin in states with equivalent values of public (non-secret) variables

(Vpub) continue to have states with equivalent values of observable

variables (Vobs):
2

𝐶 |= NI(Σinit,Vpub,Vobs)
Δ
= ∀𝜎1, 𝜎2 ∈ Σinit .

𝜎1 ≡Vpub 𝜎2 =⇒ J𝐶K(𝜎1) ≡Vobs J𝐶K(𝜎2)
This property is parameterized by the choice of Σinit, Vpub and Vobs
and intuitively says that the observable variables are not affected by

the secret (Vsec = V \ Vpub) variables. Non-interference expresses

security against an attacker that tries to infer the values of Vsec by

observing Vobs.

Speculative non-interference enforces non-interference only

if the program is non-interfering under non-speculative semantics:

𝐶 |= SNI(Σinit,Vpub,Vobs)
Δ
= ∀𝜎1, 𝜎2 ∈ Σinit .

(𝜎1 ≡Vpub 𝜎2 ∧ J𝐶Kns (𝜎1) ≡Vobs J𝐶Kns (𝜎2)) =⇒
J𝐶K(𝜎1) ≡Vobs J𝐶K(𝜎2)

Intuitively, SNI restricts the scope of non-interference enforcement,

we refer the reader to [12, 31] for more details.

Conditional/contract-based non-interference [32] is another vari-

ant which also restricts the scope of non-interference using an ar-

chitectural semantics. It requires that a program be non-interfering

in the full semantics if it is non-interfering in the architectural

semantics. While we focus our presentation on non-interference

our technique also applies to these variants, as demonstrated in §7.

4.2 Attack Pattern-based Security

4.2.1 Patterns. A pattern p is a pair (𝑤,𝜙) of a template𝑤 and a

constraint (𝜙), i.e., a boolean formula. The template is a sequence

over opcodes 𝑤 = op
0
· op

1
· · · op𝑘 that structurally restricts exe-

cutions the pattern can be embedded in, to those with an opcode

2
Here, 𝜎1 ≡

V
′ 𝜎2 for V

′ ⊆ V means that 𝜎1 (𝑣) = 𝜎2 (𝑣) for all 𝑣 ∈ V
′
(the

assignments agree on all variables in V
′
). For traces 𝜋1 and 𝜋2 , 𝜋1 ≡

V
′ 𝜋2 holds if

𝜋1 [𝑖 ] ≡V
′ 𝜋2 [𝑖 ] for all 𝑖 .
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Figure 4: A pattern for a computation-based side channel.

subsequence matching the template. The constraint (𝜙) further

semantically constrains matching executions to those satisfying it.

Example 2 (MulOp − LdOp − MulOp pattern). The pattern from

Fig. 4 is formalized as (𝑤,𝜙) where,𝑤 = (0 : MulOp) · (1 : LdOp) · (2 :
MulOp) and the constraint is 𝜙 ≡ datadep(1 : LdOp, 2 : MulOp) ∧
highresult(1 : LdOp), i.e., there is a data dependency between the

load and the second multiplication operation, and a the loaded result

is high (secret dependent). Intuitively, this pattern matches executions

satisfying 𝜙 with a MulOp − LdOp − MulOp instruction subsequence.

4.2.2 Execution-embedding. Now we formalize when a pattern

embeds (matches) an execution, which determines which programs

the pattern flags as exploits. Consider pattern p = (𝑤,𝜙) with
template𝑤 = op∗

1
· · · op∗

𝑘
, and an execution 𝜋 = 𝜎0 · 𝜎1 · · ·𝜎𝑛 . Let

the sequence of opcodes in 𝜋 be op
1
· · · op𝑛 , i.e., the transition from

𝜎𝑖 to 𝜎𝑖+1 is performed by executing an instruction with opcode

op𝑖+1. The pattern p embeds in execution 𝜋 at a subsequence given

by indices (𝑖1 < · · · < 𝑖𝑘 ) if the corresponding opcodes match

the template 𝑤 : op𝑖 𝑗 = op∗
𝑗
for 𝑗 ∈ [1 · · ·𝑘], and the execution

𝜋 satisfies the constraint 𝜙 . We denote the fact that p embeds at

indices (𝑖1, · · · , 𝑖𝑘 ) in trace 𝜋 as 𝜋 |=(𝑖1,· · · ,𝑖𝑘 ) (𝑤,𝜙). Execution 𝜋

embeds (𝑤,𝜙) if there is a matching subsequence:

𝜋 |= (𝑤,𝜙) Δ
= ∃𝑖1, · · · , 𝑖𝑘 . 𝜋 |=(𝑖1,· · · ,𝑖𝑘 ) (𝑤,𝜙)

Attack pattern p = (𝑤,𝜙) matches instruction sequence 𝐶 if

there is some execution of 𝐶 that embeds it:

𝐶 |= p
Δ
= ∃𝜎 ∈ Σinit . J𝐶K(𝜎) |= p

Fig. 2 provides examples of patterns matching instructions.

4.3 Non-interference Violation Skeleton

Given a hyperproperty, we aim to generate a set of patterns such

that any hyperproperty violation is detected by atleast one of the

patterns in this set. However, as illustrated in Example 3 the fact

that patterns have fixed length is a fundamental limitation in the

violations they can detect.

buf1buf0 op1
buf2op2

bufkopk
...

Figure 5: Buffer chain in PlatSynth(𝑘) with operations.

Example 3 (Large skeletons: the PlatSynth(𝑘) platform).
Consider the pedagogical example microarchitecture illustrated in Fig.

5 with 𝑘 + 1 state variables (e.g., buffers): buf0, · · · , buf𝑘 ∈ V, and

𝑘 corresponding operations op
1
, op

2
, · · · , op𝑘 ∈ Op. Operation op𝑖

moves data from buf𝑖−1 to buf𝑖 . Now, consider a non-interference

property with Vpub = {buf1, · · · , buf𝑘 }, and Vobs = {buf𝑘 }. That is
we want to identify whether the secret input buf0 affects the observ-
able output buf𝑘 . While the operation sequence op

1
· · · op𝑘 violates

this property (it moves data from buf0 to buf𝑘 ), any sequence of

length 𝑘 − 1 or less does not.

Given the possibility of large non-interference violations that

would be greater than the size of any fixed set of patterns, we

qualify our problem statement to detecting those violations with

small skeletons, as we now define.

