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ABSTRACT OF THE DISSERTATION

Mathematical modeling of epidemics and adversarial learning in distributed systems

by

Xia Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Andrea L. Bertozzi, Co-Chair

Professor Deanna M. Hunter, Co-Chair

The COVID-19 epidemic has had a major global impact on humanity and the economy. Analyzing

the effect of the COVID-19 pandemic can provide guidance for future pandemics. This dissertation

studies three aspects of the epidemics during modern times. In the first part of the thesis, we

study different aspects of pandemics along with mathematical models to address these aspects.

Epidemics affect small communities in a different way than large urban centers. In chapter

2, we develop a mathematical model for finite-size effects using a stochastic compartmental

susceptible–infected–recovered (SIR) model with a martingale formulation. The deterministic part

coincides with the classical SIR model and we provide an upper bound for the stochastic part.

Through analysis of the stochastic component depending on varying population size, we provide

a theoretical explanation of finite size effects. Our theory is supported by numerical simulations

of theoretical infinitesimal variance. In chapter 3, we propose a coupled model of policy-making

and epidemic dynamics based on the SIR model and an optimization scheme. In chapter 4, we

propose a hierarchical non-negative matrix factorization (NMF) scheme to classify the literature

on COVID-19. We discover eight major latent topics and 52 granular subtopics in the body of

ii



literature, related to vaccines, genetic structure and modeling of the disease and patient studies, as

well as related diseases and virology.

Modern day machine-learning algorithms often operate in a distributed manner and are known to

be vulnerable to adversarial attacks. Developing large-scale distributed methods that are robust to the

presence of adversarial or corrupted workers is an important part of making such methods practical

for real-world problems. In chapter 5, we propose novel methods that guarantees convergence

and identify adversarial workers in highly hostile systems. The algorithm utilizes simple statistics

(mode) to guarantee convergence and is capable of identifying the adversarial workers. Additionally,

the efficiency of the proposed methods is shown in simulations in the presence of adversaries. The

results demonstrate the great capability of such methods to tolerate different levels of adversary

rates and to identify the adversarial workers with high accuracy.
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CHAPTER 1

Introduction

1.1 Mathematical modeling of epidemics

The novel strain of coronavirus, SARS-CoV-2, was first identified in Wuhan (Hubei) in December

2019, and soon after that, the number of infections grew exponentially. Despite the measures taken to

contain the outbreak, a COVID-19 pandemic ensued and had spread worldwide by early April 2020.

The COVID-19 pandemic provides the first instance in 100 years to study the worldwide dynamics

of a novel virus outbreak. Early on in the pandemic, we observed many localized outbreaks on cruise

ships, skilled nursing facilities, and through other congregating mechanisms such as conferences,

parties, and places of worship. Several groups developed models to inform public health, a notable

one being the March 16, 2020 report by Imperial College [FLN20] that forecast over 2 million

deaths in the US and over 500,000 deaths in the UK if non-pharmaceutical interventions (NPIs) were

not implemented. Within days, lockdowns were enforced in both countries. Over a year since that

time, we have observed a variety of patterns and some of them did not follow the trends predicted by

the early reports. The most obvious reason for these differences is the reduction of the reproductive

number due to NPIs. An additional important factor is the departure from simple mixture models

that results from isolating populations because of NPIs or simply because of geography. One way

to model such effects is to consider an agent-based model with a finite population size in which the

role of stochasticity is more pronounced due to the population size. This is the focus of our work in

chapter 2.

Mathematical modeling has an important role in studying infectious diseases on both long and
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short timescales—for modern viruses such as AIDS, Severe Acute Respiratory Syndrome (SARS),

Zika, and the novel coronavirus disease 2019 (COVID-19). It helps to understand how diseases

spread and are controlled, providing insights on decision-making. For epidemic modeling, the stan-

dard approach involves compartmental models in which the population is divided into compartments

representing individuals in one of several states, e.g. the susceptible (S), infectious (I), recovered

(R) and exposed (E). This mathematical framework leads to a variety of epidemic models, such as

SIR, SIS, SEIR, SIRS (see e.g. [LTH18, LMR19, KCM05, BRQ20]). Compartmental modeling

has been applied to epidemic study of COVID-19, HIV, etc [TT94, Llo01, BFM20, Bai75, Bar60].

