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Abstract

Classification of the sex of Drosophila suzukii with pre-trained networks

by

Drew Marcus Bischel

There has been a recent trend to applying deep learning methods compared to

shallow methods for automatic identification of insects. Classification strategies

built around algorithms with deep learning architectures at their center like YOLO

and others require large amounts of data to making learning successful and are

often augmented with tens of thousands of images or more to achieve excellent

performance. Recent pre-trained models of deep neural networks have significantly

reduced the amount of data required to create accurate classification algorithms by

ingesting and training on a huge data set different than the target task and using

the resulting encoding to transfer information to a new task. This work shows that

recent performance gains from models pre-trained on huge data sets are effective as

image encoders for the classification of the sex of spotted wing drosophila (SWD). A

data set of 676 SWD microscope images is created to evaluate classification models

for use in automation of the sterile insect technique (SIT), which requires large

amounts of male SWD to be identified and separated. Binary classification models

trained on top of image encoding from new models based off of visual transformers [3]

pre-trained on over 400 million images with CLIP [2] are able to achieve accuracy as

high as 96.7% when trained with LogReg and similar classifiers on augmented data

from the SWD image set.
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Other models pre-trained on the ImageNet data set of 14 million images

also performed well, approaching 92% with VGG models and 90% with MobileNetV2

model. Image segmentation of the data set is then investigated as a source of cor-

roboration for the identification of the morphological features responsible for classi-

fication, and an out-of-distribution data set is collected to evaluate classification and

segmentation results on more diverse and difficult examples. While robust identifi-

cation of features special to SWD remains, classification accuracy is not a guarantee

on data which differs substantially from the factory or laboratory setting on which

it is trained and additional data may be needed for training on use-cases outside of

SIT such as for applications on the farm or for automated identification in insect

traps. This emphasizes a fact which is not elaborated on for many insect detec-

tion models in the literature: that their models are not likely robust in situations

where the data is significantly OOD and for situations which may not be adequately

covered without specialized augmentation methods or additional data. Nonetheless

results indicate that pre-trained models have advanced to the point where they can

play a central role in securing the food supply from potentially billions of dollars of

damages every year from pests such as SWD.
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Figure 0.1: A colorful image taken during a family reunion.

I dedicate this

to my mom and dad,

who take up a very big space in my heart.
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Chapter 1

Introduction

1.1 Motivation

Drosophila suzukii Matsumura, commonly referred to as spotted wing dros-

ophila (SWD), is an invasive species of fruit fly responsible for inflicting significant

damage to the global supply of soft and stone fruits such as strawberries, black-

berries, raspberries, cherries, blueberries, grapes, nectarines, peaches, apricots and

others. The economic impact can be severe; some estimates indicate that there is

potential for over $700M worth of crop damage due to SWD every year in the United

States alone [7, 8, 9]. D. suzukki is capable of causing such widespread crop damage

for a number of reasons. The female has a serrated ovipositor whose insertion causes

physical damage to the fruit and very often leads to secondary infections from other

insects and pathogens within the oviposition wound. Eggs deposited in the fruit

eventually turn into larvae which causes the fruit to soften and rot. Compounding

this, SWD has a tendency to target fruits in early growth stages before they are

ripened, resulting in significant damage before they can be harvested. D. suzukii

represents a challenge to existing integrated pest management (IPM), as the species

1



has shown resistance to some insecticides and has multiple generations within a sea-

son, further reducing the viability of traditional insecticides, which themselves can

have a negative impact on biological control agents and leave chemical residues on

fresh produce [10, 11].

Sterile insect technique (SIT) is an environmentally conscious method which

has shown success in the past at suppressing outbreaks of many insects. SIT func-

tions by releasing sterile insects that reduce the population by competing for mates.

Sterile insects are not capable of self-replicating. Integrated with additional control

strategies, the SIT has succeeded at thwarting insect pests in high-profile situations

like the Mediterranean fruit fly, Mexican fruit fly, melon fly and others [12].A key

component of developing a system that is able to facilitate SIT is one which identifies

and separates males from females so that sterilization may be induced one gender; in

the case of SWD the males are the target to be collected. Studies on the capability

of machine learning to identify between male and female specimen of Drosophila

suzukii would contribute to the food grower community’s effort to manage this pest.

The main purpose of this work is to procure a data set capable of being modeled

to classify male SWD specimen with fidelity and to demonstrate that pre-trained

networks are suitable candidates to develop industrial classification applications for

SIT and other entomological applications.

In addition to industrial scale rearing operations, monitoring and surveil-

lance equipment could be utilized in traps on the farm itself. The monitoring of

traps is considered in integral part of SWD IPM [13]. Public or private land spaces

that keep tabs of local insect populations would benefit from availability of such

technology.

The World Health Organization (WHO) identified entomological equip-
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ment as an important pillar of focus for research needed to address the global threat

of vector-borne diseases that affect humans [14]. Drosophila in particular are of-

ten used as specimen for research in genetics, which in many circumstances uti-

lizes highly skilled professionals who can identify morphological differences among

generations. Dissemination and application of image classification technology may

be helpful in identifying species with targeted traits or by detecting morphological

mutations over generations of fruit flies. While the primary focus of this work is

placed on automated study of SWD morphology for applications in crop production

and food health, there could be relevant overlap with other entomology and health

projects currently in progress. The bounty of data that entomological data sets offer

may help feedback into the machine learning community to contribute to advances

in detection technology related to other biological data sets which may have an im-

pact in medicine. Therefore it is worthwhile to produce data sets that improve the

community’s ability to identify morphological characteristics. With recent advances

in capability of machine learning to consume and analyze large amounts of data,

regular evaluation of new technologies is needed in industry in order to improve

sectors such as health, food security, medicine as well as the broader economy.

1.2 Preliminaries

A small amount of background material is helpful to introduce some of the

concepts related to the motivation and the methodology in later sections. First a

brief summary of the spread of Drosophila suzukii to Santa Cruz county and the

pacific northwest, along with some information about the usage of sterile insect

technique to manage this species are discussed. Then a brief introduction of some
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of the terminology and concepts used in the methodology for image classification

is followed by a relevant though non-exhaustive review of entomological machine

learning applications and their classification results before transitioning into the

methodology used in this work.

1.2.1 Historical notes on the spread of SWD in the Pacific North-

west

The spotted wing drosophila (SWD) is a pest that causes damage to soft-

skin fruits such as cherries which has in recent years established itself in the con-

tinental United States, Canada and Europe. Though the earliest records of this

species originate from Japan in 1916 and are described by Matsumura from Japan

in 1931, the species has also been observed in Korea, Thailand and India. Evidence

of dispersion of SWD was gathered in Oahu, Hawaii in 1980 and afterwards in other

Hawaiian islands [15]. Observations of SWD in the US mainland were first reported

in August 2008 in Santa Cruz County in California, and the following year in May

additional infestations were reported along the central coast of California in cherry

orchards [7, 15]. The rapid spread of this serious pest was of heightened concern to

local farmers; by 2009 the presence of this species had expanded to over 20 counties

in California from San Diego all the way up to Humboldt County [15]. Subsequent

trapping efforts confirmed the presence of SWD in Washington and Oregon, as well

as other observations in British Columbia and even Florida [15, 7, 16]. By the time

of its detection, eradication of this invasive species was considered impossible by the

California Department of Food and Agriculture [7]. Through 2010 to 2012 the fly

continued to spread into the eastern states and is likely observable in many more

states.

4



1.2.1.1 Economic concern of SWD

The disadvantageous effects of SWD on local economies are primarily con-

cerned with raspberry, blackberry, cherry, blueberry crops, and especially with the

potential to damage central California’s large strawberry production; however, this

species is adaptable to a wide range of non-agricultural hosts, which enables its per-

sistence in woodland habitats that often contain wild blackberries and cherries in

the summer as well as other fall-bearing fruits. [17, 18, 8]. The yield loss estimates

for 2008 when damage was first noticed vary from negligible to 80%, depending on

which crops and locations were most affected. One estimate from 2015 pins the an-

nual economic loss to growers at $ 700 million [9]. Economic losses are expected to

fall as producers learn to manage SWD more effectively though new control tactics

[19].

1.2.1.2 Notes on the biology of SWD

D. suzukii has a brown to yellow abdomen with dark bands and strong red

eyes. Males have a single dark spot on the tip of each wing, which is an potential

target for any image based classification algorithm that is designed to distinguish

gender, since the females do not have the spot; however, the orientation of the fly

in the image may restrict the amount of pixels and lighting conditions necessary to

see the spot. The foreleg of the male has sex combs that look like dark bands on the

first and second tarsi,and they are much more difficult to see at low magnifications

than the male’s spotted wing at the wing tips. The female has a visible serrated

ovipositor which is the most important distinguishing factor in comparison to the

males.
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1.2.2 Management of SWD with SIT

1.2.2.1 Sterile Insect Technique

The sterile insect technique (SIT) is an approach to biological insect control,

where sterile males compete with fertile males to mate with the females. Since the

sterile males are not capable of self-replicating, the females that they mate with

cannot deliver offspring. The effects of X-ray photon irradiation are applied to the

insects’ reproductive cells in order to induce sterilization. A large amount of sterile

males are released into the targeted area, where the population decreases accordingly.

The advantage of SIT compared to other IPM techniques is that it does not leech

chemical pesticides into the regional environment and it does not introduce non-

native species into an ecosystem; however, SIT may take repeated applications. SIT

has been successfully implemented to manage outbreaks of the screw-worm fly, which

caused annual losses to the meat and dairy supplies in the 1950s, and successes have

also been demonstrated on fruit fly pests such as the Mediterranean fruit fly, the

melon fly, and the Mexican fruit fly, as well as other insect species.

Estimates taken from multiple operational SIT programs and rearing facil-

ities indicate that from 1963 to the present over a trillion sterile insects have been

delivered in trans-boundary shipments. While they mostly consist of the Mediter-

ranean fruit fly, they include fruit flies, screw-worm flies, tsetse flies, moths and

mosquitoes. Protection of horticultural and livestock industries through reductions

in crop and livestock losses, as well as improvements in access to high value mar-

kets without quarantine restrictions have been benefits of using the technology. The

return on investment is further raised by protecting the environment from disrup-

tive invasive species and reducing human health and environment costs of frequent
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insecticide use [12].

1.2.2.2 Studies of SIT for Drosophila suzukii

SIT has been successfully implemented via a proprietary method, suppress-

ing wild female D. suzukii by up to 91% compared to the control suites with sustained

and dynamically targeted releases of sterile males in strawberry-growing open poly-

tunnels [20]. A study of irradiation doses to sterilize D. suzukii found that females

irradiated with 50 Gy or more had almost no fecundity, while experiments irradiat-

ing males with 120 Gy decreased egg hatch rate exponentially [21]. Another study

attempted to lower the amount of radiation required by combining Wolbachia sym-

biosis, which has sterilization effects in its host flies, with the irradiation method

[22]. Still other pest management strategies which aim to disrupt the reproductive

cycle are actively researched. For example, gene-driven approaches for the suppres-

sion of pests which favor biased inheritance from generation to generation have been

studied [23]. See [24] for a detailed overview of SWD management strategies and

information.

1.2.2.3 Role of image classification in SIT

One of the major challenges identified for the deployment of SIT is the

automation of as many parts as possible of the process of rearing, sex separation,

irradiation, handling, packaging and releasing sterile specimen [25]. In order to

separate male from female specimen a classification algorithm can be used to au-

tomatically identify which sex the image belongs to and then send a command for

processing of the insect. It may be necessary to extend this application to other

aspects of the handling or irradiation processes, depending on the details of the SIT
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operation. For example, continuous surveillance of separated populations may be de-

sirable to ensure that population of one sex (e.g. females) does not contaminate the

other (males). Classification algorithms developed in the cloud could be accessed

by field techs to identify presence of insect populations to be targeted with SIT.

Auxiliary surveillance objectives may be needed to identify the absence or presence

of a target on a slide, or the location of specimen in a chamber.

1.2.3 Supervised machine learning

The field of machine learning is a well-developed area of focus with many

decades of fundamental and ground-breaking research stemming from ideas in com-

puter science, mathematics, physics and engineering. In the last decades, in large

part due to increases in availability of memory and compute, we have seen a tremen-

dous growth of research demonstrating progress in the performance of machine learn-

ing algorithms. One paradigm of machine learning called supervised learning focuses

on problems where each data point made available to the algorithm is in the form

of an input feature and an associated output label which forms the supervisory sig-

nal. The goal of the algorithm is to predict the output label when given unseen

input features. The performance of the algorithm is measured through some sort of

generalization error procedure used to validate its accuracy.

There are numerous challenges that are typically considered for supervised

learning algorithms. Among these are the complexity, size, balance and distribution

of the training data, dimension of input, pathological redundancy or noise in the data

set, flexibility and robustness of the algorithm to out-of-distribution data, tendency

of the algorithm to overfitting or excessive bias, and many others. These issues can

be addressed within the model or architecture itself or by exhaustive amounts of
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new or augmented data.

1.2.4 Recent big data approaches on images and text

1.2.4.1 ImageNet

The ImageNet database is a collection of more than 14 million images

which have been hand labeled in more than 20,000 categories. Fortunately for this

work, this data set includes a variety of animals, plants, insects, transparent man-

made objects and other items seen in photographs across the internet, which should

be relevant for insect classification. This resource was created to establish a clear

community goal for improvement in AI as well as to meet demand for the large

amount of data needed to enable generalization among machine learning methods

[26], and forms the basis of the ImageNet Large Scale Visual Recognition Challenge

[27]. It is often used as a benchmark and pre-training module for initializing weights

in large neural networks and other image consuming models. In the case of this work

it is used to initialize the weights of the VGG and MobileNet models.