Consider an instruction sequence 𝐶 = inst0 inst1 · · · , and a

corresponding execution trace 𝜋 = J𝐶K(𝜎). For a trace index 𝑖 , we
denote the variables that inst𝑖 depends on as dep𝜋 (𝑖) ⊆ V. We

denote the last writer of a variable 𝑣 ∈ V at index 𝑖 , denoted as

lw𝜋 (𝑣, 𝑖) ∈ {inst0, · · · , inst𝑖−1} as the last instruction that writes

to 𝑣 before inst𝑖 . Finally, the set of all (instruction) dependencies of
an instruction inst𝑖 is the union of the last writers of all variables it

depends on: idep𝜋 (𝑖) =
⋃

𝑣∈dep𝜋 (𝑖 ) lw𝜋 (𝑣, 𝑖). For a trace 𝜋 , we say
that 𝑖1, · · · , 𝑖𝑘 is a subsequence that is closed under dependencies if

for all 𝑗 ∈ [1 · · ·𝑘], idep(𝑖 𝑗 ) ∈ {𝑖1, · · · , 𝑖𝑘 }.

Definition 1 (Skeleton). Suppose the sequence of instructions

inst1 · · · inst𝑛 violates a non-interference property NI. Then, 𝐶 has

an NI-violation skeleton of size 𝑘 , denoted as 𝐶 ̸ |=𝑘 NI if there exist
traces 𝜋1, 𝜋2 with subsequences of length 𝑘 which are closed under

dependencies and also violate NI.

Discussion: The skeleton identifies instruction sub-sequences

that cause the non-interference violation. A length 𝑘 instruction

stream that violates the non-interference property can have multi-

ple skeletons, each of size ≤ 𝑘 . Thus, fixing a skeleton size does not

bound the program size itself, i.e., large programs can have small

skeletons.

4.4 Formal Problem Statement

Formally, given (a) a platform model (with state V and semantics

T), and (b) a non-interference security specification NI(Σinit, Vpub,

and Vobs), and (c) a given skeleton size 𝑘 , we generate a set of

patterns P such that any instruction sequence 𝐶 that violates the

non-interference property with a skeleton of size 𝑘 is detected by

one of the patterns in P:

∀𝐶. 𝐶 ̸ |=𝑘 NI(Σinit,Vpub,Vobs) =⇒ ∃p ∈ P. 𝐶 |= p (1)

We refer to Eq. 1 as the 𝑘-completeness property.

5 THE SEMPAT APPROACH

In this section we discuss our approach to automatically generate

attack patterns satisfying 𝑘-completeness (Eq. 1). We provide an

overview in §5.1, followed by details in §5.2 and §5.4.

5.1 Pattern Generation Overview

Operation. Figure 6 provides a high-level overview of our approach.

We take in a transition system-based platform model (§3), a non-

interference specification (§4.1), a constraint grammar𝐺 and depth

𝑑 . We generate a set of patterns P up to depth 𝑑 , with constraints

sourced from 𝐺 (discussed in §5.3). Our approach has two compo-

nents: template generation (§5.2) and grammar-based specialization

(§5.4). We explain these elements using a running example.

Running Example: Computation Reuse. We use the running example

of the generation of the MulOp − LdOp − MulOp pattern from Fig. 4.

We generate this pattern based on the computation-reuse platform

model (PlatCR), an excerpt of which is provided in Fig. 7. The

PlatCR microarchitecture includes a reuse buffer (reuse_buf) that
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Figure 6: The SemPat approach.

1 type rentry_t = record { op1: word_t , op2: word_t ,
result: word_t };

2 var reuse_buf : [instr_ind_t]rentry_t;
3

4 operation mulop (rd, rs1 , rs2) {
5 op1 = regfile[rs1]; op2 = regfile[rs2];
6 // Check for reuse
7 if (∃ i. reuse_buf[i].op1 == op1 &&
8 reuse_buf[i].op2 == op2) {
9 result = reuse_buf[i]. result; // Reuse result
10 } else { // Otherwise invoke multiplier unit
11 result = multiplier(op1 , op2);
12 mulcount = mulcount + 1;
13 }
14 // Replace reuse_buf entry (at index ind_)
15 reuse_buf[ind_] = rentry_t {op1 , op2 , result };
16 regfile[rd] = result;
17 }

Figure 7: PlatCR: Fragment of the computation reuse plat-

form model.

stores the operands and results of previous multiplication (mul) in-
structions. Future mul instructions matching operands of previous

instructions, can reuse results from the buffer instead of reinvok-

ing the multiplier. We encode the security property that secret

data from the memory should not affect the count of multiplier in-

vocations as the property NIPlatCR (initreuse_buf, mem, mulcount)
where initreuse_buf constrains all entries in the reuse_buf to be

initially invalid and mulcount ∈ V counts multiplier invocations.

Algorithm 1: GenerateTemplates(𝑀 , NI, 𝑑)
Input: Semantic platform definition𝑀 , non-interference property

NI(Vpub,Vobs, Σinit ) , depth 𝑑 ∈ N
Output: A set of pattern templates

Data: acc: the accumulated set of pattern templates

1 Function TemplateHelper(𝑤):
/* Search depth not reached? */

2 if |𝑤 | < 𝑑 then

3 for op ∈ Op do

4 if op · 𝑤 propagates taint from V
𝐶
pub to Vobs then

5 if op · 𝑤 ̸ |= NI then acc.append(op · 𝑤)

6 TemplateHelper(op · 𝑤)

/* Search over depth 𝑑 templates */

7 TemplateHelper(𝜖)

8 return acc

5.2 Template Generation

The first phase of our approach uses an overapproximate analysis

to generate templates up to the user-specified depth 𝑑 . This is

performed by the GenerateTemplates procedure (Alg. 1) which

we discuss with an example. GenerateTemplates scans over all

templates starting with size 1 (single operations) up to size 𝑑 . For

each template, we first perform (overapproximate) taint analysis to

check whether the template propagates taint from the secret inputs

(Vsec) to the public outputs (Vobs). This static syntactic taint

analysis requires an imperatively defined platform semantics.