These models are generalized to agent-based forms and the most granular model among them being

the stochastic models. The classic compartmental models converge to an endemic equilibrium

while their stochastic counterparts usually do not. Other characteristics of the stochastic epidemic

models include the probability of an outbreak, the final size distribution of an epidemic and the

expected duration of an epidemic. Due to these properties of the stochastic models, in chapter 2, we

adopt a martingale approach of s stochastic SIR model. We quantitatively analyze the finite-size

effects under small populations with the martingale formula applicable to all population scales. We

decompose the process into a deterministic component and a stochastic component, corresponding

to the infinitesimal means and variances of the process, respectively. The deterministic compo-

nent leads to a fluid-limit-type continuum analogue, coinciding with the deterministic SIR model

(rescaled over the population size N ) as in [KMW27]. Our simulations show that as N decreases,

our stochastic SIR Model deviates further from the deterministic SIR model, and finite-size effects

arise. The stochastic component is bounded by quantities of the same order of magnitude of 1/N .

We find that the stochastic component scales as 1/
√
N . Furthermore, the smaller the population

size is, the larger the deviation of the stochastic simulations from the deterministic ones are. We

provide a theoretical estimation for this scaling, building on the analysis of continuous-time Markov

processes. The output of numerical experiments of theoretical infinitesimal variances supports our

theory.
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Another line of modeling the epidemic is to use a self-exciting point process, also known

as the Hawkes process (HP). With the excitation representing the transmission of disease, point

processes can model the clustered nature of infections. Lewis et al. in [LM11] and Bertozzi et al. in

[BFM20], applied Hawkes process to epidemic forecasting. Additionally, the multivariate Hawkes

Process (MHP) utilizes a cross-excitation matrix which can be used to model the network structure

of sub-processes. [MBX21] studied the transmission of COVID-19 among different age groups

using MHP with a Bayesian approach. The basic reproduction number is a crucial component in

measuring the spread of the pandemic. [BAC20] adopt a signal-processing approach to compute

the effective reproduction number (ERN) from the daily count of newly detected cases. [MSS20]

apply Cox Hawkes, a variant of the Hawkes process, to model the dynamic of ERN and analyze the

impact of public health interventions on the transmission dynamics of COVID-19. More recently,

the multivariate Hawkes process has been used to inform COVID-19-related decision-making in

New Jersey (in collaboration with Facebook AI)[New]. The Hawkes process has no upper limit for

the number of events that may occur. To address this of the original Hawkes process, in [RMK18],

the author introduced a parameter N , denoting the finite total size of the population and modulated

the event rate by the available population. The resulting model is referred to HawkesN. This model

captures the long-term evolution of the pandemic and the authors showed a theoretical connection

between HawkesN and the classic compartmental models [RMK18].

Modeling disease control and intervention is an important topic in modeling epidemics. In the

course of battling COVID-19, policies provide guidelines that serve an important role in slowing

down the spreading. Some of them include ‘safer-at-home’, ‘Maintaining 6 feet distance’ and

‘mask wearing’. In the absence of reliable pharmaceutical interventions like vaccination, these

public health strategies are crucial. The timeline of COVID-19 globally and locally ([Cena, Wika])

indicates that the evolution of policies affected the evolution of the pandemic and vice versa. A

majority of them leverage the SIR model and its variants. For example, in [KZR21], the authors

proposed an SIR-based model that captures the effects of intervention policies on the disease spread

parameters by leveraging intervention policy data along with the reported disease cases. The model
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is also designed an observation mechanism to account for under-reporting by adding two new

compartments. The model learns the spread, policy, and reporting parameters end-to-end directly

from observed data via gradient-based training. In [BF07], the authors used an SEIR-based model

and discovered that the timing of public health interventions had a profound influence on the pattern

of the autumn wave of the 1918 pandemic in different cities. Bliman et al. in [BDP21] proposed

an optimal control framework to find the optimal policy that minimizes the final pandemic size.