1.2.4.2 Semi-supervised and unsupervised learning

In recent years pre-training methods have advanced the way we consume,

analyze and utilize large amounts of data. One of the key advantages of pre-trained

networks is that they are reusable for a wide variety of tasks; one no longer needs

to train a network to extract the elementary features of an input, which reduces the

amount of data required to achieve performance gains.

Particularly, advances in natural language processing (NLP) have shown

that task-agnostic objectives such as masked language modeling can be scaled across

many orders of magnitude in model capacity, data consumed and training compute
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to achieve continued performance gains [28, 29]. Generative language models like

GPT-3 trained at such large scales have exhibited zero or few-shot generalization,

demonstrating an impressive range of capabilities whose designs were not directly

intentional [30]. Further progress on this front is using image input to augment and

improve linguistic understanding from AI models which generate text output using

image and text inputs [31]. One recent set of models that use natural language text

paired with images combines them into a separate image and text encoding that will

be used in this work. They capture a diverse set of training material at a large scale,

collectively called CLIP, learned from a data set of 400 million (image, text) pairs

[2].

1.2.5 Related work

A review of studies of image capture and classification shows a recent trend

toward applying deep learning methods compared to shallow learning methods for

automatic identification of insects [32].

A data set of fruitfly species Bactrocera Zonata and Bactrocera orsalis con-

sisting 2000 images was used to train YOLOv5 for species classification and reported

85% accuracy [33]. Another work produced a training set of over 10,000 images from

microscope slides, augmented to over 190,000 images, of various mosquito species was

used to train models with high precision and sensitivity (reported 99% and 92.4%

respectively) in order to simultaneously localize and classify species of the gender

of field-caught mosquitoes with a focus on the multi-stage use of the YOLOv3 al-

gorithm [34]. More work investigates training algorithms combining custom CNNs

with SVMs, random forests and other models to carry out classification of 760 fruit

fly images of four different categories of Bactrocera species images with complex
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backgrounds, with accuracy results of 92% for CNN+SVM architectures [35].

One recent publication demonstrated promise in determining the physio-

logical age of the eggs of two Tephritid fruit fly species with accuracy of between 75%

and 83.16% depending on the species with 892 images (augmented to over 35,000

images) using the Inception v1 algorithm [36].

High resolution wing and aculeus images from species of the genus Anas-

trepha have been used in the development of automatic identification of fruit flies

were able to achieve high accuracy by fusing multiple learning techniques (combining

decision tree, k-nn, SVM, and other approaches), whose objectives included studying

the morphological relevancy of certain regions of the fruit fly during classification

of species [37]. A follow-up to their work studied deep feature-based classifiers for

fruit fly identification and found that VGG16 and VGG19 achieved high accuracy

(95.68% and 94.34%) on their data set of 301 2560x1920 images of three categories

of fruit fly species [38]. The work of this thesis has overlap with theirs, as the male

wing and female serrated ovipositor are identified as important regions of classifica-

tion for SWD; however, the resolutions used for classification in this work are much

smaller.

1.3 Methodology

In this section the algorithms underlying the image classification used in

later chapters are introduced. First an overview of the pre-trained networks used

as an essential component of image classification is given, then the concepts behind

the probe classifiers used for binary classification are discussed, followed by the

framework used for image segmentation. Lastly the performance metrics, validation
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and uncertainty concepts are introduced which will help convert the classification

results into an interpretable form which are a subject of analysis in the later chapters.

1.3.1 Pre-trained networks

Collecting data for a classification task can be tedious and expensive. The

data can occur with low frequency or be difficult to find, and the proper imaging or

data observation equipment must be carefully selected beforehand so that the data

set will be applicable to the environment where the algorithm will be employed.

Pre-trained networks have proved invaluable for transfer learning, where features

learned from a large data set independent from the task data set can be used in

conjunction with the task data set. There are numerous methods for training these

image encoders from classification data, which are used as a base which can either be

fine-tuned to the target data set or used as input to an additional network trained on

the specific classification data. Advancements in transfer learning have allowed the

amount of data required for deep learning to be successful to be reduced significantly.

While this is exactly what should be expected in the future of advancement in AI (the

effort to succeed at your task will be made progressively smaller), it is nonetheless

remarkable that we are able to routinely produce algorithms comparable to or better

at classification than a human with relatively small amounts of training data.

1.3.1.1 ImageNet-based pre-trained models

The Visual Geometry Group at Oxford produced pre-trained models which

became highly recognized and subsequently used in many classification applications.

The VGG net models, VGG16 and VGG19, with 16 and 19 layers of small 3x3 Con-

vNet models come from submissions to the ImageNet Challenge 2014 competition
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Figure 1.1: This is an example depiction of a VGG16 network. VGG19 has an
additional layer on each of the last three blocks of conv layers. Input as shown goes
sequentially from top with output on the bottom with fully connected layers.

where they achieved first and second prize in localization and classification respec-

tively [39]. VGG16 and VGG19 had approximately 138 million and 143 million

parameters respectively, though it was found that about 100 million could removed

from the fully connected layer without losing performance. The goal of the VGG

models was to increase classification accuracy by increasing the depth of ConvNets.

VGG net has an input size of 224x224 RGB images, and passes its input

through either 16 or 19 3x3 convolutional layers of stride-1, with five layers of max

pooling each downsampling between the convolutional layers. Behind this there are

three fully-connected layers followed by a softmax layer.

The MobileNets series of models are often used for tasks where a relatively
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Figure 1.2: This is an example depiction of a MobileNetV2 network. MobileNetV2
uses depthwise convolutions to improve efficiency in collecting image features. Input
as shown goes sequentially from top with output on the bottom with fully connected
layers. Each convolutional layer has either a stride s=1 or stride s=2 depthwise
convolution layer, and repeats a number of times (green arrows). Each residual
bottleneck layer has an expansion factor t which increases the number of channels
output by the Relu 1x1 conv layer at the start of the bottleneck (as described in [1]

)

efficient model is needed at minimal performance loss. Specifically, this work uses

an implementation of MobileNetV2 [40] trained on ImageNet data. It distinguished

itself from previous models by using lightweight depthwise convolutions in its inter-

mediate layers, which apply a single convolutional filter per input channel.

1.3.1.2 CLIP models

The CLIP models used in this work are composed of an image encoder

and a text encoder that are used to incorporate visual information with text in-

formation under joint training (see for example p.5-37 in [2]). The text encoder is

a transformer architecture [41] with modifications reported in [42]. The base size
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Figure 1.3: This is a stride-1 type bottleneck layer used in MobileNetV2. An input
with k channels is expanded with expansion factor t to (t×k) channels with the first
operation, and after the depthwise convolution the output becomes h

s × w
s × (t× k)

for an input with height h and width w. There is a residual connection after the 1x1
Conv-Relu operation added to the output of the final 1x1 linear conv operation.

Figure 1.4: This is a stride-2 type bottleneck layer used in MobileNetV2, which
works similarly to the stride-1 block except that the stride reduces the output image
size by half and there is no residual connection after the 1x1 Conv-Relu operation.
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Figure 1.5: CLIP uses contrastive learning, which utilizes both positive examples
and negative samples such that the loss function maximizes the distance between
negative examples and minimizes the distance between positive examples. As shown
there are N2 − N negative examples and N positive examples. CLIP models are
trained on a dataset of 400 million (image, text) pairs and uses contrastive objectives
to learn image representations from text. See [2] for a full description of their work.

for their Transformer uses a 512-wide model with 8 attention heads stacked into 12

layers with 63M parameters. While the text encoder is not explicitly used in this

work, it could be useful in future work, especially if a multiple classifiers are used

in conjunction on top of a single pre-trained CLIP model for instance to tell if the

slide is empty or has a fly in it.

The image encoders for CLIP are developed in two main variants, one is

a ResNet variant and the other models are based off of visual transformers, specifi-

cally ViT-B/32 and ViT-B/16 from [3]. Two of the ResNet variants, RN50x16 and

RN50x4 are modified from [6] in the EfficientNet style, while RN101 and RN50 are
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Figure 1.6: This is a depiction of the VIT transformer encoder layer described in
[3].

Figure 1.7: The implementation used for CLIP follows the original implementation
but with an additional batch normalization layer applied on the output of the com-
bined image patch-position embeddings.
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Figure 1.8: This is a depiction of the modified ResNet-D with some example portions
modified to reflect the improvements from [4] in the down-sampling and improve-
ments in anti-aliasing and equivariance from [5]. RN50 and RN101 use versions of
this type of model, while RN4 and RN16 use versions of efficientNet from [6] which
scale depth and width of convolutional layers at a fixed ratio as the network deepens.

described in [2] modified from [4]. According to [2] the ViT transformers are about

3x more compute efficient than the CLIP ResNets.

1.3.2 Binary classification

Binary classification refers to the task of identifying members of a popula-

tion from two classes, which in the case of this work is the task of separating SWD

into male and female classes. There are many algorithms developed to carry out

binary classification and their applicability depends heavily on the complexity or

difficulty of the problem to be solved. For image classification it is often necessary

(as it is in this work) to encode the images into a condensed feature representation

which is useful for binary classification. This is done with the pre-trained models,

however an additional decision must be made which specifies how the image encod-

18



ing will be converted into a binary positive or negative identification. Other neural

network architectures may be required to use the image embedding effectively for

generative tasks which are more complicated than binary classification, but a linear

model is sufficient to carry out binary classification from the pre-trained embeddings

for the purposes of this work, as it is most convenient to implement. A linear model

is one which makes a classification decision based on a linear combination of the

elements of the feature vector. They are often preferred over non-linear classifiers

because they are easier to use and take less time to train.

A logistic regression classifier (also known as a MaxEnt or Logit classifier)

is a linear classifier which is a common choice for carrying out binary classification,

where the prediction probability is estimated with a logistic function p(x⃗) = 1

1+e−β⃗·x⃗ .

Where linear regression seeks to minimize the squared error loss between the outcome

of the k-th data point yk and the prediction for that output pk, logistic regression

minimizes log loss for the k-th data point with the function − ln pk if yk = 1 and

− ln(1 − pk) if yk = 0. This can be combined into a single expression called the

cross entropy of the predicted distribution from the actual distribution where the

loss L =
K∑
k=1

−yk ln pk − (1− yk) ln(1− pk). This sum is the negative log-likelihood

which when minimized is equivalent to maximizing the likelihood function itself, so

this process is also sometimes referred to as maximum likelihood estimation which

maximizes the probability that a particular logistic function models the data set.

Another linear classifier used in this work is the linear support vector ma-

chine. The idea behind a support vector machine is to construct a hyperplane in

feature space that separates positive examples from negative examples with a max-

imum margin. In this process the input feature vector x⃗i is assigned either +1 or

-1 depending which class it is in. A hyperplane can be defined as the set of points
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x⃗ which satisfies w⃗⊤x⃗ − b = 0, where w⃗ is a vector normal to the hyperplane and

b/∥w⃗∥ is the offset of the hyperplane from the origin along w⃗. For training data that

is linearly separable a hard-margin can be defined so that a feature vector x⃗i where

w⃗⊤x⃗i−b ≥ 1 is assigned to the +1 class and a feature vector satisfying w⃗⊤x⃗i−b ≤ −1

belongs to the -1 class. This can be written as an optimization problem that mini-

mizes the L2 norm of the square of the normal vector to the hyper plane ||w⃗||2 over

w⃗ and b subject to the constraint that yi(w⃗
⊤x⃗i−b) ≥ 1, where yi = ±1 is the class of

the data point. This is extended with a soft-margin for cases where the data are not

linearly separable by using the hinge loss function Lhinge = max(0, 1− yi(w⃗
⊤x⃗i− b))

and a regularization parameter λ > 0 to minimize L = λ∥w⃗∥2+ 1
K

K∑
k=1

Lhinge over all

K training examples. The regularization parameter λ determines the flexibility of

the margin size versus requiring that all xi belong on the correct side of the margin.

This can be further extended by replacing every dot product with a nonlinear kernel

function, which may result in non-linearity of the original input space but still uses

a hyperplane in the transformed feature space. A kernel to use for example is an

inhomogeneous polynomial kernel k(x⃗i, x⃗j) = (x⃗i · x⃗j + r)d. An advantage of SVMs

is that they are effective in high dimensional spaces where the number of feature

dimensions is greater than the number of samples; however, if the number of features

is much greater than the number of samples careful selection of kernel functions and

regularization are needed to alleviate over-fitting.

1.3.3 Image segmentation

In the previous section binary classification was discussed and a few com-

mon algorithms were outlined that are able to distinguish between positive and

negative classes. These algorithms have various extensions into the realm of multi-
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class classification, where instead of positive and negative examples there are more

than two classes that the algorithm is trained to distinguish between. In particular

the sparse categorical cross-entropy loss is used to carry out multi-class classifica-

tion. Formally the cross entropy between the true and predicted distribution can

be defined in terms of the Shannon entropy and the Kullback-Leibler divergence to

quantify the average extra number of bits required in excess of the Shannon entropy

for events from the true distribution to be encoded by the predicted distribution.