No taint propagation implies that the template does not vio-

late the non-interference property. On the other hand, if the tem-

plate propagates taint, we check if it semantically violates the non-

interference property. We do this by reducing non-interference

(𝐶 |= NI) to a safety query (e.g., [15, 60]), and solving this query

using SMT-based model checking [6, 49].

Example 4 (Template generation for MulOp − LdOp − MulOp).
Consider invoking GenerateTemplates for the PlatCR platform

(Fig. 7) with NIPlatCR as the non-interference property and a search

depth of 3. GenerateTemplates first considers single operation tem-

plates. However, none of them propagate taint from mem to mulcount.
Subsequently, GenerateTemplates finds the two-operation template

LdOp − MulOp does propagate taint from mem to mulcount. However,
this template does not (semantically) violate non-interference as the

reuse_buf is initially empty, and the multiplier must be invoked in

all executions. Eventually, GenerateTemplates considers the size 3
template MulOp−LdOp−MulOp. This template both, propagates taint

and semantically violates NIPlatCR. This is because the first MulOp
‘primes’ the reuse buffer, and the second MulOp uses the primed buffer

entry. This will lead to two executions with different mulcount values,
i.e., a non-interference violation.

GenerateTemplates generates all operation sequences (up to

length 𝑑) that violate the non-interference property:

Lemma 1. For 𝑘 ≤ 𝑑 , if inst1 · · · inst𝑘 ̸ |= NI where instruction
inst𝑖 = op𝑖 (𝜔𝑖 ), then, op1 · · · op𝑘 ∈ GenerateTemplates(𝑀,NI, 𝑑).

Proof Sketch. The proof of Lemma 1 is a direct consequence

of the algorithm GenerateTemplates and the soundness of a taint-

based overapproximation. We rely on the fact that, if a template𝑤

does not propagate taint from V
𝐶
pub to Vobs, then it also does not

violate the non-interference property NI(Vpub,Vobs, Σinit). □

5.3 Conjunction-based Pattern Grammar

While templates alone are too overapproximate to be useful, aug-

menting (specializing) them with constraints (𝜙) leads to more

precise patterns with fewer false positives. Specialization is per-

formed using the user provided grammar𝐺 that identifies the space

of these constraints.
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Algorithm 2: ConstraintSpecialize(𝑀,NI,𝑤,𝐺)

Input: Semantic platform definition𝑀 , non-interference property

NI, pattern template 𝑤, and a grammar𝐺

Output: A set of patterns

Data: acc: an accumulated set of patterns

1 Function ConsHelper(𝜙, 𝑖, 𝐿):
/* Exhausted all atomic predicates? */

2 if 𝑖 > |𝐿 | then acc.append((𝑤,𝜙 ))
/* Does adding ¬𝐿[𝑖 ] eliminate all violations? */

3 else if ∀inst1, · · · , inst|𝑤 | . inst1 · · · inst|𝑤 | |=
(𝑤,𝜙 ∧ ¬𝐿[𝑖 ] ) =⇒ inst1, · · · , inst|𝑤 | |= NI

4 then ConsHelper(𝜙 ∧ 𝐿[𝑖 ], 𝑖 + 1, 𝐿) /* add 𝐿[𝑖 ] */

5 else ConsHelper(𝜙, 𝑖 + 1, 𝐿); /* skip over 𝐿[𝑖 ] */

6 𝐿 = ApplyPredicates(𝑤,𝐺 ) /* Create all atoms in 𝐿 */

7 ConsHelper(true, 0, 𝐿) /* Counterfact. addition */

8 return acc

5.3.1 Conjunction of Predicate Atoms. We consider constraints

which are conjunctions of atoms.
3
That is, 𝜙 has form: 𝜙 =

∧
𝑖 𝑓𝑖 ,

where each 𝑓𝑖 is an atom. These atoms (𝑓𝑖 ) are generated by applying

predicates from a grammar𝐺 , such as the one in Table 4, which we

use as the default. Each predicate from the grammar is applied to

some number of instructions from the pattern, as indicated by its

arity (e.g., datadep is an arity-2 (binary) predicate). To identify the

instructions a predicate is applied to, we distinguish apart identical

opcodes using their position (e.g., the datadep predicate is applied

to (0 : MulOp), (2 : MulOp) in Example 2).

5.3.2 Precision vs. Robustness Tradeoff. A grammar that only al-

lows high-level (architectural) predicates (e.g., Tab. 4) leads to pat-

terns which are less sensitive to microarchitectural implementation

details, but have more false positives. Conversely, a grammar that

exposes low-level microarchitectural constraints leads to more pre-

cise patterns (with fewer false positives). However, these patterns

are then specific to the platform microarchitecture. Thus, the pat-

tern grammar exposes a tradeoff between the robustness and ex-

pressivity/precision of generated patterns. While our specialization

technique (§5.4) requires a conjunction-based grammar (§5.3.1), we

are not fundamentally limited to the predicates from Table 4. We

explore this further in §7.4 where we augment the default grammar

with additional predicates to improve precision.

5.4 Template Specialization with Predicates

The goal of template specialization is making patterns as precise

as possible using the pattern grammar (§5.3), while ensuring that

they do not miss any violating executions (as required by Eq. 1).

Specialization is performed by invoking the ConstraintSpecialize

procedure (Alg. 2) on every pattern template generated by Gener-

ateTemplates. At a high level, starting with the true constraint
(line 0), ConstraintSpecialize continues adding predicate atoms

to the constraint.

5.4.1 Candidate predicate atoms. As introduced in §5.3, the pattern

constraint is a conjunction of predicate atoms from grammar 𝐺 .

We apply each predicate to operations from the template to get a

3
In formal logic, an atom (atomic formula) is a single (indivisible) logical proposition.

set of atoms. For example, the binary datadep predicate with the

(0 : MulOp)−(1 : LdOp)−(2 : MulOp) template results in three atoms:

datadep(0 : MulOp, 1 : LdOp), datadep(1 : LdOp, 2 : MulOp) or
datadep(0 : MulOp, 2 : MulOp) (we ignore backwards dependencies).
ConstraintSpecialize first collects all such atoms in a list 𝐿 using

the ApplyPredicates helper function (line 6).