In their work, an optimal policy should stop the disease as close as possible after crossing the

herd immunity threshold. The authors proved the existence and the uniqueness of the solution and

showed the optimal social distancing polity is a bang-bang controller (a control that switches from

one extreme to the other). In their work, the admissible set of the policy function is a subset of all

continuous functions. However, in real life, policies executed have different intensities and duration

times. For example, in the county of Los Angeles, on March 21, 2020, social distancing was first

suggested, a month after the first COVID 19 case in LA [Dep22]. Around that time, a health office

order ‘safer-at-home’ was also released. One week later, beaches, hiking trails, dog parks, skate

parks, etc., and more public sites and facilities were temporarily closed. As infected cases continued

to increase, a month later, on May 1, facial coverings were suggested. Considering the policies

executed have different intensities and duration times, in chapter 3, we model policies as piece-wise

linear functions in time that only takes values from a finite set. We couple the policies with a

policy-Incorporated SIR model for single-region case and a network styled policy-Incorporated SIR

model for the multi-reginal case. We further assume that policies function have a minimal policy

time interval (MPTI) during which the policy stay constant in order to mimic the reaction time of

decision-makings of the regions. We reproduced the results of France as in [BDP21] and discussed

the second wave in the county of Los Angeles. In addition, we proposed a generalization of the

policy-making SIR model with multiple-agents in a hierarchical structure and presented an example

of three interacting counties with and without a governing state.
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1.2 Modeling of the COVID-19 literature

Another aspect of studying COVID-19 is to provide an effective method to navigate COVID-19-

related literature. As of July 21, 2020, there were over 196,630 COVID-19-related scholarly articles

on PubMed, PubMed Central, bioRxiv and medRxiv preprint servers [ASM21]. There are several

reasons for such navigation: to organize and coordinate the literature and to help explore research

topics addressed. In chapter 4, we build an interactive search engine for COVID literature using a

hierarchical non-negative matrix factorization (HNMF) method. The HNMF is a hierachical version

of a method called non-negative matrix factorization (NMF) and NMF is a classic method to classify

the topics of articles. It is a matrix factorization method that decomposes a given matrix X ∈ Rn×d

into two low-rank, non-negative matrices W+ ∈ Rn×r and H+ ∈ Rr×d for some r to be specified

(Fig. 1.1). For simplicity, we omit + in the discussion. To find the W and H , we solve for the

minimization problem:

min
W,H

∥X −WH∥2F . (1.1)

To format the narratives into inputs for our topic modeling methods, we used a bag-of-words

model, which takes in the corpus and creates a vocabulary out of each unique word in the corpus. It

then models each document as a vector with length equal to the number of words in the vocabulary

where entry i in the vector corresponds to how many times word i occurred in the document. Thus,

the bag-of-words model gives us a matrix X with dimension n× d where n is the number of words

in the vocabulary, and d is the number of documents. The parameter r represents the number of the

topic, which needs to determined. For the matrix W , the words per topic matrix, each column of

the W represents a word distribution of a topic. For the matrix H , the topic per document matrix,

ith column represents the topic distribution of ith document. In HNMF, NMF is first applied to the

original corpus matrix X to obtain the dictionary matrix W and coding matrix H . The documents

are then sorted into matrices X1, X2, · · · , Xk, each representing a different topic, according to the

coding matrix H. Then NMF is applied to each one of the matrices X1, X2, · · · , Xk to obtain the
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Figure 1.1: An illustration of NMF.

matrix for subtopic-super-topic relations and the corresponding coding matrix. The above process

is repeated until the desired number of layers of the hierarchy is reached.

The traditional NMF method treats the detected topics as a flat structure, which limits the ability

of the representation of such method. In contrast, a hierarchical NMF (HNMF) framework is able to

detect supertopics, subtopics, and the relationship between them, creating a tree structure. In chapter

4, the interactive and hierarchical structure facilitates the search by researchers and is available to

use through a corresponding website. The topics discovered by HNMF reveal that early research of

interest to the COVID-19 research community divides into diverse areas such as research related to

other corona viruses, research related to other respiratory diseases, virology and genetic research, as

well as research relating to the public health response. A topic coherence metric reveals that the

topics discovered are consistent and semantically meaningful, while a topic similarity metric reveals

that the topics differ sufficiently from one another to allow a diversity of choice and areas of interest

on the user’s part.
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1.3 Adversarial learning in distributed systems

The last section of this thesis is on a different topic. As machine-learning algorithms gain popularity

in industrial applications, it is important to study methods to improve their robustness and protect

them from adversarial attacks. There are several ways a machine learning model can be attacked,

including evasion attacks [GMP18], data poisoning attacks [GFH20], model extraction [WXG21,

KTP19]. Large-scale machine-learning problems are typically run on distributed systems. A typical

attack in the distributed setting is the Byzantine attack [LSP82]. The Byzantine system refers to a

computer system where every single component (also known as ‘worker’ or ‘node’) communicates

with each other, and some send conflicting information. There have been works on stochastic

optimization in a Byzantine setting. For example, in [EFG20], the authors studied the problem in

an adversarial setting where, out of the m machines which allegedly compute stochastic gradients

every iteration, a fraction of workers are Byzantine, and can behave arbitrarily and adversarially.