Multi-class classification has many applications; one such application is

image segmentation, where each pixel is assigned a class prediction which results in

the output of an image mask containing the locations on the image classified into

one of multiple exclusive categories. While informally the image segmentation in

this work is still used to carry out binary classification a number of additional class

possibilities are included which distinguish the fruit fly from the background as well

as pixels belonging to the edge of the male or female fruit fly bodies.

The added complexity of pixel-wise predictions and multi-class classifica-

tion require additional architectures that are useful for transmitting information

both across an image and across smaller subsections of an image. U-Net [43] is a

convolutional architecture which was originally developed for biomedical image seg-

mentation that achieved great success in this domain. It has been adapted to many

tasks and is a widely used template for machine learning projects today which carry

out tasks such as brain and liver image segmentation, protein binding site prediction,

medical image reconstruction and other image-to-image translation tasks.

U-Net is built from a down-sampling and up-sampling structure where re-

peated applications of convolutions followed by rectified linear units and max pooling

operations are used as a bottleneck similar to the architectures discussed in previous
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sections which successively reduce spatial information into an image encoding. Dur-

ing the up-sampling portion of the network where the resolution is increased from

the base of the image encoding in order to eventually provide a full image mask,

higher resolution network levels are concatenated from the down-sampling portion

in order to preserve spatial information. It is called U-Net because the resulting

architecture is depicted in a U-shaped sequence of operations in a diagram of the

model.

Pix2Pix [44] is another such image segmentation architecture based off

of U-Net which is applicable across many different multi-class classification tasks

including image segmentation. The decoder for this model which carries out the

up-sampling layers is freely available in TensorFlow examples and can be combined

with pre-trained encoders such as MobileNetV2 introduced previously by using skip

connections from intermediate layers.

1.3.4 Performance metrics, validation and uncertainty

A number of performance metrics exist to characterize the data retrieved

upon application of a prediction by considering errors on positive or negative exam-

ples. If the prediction is positive and it is correct then it is called a true positive Tp,

if it’s incorrect it is called a false positive Fp, and similarly for negative examples

(Tn and Fn).

The precision is defined in terms of true and false positives as

precision =
Tp

Tp + Fp

and is used to quantify how many retrieved positive elements are correct out of

all positive elements. For example, this would quantify the fraction of male fruit
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flies retrieved in a collection basket of true males and false males (aka females).

A high precision implies that the collection of positive retrieved elements has low

contamination with false positives. This essentially calculates the purity of the

positive collection basket by estimating the probability that a male in the male

basket is actually male.

The recall on the other hand quantifies how many correct positive elements

are retrieved out of all possible positive elements that could have been retrieved.

Thus the recall is defined as

recall =
Tp

Tp + Fn

and it would for example quantify how many male fruit flies were retrieved out of

the total available male fruit flies. A low recall implies that many males fruit flies

are incorrectly classified as female and put into the female basket. This is also called

the true positive rate (TPR).

The false positive rate (FPR) is called the specificity, which quantifies how

many negative elements are correctly classified as negative. The specificity is defined

as

specificity =
Tn

Tn + Fp

and a high specificity means little contamination of the positive basket with false

positive examples. For example, a high specificity means that there are few female

fruit flies put into the male basket.

If the data set is balanced one can simply compare the number of false

negatives and false positives to get an idea of how the algorithm is performing. One

advantage of these performance metrics is that if the data set is not balanced then

they still give information in a format that may carry over to operational settings,
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Figure 1.9: This is an example of high specificity and low recall. A classifier with
low recall loses desired class instances by accidentally putting them into the failed
test bin. For SWD recall is the number of males in the passed-bin out of the total
males available. Specificity is the number of females in the failed-bin out of the total
females available.

provided the distribution in the operational setting is close to the experimental

setting.

It is essential that these metrics are calculated on validation data, which

has not been used for training, for otherwise the model would be biased to correctly

classify elements which may not have been correct if they were not included in the

training data, as will be the case for elements observed in an operational setting. If

the number of validation samples used to make these comparisons is small then fur-

ther steps can be taken to estimate performance in the general setting. A common

method that attempts to extrapolate results of training a model to the operational

setting without discarding the validation data is called k-fold cross validation. This

method splits the available data set into a number of folds k, where 1
k are used as

validation data for extrapolation to the operational setting, and k−1
k of the remain-
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Figure 1.10: This is an example of low specificity and high recall. A classifier with
low specificity loses negative examples to the positive class (with false positives).

ing folds are used for training data. This process is repeated again by using one of

the other folds as validation and placing the already-used fold back into the training

data set. Averaging over the performance results of k different models each trained

separately and gives an idea of the standard deviation of the results. More sophisti-

cated methods exist to utilize even more of the data, but typically a splitting of the

data into for example k = 5 folds is acceptable. While these performance metrics

and validation methods are useful for estimating the effectiveness of the model on

future unseen data and for informing the relevancy of the results, further analysis

may be carried out to investigate how the model sees individual examples.

If the classification algorithm outputs a probability for the prediction (or

if it can otherwise be extracted) then the entropy of a prediction can be useful for

quantifying how confident a model’s predictions are. The Shannon entropy is defined
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Figure 1.11: This is a depiction of k-fold cross-evaluation where k=5 and the evalu-
ation data is split into 5 different sets with associated training data. One model is
trained for each set and the metric of interest for each training run is averaged over
all of them.

in terms of a probability distribution p(x) for outcome variables x as

E = −
∑
x

p(x) ln p(x).

This is useful for quantifying the confidence of a prediction from a model; if the

probability distribution over prediction variables is close to uniform, then the entropy

is higher and the confidence of the prediction is lower. If on the other hand the

probability of a prediction is close to 1 for one outcome and close to zero for the

others, then the entropy is close to zero and the confidence of the prediction is

high. This can give information about which data points may have been incorrectly

classified with high confidence. If such a case happens then it is possible that the

model will not generalize well to similar data points. Higher entropy examples may

also give some information about the prediction, for example if it is a difficult sample

for the model or there were many data points in the data set that looked similar

to each other but belonged to separate classes. The entropy may be customized
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to emphasize particular prediction variables by taking only a partial sum over the

relevant variables. Further care may be needed to understand the limitations of this

type of usage.

Some classification algorithms do not estimate a probability directly of a

binary classification, but rather output a decision with no further information. In

this case an algorithm called LIME [45] may be used. LIME stands for local inter-

pretable model agnostic explanations and was an attempt to understand predictions

output by a model by sampling data with perturbed patches of features (for ex-

ample pixels in an input image) to produce synthetic data and by measuring how

unfaithful the synthetic data is at approximating the decision of the model on the

original data. This gives a way to output a representation of the features that were

important in classifying a particular input sample. A canonical example presented

is one in which a husky is classified as a wolf, and LIME demonstrates that the snow

in the background picture was key to making the identification of the wolf. This is

of course spurious, as huskies are also observable in snowy environments; however

it may be an indication that the data set was biased. The disadvantages of this

algorithm are that it takes potentially a long time to produce predictions from slow

models and that the effectiveness of the output of the explanation may be dependent

on the domain and may not give information as specific as what the inner workings

of the model are capable of producing with some modification.
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Chapter 2

Classification of Drosophila suzukii

2.1 Overview

Drosophila suzukii is an invasive species of fruit fly responsible for causing

concerning amounts of damage to the global supply of soft and stone fruits. Some

estimates indicate that there is potential for over $700M worth of crop damage due

to SWD every year in the United States alone [7, 8, 9]. Sterile insect technique (SIT)

has been identified as a viable means for control of this pest[24]. One of the major

challenges identified for the deployment of SIT is the automation of sex separation

in the process of collecting enough sterile insects [25]. In order to separate male

from female specimen a classification algorithm is needed to automatically identify

the sex of the insect in an image taken by the processing system.

A review of studies of image capture and classification of insects shows a

recent trend toward applying deep learning methods compared to shallow learning

methods for automatic identification of insects [32]. One recent work demonstrated

that deep features in algorithms like VGG16 and VGG19 pretrained on ImageNet in

combination with SVM and other classifiers can achieve excellent accuracy for insect
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species identification from high resolution pictures [38]. On the other hand, systems

based off of the YOLO algorithms for localization and identification of insect species

and gender have also shown success, especially when the number of wild-caught

biological samples is large enough for a sufficient training data set [34]. Approaches

like these typically augment the data sets to produce an order of magnitude or more

the amount of data compared the original data sets.

This work investigates whether pre-trained networks are useful for clas-

sification of sex on a newly collected data set of Drosophila suzukii images taken

from microscope slides. The recent CLIP algorithm and its associated models have

shown great promise in solving many classification tasks [2]. Deep features from

six different CLIP models are compared to three networks pre-trained on ImageNet:

VGG16, VGG19 and MobileNetV2. Binary classification tasks are probed with logis-

tic regression and SVM classifiers. Impressive accuracy is achieved even before data

augmentation and for microscope slides captured at lower resolutions than tested for

VGG16 and VGG19 in [38]. The main contributions of this work are the collection

of a Drosophila suzukii data set categorized by male and female and a demonstra-

tion that models such as CLIP trained on massive amounts of internet data can

be successful at classification of biological data and achieve higher accuracy than

well-established models such as VGG16 and VGG19 and MobileNetV2.

2.2 A data set of SWD images

Experimental settings

The experimental setup will be discussed in this section. Details about the

data set, its collection and modification will be presented with the image processing
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Scope Magnification # of examples
27x 429
17x 271

Table 2.1: Shown is the number of samples used for training data from each approx-
imate scope magnification. The 17x data set utilizes the clone tool from GIMP to
remove specimen that are overlapping and may have deleterious effects on certain
aspects of learning, while preserving the important features for identifying between
male and female.

and machine learning strategies used in this work.

2.2.0.1 Introduction to the data set

The data set used for image classification and segmentation in this work is

comprised of 676 Drosophila suzukii images, evenly split between categories of 338

males and 338 females.

2.2.0.2 Collection of the data set

The Drosophila suzukii specimens’ images studied in this experiment were

collected from the Santa Cruz region by researchers based out of UC Santa Cruz.

The specimens were identified as positive for Drosophila suzukii before being housed

at the Sinsheimer labs for Biological Sciences on campus at UC Santa Cruz, where

they were imaged with a Dino-eye lense at magnifications of approximately 17x and

27x, which generated microscope images of pixel-size 2592×1944. Because of the

limited availability of a large number of specimens, some flies are imaged under

different position and lighting conditions to create additional data.
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Figure 2.1: Four example images of SWD taken at different magnifications: (a)
image of a male D. suzukii at 27x magnification, (b) image of a male D. suzukii at
17x magnification, (c) image of a female D. suzukii taken at 27x magnifcation, (d)
image of a female D. suzukii taken at 17x magnification.
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2.2.0.3 Pre-processing the images

In order to build a data set consumable by a wide variety of machine learn-

ing pipelines screen-captures of the microscope slides were taken such that each

screenshot fit each specimen into a 512×512 pixel image. The images were then

classified and labeled with “m” for male or “f” for female within each filename be-

fore the file extension. The microscope images taken at the lowest magnification

( 17x) contained fruit flies of the opposite sex, which may not be problematic for

some generalized object detection algorithms, but were an unnecessary complica-

tion for the machine learning approach presented in this work where the industry

application would focus on single specimens on an assembly line. The clonetool

provided by the GNU Image Manipulation Program (GIMP) was used to effectively

remove specimens which contaminated images centered on a main target specimen.

At higher resolutions these images where overlapping parts of flies, such as the legs,

may have a small effect on classification efficacy (e.g. of the sex combs on male spec-

imens’ legs), but at the resolutions used within this work they are not readily visible.

Images where the main body, wing or other important visible features such as the

serrated ovipositor are obscured by nearby flies are discarded. In addition to the

binary classification tag for the sex of the specimen, segmentation images delineating

the body of each fly from the background were hand-drawn with a mouse.

2.3 Binary classification with pre-trained networks

The pre-trained models and probe classifiers use for classification of the

data set are described in this section.
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2.3.1 Models pre-trained on ImageNet

2.3.1.1 VGG16 and VGG19

The VGG net models, VGG16 and VGG19, with 16 and 19 layers of small

3x3 ConvNet models come from submissions to the ImageNet Challenge 2014 com-

petition where they achieved first and second prize in localization and classification

respectively [39]. VGG16 and VGG19 are relatively slow models with approximately

138 million and 143 million parameters respectively, though it was found that about

100 million could removed from the fully connected layer without losing performance.

The goal of the VGG models was to increase classification accuracy by increasing

the depth of ConvNets.

VGG net has an input size of 224x224 RGB images, and passes its input

through either 16 or 19 3x3 convolutional layers of stride-1, with five layers of max

pooling each downsampling between the convolutional layers. Behind this there are

three fully-connected layers followed by a softmax layer.

2.3.1.2 MobileNetV2

The MobileNet series of neural networks are developed to improve efficiency

so that machine learning models can be used on mobile devices. MobileNetV2 was

designed to be more efficient by making convolutions from different channels separa-

ble, which reduces computational overload while performance dips only slightly [1].

It consists of a bottleneck of convolutional layers similar to how the VGG16/19 mod-

els operate, but the central layers are formed with units of depthwise convolutions

and the layers in the center are repeated to make it deeper.
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2.3.2 CLIP models pre-trained on internet data

2.3.2.1 ViT-B/16 and ViT-B/32

The visual transformers for CLIP closely follow the implementation from

[3], which splits an image up into patches and combines patch embeddings with

positional embeddings and an additional classification token, before being put into

a the transformer encoding, which outputs into a MLP layer for classification. The

main difference between the original model and the visual transformers used in

CLIP is that there is an extra batch normalization layer between the patch-position

embedding and the encoder input.