5.4.2 Counterfactual-based atom addition. Adding an atom strength-

ens the pattern constraint, resulting in it capturing fewer execu-

tions. To ensure that the generated pattern does not miss any non-

interference violations (and thereby violate Eq. 1) we use counter-

factual atom addition. Counterfactual addition adds an atom only

if adding the negation of the atom leads to only non-violating

executions. Intuitively, if the negation leads to only non-violating

executions, then adding the atom preserves all violating executions:

Observation 1. Consider a pattern (𝑤,𝜙), where |𝑤 | = 𝑘 , and

an atom 𝑓 . We have, for all 𝐶 = inst1 · · · inst𝑘 :(
𝐶 |= (𝑤,𝜙 ∧ ¬𝑓 ) =⇒ 𝐶 |= NI

)
=⇒(

(𝐶 |= (𝑤,𝜙) ∧𝐶 ̸ |= NI) =⇒ 𝐶 |= (𝑤,𝜙 ∧ 𝑓 )
)

For each atom in 𝐿, we check (Alg. 2 line 3) if it satisfies the

counterfactual addition condition, specializing the pattern (line 4)

if so. If not, we skip over it (line 5) and move to the next atom in 𝐿.

Example 5. For the (0 : MulOp) − (1 : LdOp) − (2 : MulOp)
template, ConstraintSpecialize adds the 𝑓 = datadep(1 : LdOp, 2 :
MulOp) atom to the constraint, since if (2 : MulOp) does not depend on
(1 : LdOp), then its operands are not secret, and the non-interference

property is not violated. In a further iteration, ConstraintSpecialize
adds the atom highresult(1 : LdOp) which says that the loaded value

is secret-dependent. Once again, the negation of this would lead to a

non-violating execution. This gives us the final pattern with𝑤 = (0 :
MulOp) − (1 : LdOp) − (2 : MulOp) and 𝜙 = datadep(1 : LdOp, 2 :

MulOp) ∧ highresult(1 : LdOp).
5.4.3 Multiple counterfactuals and branching. Counterfactual ad-

dition relies on a strong condition which may not hold for single

atoms. In such cases, we consider multiple counterfactual atoms:

Observation 2 (Multiple counterfactuals). For pattern (𝑤,𝜙),

atoms {𝑓𝑖 }𝑖 , and for any 𝐶 = inst1 · · · inst |𝑤 | :(
𝐶 |= (𝑤,𝜙 ∧

∧
𝑖

¬𝑓𝑖 ) =⇒ 𝐶 |= NI
)
=⇒(

(𝐶 |= (𝑤,𝜙) ∧𝐶 ̸ |= NI) =⇒
∨

𝑖
(𝐶 |= (𝑤,𝜙 ∧ 𝑓𝑖 ))

)
We only prove Observation 2 since it generalizes Observation 1.

Proof of Observation 2. Consider a partially specialized tem-

plate (𝑤,𝜙), and a set of atoms {𝑓𝑖 }𝑖 . We define sets of programs:

𝑆 = {𝐶 | 𝐶 |= (𝑤,𝜙)}, for each 𝑓𝑖 , let 𝑆𝑖 = {𝐶 | 𝐶 |= (𝑤,𝜙 ∧ 𝑓𝑖 )}, and
finally,𝑇 = {𝐶 | 𝐶 |= NI}. Then, the set𝑈 = 𝑆 \⋃𝑖 𝑆𝑖 is of programs

satifying,

𝐶 |= (𝑤,𝜙 ∧
∧
𝑖

¬𝑓𝑖 )

Now, suppose that the claim was not true. Then there exists

a program 𝐶 , such that (a) 𝐶 ∈ 𝑆 ∩ 𝑇 , and (b) 𝐶 ∉
⋃

𝑖 𝑆𝑖 . Thus,

𝐶 ∈ (𝑆 ∩𝑇 ∩⋃
𝑖 𝑆𝑖 ), implying (by the definition of𝑈 ), 𝐶 ∈ 𝑈 ∩𝑇 .

However, this means that the antecedent of the claim (which is

𝑈 ∪𝑇 ) does not hold, leading to a contradiction. □
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Predicate Atom Meaning Encoding (assuming RISC-V ISA)

datadep(inst1, inst2) Data operand of inst2 depends on result of inst1 Last write to inst2 .rs1 or inst2 .rs2 is by inst1
addrdep(inst1, inst2) Address operand of inst2 depends on result of inst1 Last write to inst2 .rs1 is by inst1
sameaddr(inst1, inst2) Address operands of inst1 and inst2 are the same inst2 .addr = inst1 .addr (for memory operations)

diffaddr(inst1, inst2) Address operands of inst1 and inst2 are different inst2 .addr ≠ inst1 .addr (for memory operations)

srcdatareg (inst1) Data operand is read from register reg e.g., inst1 .rs1 = reg, inst1 .rs2 = reg (depends on opcode)

srcaddrreg (inst1) Address operand is read from register reg inst1 .rs1 = reg (for memory operations)

destregreg (inst1) Result is written to a register reg inst1 .rd = reg

speculative(inst) Instruction inst initiates speculation inst sets the spec variable
lowoperands(inst1) Operands of inst1 is independent of Vsec (= V \ Vpub) e.g., 𝜎1 (regfile[rs1]) = 𝜎2 (regfile[rs1]) (depends on opcode)

lowresult(inst1) Result of inst1 is independent of Vsec (= V \ Vpub) 𝜎1 (regfile[rd]) = 𝜎2 (regfile[rd])
Table 4: Pattern predicate grammar: we generate patterns with constraints as conjunctions of these predicate atoms.

Considering multiple counterfactuals {𝑓𝑖 } results in a disjunctive
branching (bolded

∨
𝑖 ) over atoms. ConstraintSpecialize recur-

sively invokes ConsHelper on (𝑤,𝜙 ∧ 𝑓𝑖 ) for each 𝑖 . This is sound
as the collection of patterns together continue to cover all violat-

ing executions. We do not include multi-counterfactuals in Alg. 2

pseudocode for brevity; please refer to [26] for more details.

Example 6 (Multiple counterfactuals for PlatSynth). Con-

sider the platform PlatSynth(𝑘) from Ex. 3, with parameter 𝑘 = 2

and grammar depth 𝑑 = 3. GenerateTemplates returns the tem-

plate (0 : op
0
) − (1 : op

0
) − (2 : op

1
) for which neither atom

datadep(0 : op
0
, 2 : op

1
) nor datadep(1 : op

0
, 2 : op

1
) can be added

alone. This is because, even if one is negated, the other might be true,

leading to a non-interference violation. However, on adding both nega-

tions, the violation is blocked. Our approach then will branch and

specialize each case further.