They showed that the proposed algorithm is information-theoretically optimal both in terms of

sampling complexity and time complexity. In [FXM14], a framework called the distributed robust

learning (DRL) is proposed. This framework can reduce the computational time of traditional robust

learning methods by several orders of magnitude. The authors showed that DRL not only preserves

the robustness of the base robust learning method but also tolerates contaminations on a constant

fraction of results from computing workers (node failures). In chapter 5, we focus on developing

robust algorithms when the workers are adversarial and detect the adversarial workers.

A special application of solving optimization problems in the distributed systems is the least

squares problem. In chapter 5, we consider solving the over-determined linear system Ax = b,

where A ∈ Rd1×d2 , b ∈ Rd1 and x ∈ Rd2 . This problem can be reformulated as the least squares

problem minx ∥Ax − b∥22 = 0. One way to solving linear systems in an iterative manner is the

Kaczmarz method. It was first proposed by [Kac37] which is also known under the name Algeberaic

Reconstruction Technique (ART) in computer tomography [GHJ75, HM93, Nat01] and has found

various applications ranging from computer tomography to digital signal processing. Later Strohmer
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et al. [SV09] proposed a randomized version of Kaczmarz, where the probability of each row being

selected is set to be proportional to the Euclidean norm of the row and proves the exponential

bound on the expected rate of convergence. Typically, when the dimension of the data matrix is

large and cannot be loaded into memory at once, the direct methods like using the pseudo-inverse

can be infeasible or expensive, then randomized methods such as the randomized Kaczmarz (RK)

[SV09] are more effective. Different ways to use RK in a distributed setting can lead to different

communication costs, storage overhead and possibly different convergence speeds. For example,

a complete redundancy, i.e., every worker holds a complete copy of the data, is useful when a

majority of workers are not reliable. However, such a scheme has a large storage overhead. Another

example is partial redundancy, i.e., each worker holds part of the data, and the central server needs

to aggregate their computation results to obtain an update. This is generally more effective and

efficient. The RK operates on single rows of the matrix A at a time. While RK randomly selects

a row of A to work with, Motzkin’s Method (MM) [Agm54] employs a greedy row selection. In

[HM21], the authors proposed a hybrid algorithm based on these two algorithms: the sampling

Kaczmarz-Motzkin (SKM) algorithm, which samples a random subset of β rows of the data matrix

A and then greedily selects the best row of the subset. In chapter 5, we adopt a similar idea. We

consider that the data is initially distributed to workers with some redundancy, and each worker

holds multiple rows. At each iteration, the central worker sample a random subset of d0 rows and

a random subset of the workers who hold those rows to compute the residual in RK (Alg. 1). We

utilize the simple statistic (mode) to avoid using results from the adversarial workers. We provide

numerical and theoretical analysis to show the effectiveness of our method.

Algorithm 1 Randomized Kaczmarz Algorithm

1: Select a row index ij ∈ [d2] with probability pij =
∥Aij

∥22
∥A∥2F

2: Update xj+1 = argminx∈Rd1 ∥x− xj∥ s.t. Aijxj+1 = bij
3: Repeat until convergence
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CHAPTER 2

A Stochastic Compartmental Susceptible–Infected–Recovered

(SIR) Model to Analyze Finite-size Effects in COVID-19 Case

Studies

This chapter is adapted from the original paper [LWL22] that I co-authored with Chuntian Wang,

Hao Li and Andrea Bertozzi. I was first author on that paper and contributed to the modeling and

all of the numerical experiments in the paper.

2.1 Background

The standard approach to model epidemics involves compartmental models in which the population

is divided into compartments representing individuals in one of several states, e.g. the susceptible

(S), infectious (I), recovered (R) and exposed (E). This mathematical framework can lead to a

variety of epidemic models, such as SIR, SIS, SEIR, SIRS ([LTH18, LMR19, KCM05, BRQ20]).