2.3.2.2 RN50x4 and RN50x16

The RN50x4 and RN50x16 models are ResNets trained in the style of

EfficientNet from [6], which scales the depth and width (e.g. layers and channels) of

ResNet’s parameters with a fixed ratio.

2.3.2.3 RN50 and RN101

The RN50 and RN101 models are also ResNets but with improvements from

a the ResNet-D module from [46] which improves performance in the down-sampling

blocks. The modifications for CLIP also implement [5] which uses BlurPooling to

fix aliasing for down sampling between convolutional layers. The last modification

is an attention pooling mechanism that the last layer ends with, where the query is

conditioned on the global average-pooled representation of the image.
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2.3.3 Probe classifiers

Four classifiers were used to test the effectiveness of image encoding from

each pre-trained network: a support vector machine (SVM) with a linear kernel,

another implementation of a linear SVM optimised with stochastic gradient descent

(SGD), an SVM trained with a polynomial kernel of degree 3, and a logistic regression

classifier. Before input into these classifiers the outputs of the embeddings are shifted

by mean and scaled by the variance of their values during the optimization process.

These methods are implemented using Python 3.7.6, TensorFlow2, PyTorch

1.7.1 and Scikit-learn 1.0.2. All training, testing and development of these pipelines

were run within Google Colab sessions, which have variable GPU types, amounts of

RAM and processing speed.

2.4 Results

The results of the experiments with pre-trained models from CLIP data

and ImageNet data adapted to learn the sex of SWD are presented in this section.
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Accuracy

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 0.9230
±0.0148

0.9306
±0.0187

0.9261
±0.0278

0.9365
±0.0280

ViT-B/16 0.9571
±0.01272

0.9571
±0.0144

0.9512
±0.0087

0.9674
±0.0103

RN50x16 0.9230
±0.0266

0.9262
±0.0239

0.9202
±0.0131

0.9203
±0.0253

RN50x4 0.9274
±0.0262

0.9231
±0.0182

0.9333
±0.0173

0.9261
±0.0191

RN101 0.9201
±0.0259

0.8964
±0.0126

0.9349
±0.0146

0.9113
±0.0146

RN50 0.9348
±0.0256

0.9290
±0.0108

0.9247
±0.0222

0.9336
±0.0256

VGG16 0.8890
±0.0107

0.9142
±0.0211

0.4794
±0.0239

0.9172
±0.0252

VGG19 0.8817
±0.0278

0.9172
±0.0169

0.4836
±0.0464

0.9096
±0.0337

MobileNetV2 0.8682
±0.0205

0.8906
±0.0258

0.5360
±0.0684

0.9007
±0.0297

Table 2.2: A table showing accuracy for binary classification with different pre-
trained models. To augment the data, the images were flipped vertically and hori-
zontally once, multiplies the data by 3x. The model ViT-B/16 performed the best
with a logistic regression classifier but also performed well with all SVC classifers.
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Specificity

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 0.9258
±0.0204

0.9341
±0.0302

0.9137
±0.0306

0.9415
±0.0204

ViT-B/16 0.9447
±0.0182

0.9480
±0.0221

0.9400
±0.0259

0.9693
±0.0105

RN50x16 0.9020
±0.0430

0.9045
±0.0367

0.8785
±0.0331

0.9175
±0.0272

RN50x4 0.9188
±0.0478

0.9216
±0.0250

0.9083
±0.0288

0.9447
±0.0332

RN101 0.9009
±0.0460

0.8840
±0.0278

0.8971
±0.0188

0.8983
±0.0219

RN50 0.9262
±0.0434

0.9314
±0.0256

0.8935
±0.0421

0.9182
±0.0429

VGG16 0.9202
±0.0450

0.9181
±0.0405

0.0358
±0.0185

0.9135
±0.0291

VGG19 0.8697
±0.0777

0.9139
±0.0113

0.0422
±0.0153

0.9154
±0.0400

MobileNetV2 0.8245
±0.0259

0.9059
±0.0341

0.1529
±0.0965

0.9164
±0.0413

Table 2.3: A table showing specificity for binary classification with different pre-
trained models. The model with highest specificity was the ViT-N/16 version from
CLIP. A classification algorithm with high specificity experiences few false positives.
A high specificity in classifying positive samples (males) means that the males se-
lected for SIT will have a a low amount of false positive females in the collection of
males.
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Recall

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 0.9217
±0.0296

0.9242
±0.0336

0.9398
±0.0265

0.9294
±0.0523

ViT-B/16 0.9717
±0.0180

0.9683
±0.0146

0.9660
±0.0231

0.9635
±0.0336

RN50x16 0.9480
±0.0256

0.9534
±0.0211

0.9687
±0.0170

0.9245
±0.0289

RN50x4 0.9409
±0.0414

0.9244
±0.0317

0.9619
±0.0246

0.9135
±0.0545

RN101 0.9438
±0.0401

0.9084
±0.0166

0.9779
±0.0167

0.9248
±0.0133

RN50 0.9442
±0.0250

0.9272
±0.0151

0.9618
±0.0077

0.9507
±0.0172

VGG16 0.8504
±0.0445

0.9061
±0.0372

0.9840
±0.0108

0.9245
±0.0479

VGG19 0.8937
±0.0634

0.9207
±0.0263

0.9869
±0.0133

0.8977
±0.0591

MobileNetV2 0.9174
±0.0197

0.8736
±0.0450

0.9785
±0.0151

0.8848
±0.0257

Table 2.4: A table showing recall for binary classification with different pre-trained
models with augmentation. The highest recall shown was using the PolySVC clas-
sifier which failed to converge for VGG and MobileNetV2 models, leading to all
predictions that were all female. The best results consistent with high recall and
high specificity are again for ViT-B/16. While the ResNet-based clip models also
had high recall, their specificity was a few points lower than the ViT models.
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Precision

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 0.9142
±0.0288

0.9293
±0.0221

0.9058
±0.0302

0.9334
±0.0241

ViT-B/16 0.9384
±0.0234

0.9410
±0.0276

0.9321
±0.0327

0.9648
±0.0121

RN50x16 0.8970
±0.0411

0.8956
±0.0434

0.8754
±0.0315

0.9058
±0.0378

RN50x4 0.9092
±0.0590

0.9135
±0.0204

0.9015
±0.0312

0.9300
±0.0522

RN101 0.8940
±0.0477

0.8750
±0.0159

0.8928
±0.0200

0.8901
±0.0133

RN50 0.9224
±0.0391

0.9211
±0.0306

0.8860
±0.0506

0.9146
±0.0403

VGG16 0.9110
±0.0431

0.9105
±0.0346

0.4726
±0.0237

0.9048
±0.0279

VGG19 0.8629
±0.0827

0.9029
±0.0200

0.4749
±0.0442

0.9052
±0.0444

MobileNetV2 0.8216
±0.0214

0.8892
±0.0422

0.5050
±0.0566

0.9038
±0.0491

Table 2.5: A table showing precision for binary classification with different pre-
trained models with augmentation. Precision is proportional to the fraction of true
positive (males) detected out of the total number of predicted males.
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2.4.0.1 Augmentation tests

A number of augmentations were tested, including inversions, the RandAug

function, image rotations, color threshold alterations. Comments on a few of these

are included in the supplementary sections relevant to this chapter. Due to the

small size of the data set and close resemblance of the training data to the test data,

large amounts of augmentations are avoided. Some of the augmentation strategies

could be further explored (e.g. with a smaller magnitude or more precise alteration

to the image in order to better match the test data distribution). The simplest

augmentation strategy of using horizontal and vertical flips turned out to be the

best among the strategies tested.

2.5 Discussion

The accuracy for each model is presented in table 2.4. Results indicate that

the CLIP models are consistently better at learning from the SWD data set than the

models trained on ImageNet. While the results from VGG16/19 and MobileNetV2

are still impressive, almost reaching above 90% accuracy, the CLIP models uniformly

perform better when trained on the same data set with the same probe classifiers.

This is not unexpected but still somewhat surprising because in [2] the authors

indicate that CLIP is week at zero-shot tasks that are highly specialized or complex

such as identifying satellite images, lymph node tumor detection, counting objects in

synthetic scenes and more. Preliminary tests indicate that CLIP has a difficult time

identifying gender of SWD in zero-shot settings while using only natural language

prompts compared to images using the text-encoder included with the CLIP models.

Nonetheless when the image encoding from CLIP is adapted with LogReg or SVC
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algorithms, accuracy eclipses 92 % with all CLIP models tested and is observed as

high as 96.7% with ViT-B/16 + LogReg in this experiment. All of the models showed

impressive specificity and recall except for the PolySVC probe classifier, which had

some trouble fitting to VGG and MobileNetV2 embeddings and did not converge at

the tolerances tested. These impressive results could be further improved with more

specialized augmentation, iteration and extension of the classifier models operating

on the output of image encoding from the pre-trained models, model combination

and with larger amounts of data specialized for the rearing or laboratory settings.

Conrastive pre-training with natural language is further corroborated by

these results which show that the resulting image encoding from CLIP models out-

perform models used widely in for bench-marking and industry applications. Extend-

ing applications of CLIP’s image encoding are not limited to this task of identifying

sex of SWD, as the same embeddings can be calculated once and used in conjunction

either with another adapted classifier or the text encoding that is also provided by

CLIP for zero-shot settings, which may be useful for example at identifying if there

are other objects left in the camera scene while identifying the sex of SWD (such as

another type of insect or other obstructive smudges or objects). While models of the

CLIP variety have immediate applications where it may be useful, it is likely that

zero-shot models like CLIP and its text-based ancestors like GPT-3 will continue to

improve to the point where even the specialized and complex tasks will be solvable

with minimal (or no) description of the task. This work serves as a demonstration

of the wide applicability of available machine learning models and also as a snapshot

of AI research which is rapidly moving towards a future where extensive testing and

adapting of models by humans will automated by large models trained on massive

public data sets.
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In the near term, these results show that the main objective to classify

the sex of SWD is achievable for a industrial or laboratory setting with pre-trained

networks and with small data sets of varying magnification. Further work could still

be done to evaluate what data and how much is needed to extend the effectiveness

of these models to settings which will be useful out in the field on the farm or

in other natural settings which host SWD. Trapping systems which are useful for

monitoring presence of SWD could be automated to provide evidence of an outbreak

on a farm without need for tedious observation by specialized personnel who have

been trained to identify SWD among other species which may be caught in a trap.

It would potentially be helpful to identify different out-of-disribution data which

would diversify the robustness among different tasks outside of the research settings

explored in this experiment.
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Chapter 3

Segmentation of Drosophila suzukii

3.1 Overview

Spotted wing drosophila (SWD) is an invasive species of fruit fly which has

in the last decades spread from east Asia across the Pacific Ocean to the mainland of

the United States, where it has proliferated across the entire country. While in the

previous chapter an effective set of algorithms was used to demonstrate efficacy in

binary classification of male and female SWD for applications to control the spread

of this pest, questions about the viability of the data for use-cases beyond the labo-

ratory setting would inform further data collection efforts aimed at these use-cases,

for example under man-made plastic backgrounds which may be used in traps, or for

other scientific purposes such as observation of SWD under natural conditions and

at magnifications and lighting conditions not explored in the original work. While

analysis of binary classification strategies gives a strong idea of the performance of

a particular model on a data set, further exploration of the explanation or reason-

ing for a model’s prediction is sometimes desired for a training data set. One such

machine learning strategy that gives insight into the training data is image segmen-
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tation, where the individual pixels belonging to the object being identified in the

image are also output by the model. The only disadvantage of segmentation is the

extra effort it takes to produce a training data set; though many studies have set

out to automate this process too by reducing the amount of data needed to produce

segmented versions of the data set.

The objective of this work is to investigate the overlap provided by this

laboratory segmented data set on out-of-distribution (OOD) and to use image seg-

mentation as an alternative means to explore the morphology of SWD. In addition

to the use of image segmentation to analyze both in-distribution data and OOD

data, specialized data augmentation obtained from the segmentation is explored as

a strategy to improve robustness in classification results. Image encoding from Mo-

bileNetV2 is used in conjunction with Pix2Pix, a modified version of U-NET for bi-

ological image segmentation, to classify between male and female specimen of SWD.

The confidence of the model’s prediction is defined in terms of entropy. Evaluation

of the machine confidence are presented and analyzed to show three main results.

(1) The introduction of specialized augmentation shows increased confidence from

the model under evaluation of various OOD challenges for SWD when aggregated

over predictions from regions of certain pixel classification, (2) that closer inspection

of the pixel-wise machine confidence can yield the morphological features responsible

for positive or negative classification of SWD, and (3) that this segmentation model

trained under laboratory conditions retains slight ability to give insights on OOD

data not included during training, particularly when the resolution is high enough

to show details on morphological features.
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3.2 Results

This section will first describe the creation of a small OOD data set intended

to test the limits of models trained on the laboratory SWD data set. The next

subsection will outline the creation of a segmentation data set based off of the

laboratory data set. Following that, the pre-trained model used for image encoding

and its decoder used for segmentation will be described before the augmentation

strategy is covered in the next section. Finally, quantitative and visual results of

machine confidence from experiments of three different resolutions are presented.