By Lem. 1 and Obs. 1,2, we have 𝑘-completeness of our approach

up to skeleton size 𝑘 = 𝑑 . This is formalized in Theorem 1.

Theorem 1. Let𝑊 = GenerateTemplates(𝑀,NI, 𝑑) be the tem-

plates for depth 𝑑 , and let P𝑖 = ConstraintSpecialize(𝑀,NI,𝑤𝑖 ,𝐺)
be the specialized patterns for each𝑤𝑖 ∈𝑊 . Then, for all instruction

sequences 𝐶 = inst1 · · · inst𝑘 , with 𝑘 ≤ 𝑑 , we have:

𝐶 ̸ |= NI =⇒ ∃p ∈
⋃
𝑖

P𝑖 . 𝐶 |= p

Proof of Theorem 1. Theorem 1 is proven by induction on

the number of specialization iterations. Suppose ConstraintSpe-

cialize is invoked with arguments (𝑤,NI, 𝑀,𝐺). We claim that in

Algorithm 2, at each recursive call of ConsHelper with arguments

(𝜙, 𝑖, 𝐿), the following property holds:

∀𝐶. (𝐶 |= (𝑤, true) ∧𝐶 ̸ |= NI)
=⇒ ∃(𝑤,𝜙 ′) ∈ acc ∪ {(𝑤,𝜙)}. 𝐶 |= (𝑤,𝜙 ′)

I.e., the partially specialized patterns maintained in the acc queue

form an overapproxiation of the violating programs for skeleton𝑤 .

Base case: ConsHelper(true, 0, 𝐿) trivially implies the property.

Inductive step: Let the property hold for ConsHelper(𝜙, 𝑖, 𝐿).
Then, either we (a) add (𝑤,𝜙) to acc, (b) we skip over 𝐿[𝑖] or (c)
reinvoke ConsHelper with an incremented 𝑖 . The property holds

immediately in cases (a) and (c). In case (b), we note that the set

of programs 𝐶 that satisfying (𝑤,𝜙) and violating NI is identical
to those that violate (𝑤,𝜙 ∧ 𝐿[𝑖]) due to Observation 1. A similar

argument holds for the multi-counterfactual case (using Obs. 2).

Therefore, by induction, the property holds for all recursive

calls of ConsHelper, and hence, the final set of patterns in acc
(when there are no more calls to ConsHelper) is a 𝑘-complete set

of patterns for𝑤 . □

5.4.4 Atom addition order.

6 EVALUATION METHODOLOGY

6.1 Tool Prototype

We implement our approach in a prototype tool SECANT. SECANT

allows us to generate patterns, and analyze program binaries using

these patterns. For pattern generation, SECANT allows the user

to specify the platform description (§3), and the non-interference

specification (§4.1). By default pattern generation uses the predicate

grammar from Tab. 4. However, we also allow the user specify

custom predicates. Based on these inputs the tool generates a set of

patterns as described in §5. The resulting patterns can be inspected

by the user, and used for binary analysis. Analysis can either be

performed using patterns or the hyperproperty specification. We

discuss the details of this analysis in §6.3.

SECANT uses the UCLID5 [58] verification engine as the back-

end model checker for both, the non-interference checks involved

in pattern generation as well as binary analysis. UCLID5 inter-

nally compiles model checking queries into SMT [5, 6] queries, and

invokes an SMT solver (e.g. Z3 [20], CVC5 [4]) on them.

6.2 Platform Designs

While users can specify their own platform models, we describe

the models considered in our experimentation.

6.2.1 PlatCR: Computation Reuse. The computation reuse plat-

form (PlatCR, Fig. 7) was introduced in §5.1. It is based on microar-

chitectural optimizations that enable dynamic reuse of results of

previous high-latency computations. Our model includes a reuse

buffer (reuse_buf), which records operands and results of multi-

ply operations, which are then reused by future operations with

matching operands. Dynamic (in-hardware) optimization schemes

have been proposed in the literature (e.g., [11, 52, 66]) and also have

been hypothesized to be vulnerable to computational side-channel

attacks [61]. Our model is based on the scheme proposed in [66].

6.2.2 PlatSS: Store Optimization. The store optimization platform

(PlatSS) models microarchitectural optimizations related to the
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1 type lsqc_entry_t = record { valid: boolean ,
2 is_load: boolean , addr: word_t , data: word_t }
3 var lsqc : [lsqc_index_t]lsqc_entry_t;
4 var lptr : lsqc_index_t; // Pointer into LSQC
5 var lscount : int; // Number of memory accesses
6

7 operation store (rs2 , rs1 , imm) {
8 addr = addrgen(regfile[rs1], imm);
9 data = regfile[rs2];
10 if (lsqc[lptr].valid && lsqc[lptr].addr == addr
11 && lsqc[lptr].data == data) {
12 // Store squashing (silent store)
13 } else { // Perform memory access
14 mem[addr] = data; lscount += 1;
15 lsqc = ... // Update the lsqc
16 }
17 }
18 operation load (rd, rs1 , imm) {
19 addr = addrgen(regfile[rs1], imm)
20 if (lsqc[lptr].addr == addr && lsqc[lptr].valid){
21 data = lsqc[lptr].data; // Data forwarding
22 } else { // Perform memory access
23 data = mem[data]; lscount += 1;
24 lsqc = ... // Update the LSQC
25 }
26 regfile[rd] = data;
27 }

Figure 8: PlatSS: Excerpt of the abstract platform modelling

load-store optimizations in the microarchitecture.

store unit in the memory hierarchy. PlatSS models the silent stores

[42, 43] and store-to-load forwarding optimizations. The former

squashes (makes silent) stores that would rewrite the same value

to the memory. Store-to-load forwarding serves store values to

subsequent loads on the same address. While these optimizations

have several implementation variants (e.g. [64, 65, 67]), we base our

model on the relatively simple LSQ cache (load-store queue cache)

[44] which allows combining these optimizations.