Compartmental modeling has been applied to epidemic study of COVID-19, HIV, etc [TT94, Llo01,

BFM20, Bai75, Bar60]. These models can have an agent-based form with the most granular being

the stochastic models. Because of the granularity of the stochastic compartmental model, its

fluid limit is often adopted to reduce computational complexity. By the law of large numbers,

stochastic compartment models with Markov processes can be approximated by their deterministic

ODE counterpart. The central limit effect arises under the diffusion scaling, and the fluid-scaled
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model converges to a Gaussian diffusion of stochastic differential equations about the deterministic

solution. All these approximation methods require a large population size to control variances. As

the population size decreases the fluid-limit approximation acquires larger stochastic variances, and

finite-size effects may arise. For example, empirical variances of realizations of stochastic models

can be at the same magnitude of the inverse of the total population size ([Ish91, Ish93]). Since

population scale within a relatively small community (like small counties, cruise ships) is very

likely to fall within the regime of considerable stochastic deviations, quantitative study and analysis

of finite-size effects is relevant to real disease statistics. To this end, we investigate stochastic

variability in the stochastic SIR model driven by independent Poisson clocks (IPC), which will

be referred to as the SIR-IPC Model. We adopt Poisson clocks, rather than time steps discretized

with a fixed duration. A more realistic model should treat all events as occurring independently,

according to their own stochastic clock, rather than occurring at regular intervals, and arriving

according to the same schedule. Time steps are turned into exponentially distributed random

variables with the introduction of Poisson clocks. Moreover, independent Poisson clocks allow us

to use the theory of continuous-time Markov pure jump processes, e.g. a martingale approach (see

e.g. [Dur96, Kun86, Lig80, Lig85, Lig10]). And this leads to a martingale formulation.

In prior literature, only the components of the martingale formulation were derived (see e.g.

[All08, All11, Yan08]), while the study of the complete formulation has been lacking. Specifically,

theoretical infinitesimal variances have also been studied in [BIH18, LMR19, All11, Yan08, YC19].

However, their main purpose is to explore ways to approximate stochastic compartmental models

with a large population size, such as fluid limit, diffusion limit, and linear SDE approximations.

With the martingale formula applicable to all population scales, we can quantitatively analyze the

finite-size effects under small populations. It is possible to merge independent Poisson clocks to

obtain systems that are driven by only one or two Poisson clocks. And this idea is worked out in

[All08, All11, Yan08]. There the SIR models are driven by two Poisson clocks, one for transitions

from S to I compartment, the other for those from I to R compartment. In our model, we assume

that individual events each occur at a certain Poisson rate. These events include infectious contacts
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of each pair of susceptible and infected individuals, and recovery of each infectious individuals. In

the simplest models, births and deaths (due to natural causes) during the course of the epidemic

are not taken into account. In more detailed models, births and deaths (due to natural causes)

are included, and these are called “vital dynamics” in [Het00]. We assume the absence of vital

dynamics and a deterministic population size parameter N . With the martingale approach, we

decompose the process into a deterministic component and a stochastic component, corresponding

to the infinitesimal means and variances of the process, respectively. The deterministic component

leads to a fluid-limit-type continuum analogue, which coincides with the deterministic SIR model

(rescaled over N ) as in [KMW27]. Computer simulations show that as N decreases, the SIR-IPC

model deviates further from the deterministic SIR model and finite-size effects arise. The stochastic

component is bounded by quantities of the same order of magnitude as 1/N . We find that the

stochastic component scales as 1/
√
N . This is not a surprise, as it is expected based on the law of

large numbers that the standard deviation scales like 1/
√
N .

Furthermore, the smaller the population size is, the larger the deviation of the stochastic

simulations from the deterministic ones are. We provide a theoretical estimation for this scaling,

building on the analysis of continuous-time Markov processes. The output of numerical experiments

of theoretical infinitesimal variances supports our theory. Since the outbreak of COVID-19 on the

Diamond Princess Cruise Ship, at least 25 other such vessels have confirmed COVID-19 cases and

studies of the transmission of the disease on cruise ship have drawn consideration attention (e.g.

[AKL21]).

The chapter is organized as follows. In Section 2.2, the stochastic SIR Model is introduced.

The martingale formulation is derived in Section 2.3. Based on the martingale formulation, a

deterministic and continuum analogue of the stochastic SIR model is derived (Section 2.3.3).