3.2.1 An out-of-distribution data set

A small data set of 76 SWD examples (38 male and 38 female) are taken

with a Sandmarc macrolense at 10x magnification from an an iPhone 13 mini cam-

era. All images are taken at a local wild raspberry patch located in Santa Cruz

which harbor wild SWD. A SWD attractant was concocted and traps were created

from used water bottles following the advice from [52] closely to observe the pres-

ence of SWD at the raspberry patch. While the water bottle trap was capable of

collecting SWD its design was not optimized for taking photographs; even though

it was transparent moisture from the attractant reduced visibility and therefore all

traps were discarded. The attractant was fortunately very potent and attracted

many SWD which allowed for photography of the insect. Photographs were taken

in the late morning with natural lighting conditions and in the early evening with a

supplemental LED light.

Examples from the data set are shown in figure 3.1. The first two images

are males, one on a plastic lid used as a drop-in substitute for plastic that might
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be used on an outdoor SWD surveillance device, and the other male SWD is on a

leaf. The other two images are of females, one on a different leaf and the other on

a raspberry. The pictures in the data set were cropped in order to roughly fit the

flies onto the image size, which is 512x512, like the original laboratory set.

This data set is pooled for analysis to the additional data leftover from

the original laboratory data set. These additional laboratory images comprised of

SWD images which were unused for training because they were more difficult due

to important features being obscured by the lighting and positioning of flies in the

image, or because part of the fly was severely cut off in the image; however they

retain an important role in analysis to gauge what kind of errors can arise due to

non-ideal conditions when the fly is not completely visible. This data set is referred

to in figures as the ”leftover set”. A secondary small data set of laboratory examples

also unused as training data whose sexes were difficult for this author to identify

were analyzed separately; this set is referred to as the ”challenge” or ”difficult” set

in figures.
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Figure 3.1: An out-of-distribution (OOD) data set is collected for the purposes
of evaluating the robustness of segmentation results on data taken outside of the
laboratory, which is referred to as the OOD data set. This data is used to evaluate
segmentation results for unusual cases far away from the intended use-case. Shown
are some example images from the data set of SWD under natural and artificial
lighting conditions: (a) a male on a man-made surface, (b) a male on a leaf, (c) a
female on a leaf and (d) a close-up of a female on a raspberry.
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3.2.2 Segmentation training data

The segmentation of the laboratory data set was carried out by mouse and

hand in Microsoft Paint by erasing the relevant portion of the image and saving it.

Software was written to convert the color image into a mask of integers corresponding

the associated sex and pixel type (either edge, body or background pixels) of the

SWD. The edge pixels were generated automatically by translating the zeroed out

body mask along multiple directions by 3 pixels and taking the non-zero difference

between pixels of the central original mask and each translated mask and adding

them together. Once the edge mask is calculated it is labeled with the appropriate

multi-class label. These included background pixels, female body pixels, female edge

pixels, male body pixels and male edge pixels.

This technique was effective enough at generating masks for the training

data set. For the OOD data set where color variation includes perfect white pixels

due to bright artificial lighting from the LEDs there could be some artifacts brought

into the segmented masks. While they are not used for training any of the models

in this work, an improved version would use an industry software to create the mask

data set.

An example result from the segmentation data set is shown in figure 3.2

for a female. Many fine details are captured from the segmentation work, including

traces over the legs of fly. The algorithm must be able to distinguish between the

background and the transparent wing of the fly, which could be anticipated as a more

challenging task than identifying the opaque body of the fly. The wings and the

serrated ovipositor at the bottom of the fly are some of the most important features

needed to identify the sex of the fly; however at high resolution the sex combs may
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Figure 3.2: Shown (left panel) is a specimen from the original laboratory data set
and (right panel) the corresponding segmented example from data set of segmented
training labels. For this depiction of the segmented example, the background is
yellow, the body of the fly is dark blue and the edge pixels are green.

be visible on the legs of the male, though the accuracy of hand segmentations may

impede the efficacy of leg features if they are even visible at the resolutions tested.

3.2.3 Augmentation strategies used during segmentation training

Multiple sources of augmentation that were used were random alterations

to the images that included changing attributes such as the image quality, bright-

ness, hue and saturation, as well as application of Gaussian blurs. A specialized

augmentation tested for the purposes of this experiment was to be able to cut and

paste rotated flies on a set of background slides to see if that would help expand

the data set in an effective way. An example of this rotation is shown in figure 3.3.

The general observation with the augmentation is that it must be limited in scope

to make the newly minted augmented training data somewhat similar to what one

expects to see on the validation data. Most of the augmentation used in this work

is not up to the task of altering the image in a way that it is similar to the difficult

examples or the out-of-distribution data. In fact in many instances the application
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Figure 3.3: One of the desired augmentation strategies was to rotate the fly on the
image itself to remove spatial correlations between parts of the fly and parts of the
background. Shown here is the fly rotated and overwritten onto the same back-
ground, though during augmentation a random background was chosen to remove
correlations between specific backgrounds and their corresponding fly.

of the augmentation reduces the accuracy on all of the validation data regardless of

its quality; however it does affect the confidence of the model prediction. With more

careful administering of these augmentations it is likely more improvement can be

made on the final binary classification accuracy of the model.

3.2.4 Pre-trained image encoder with trainable decoder

Choosing a pre-trained model for development of a segmentation was done

so that the compute time would not be as expensive with minimal concern towards

accuracy. MobileNetV2 was therefore a choice that carries overlap with the previous

chapter’s results while being speedy and maintaining respectable accuracy. The

segmentation model that uses these embeddings is a modified version of U-Net called

Pix2Pix and is frequently used as a demo model by the community. Future work can

explore the likely performance gains one will obtain by using the CLIP and other

models in conjunction with other decoders.
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3.2.5 Notable SWD features in machine confidence

In this work a customized application of entropy is used to gauge the con-

fidence of the model’s prediction and the effects of augmentation on this confidence.

At the pixel level, a separate application of entropy is used to visualize the confidence

of the model’s prediction under different circumstances of data input.

3.2.5.1 Pixel-wise entropy and selected comparisons

To visualize the confidence of the model’s output, the entropy can be cal-

culated over the five classification variables for each output pixel. Pieces of SWD

morphology and variations between sexes can then be identified within segmentation

and entropy visualizations.

Throughout this chapter images of pixel-wise entropy and partial entropy

have a color scheme for each image that goes from zero to one, with dark blue being

closer to zero and bright lime being closer to one, where the data is normalized

such that the minimum entropy is zero and the maximum entropy is one. The same

applies to visualizations of partial entropy (for example in comparing edge-pixel

probabilities only).
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Figure 3.4: A size 224x224 female SWD from the training data set.
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Figure 3.5: Visualization of the pixel-wise entropy of a 224x224 female SWD from
the training data set. The watermark from the 3-pixel translations to create the
edge-classified pixels is clearly visible around the outline of the image; these pixels
are likely the highest entropy because there is most variation among the and drawings
and the edges are some of the highest contrast pixels used to differentiate body from
background. The transparent female wings have higher entropy along the creases
within the wing as well.
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Figure 3.6: Visualization of the normalized partial-sum of pixel-wise entropy from
selected groupings of pixel classification of a female SWD from the training data set.
(Left panel) The partial entropy over pixels classified parts of the male or female
body. For this example the lower entropy points are along the bottom part of the
wing and towards the center of the body. (Middle panel) Since this example is from
the training set over-fitting was likely occurring on the details of the features inside
the body pixels of the fly and have strong contrast consistent with the augmentation
and edge-creation procedure. Nonetheless it is natural to expect parts of the wing to
have high entropy since it is transparent. (Right panel) The partial entropy between
the body and background pixels.

Figure 3.7: Visualization of the pixel-wise entropy of a female SWD from the train-
ing data set cut into portions that were (left panel) classified as body pixels, (mid-
dle panel) classified as positive for male-body pixels and (right panel) classified as
female-body pixels. For this training set example it is very clear that the predic-
tion is going to be female, since there are more female pixels. When you only keep
entropy to a threshold of ε ≤ 0.3, only 1 pixel of male-body classification remains
and there are 7 pixels of female body classification. Whereas before the threshold
there was 1944 male pixels and 10972 female pixels. The ratio between female-body
to male-body pixels widened from 5.64 to 7.0 when taking the lower entropy pixels.
The same happens for edge pixels but is for obvious reasons less reliable than for
body pixels since there are fewer edge pixels to train on than body pixels. The ratio
in this example for edge-specific pixels goes from about 1.6 to 2.1 after the entropy
threshold.
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3.2.5.2 Identifying features of SWD with pixel-wise entropy

In this section an example segmentation for a male from the validation set

will be presented and described in the context of its morphological relevance to the

classification algorithm, namely its spotted wing and darkened backside.

One result demonstrating this is shown in figure 3.8: a male from the

validation set. The classifier identifies most of the fly as male. To check which

portions of the image are most strongly identified as male, the partial sum of entropy

across m-body and f-body pixel probabilities is calculated and presented in figure

3.9. The darkest portions of the body of the fly in the image represent the lowest

entropy (highest confidence) prediction from the model. Comparing the male and

female body-pixel cuts and using a threshold to only keep the pixels with entropy

less than 0.5 in figure 3.11 it is clear that the spots and darkened bottom region of

the fly are important to the classification decision.

A second example of this is shown in entropy results corresponding to

figure 3.12. This demonstration is somewhat interesting because the second wing

underneath the fly has been classified as female. If this were isolated it would be

difficult to tell whether this wing is male or female because of the lighting conditions

and angle that the wing is presented to the camera. This high entropy thin wing

is visible in figure 3.13. Making the threshold cut at 0.5 for the entropy, the thin

cross-section wing disappears and what is leftover is the wing that is much easier to

use for classifying the fruit fly as male. This is shown in figure 3.15. This also may

give insight into why the data has a high false negative rate (misclassifying males

into a female bin); the wings of the males when they are on the side sometimes

do not display the distinct spot and the algorithm may classify those examples as
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Figure 3.8: (Left panel) A male from the validation set, (middle panel) its human
drawn mask, (right panel) the predicted output from the model. For the true masks
and predicted masks the light red pixels are identified as male-body pixels, the stark
red pixels outlining the fly are male-edge pixels, the light blue pixels are female-body
pixels, the yellow pixels are female-edge and the purple pixels are background pixels.

female. In the case of this example the algorithm successfully labels the image as

male, since there is another wing available and the darkened bottom is also a key

identifier.
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Figure 3.9: A male from the validation set is depicted from its male-female body
pixel-wise entropy which is relatively high in most parts of the fly but lowest among
the wing-tip and back regions of the fly.
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Figure 3.10: A male from the validation set depicted from its entire pixel-wise en-
tropy. The lower entropy regions of the wing-tip and back are still visible, but
the contrast is reduced because the edge pixels’ entropy are included in the full
distribution.
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Figure 3.11: A male from the validation set depicted from regions of entropy less
than 0.5 for (left panel) male-body pixels and (right panel) female-body pixels.
There are almost no pixels on the right hand side, so this is a strong prediction
for male. Some of the highlighted regions on the male pixels however are the same
regions that are necessary for a human to identify between male and female. The
segmentation model has more confidence in morphological features that are more
obviously present.

Figure 3.12: A 224x224 male from the validation set which is classified as a true
positive. The sideways wing with lower cross-section with respect to the camera
angle is mostly classified as female, where the rest of the image is classified as male.
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Figure 3.13: The entropy here across male and female body pixels is again lowest
along the wing especially by the male spot and also it is low on the bottom and
towards the legs.

Figure 3.14: The second wing which is thin from this vantage point is completely
classified as female, likely because the spots are not as visible with the lighting
conditions when the wing is turned on its side.
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Figure 3.15: Restricting the view to the lowest entropy points below 0.5 shows that
the upper wing encapsulating the spot as well as the darkened bottom of the fly are
important points for classification.

3.2.5.3 Prediction entropy for counts of body and edge pixels

In the previous section the entropy localized on each pixel was calculated to

show the confidence of a model’s predictions and how it depends on the morphologi-

cal features of SWD which are visible in the input image. In this section Entropy for

binary predictions based on pixel counts are described, where each set of prediction

pixels from an input image are turned into one entropy which quantifies an aspect

of the model’s overall prediction between male and female. The objective is to see

how the confidence of the model operates on the scale of the whole validation set.

To form a probability that acts as a proxy input into entropy, the output

from the model must be interpreted so that a decision can be made whether the input

image is male or female. While choosing the lowest pixel-wise entropy predictions

from body pixels is sometimes a more accurate strategy in classifying between male

and female, the objective is to see how much of the image may be confused between

male and female. Therefore a simple collection of the male classified edge and body
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pixels compared to the female classified edge and body pixels will give a rough idea

of the overall output picture. Letting the proxy probability pi be the number of

pixels ni belonging to class i contained in the image divided by the total number of

pixels N =
∑

i ni from the classes considered in the image so that pi = ni/N , the

entropy is calculated between the male and female predictions:

E =
∑
i

pi log pi.

Since only male and female edge and body pixels are considered (and not background

pixels) there are 4 categories instead of 5 for the sum. The number of background

pixels varies as a function of the orientation of the fly (assuming a well-trained

model) and will make male and female comparisons more difficult if it is included

in the estimation of the model’s confidence. That is not to say it wouldn’t be useful

for other purposes, such as taking size of the fly and orientation into account, or

estimating other qualities about the prediction that may occur for example during

out-of-distribution inputs unseen by the classifier. For the purposes of this analysis

only 4 categories are considered, so the maximum entropy that is possible to observe

is log(4) ≈ 1.386, though such balance is rarely encountered.