We illustrate the LSQ cache through an excerpt of our model in

Fig. 8. The LSQ cache is a FIFO buffer that records load and store

requests. On a load, the buffer is checked for store requests to the

same address. If there exists such a request (with no subsequent

stores to the same address), then the load can be sourced with

this store. On a store too, the buffer is checked for a request, and

the store is squashed (silenced) if the request payload matches the

value written by the store. If a valid entry is not found, the new

load/store performs a full memory request as usual and the LSQ

cache is updated.

6.2.3 Speculation primitives. In addition to the above optimiza-

tions, our consider platform models have branch and store-to-

load forwarding speculative features. We model speculation non-

deterministically, abstracting away from the speculative choice

mechanism (e.g. branch predictor). An instruction that speculates

moves the platform into speculative mode by setting the spec vari-

able (described in §3). Our current implementation only supports a

single speculative frame. For example, we do not allow speculating

on loads within a branch speculation context. However, this is not

a fundamental limitation of our approach.

data
dependency

same 
address

1:Load0:Store 2:Mul
high result

Pattern E

Figure 9: Pattern generated for the STL platform (§7.1).

void test1 (uint32_t idx) { // INSECURE
  // Bounds-check-bypass
  if (idx < arr_size)
-    temp &= arr2[arr [idx] << CL_WIDTH];
+    temp &= arr[idx] * SCALAR;
 }

void test2 (uint32_t idx) { // INSECURE
  idx = idx & (arr_size - 1);
  /* Access overwritten secret */
-  temp &= arr2[arr[idx] << CL_WIDTH];
+  temp &= arr[idx] * SCALAR; 
 }

Figure 10: Modification of SpectreV1 (left) and SpectreV4

(right) litmus tests from [16] to target a computation-unit

side channel (instead of cache-based side channel).

6.3 Binary Analysis

We disassemble the binary using riscv64-unknown-elf-objdump
and obtain the control flow graph (CFG). We unroll the CFG up to a

fixed depth, starting from the function entry point. We instrument

the unrolling at the branch instructions with assumptions corre-

sponding to the branch condition, allowing bypassing the condition

when speculating (i.e., if spec is set). For example “if (x == 0)
stmt” is instrumented as “assume(x == 0 || spec); stmt”. Each
unrolling is analyzed independently w.r.t. a pattern/hyperproperty.

Pattern-based analysis. Given an unrolling, the pattern-based

analysis implements the pattern check described in §2.2.1. That is,

we first identify all subsequences in that unrolling that match the

pattern template. For each such subsequence, we formulate an SMT

query that checks whether the subsequence satisfies the pattern

constraint, and solve it using the UCLID5 model checker [58].

Hyperproperty-based analysis.The hyperproperty-based anal-

ysis follows existing approaches (e.g., [12, 31]). We encode the hy-

perproperty as a safety property over a self-composition ([15, 68])

of the platform model executing the (identical) unrolled programs.

We then use UCLID5 to formulate and solve the resulting query.

7 EXPERIMENTAL RESULTS

Experimental Setup. We perform experiments on a machine with

an Intel i9-10900X CPU with 64GB RAM running Ubuntu 20.04.

As discussed in §6, we use the UCLID5 model checker [58] and Z3

(version 4.8.7) [20] as the back-end SMT solver for the queries that

UCLID5 generates. We mention timeouts for each experiment in

its respective section.

Research Questions. We aim to answer the following questions

through the evaluation: (a) Can our approach generate new pat-

terns, can these patterns be used to detect attacks, do they provide

performance advantages? (b) How well does our approach scale

with platform complexity, and the pattern generation search depth?

(c) How does the choice of grammar affect false positives?

7.1 RQ1: Can we generate patterns for new

vulnerability variants?

To answer RQ1, we considered two extensions to the computa-

tion reuse platform (PlatCR) introduced in §6. In these extensions

we modeled branch speculation and store-to-load forwarding re-

spectively (as discussed in §6.2.3). We then generated patterns for

10
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Figure 11: Verification of Branch and STL speculation litmus tests (see Fig. 10) with hyperproperties and generated patterns.

these platforms based on the speculative non-interference property

HCD (§2). We used a reuse_buf of size 4 (i.e., 4 buffer entries), and

grammar search depth 𝑑 = 3.

Platform

Gen. time

(ww=16)

Gen. time

(ww=20)

Gen. time

(ww=24)

Gen. time

(ww=32)

Branch + CR – 69s

STL + CR 92s 334s TO (1 hour)

Table 5: Generation times for branch speculation and store-

to-load forwarding patterns.

Our approach was able to generate patterns C and D (Fig. 1) for

branch speculation with the computation-unit side channel. For

store-to-load forwarding, we obtain pattern E (Fig. 9). This pattern

corresponds to the situation where the load address matches the

store. However, it is served from memory instead, while the store

is in the store buffer and has not propagated to memory.

We provide generation run times in Table 5. The STL+CR gen-

eration times out on one non-interference query with a platform

word width of 32 bits, hence, we use lower word widths. We believe

that this is an underlying issue with the back-end Z3 solver. The

same hyperproperty (HCD) was used for both (Branch and STL)

cases, demonstrating that hyperproperties allow uniform vulnera-

bility specification. This demonstrates the ability of our approach to

generate new patterns.

7.2 RQ2: Can the generated patterns efficiently

find exploits or prove their absence?

To answer RQ2, we evaluate whether the generated patterns pro-

vide advantages over hyperproperty-based detection. For this, we

considered modified versions of Spectre V1 and V4 litmus tests

from [16, 38]. For each test, we replaced the secret-dependent load

instruction with a multiply instruction that targets the computation-

unit side channel.We call these examples SpectreV1-CR and SpectreV4-

CR respectively, and illustrate two examples (one for V1 and one

for V4) in Fig. 10. We consider 9 such tests (8 unsafe, 1 safe) for

SpectreV1-CR and 4 tests (all unsafe) for SpectreV4-CR.

We then evaluated both hyperproperty-based and pattern-based

detection approaches on these tests with a timeout of 15 minutes

per test. We provide the results in Fig. 11. For each SpectreV1-CR

variant test, we considered two platform configurations: one with

a non-associative cache, (denoted as br:<n> a0) and one with an

associative cache (these are marked as br:<n> a1). The pattern-
based approach verifies all test cases correctly within (∼5 seconds).
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Figure 12: Scalability of pattern generation vs. platform com-

plexity and grammar depth: (a, b) varying set and way in-

dex width of the LSQ Cache (Fig. 8), (c) varying size of the

reuse buffer (reuse_buf in Fig. 7), and (d) generation time and

number of generated patterns for PlatSynth with varying

microarchitectural (pdep) and grammar (gdep) depths (Ex. 3).