Simulations are run to compare the stochastic SIR model to its fluid limit, illustrating the importance

of finite-size effects (Section 2.3.4). In Section 2.4 the finite-size effects are analyzed theoretically

based upon the martingale formulation. The theory is supported by simulations and field data in

Section 2.5.
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2.2 Stochastic SIR-IPC model

2.2.1 Overview and notation

Our setting is similar to the continuous-time-Markov-processes stochastic SIR models in [All08],

[RMK18] and [Yan08]. We assume a continuous time variable t ∈ [0,∞), and a probability

space (Ω,F ,P), and a deterministic and fixed population size N . The classical stochastic SIR

model without vital dynamics consists of three compartments: susceptible, infected, and recovered

individuals. For ω ∈ Ω, we assume that at a given time t the numbers of the compartments are

SN(ω, t), IN(ω, t), and RN(ω, t), and N = SN(ω, t) + IN(ω, t) + RN(ω, t).

For simplicity of modeling, we assume that there is no vital dynamics, i.e., we view deaths as a

subset of recovered individuals and humans’ natural resistance to the disease does not introduce

new susceptible people after recovery. Below we assume that all the parameters are independent of

N , unless otherwise specified. We assume that the initial data are deterministic and denoted as

(SN(ω, 0), IN(ω, 0),RN(ω, 0)) = (S0N , I0N , R0N). (2.1)

A Poisson clock governs the infectious contact of any pair of a susceptible and an infectious

individuals. There are in total SN(ω, t)IN(ω, t) such pairs at time t. Each individual Poisson clock

advances according to a Poisson process with rate β/N . We denote this clock as the “i-clock”.

Suppose that the i-clock advances at time t−. At time t, with probability p1 ∈ [0, 1] the susceptible of

the pair associated with the clock contracts the disease and transitions to the infectious compartment

through contact. Another Poisson clock governs the recovery of the infectious individuals. Each

infectious individual is assigned a Poisson clock, donoted as “r-clock”, which advances with rate

γ. Suppose that the “r-clock” advances at time t−. At time t, the infectious individual with the

clock is recovered, with probability p2 ∈ [0, 1]. All the Poisson clocks are exponentially distributed

independent random variables and are independent with time increments.

Similar to the classic SIR, βp1 denotes the transmission rate constant, and γp2 is denotes
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recovery rate constant. Thus the basic reproduction number R0 for our model is

R0 =
βp1
γp2

. (2.2)

Remark 2.2.1. To facilitate the computation of the SIR-IPC model, we show the following equivalent

description of the SIR-IPC model with merged Poisson clocks.

All the i-clocks can be merged into one master i-clock to govern the arrivals of infectious contact.

Once the master i-clock advances, with probability p1 a uniformly and randomly chosen susceptible

individual contracts the disease. The master i-clock advances with rate βIN(ω, t−)SN(ω, t
−)/N .

Likewise all the Poisson r-clocks can be merged into one master r-clock as we do for the i-clocks.

Once the master r-clock advances, one uniformly and randomly chosen infectious individual is

recovered, and with probability p2 develops immunity and becomes disinfected. The master r-clock

advances according to a Poisson process with rate γIN(ω, t−).

In general, theory regarding the merging and splitting of Poisson processes (see e.g. [Dur99])

implies that independent Poisson clocks can be treated as one merged Poisson process; and with

probability in proportion to the rate of each Poisson clock, the Poisson clocks compete to advance

first in the merged Poisson process. More precisely, suppose that X1(t), X2(t), ..., XN(t) denote the

numbers of arrivals corresponding to independent Poisson processes with arriving rates λ1, ..., λN ,

respectively. Then
∑N

n=1Xn(t) has the same distribution as the number of arrivals corresponding

to one Poisson process with arriving rate
∑N

n=1 λn(t). Furthermore, any particular arrival of

the merged process has probability λn/
∑N

n=1 λn(t) of originating from the n-th process, for

n = 1, 2, ..., N , independent of all other arrivals and their origins. The variance of the merged

process at time t can be derived as follows:

Var

(
N∑

n=1

Xn(t)

)
=

N∑
n=1

Var (Xn(t)) =
N∑

n=1

λnt = t

N∑
n=1

λn. (2.3)

13



When λn ≡ λ for all n, we have

Var

(
N∑

n=1

Xn(t)

)
=tNλ. (2.4)

2.2.2 Small-time-interval probabilities for compartment fractions

We denote the fractions of each compartment as

(sN(ω, t), iN(ω, t), rN(ω, t)) :=
(

SN

N
(ω, t),

IN
N

(ω, t),
RN

N
(ω, t)