For multiple experiments this entropy is calculated and displayed under

evaluation from multiple different sources of data, including the validation data

set, a small set of challenging samples, and the leftover data of medium difficulty

combined with the OOD data. A histogram of the entries in the confusion matrix

is produced which places instances of true-positive (Tp), true-negative (Tn), false-

positive (Fp) and false-negative (Fn) results into bins of entropy.
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3.2.6 32x32 experiments on SWD

This is an experiment with size 32x32 images of flies which examines the

affects of augmentation on the SWD data sets. Using a smaller resolution degrades

some of the detailed features and makes color-based features more important. The

deleterious effects from augmentation which are unintended may be less relevant at

this scale so that the confidence of the model’s prediction can be examined under

the affects of augmentation without degrading the accuracy. Another advantage

of the 32x32 size images is that more of them are able to be held in memory on

a Google Colab instance for detailed analysis. Improvements utilizing persistent

storage or making analysis without storing as much in RAM could improve this

minor implementation issue.

For this experiment 32x32 size images were used in an experiment to train

two models out to the same number of epochs (180 epochs). One of the models

did not augment its training data and the other augmented virtually every other

sample. There was a 10% probability of applying each augmentation sequentially to

each input image. Approximately 47% of the data encountered augmentation during

training of the augmented model.

3.2.6.1 Results of 32x32 experiments without augmentation

These are the results of the 32x32 experiments without augmentation. The

segmentation model performed relatively well given the small input size of the data.

Using the heuristic binary evaluation of number of male to female pixels as the

decision criterion, the model maxed out at about 85% accuracy at 75 epochs before

decaying to about 83% accuracy at the final epoch, which where the predictions for

63



Figure 3.16: 32x32 confusion matrix and entropy histogram from a model trained on
unaugmented data. This is from the validation set, which contains data that is most
like the training data and easiest to use. There are as mentioned previously quite a
few false negatives. Notice how the false negatives are relatively uniform across the
entropy, but the false positives are more heavily centered towards high entropy. This
shows that the validation data chosen for this run has mostly low entropy samples,
but those samples which are false positive are also high entropy. This means that
when the model is confident about male predictions, it’s more likely to be right. For
negative predictions this does not hold, confident negative predictions still have a
high false negative rate (meaning males are lost, presumed to be females).

analysis come from. Not bad considering the features are barely visible with 32x32

images. This shows that coarse color and coarse contrast are useful classification

properties for SWD.
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Figure 3.17: 32x32 confusion matrix histogram from a model trained on non-
augmented data. To re-evaluate this validation set each image is rotated by 90
degrees and the histogram is calculated again. This gives similar results to the
previous histogram with values changed not so drastically. Notice how the false pos-
itives are mostly distributed along high entropy still. Most of this validation data
has low entropy again. The peak is roughly between 0.2 and 0.3.
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Figure 3.18: 32x32 confusion matrix histogram from a model trained on non-
augmented data. One of the types of rotation that should introduce additional
entropy is rotation with ”mirroring”, which rotates a square image and fills the
newly vacant corners of the image with reflected values from the rotated image.
This is a common way to create augmented data for training. Notice how the peak
of the entropy has shifted to the right all the way up to 0.4. The entropy of the
whole data set has slightly increased when rotated at an angle where mirroring is a
large factor.
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Figure 3.19: 32x32 confusion matrix histogram from a model trained on non-
augmented data. This data was from a small set of examples called the ”challenge”
or ”difficult” set in figures. This was because it was difficult for the labeler to identify
whether the sample was positive or negative. Consistent with the results of training,
the false negative rate is high and the entropy of these samples is relatively low.
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Figure 3.20: 32x32 confusion matrix histogram from a model trained on non-
augmented data. When the challenge set is rotated by 90 degrees many of the
false negative results move up to a higher entropy and now there are a few more
false positives. This variability from a small magnitude rotation (no mirroring for 90
degree rotations) may indicate that these samples are difficult, though the sample
size is quite small.
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Figure 3.21: 32x32 confusion matrix histogram from a model trained on non-
augmented data. This is the leftover set which includes examples of medium difficult
which are similar to the training data set as well as the out-of-distribution examples
where contain many different colors not seen in the training data set. Since the
sample size is larger it is easier to see quantitative changes in the entropy due to
mirroring. The spike of super low entropy false negative and true negative samples
are indeed the OOD set. The model completely whiffs on the OOD set at 32x32
resolution and classifies them all as female. The rest of the well-behaved data is
visible with a relatively uniform split between false and true examples across the
entropy, though the false positives still have higher entropy.
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Figure 3.22: 32x32 confusion matrix histogram from a model trained on non-
augmented data. When rotation with mirroring is tested on this same leftover set,
it is clear that the entropy increases quite a bit across the data set. The change
in distribution of the data is even strong enough to break the high entropy false
negative bias exhibited on the OOD data from the previous figure.

Figure 3.23: 32x32 prediction example for a female SWD. The fly is split in prediction
between male and female but the wings play a major role in the correct classification.
This is one of the examples of the low resolution experiments where the wing was
clear enough that the algorithm was able to make an identification.
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Figure 3.24: 32x32 female image showing the lowest entropy along the wing of the
female.

Figure 3.25: 32x32 prediction example for a male SWD classified as a true positive.
The male is on its side and the spot on the wing is slightly less visible. With the low
resolution it may be difficult to tell whether this is male or female with the untrained
eye. The bottom of the male allows for positive identification as it is quite dark.
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Figure 3.26: 32x32 male shows the lowest entropy for the male is along its back half
with the dark bottom. The low entropy extends out into the wings but becomes
higher as the wing gets closer to the edge of the image. Images where the tip of the
wing get cut off may be responsible for this increase in pixel-wise entropy.

3.2.6.2 Results of 32x32 experiments with augmentation

These are the results of the 32x32 experiments with augmentation applied

to the model during training. This model also performed well with the heuristic

binary evaluation during segmentation training. The binary accuracy peaked above

87% 137 epochs in and decayed to 81% out to the final epoch used at test time. It

should be expected that the augmentation increased the number of epochs it takes

to reach the peak in accuracy, since there are effectively more training examples to

use and more variability to train on. The same histograms are viewed with this

augmented model trained out to 180 epochs.
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Figure 3.27: 32x32 confusion matrix histogram from a model trained on augmented
data. Again the training results in a relatively low false positive rae and high false
negative rate. The main observation in comparing this figure to ?? is that the
average entropy has gone down for most of the samples. This will be examined more
in the following figures.
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Figure 3.28: 32x32 confusion matrix histogram from a model trained on augmented
data. Rotating the validation set by 90 degrees has appears to have very little effect
on the distribution of entropy, perhaps less so than the non-augmented 90 degree
rotation had. In comparison to the non-augmented model’s validation data this
appears to have quite low entropy.
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Figure 3.29: 32x32 confusion matrix histogram from a model trained on augmented
data. Rotating the validation set 45 degrees so that mirroring has an effect on the
data, an increase in the entropy of samples is seen again, but perhaps smaller in
magnitude. The peak has decreased in height but not in location as it did with the
non-augmented model. This could be construed as evidence that the augmentation
successfully reduced the entropy increasing effects of rotation with mirroring.
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Figure 3.30: 32x32 confusion matrix histogram from a model trained on augmented
data. The distribution of entropy on the examples from the challenge set show a very
similar distribution, though again the entropy has decreased. Strangely, rotation of
the challenge set by 90 degrees increases the entropy again, though not by as much
as it did for the non-augmented model.
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Figure 3.31: 32x32 confusion matrix histogram from a model trained on augmented
data. Viewing the leftover set the spurious female bias of the model on data from the
OOD set is exhibited again alongside the regular data. The shape of the entropy a
sloshed towards the left, indicating a lower average entropy again for the augmented
model in comparison to the same results for the non-augmented model.
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Figure 3.32: 32x32 confusion matrix histogram from a model trained on augmented
data. In comparison to the non-augmented data again the entropy for most examples
has moved to be smaller than before, though it appears that some of the missclassified
OOD examples moved into higher entropy bins (there are 76 OOD examples which
were mostly in the first bin of entropy in figure 3.21).
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Figure 3.33: 32x32 confusion matrix histogram from a model trained on augmented
data. When the leftover set is rotated at 45 degrees so that the mirroring effect is
present again, the entropy increases and the false positive rate increases too, but not
nearly as much as it does for the non-augmented model.
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3.2.7 128x128 experiment on SWD

This is an experiment with size 128x128 images of flies which examines a

few cases of the morphological characteristics which can lead to positive and negative

identification based on the entropy of individual pixel predictions. Examination of

pixel-wise entropy is presented for in-distribution validation examples of 17x and

27x magnification, as well as OOD examples with 10x magnification. The heuristic

binary accuracy during training of this model ended just below 80% as it was stopped

at 120 epochs, which is earlier than even the small 32x32 models. Nonetheless it

produced results consistent in identifying morphological features like the models

from the previous sections.

3.2.7.1 Observations of important regions on SWD on laboratory exam-

ples

The following examples demonstrate the model’s predictions on a male fly

from the 17x magnification set and a female fly from the 27x magnification set. Both

examples are correctly classified; however the low entropy regions on the male more

distinctly point out a successful morphological identification than they do on the

female. On this particular experiment’s run the model’s training was ended on an

accuracy decrease where specificity slightly decreased and recall slightly increased.

Perhaps a portion of the low entropy pixels classified for the female in this section

were a result of temporary over-fitting. Still other true negatives not presented

here had regions of low entropy which did capture regions near or just behind the

ovipositor of the female. For many examples still that region of prediction on the

fly along with the spotted wing region is reserved for features more sensitive to high
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Figure 3.34: 128x128 prediction for sideways male at ≈17x magnification. The
model was able to identify this example, and despite the fact that the fly is sideways
the spots on the wings are visible this time.

confidence in male detection, even in some females.
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Figure 3.35: 128x128 pixel-wise entropy over the whole distribution for the male
SWD at ≈ 17x magnification. Since the background and edge predictions for each
pixel are included in the whole distribution, the edges are visible. The darkest parts
on the fly are the lowest entropy points usable for classification of male and female.
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Figure 3.36: 128x128 pixel-wise entropy over only the male and female body pixels
for the male SWD at ≈ 17x magnification. The contrast between the bright and
dark places is now less impeded by the high entropy edge pixels.
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Figure 3.37: 128x128 pixel-wise entropy over the whole distribution except cut into
regions of male body identified or female body identified pixels for the male SWD at
≈ 17x magnification. The spot on the wing and the darkened bottom on the male
are clearly the most important parts responsible for male classification.

Figure 3.38: 128x128 pixel-wise entropy over the whole distribution except only
for entropy below 0.5 and cut into regions of male body identified or female body
identified pixels for the male SWD at ≈ 17x magnification. The spot on the wing
and the darkened bottom are more specifically highlighted.
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Figure 3.39: 128x128 prediction for sideways female at ≈ 27x magnification. The
serrated ovipositor is clearly visible and there is no spot on the wings; however for
this example the tip of the wing is cut off.

Figure 3.40: 128x128 entropy for sideways female. There is no clear region which
is immediately obious as the darkest point. The bottom of the fly and tips of the
wings do not have very low entropy.
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Figure 3.41: 128x128 prediction for sideways female. It becomes clearer that the
lowest entropy points are towards the center of the female. The bottom and wingtips
are not strong indicators for the model, but rather the central region of the fly, which
may be an indicator of some tendency of this model to erroneously hone in on the
center of the fly (possibly due to he rotation augmentation not utilizing translation).
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Figure 3.42: 128x128 prediction for sideways female. The pixels which have entropy
lower than 0.5 are mostly on the female side of the prediction. Wing pixels toward
the edge of the image are still misclassified as male pixels.

Figure 3.43: 128x128 prediction for sideways female. While the center-top of the fly
is an important part of the classification, pixels along the darkened transparent top
parts of the wing and a few near the serrated ovipositor make the cut.
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3.2.7.2 Observations of important regions on SWD on OOD examples

In this section presentation of a true positive and true negative captured

from the OOD set will show that the model does retain some ability when trained

on laboratory data to identify important features of the fruit fly itself and the mor-

phological relevance of male vs female parts; however the model is severely limited

and cannot be expected to perform in this type of scenario without including the

OOD data in training or making specialized processing for the anomalous cases.

Since the OOD set contains colors not heavily present in the training data,

or contains colors that are used in both but in different contexts (like the red eyes

vs the red raspberry surface), the actual results of segmentation do not have a

very accurate grasp of the location of the fly. It is observed that the regions of

segmentation which have tighter clusters of body identified pixels are predominately

part of the fly, whereas pixels identified as body pixels that have diffuse clustering

are generally not part of the fly. Other regions of contrast erroneously pick up edge

and body pixels.

Still it is somewhat remarkable that the segmentation model is able to pick

up on fly features from a data set with completely different camera, magnification,

lighting, environmental and coloring conditions. It should be clear that color features

are plausibly not the only factor influencing the confidence of network output.

3.2.8 An over-fit 224x224 experiment on SWD

One final example shows a model which spent too many epochs training

(despite much augmentation). It decayed to about 76% binary classification accuracy

after 300 epochs. The model’s output is shown on a difficult sideways male example
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Figure 3.44: 128x128 prediction for a male SWD from the OOD data set. The
background is of significantly different color than the training dataset, yet much
of the prediction of body pixels contains fly. The spots on the wing are correctly
distinguished as belonging to a male fly.