In contrast, the hyperproperty-based approach often takes upwards

of 2 minutes, with some timeouts (e.g., br:2, br:3).
In certain cases (e.g., br:1, br:4) the hyperproperty-based check

run time differs between the two cache configurations. We observe

convergence with the non-associative cache (a0), while timing out

with the associative cache (a1). Since the pattern-based approach

operates over architectural state, it is resilient to these (microar-

chitectural) differences. This experiment demonstrates how, by ab-

stracting away complex platform microarchitecture, patterns enable

security verification that scales much better that hyperproperties.

7.3 RQ3: How well does pattern generation

scale?

We now explore the scalability of our approach with the complexity

of the platform and the depth of the pattern grammar.

7.3.1 Scalability with model parameters. To evaluate this, we ex-

periment on the PlatSS (§6.2.2) and PlatCR (§6.2.1) platforms.

For PlatSS, we specify a non-interference hyperproperty with
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0:Ld 1:St 2:Ld
diff address

addr dependency (secret dep. load)

Pattern F

0:Ld 1:St 2:Ld
diff set index

addr dependency (secret dep. load)

Pattern G

Figure 13: (F) Pattern using default grammar (Tab. 4). (G)

More precise pattern after adding the diffindex predicate.

void test_K (uint32_t idx) {
  // Address (A) = (arr1+idx)
  _temp = arr1[idx];    // Ld0: LSQC Index = A[SET_W+1:2]
 arr1[idx+(1<<K)] = 0; // St0: LSQC Index = (A+(1<<K))[SET_W+1:2]
 _temp1 = arr2[_temp]; // Ld1

}

Figure 14: Example illustrating false positives with patterns.

Vsec = {mem}, as the secret input, and Vobs = {lscount} (num-

ber of memory operations propagating to memory) as the public

output. For PlatCR, we specify a non-interference property with

Vsec = {mem}, and Vobs = {mulcount}, i.e., number of multiplier in-

vocations as the public output. We vary size parameters of the LSQ

cache (§6.2.2) and reuse buffer (§6.2.1) components respectively.

For the LSQ cache we sweep through the set index width (same

associativity, larger number of sets), and the way index width (same

sets, larger associativity) and present results in Fig. 12 (a, b). For the

reuse buffer, we sweep through different buffer sizes and present

the results in Fig. 12 (c). We perform generation with depths 3 and

4, and a timeout of 30 minutes.

Observations: In Fig. 12(a, b), we observe a more rapid increase

in generation time with way index width as compared to the set

indexwidth. Our hypothesis is that a larger number of sets increases

the width of indexing bitvectors, while larger associativity increases

the number case-splits (conditionals) since ways are iterated over.

The former increase is slower due to the use of word-level reasoning

in SMT solvers, while the latter has an explicit if-then-else encoding,

and hence a larger formula. We observe a similar increase for the

reuse buffer. In general, the run time depends on how efficiently the

back-end SMT solver reasons about themicroarchitectural structure.

While the run time increases exponentially, our approach generates

patterns on the order of minutes for realistic sizes.

7.3.2 Scalability with search depth. In order to investigate the scal-

ability of our approach with the depth of the grammar, we perform

experimentation with the PlatSynth(𝑘) platform (Ex. 3). This

platform is parameterized by a platform depth pdep(= 𝑘), which
is the number of microarchitectural buffers. The non-interference

property specifies buf0 as the secret input, and bufpdep−1 as public
output. We apply our approach to this platform for grammar depths

gdep ∈ {pdep, pdep + 1, pdep + 2} for varying values of pdep.
Fig. 12(d) presents the run times as well as the number of patterns

generated. For the gdep = pdep case, we generate only one pattern

with skeleton op
1
· · · oppdep and constraint ∧𝑖datadep(op𝑖 , op𝑖+1)

signifying data propagation through these operations.With a higher

gdep, multiple instruction sequences can lead to a violation due

to redundancy. Capturing all violations requires branching with

multiple counterfactuals (Ex. 6). We need 2-counterfactuals for

gdep = pdep+1 and 3-counterfactuals for gdep = pdep+2. Branch-
ing leads to a run time blowup as evidenced in Fig. 12(d).

Check

Result with test_K (Fig. 14) and SET_W set index
K > SET_W + 2 K ≤ SET_W + 2

Hyperproperty SAFE UNSAFE

Pat. F (Fig. 13) UNSAFE UNSAFE

Pat. G (Fig. 13) SAFE UNSAFE

Table 6: Precision of patterns on test_K (Fig. 14).

7.4 RQ4: How does the choice of grammar affect

false positives?

To explore this, we consider a variant of the PlatSS platform. As

in the original model (Fig. 8), a load is sourced from the LSQ cache

if there exists a valid entry with the same address. Otherwise, it is

sourced from memory and updates the LSQ cache. However, in this

variant, a store invalidates all LSQ entries with the same set index

(to avoid loading stale values). We perform pattern generation with

the memory access count (lscount) as public output, with gram-

mar depth 3. We get pattern F (Fig. 13) with an address dependency

between (0:Ld) and (2:Ld), (as in SpectreV1), and where the inter-

vening store (1:St) does not invalidate the LSQ entry (captured by

diffaddr). If 1:St invalidated the LSQ entry, 2:Ld would access the
memory in all executions, leading to no violating behaviors.

This pattern flags the code in Fig. 14 due to a match on instruc-

tions Ld0, St0, Ld1. While the addresses of the store and the first

load (Fig. 14) are different, their set indices are a slice (sub-word) of

the address and hence can be identical. Thus, under the condition

that K > SET_W+ 2, the store will be in the same set as the first load,

and the LSQ entry will be invalidated. Hence, under this condition,

test_K is in fact safe, and pattern F produces a false positive.

To address this, we can add a new predicate diffindex to the

grammar. diffindex checks if the set indices (defined as an address

slice) of two memory instructions are different. Pattern generation

with this augmented grammar results in pattern G (Fig. 13). This

pattern only flags test_K if K ≤ SET_W+2, and is hencemore precise.