)
, (2.5)

with the initial condition of population fractions denoted as

(sN(ω, 0), iN(ω, 0), rN(ω, 0)) := (s0N , i0N , r0N) . (2.6)

This together with (2.1) implies that

(s0N , i0N , r0N) =
(
S0N

N
,
I0N
N

,
R0N

N

)
. (2.7)

With similar idea as in e.g. [All08], we derive the small-time-interval probabilities for compart-

ment fractions. For ∆t a short time interval, we have

P(∆sN(ω, t),∆iN(ω, t))) = (k, j)|(sN(ω, t), iN(ω, t) = (s, i))

=



p1βNis∆t+ o1(∆t), (k, j) = (− 1

N
,
1

N
),

p2γNi∆t+ o2(∆t), (k, j) = (0,− 1

N
),

1− p1βNis∆t− p2γNi∆t+ o3(∆t), (k, j) = (0, 0),

0, otherwise,

(2.8)

where ∆sN(ω, t) = sN(ω, t + ∆t) − sN(ω, t), ∆iN(ω, t) = iN(ω, t + ∆t) − iN(ω, t) and ol(∆t)

are functions of ∆t that satisfy lim∆t→0 ol(∆t)/∆t = 0, l = 1, 2, 3.
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Remark 2.2.2. Although the set up of the Markov pure jump process implies (2.8), the converse is

not true. For example, the set of small-time-interval equations do not uniquely determine the rates

of the Poisson clocks. For the same reason, combining the parameters p1 and β as one parameter

leads to a different stochastic SIR model. For one thing, the variance of a Bernoulli random variable

with parameter p1 is p1(1− p1), which is not linear with p1.

2.3 Main results using a martingale approach

The martingale formulation of a Markov pure jump process characterizes the process as the sum of

an integral part involving the infinitesimal mean and a martingale part involving the infinitesimal

variance.

2.3.1 Martingale formulation of the stochastic SIR–IPC model

For every t, we define sN(t) := {sN(ω, t) : ω ∈ Ω}. In a similar way, we can define the stochastic

processes iN(t) and rN(t) associated with the stochastic SIR-IPC model. As (sN(t), iN(t), rN(t))

is a Markov pure jump process with state space R3
+, a martingale formulation (see e.g. [Dur96,

Dur99, KL99, Lig10, SV06]) can be derived. We first introduce the notion of blow-up time (see e.g.

[HPS72]).

Definition 2.3.1. It is possible that for a certain realization of SIR-IPC Model, the Poisson clocks

may generate time increments that add up to be finite, say time τ and τ < ∞. In this case the

corresponding stochastic process is defined only for 0 ≤ t < τ . By the time t = τ the Poisson

clocks will have made an infinite number of advances. We say that the stochastic process explodes,

and τ is called the blow-up time.

This is an uncommon occurrence and it is a different issue from the process extinguishing itself,

in which the infected population goes to zero in finite time. The latter is very real and of interest for

finite-size epidemics.
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In the previous literature (e.g. [YC19, Yan08, All08, All11, AA03, BIH18, Ish93, Ish05]), there

are works that consider the infinitesimal mean and variance of stochastic SIR models but typically

only in the cases when the total population N increases to infinity. By contrast, we are interested

in the dynamics of the SIR-IPC model for moderate size N in which the finite-size effects matter.

Thus we derive the full martingale formulation encompassing the infinitesimal mean and variance

of the SIR-IPC Model below.

Theorem 2.3.2. Before the possible blow-up time, (sN(t), iN(t), rN(t)) can be written as



sN(t) = s0N +

∫ t

0

G(1)
N (w) dw +M(1)

N (t) ,

iN(t) = i0N +

∫ t

0

G(2)
N (w) dw +M(2)

N (t) ,

rN(t) = r0N +

∫ t

0

G(3)
N (w) dw +M(3)

N (t) ,

(2.9)

where M(l)
N (t) = M(l) (sN(t), iN(t), rN(t))), l = 1, 2, 3, are martingales that start at t = 0 as

zeros, and G(l)
N (t) = G(l) ((sN(t), iN(t), rN(t))), l = 1, 2, 3, are the infinitesimal means for sN(t),

iN(t), and rN(t)), respectively, and

G(1)
N (t) = −p1βiN(t)sN(t), (2.10)

G(2)
N (t) = p1βiN(t)sN(t)− p2γiN(t), (2.11)

G(3)
N (t) = p2γiN(t). (2.12)