Figure 3.45: 128x128 pixel-wise entropy for a male SWD from the OOD data set.
The entropy along the edges is as usual higher than the background entropy, though
for this OOD example the background entropy is much higher than for the laboratory
examples.

89



Figure 3.46: 128x128 pixel-wise entropy over only male and female body pixels for
a male SWD from the OOD data set. The inner portion of the body still has strong
contrast like it does in the laboratory examples, but the actual edges of the fly body
still shine through as having higher entropy between male and female body pixels.
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Figure 3.47: 128x128 pixel-wise entropy separated by classification to male and
female body pixels. The male body pixels barely capture enough to contain the
spots, while the female body pixels capture some of the body surrounding the spots
and along the edges of the fly, in addition to the diffuse erroneous pixels around the
picture.

Figure 3.48: 128x128 pixel-wise entropy underneath the threshold 0.5 for male from
the OOD set. The lower entropy portions of the male still include the spots, the
bottom part as well as the head of the male. Whereas the female body pixels have
largely diminished into misclassified background pixels. These background pixels
are probably identifiable by the diffuse nature of their clustering in comparison to
successful body pixel identifications.
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Figure 3.49: 128x128 prediction for sideways female from the OOD set. The female
is successfully identified in this image, though the red shadow underneath along the
raspberry attracts some misclassifications.

Figure 3.50: 128x128 pixel-wise entropy for sideways female from the OOD set. The
edges of the female do continue to stand out as highly uncertain regions for the
model.
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Figure 3.51: 128x128 pixel-wise entropy from male and female body pixel predictions
for a sideways female in the OOD set. The actual body of the female has many of the
highest parts of entropy within it. Though the high entropy of background features
is still visible here at similar magnitudes to the lower entropy portions of the body.

Figure 3.52: 128x128 entropy cut out between male and female predictions of body
pixels for sideways female in the OOD set.
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Figure 3.53: 128x128 entropy cut out between male and female predictions of body
pixels and below threshold 0.5 for sideways female in the OOD set. While the lower
entropy pixels capture some parts of the female body, her shadow still erroneously
gets much of the attention.

Figure 3.54: 224x224 prediction for sideways female. This example shows a situation
where the wings are relatively uniform and appear to be female wings, so the model
classifies them as female.

where the lighting conditions do not highlight the spots.
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Figure 3.55: 224x224 pixel-wise entropy for a sideways male. The edge pixels are
inhomogeneous and not as bright unlike most other examples.
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Figure 3.56: 224x224 pixel-wise entropy between only male and female body pixels
for sideways male. Bright splotchy regions demonstrate the uncertainty between
male and female classification. It is unclear from what cause the borders of these
splotches originate, but possibly from the long over-fit time spent on this training
run that allowed accuracy to decay.
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Figure 3.57: 224x224 pixel-wise entropy cut between male and female body pixels
for a male on its side. The low entropy region along the wing where it is uniform
and there is no spot visible that would normally identify a male indicates that this
is a difficult example.

Figure 3.58: 224x224 pixel-wise entropy cut from male and female body pixels and
under threshold 0.5 for a male on its side. The model has strong confidence that the
wing belongs to a female, but the final prediction is still male from the dark bottom
and the upper body and head pixels. Even with severe over-fitting the algorithm is
able to get some successful classifications.
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3.3 Discussion

A pre-trained MobileNetV2 + SWD-trained Pix2Pix proved to be a useful

model to investigate which morphological features of SWD are accessible from pre-

trained image encoding with a laboratory data set. OOD data was used to show

that while high accuracy can be achieved in specialized situation such as restriction

to laboratory data it does not necessarily carry over to alternative scenarios where

the color contexts, backgrounds, lighting conditions and magnifications are differ-

ent. Nonetheless the models were still able to exhibit some recognition of SWD in

challenging situations including OOD data and difficult laboratory data situations

where the most prominent feature (the spotted wing) is not visible. Binary accuracy

as high as 85% was obtained for small resolutions, and with more exploration and

improvements (or reductions) to augmentation the same models at higher resolutions

should be able to score accuracy higher than 90% as indicated by results in the first

chapter. The false negative rate was a nagging problem with the classification results

and may possibly be reduced with relevant augmentation or collection of more data.

This is not completely surprising because as was shown the certain angles of view

of males can produce wings that look similar to female wings. Furthermore there

are light gray flies in the data set which are difficult to identify since their sexual

features may not have fully developed. Some of these are removed from the data

set altogether and placed into a ’challenge’ set which is tested and exhibits some-

what higher entropy. The segmentation algorithm still may have a better chance at

identifying these flies than the amateur.

The question of whether this augmentation of spinning the fly on new back-

grounds helps is still unanswered definitively, though in combination with other aug-
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mentation it appeared to have effects on the confidence of the algorithms’ outputs,

including on OOD data, and especially with respect to the similar augmentations

applied to the validation data upon output. This should be expected, though only

useful if there is a situation that actually appears similar enough to the augmenta-

tions. At the levels of augmentation tested in this work the decoupling of segmented

flies from their background had limited success and did not reliably improve accu-

racy. More work could be done to turn these segmentation examples into useful

augmentation data.

Including the small exploration of effects of augmentation on training with

segmentation data, this work also investigated pixel-wise entropy and found numer-

ous instances where the difference in morphology of the fly between sexes revealed

itself in the form of low entropy regions. Particularly, the spot on the male SWD

wing was visible from predictions made by segmentation models. The dark regions

on the on the males were key indicators which differentiated males and females. The

algorithm did not place high confidence on the serrated ovipositor for the female in

analysis of confidence, though usually a few pixels near the ovipositor were identi-

fied. At times the regions identified as highly confident included the legs, which may

make one wonder whether the male sex combs played a role in identification. This is

highly unlikely since segmentation was roughest along the legs and they were some-

what delicate to draw over. More work could be done to investigate whether the sex

combs are visible in any of the images, potentially at the highest magnification 27x.

The data set could be investigated and trimmed further to produce a more balanced

set of prominent examples so that augmentation doesn’t emphasize any misleading

features, though much work has been done to comb the training data from these

types of bad data including misclassifications by the author, which was a primary
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source of inaccuracy at the start of the project where the spot on the wing was the

only factor used to distinguish male from female.

The main contribution to this work was the collection of images of nat-

ural settings where the distribution of colors and complexity of the background

varied significantly from the initial data used in training experiments. This out-of-

distribution data was used to show that a model’s classification accuracy is degraded

when applied to observational settings significantly different from the settings under

which the training data were observed. An augmentation environment was created

to produce more training data and showed promise in improving the robustness of

binary classification confidence under similar augmentations. A second contribution

to this work was the use of pixel-wise entropy to offer a degree of interpretability

of the localized confidence that a model has in its classification predictions when

trained as a segmentation algorithm. Segmentation proved promising to extract a

few of the prominent morphological features of the classification targets without

being explicitly trained to output the highest confidence regions.

Future work could expand the data set and augmentation strategies to

include observations of all insects in order to create a suite of data for any entomo-

logical studies suited to training algorithms across multiple tasks and distributions

of data. Large scale pre-training that encompasses these data would see further im-

provements in accuracy. A rearing facility that could produce SWD in large numbers

would also be capable of producing a suitable data set for the task of separation.

The models used in this work would likely be able to filter out and pre-label a

data set that could be easier and cheaper to prune down than it would be to build

up from scratch by labeling data tediously, provided the rearing facility is able to

produce enough flies and is equipped with equipment that can route the data to
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the model. The segmentation algorithm may be more adept at detecting when the

images produced are out of distribution intended for training.
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Chapter 4

Conclusion

Quite a lot of material was explored in this work for the purpose of assessing

feasibility of classifying between male and female Drosophila suzukii in SIT or other

farm applications. The cost and difficulty of collecting large amounts of data is a

serious hindrance to many industry applications and limits the time-span for which

machine learning projects can be developed. We have seen that pre-trained models

are wonderful additions to the community which reduce the amount of data required

to perform image classification tasks.

4.1 Discussion of the main objectives and results

Reflecting back on the objectives set out in this work, we can ask the ques-

tion: to what extent are available machine learning algorithms effective at classifying

SWD, and how much data is required to eclipse the 90% accuracy threshold (and

further)? With less than 1000 examples we are able to classify SWD to accuracy

above 90% with both newer and slightly aged pre-trained models with minimal ar-

chitectural design required on top of them. It is clear that these models greatly

increase accessibility of intelligent technology, which we have seen applied in this
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work to situations which will be useful for SIT and other ecological and agricultural

monitoring situations. Pre-trained models show fantastic transfer learning capability

for identification of sex of fruit flies.

Of the available models CLIP, particularly the ViT-16 variant, performs

the best, and with the addition of the text encoder this model also has many zero-

shot flexibility applications which were not explored in this work. ImageNet is one

diverse resource that brings tremendous applicability to the domain of segmenting

and classifying SWD, and while the models did not perform better than CLIP, they

still were able to eclipse 90% accuracy on the main data set. These models, like

MobileNetV2, served as a benchmark for classification tasks that might be geared

towards usage on user-devices rather than on the cloud. Although the CLIP models

are able to be computed in reasonable times on ordinary devices as well, they would

also be suitable to be evaluated remotely on the cloud. The collective results of

the models demonstrate the steady increase in performance of models that has been

observed this decade.

Robustness to out-of-distribution data from one set of environmental con-

ditions to another will be a desirable trait for classification models. For the purposes

of this work we have seen that expansions of the data set into OOD settings may

be required in order to use the same classification model on applications outside of

SIT, such as observing SWD in nature or on the farm, or in laboratory or rearing

facility settings which use environments that appear different than the data origi-

nally collected. For classification applications to be developed the specific use-case

setting should be clearly defined and tuned to the situation where it will be applied;

however it is possible that further improvements in models and consolidation of data

sets into canonical examples relevant to the environmental settings in the expected
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use-case will allow for more flexibility in the task. For this purpose the develop-

ment of an augmentation environment was used to investigate both the models and

the data set. Preliminary observations showed that augmentation can increase the

confidence of the machine learning algorithm even on data which it has not been

trained on. The augmentation environment must be created so that the alterations

to images are realistic enough to be useful. While further work is needed to inves-

tigate if this augmentation environment will be effective at extending applications

into OOD domains or reducing the overall amount of data required for training, the

advancements leading to robust models like CLIP seem to outweigh the impact of

hand-crafted augmentation environments. The augmentation environment did prove

useful in detecting instances of false negative samples in the training data when ob-

serving the learning curve of the confusion matrix, since excessive augmentation of

false negative examples will lead to an imbalance in the confusion matrix which

gradually reduces the recall as training progresses over many epochs. This would of

course be observable for false positives as well, though for SWD it is more difficult to

make false positives than false negatives since the distinguishing factor of the spot

on the male’s wing is present in most if not all positive examples. Despite numerous

examples in the validation data set containing flies whose side-ways orientation lim-

ited the visibility of the dark spot, the algorithm was still able to successfully classify

most of these. Upon recovering the small number of false negatives and removing

them from the training data it was observed that the accuracy of the algorithm was

increased.

We have also seen how image segmentation can be used to further in-

vestigate the data set used for training. Much concern in the machine learning

community has been focused on explainability and interpretability of the decisions
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that any instance of an algorithm makes. While image segmentation in and of it-

self provides fine-grained classification to images, investigation of the confidence of

these predictions can lead to morphological factors in the data set which are rel-

evant for classification but were not directly targeted in the training data. These

observations were only made using the MobileNetV2 pre-trained model as a base

for image segmentation and should be further explored with other models and data

sets before coming to a definitive conclusion; however, research efforts along these

lines would contribute to improving human confidence in interpreting results from

machine learning algorithms, and indeed many deep explorations in this topic have

already been made independently within the short time-span that this project was

carried out, such as those which have improved on the LIME algorithm which were

used initially to assess interpretability of the binary classification results. In the case

of this project image segmentation provided more information about the usefulness

of the data set than did the implementation of the LIME algorithm for binary clas-

sification, but it is possible that more fine-tuned or updated usages of LIME could

be equally useful.

Future pre-trained models with diverse sets of data which include biological

data may further improve the accuracy and robustness. Combination of fitting

data sets to models that use pre-trained image encoding and language prompts will

likely continue to be used to great effect. The amount of data required for these

classification tasks, excluding the vast amount of data used for pre-training, will

gradually (or suddenly) be reduced to zero, eventually. Future work in IPM will

have the opportunity to use other methods in the machine learning realm.

The main contribution of this work is the collection of a data set and

applied image classification algorithms which will be useful for implementing SIT
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to reduce and prevent the destruction of crops of stone-fruits by the non-native

Drosophila suzukii species, which looks to solve a problem costing upwards of $1

Billion dollars per year when accounting for inflation and global crop production.

Another key contribution includes the collection of an OOD data set that assesses

the ability to extend beyond the SIT application and into monitoring for SWD in

traps on farms or out in the field, as monitoring the effects of any SIT operation on

the population of fruit flies will be essential in determining the effectiveness of the

technique. Finally, the demonstration that existing community models have been

very effective at classifying SWD provides a modest snapshot of some of the capabil-

ities of machine learning technology developed in the last decade. Models developed

and delivered by the community will be essential for applications such as SIT which

enhance and protect the food security of our society and further development should

be encouraged.