We summarize these observations in Tab. 6. Thus, grammars over

(high-level) architectural state result in patterns with more false

positives. The choice of grammar exposes a precision-complexity

tradeoff - more precise patterns can be generated at the cost of a

carefully tailored, microarchitecture-specific grammar.

8 DISCUSSION AND LIMITATIONS

Applicability and Scope. We have applied pattern generation to

speculative (e.g., §7.1, Fig. 9) and non-speculative (e.g., §7.3, Fig.

13) execution, and multiple side channels (§6.2.1, §6.2.2). Crucially,

this is possible due to the power of non-interference-based speci-

fications: they can express varied attacker scenarios (e.g., secure-

programming, constant-time [9, 32]) and platform semantics. While

our approach is general, it requires formulating non-interference

specifications that accurately capture the threat model. While this

requires much care and expertise, the effort in developing these

specifications can be amortized over patterns generated, and subse-

quently, programs verified/exploits found.

Platform complexity. Our evaluation (§7) considers abstract plat-

form models (ref. §6) that are similar to those adopted in previous

SH approaches (e.g., [12, 31, 78]). While these abstract models ex-

pose security relevant microarchitectural detail, they are much

simpler than full processor RTL. Larger designs will result in more

12
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costly analysis (for both, taint analysis andmodel-checking required

in the non-interference checks).

In this paper our focus has been identifying core theory and

techniques for pattern generation. The main requirement of our

approach is a platform model that is amenable to static taint analy-

sis and symbolic model-checking. These can be performed on RTL

using off-the-shelf verification tools (e.g., JasperGold, Yosys/Sym-

biYosys [13, 77]). Applying our approach to RTL hardware is an

impactful direction for future work. Further, techniques extracting

abstract models from RTL (e.g., [26, 78]) could aid in this direction.

Pattern Grammar and False Positives. While patterns using architec-

ture level predicates aremore robust/microarchitecture-independent,

they lead to more false positives. As demonstrated in §7.4, using

specialized grammars that expose microarchitectural execution de-

tails (e.g., cache-indexing, replacement/prediction policies) helps

reduce false positives. However, this is at the cost of (a) less per-

formant analysis (it is abstraction that makes pattern-based ap-

proaches scale) and (b) more microarchitecture-dependent patterns.

Opinion in literature is divided on whether or not to expose mi-

croarchitectural detail to software analyses (e.g., [10]). We view

the grammar as a tradeoff: a generic grammar leads to abstract

and thus efficient analysis at the cost of more false positives, while

a specialized grammar is more precise at the cost of being more

microarchitecture-specific. While our current approach requires a

user-specified grammar (Fig. 6), future work could automate this,

e.g., by using counter-example guided predicate discovery [3, 18].

9 RELATEDWORK

Microarchitectural optimizations and vulnerabilities. Our work tar-

gets hardware execution vulnerabilities, from Spectre and Melt-

down and their variants [39, 40, 45, 63] to more recent attacks (e.g.,

targeting store/line-fill buffers [8, 48, 62, 72]). Good overviews of

these vulnerabilities may be found in [7, 24, 34]. These vulnera-

bilities are possible because of microarchitectural optimizations

such as instruction reuse [66] and silent stores [42, 44] which we

have used in our experiments. Attacks exploiting these mechanisms

were hypothesized in [61] among which some have recently been

demonstrated on actual hardware (e.g., [50]).

Software Analysis. Several approaches perform software analysis,

adopting different specifications, models, and techniques.

Semantic hyperproperty-based verification. Semantic hyperproperty-

based approaches (e.g., [12, 21, 30, 31]) formulate security as a hy-

perproperty [15, 41, 60, 68] over executions of the program on an

abstract platform model. These serve as inputs to our approach.

Symbolic software analysis. While the earlier works develop

high-level hyperproperties that capture varied microarchitectural

mechanisms, other approaches adopt more specific security mod-

els (e.g., constant-time execution). This allows them to develop

specialized and more efficient analysis techniques (see [25] for a

systematic evaluation and comparison), based on symbolic execu-

tion (SE) [19, 33, 37, 74] or relational symbolic execution (RelSE)

[16, 17, 23]. Our work is orthogonal to these; our main goal is

pattern generation, not binary analysis. Our approach is also not

limited to a specific (e.g., constant-time) leakage model. We can

perform generation for new vulnerabilities/leakage models as long

as they are representable using a non-interference property.

Pattern-based detection. Previous work performing pattern-based

detection (e.g., [51, 59, 69]) manually defines patterns. We develop

an approach to systematically generate patterns that are complete

(up to a skeleton size), thus complementing these approaches.

Microarchitectural verification/abstraction. The patterns that we

generate can be thought of as software-side abstractions extracted

based on our semantic platform analysis.

Contract-based abstractions. Approaches (e.g., [32, 75]) develop

security contracts at the hardware/software interface. By proving

that (a) the hardware refines the contract and (b) software satisfies

the contract, these approaches guarantee software security. While

the contract can also be viewed as a hardware/software abstraction,

it is of a different nature than the patterns we generate.

Security verification/side-channel analysis. Several approaches

directly verify hardware RTL w.r.t. security properties either for-

mally (using symbolic techniques) [22, 71, 73] or using faster but

incomplete techniques (e.g., fuzzing) [54–56, 70]. Finally, there are

approaches that perform automated extraction/validation of side-

channels with white/black box designs [29, 53, 57, 76]. While this

too can be seen as extracting security relevant hardware abstrac-

tions, it needs to be paired with software analysis techniques to be

useful for software security verification.

10 CONCLUSION

In this work, we presented an approach to convert a given plat-

form model and non-interference-based security hyperproperty

into a set of attack patterns. Our automatic generation approach

improves on manual pattern creation (which can result in missed

patterns) by guaranteeing that the generated patterns capture all

non-interference violations up to a certain size. We implemented

our approach in a prototype tool. Our evaluation resulted in the

identification of, to our knowledge, previously unknown patterns

for Spectre BCB and Spectre STL, and other vulnerability variants.

We also demonstrated improved verification performance using

generated patterns as compared to the original hyperproperty. By

providing a systematic way to generate patterns, ourwork combines

the best of both worlds: formal guarantees of hyperproperty-based

specification and scalability of pattern-based verification.
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