4.2 Future work and outlook

The contributions discussed in the previous section may be of value to

practitioners in academia and industry. The results of developing a classification

algorithm are easily transferred to the cloud and evaluated with speed much greater

than that of devices like personal computers and cell phones. A photograph taken

from a trap in the field or an imaging system in a rearing facility could be quickly

uploaded and used with any one of the models trained to separate male from female

SWD. These pre-trained models are used as a demonstration in this work to show

their effectiveness at an industry application that has potential to be highly valuable.

Their applicability could be eclipsed by a new, larger data set collected in real-time
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at a rearing facility or a collection of SWD traps, potentially using models applied

in this work to automatically label the newer data as it passes through the imaging

devices. Usage of these models for the purpose of initially labeling data could save

researchers and experts much time in sifting through and tediously labeling the data

by hand. If there is an error rate of 5%, this will potentially save 95% of the time

spent labeling and free up the researchers to move on to their next task. It was

observed through the augmentation experiments that different instances of the same

fly may also be classified as accurate in the face of an initial false identification when

passed through the augmentation algorithms. A threshold on the confidence of the

algorithm in order to make the decision to include or exclude a positive identification

could exclude flies for which the algorithm has a high false negative rate, though

low entropy false negative and positive examples should be carefully subjected to

scrutiny. Re-running the set of leftover flies through the data set under different

experimental conditions such as lighting and magnification alterations could further

improve the concentration of the collection of positive samples.

The computer science community continues to develop artificial intelligence

algorithms at a rapid pace, and for the purposes of this work their algorithms have

enabled collaboration between scientists as diverse as physicists and biologists to tar-

get food security in a way that will ultimately, it is hoped, be beneficial to society.

While much of deep learning in the previous decade was characterized by requiring

huge amounts of data for training, this decade is seeing advancements that lower

the data threshold needed to make machine learning projects successful. Scaling

laws in machine learning will mean continued improvement which has been leading

to zero-shot classification results in many domains (e.g. with no additional training

data), which could potentially make many job skills obsolete (including program-
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mers), freeing much of the labor force to change the nature of their interaction with

industry and potentially transferring the value obtained from automation directly

to benefit society. While the future is uncertain, advances from technologies devel-

oped in the previous decade have already made impacts in numerous domains and

will likely continue to quietly enhance the products we already use and lead to new

revolutionary products as well.
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Appendix A

Supplementary material for binary

classification with pre-trained networks

A.1 5-fold cross-validation of binary classification with-

out augmentation

The main goal within the scope of these experiments was to be able to

produce an effective algorithm to identify the sex of SWD given a relatively small

sized data set. Augmentation was necessary to improve the accuracy significantly

above the 90% mark, though it is remarkable that the CLIP models were able to

achieve close to 90% accuracy on a data set of less than 800 low-resolution images

(224x224). These results are comparable to and even better than results from other

experiments which used higher resolutions or trained their models from scratch.

This is a testament to the massive pre-training carried out for the CLIP models and

points to the impressive performance gains achieved by machine learning researchers

over the last decade.
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Accuracy

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 0.8875
±0.0208

0.8935
±0.0056

0.8120
±0.0244

0.8889
±0.0265

ViT-B/16 0.8980
±0.0434

0.8874
±0.0278

0.8507
±0.0171

0.9054
±0.0152

RN50x16 0.8832
±0.0162

0.8743
±0.0295

0.8269
±0.0297

0.8803
±0.0200

RN50x4 0.8713
±0.0121

0.8670
±0.0261

0.8017
±0.0253

0.8624
±0.0071

RN101 0.8729
±0.0318

0.8608
±0.0323

0.8463
±0.0208

0.8579
±0.0323

RN50 0.8875
±0.0297

0.9037
±0.0187

0.8210
±0.0173

0.8949
±0.0305

VGG16 0.7911
±0.0548

0.8417
±0.0340

0.5176
±0.0331

0.8374
±0.0264

VGG19 0.7901
±0.0386

0.8328
±0.0408

0.5132
±0.0321

0.8475
±0.0434

MobileNetV2 0.7708
±0.0379

0.8077
±0.0481

0.5307
±0.0682

0.8331
±0.0408

Table A.1: These are the results of training classifiers for SWD without augmenta-
tion. The RN50 and ViT-B/16 models perform the best, eclipsing 90% accuracy.
Without augmentation the CLIP models perform better than the MobileNetV2 and
VGG models. As many as 10 false negative classifications contaminated the data
set for this result, which may be 1-2% lower in accuracy across all models due to
the contamination.

A.2 OOD evaluation of binary classification results

One of the hopes for this algorithm was that it would be applicable to do-

mains that extend beyond the factory or laboratory setting to natural environments

or testing environments that exist on the farms themselves.

The OOD data set introduced in chapter 3 was not large enough or diverse

enough to use for training data, and therefore the evaluation of this data in aggre-

gate may not be a strong indication for a robust algorithm; however, it does give

some information about the effectiveness of algorithms on data which they were not

intended to be trained. It was observed that the ResNet models performed better for
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CLIP on OOD data than did the ViT models. This is somewhat surprising because

the ViT models were more accurate on data for which they were fine-tuned (rather

than the OOD data). This may simply be due to an accuracy-robustness trade-off,

or it may be that the ResNet models really are more robust. Further investigation

of the robustness of the CLIP models is warranted. MobileNetV2 also performed

admirably on the OOD data in comparison to its VGG counter-parts and added to

its appeal for use during segmentation in addition to the fact that it is faster to

evaluate.

Accuracy on OOD data

Pretrained
model

SGD LinSVC PolySVC LogReg

ViT-B/32 48.684 46.053 60.526 46.053
ViT-B/16 52.632 50.000 57.895 50.000
RN50x16 61.842 59.211 61.842 64.474
RN50x4 63.158 50.000 63.158 53.947
RN101 65.789 71.053 69.737 69.737
RN50 56.579 57.895 56.579 55.263
VGG16 59.211 53.947 44.737 52.632
VGG19 48.684 61.842 64.474 61.842
MobileNetV2 64.474 68.421 51.316 68.421

Table A.2: A table showing accuracy on OOD data for binary classification with
different pre-trained models used with augmentation. Accuracy should not be ex-
pected to be high for this data since it differs from the laboratory data substantially;
however the ResNet models appear to perform better on the OOD data than the
ViT models despite having lower accuracy than the ViT models on in-distribution
data.

A.3 LIME boundaries for selected examples

A diagnostic used for evaluating results of a model was the so-called LIME

algorithm. The major advantage of this algorithm is that it is model-agnostic – it

treats any model like a black box and attempts to reconstruct the regions of the

image which are responsible for a negative or positive classification.
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Figure A.1: Left: An in-distribution validation example correctly classified as fe-
male with prediction probability equal to one using the ViT-B/16 model. Right:
An example of LIME boundaries calculated for the same image, green regions are
identified as female and red regions are identified as male.

The results of using this algorithm were highly variable and it was not as

useful as was hoped for; however it did produce some results potentially consistent

with the pixel-wise entropy images displayed in chapter 3. In particular LIME often

identified the wings, or regions near the wings as well as regions near the serrated

ovipositor of the females and darkened inward facing bottoms of males. The heads

also were occasionally a region of interest, even though this author did not see the

head region as an especially useful region for classification. LIME also frequently

identified regions of the background, often bordering the fly, as places of positive or

negative identification. This was part of the motivation for expanding augmentation

of training data by using segmentation since it was expected that over-fitting to

the background was occurring. Therefore an attempt was made to decouple the

backgrounds from the fruit flies in the original images.
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Figure A.2: Left: An in-distribution validation example correctly classified as male
using the ViT-B/16 model. Right: An example of LIME boundaries calculated for
the same image, green regions are identified as female and red regions are identified
as male; there are only red regions for this LIME calculation.

Figure A.3: Left: An in-distribution validation example correctly classified as male
using the ViT-B/16 model. Right: An example of LIME boundaries calculated for
the same image, green regions are identified as female and red regions are identified
as male; this example was initially incorrectly labeled as female by the data labeler;
however the algorithm predicts with high confidence that it is male. This example is
considered a difficult example because the wings do not clearly show the spot at this
camera angle, and the lack of serrated ovipositor may not be completely obvious.
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Appendix B

Supplementary material for image

segmentation with pre-trained

networks

B.1 Augmentation strategies used during segmentation

One of the goals of creating the segmentation data set was to improve the

efficiency of training data in various ways. This should be clear that the segmenta-

tion data contains pixel-wise information produced by the data labeler, whereas the

binary labeling used for the results in chapter 2 contained less information. While

the segmentation algorithms tested did perform with higher binary classification ac-

curacy (comparing to the binary classification which used MobileNetV2), another

expectation was that the augmentation could be further improved as well.

In particular it would seem that cutting the body of the fly and pasting a

rotated version onto various backgrounds should be useful for data augmentation –

more useful than merely rotating the image with the default TensorFlow or PyTorch
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augmentations.

This proved more difficult than expected, as the segmentation algorithms

performed with better binary accuracy when using less of this augmentation rather

than more. The suspicion is that augmentations using this strategy may be good,

but the magnitude of the change to the data set may be too large to be observed

during this project.
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Figure B.1: The segmentation training data allowed for additional augmentation
to be developed. A mask containing the body of the fly as well as a separate
mask for the background were created so that the fly could be decoupled from the
background during training. The empty fly region was filled with the median value
of the background image to patch over any parts the translated background might
have missed. For the actual training, backgrounds were randomly selected instead
of using the same background from the original image.
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Figure B.2: Shown above are other augmentations which were combined with the
background decoupling in the previous figure. The magnitudes of these alterations
are exaggerated to show the effects on the example image.
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B.2 Pre-clonetool dataset confusion matrix histograms

for 32x32 augmentation experiment

One of the implementation problems with an early data set taken for binary

classification was the fact that the data used was contaminated by fruit flies of other

classes (or sometimes of the same class). This is referred to as the ”unlabeled”

data set because segmentation data was not created for this set. After training on a

higher quality data set the unlabeled data set was still used to examine the entropies

of predictions to observe that the majority of predictions had higher entropy. This

was done both with and without augmentation.

It is observed that the augmentation was able to reduce the number of false

positives and false negatives as well as lower the average entropy of predictions. In

other words the model became more confident and more accurate due to augmen-

tation even on the data was highly contaminated with multiple fruit flies on most

images in this data set.

This data set was eventually edited with the clonetool from GIMP in order

to remove fruit flies which were not intended to be touching the target fruit fly. Using

the ”cleaner” version of this data edited with clonetool increased the accuracy on

validation data substantially.
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Figure B.3: 32x32 confusion matrix histogram from a model trained on non-
augmented data. This test data set had overlapping flies of different classes and
was not immediately useful for binary classification. As one might expect the vari-
ance in entropy over this distribution is quite large, especially due to the mirroring
effect of rotating the whole image. This 45 degree rotation did not use the special-
ized augmentation but rather the default rotation functions in tensorflow.

Figure B.4: 32x32 confusion matrix histogram from a model trained on augmented
data. The same contaminated data set is shown but this time with the augmentation
applied during training. The variance of entropy is noticeably smaller, as the data
set is shifted to the left (lower entropy meaning higher confidence in the predictions).
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B.3 Difficulty with recall during segmentation

It was observed during experiments that the false negative rate was un-

expectedly high. While there were many examples of male fruit flies that had a

transparent wing due to the angle of the camera, further inspection revealed that

the data set was contaminated with false negatives as well. This was indicated by a

steady increase in false negative predictions by the model as the number of epochs

increased into over-fitting territory. This was likely part of the reason for the low

recall during training of the segmentation data. The segmentation algorithm and its

corresponding results was useful in discovering some of the reasons behind the false

negative classifications.

In figure B.7 it is most clearly visible that the false negative rate increases

steadily. Using validation callbacks during training which collected false negatives

and false positives predicted from validation data was useful for troubleshooting

the data set. In particular it is notable that using the low entropy predictions

smoothed out the learning curve by reducing the tendency of the model to flip flop

during training. In many instances for other experiments this low entropy prediction

appeared to be more accurate than using raw pixel counts; however this analysis was

not exhaustive nor was it within the scope of the project to further investigate the

increase in accuracy, as algorithms explicitly designed to make binary predictions

such as those in chapter 2 are more suited to evaluate binary accuracy. Nonetheless

evaluating the binary accuracy through training of a segmentation algorithm might

be useful in determining when to halt training.
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Figure B.5: The precision, specificity and recall are shown while over-fitting out to
300 epochs during the 224x224 experiment. Notice that after about 150 epochs the
recall starts to decay while the specificity actually continues slight improvement.
This is a strong indication that there are false negatives – male fruit flies contami-
nating the female fruit fly data set.

129



Figure B.6: False negatives and false positives are plotted for the 224x224 over-
fitting experiment. It can be observed that the model at the start of training predicts
predominantly one class, leading to a flip flopping between false positives and false
negatives. As the epochs increases beyond approximately 125 epochs the number of
false negatives begin to steadily increase.
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Figure B.7: In the same experiment as the previous figure, low entropy binary clas-
sifications are displayed instead of using only the raw pixel count from segmentation
as the classification criterion. It appears that the flip flopping is substantially re-
duced by using low entropy pixels for classification. The steady increase of false
negatives is more transparent. This was a key indicator to look for false negatives
in the training data, which were later identified and removed.
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