The variances of M(l)
N (t), l = 1, 2, 3, can be characterized in the following way:

Var
(
M(l)

N (t))
)
=

∫ t

0

E
[
V(l)
N (w)

]
dw, l = 1, 2, 3, (2.13)

where V(l)
N (t) = V(l)

N ((sN(t), iN(t), rN(t))), l = 1, 2, 3, are the infinitesimal variances for sN(t),
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iN(t), and rN(t) respectively, and

V(1)
N (t) =

1

N
p1βiN(t)sN(t), (2.14)

V(2)
N (t) =

1

N
p1βiN(t)sN(t) +

1

N
p2γiN(t), (2.15)

V(3)
N (t) =

1

N
p2γiN(t). (2.16)

Proof of Theorem 2.3.2. To prove Theorem 2.3.2, we compute the infinitesimal means and variances

for the Markov pure jump process (sN(t), iN(t), rN(t)) for a fixed N , using the methods in e.g.,

[App09, CW14, Dur02, HWY92, KT81, Kun86, M82, MP80, PZ07, Pro05].

As G(l)
N (t), l = 1, 2, 3, are the infinitesimal means for sN(t), iN(t), and rN(t)), respectively,

from (2.8) we have (2.10) – (2.12) . As V(l)
N (t), l = 1, 2, 3, are the infinitesimal variance of sN(t),

iN(t), and rN(t), respectively, we have

V(1)
N (t) lim

∆t→0

1

∆t
E
[
∆(sN(t−))2

∣∣((sN(t−), iN(t−), rN(t−))
)]
. (2.17)

From (2.17) we obtain (2.14). In a similar way we obtain (2.15)–(2.16). With the infinitesimal

means and variances obtained, we apply Theorem 1.6, [Dur96] or Theorem 3.32, [Lig10], to

obtain (2.9), and apply Exercise 3.8.12 of [Bic02] to obtain (2.13). The proof of Theorem 2.3.2 is

completed.

2.3.2 Estimates of the martingale variances

Here we derive upper bounds for variances of martingales of the martingale formulation (2.9).

Theorem 2.3.3. Before the possible blow-up time, we have the following estimates:

Var
(
M(1)

N (t))
)
≤ 1

N
s0N , (2.18)

Var
(
M(2)

N (t))
)
≤ 1

N
[s0N + p2γ (i0N + s0N) t] , (2.19)

17



Var
(
M(3)

N (t))
)
≤ 1

N
p2γ (i0N + s0N) t. (2.20)

Proof of Theorem 2.3.3. Taking expectation on both sides of the first equation of (2.9), we have

E [sN(t)] = s0N +

∫ t

0

E
[
G(1)
N (w)

]
dw. (2.21)

This together with (2.10), (2.13) and (2.14) implies

Var
(
M(1)

N (t))
)
=

1

N

∫ t

0

E [p1βiN(w)sN(w)] dw =
1

N
(s0N − E [sN(t)]) . (2.22)

As E [sN(t)] ≥ 0, we can bound the right-hand-side of (2.22) from above by s0N/N , and obtain

(2.18).

From (2.13) and (2.16) we infer

Var
(
M(3)

N (t))
)
=

1

N
p2γ

∫ t

0

E [iN(w)] dw

≤ 1

N
p2γ

∫ t

0

(i0N + s0N) dw

=
1

N
p2γ (i0N + s0N) t. (2.23)

From (2.23) we obtain (2.20).

From (2.13)–(2.16), we obtain

Var
(
M(2)

N (t))
)
= Var

(
M(1)

N (t))
)
+ Var

(
M(3)

N (t))
)
. (2.24)

This together with (2.18) and (2.20) implies (2.19).

Theorem 2.3.3 implies that the variances of the martingales of sN(t), iN(t), rN(t) are bounded

by the initial states of each compartment and the total population N . Moreover, they are bounded

by quantities with an equal or lower order of magnitude than 1/N .
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2.3.3 Deterministic analogue of the stochastic SIR model

With a similar derivation of the fluid dynamic limit of Markov pure jump processes [EK86, GPV88,

KL99, KOV89, SV06, TV03, Var95, Var00], we can find a deterministic analogue of the (renormal-

ized) stochastic SIR model when N increases to infinity. The analysis is based on the martingale

formulation (2.9), and the conclusion of Theorem 2.3.3, where the martingale variances are shown

to have an equal or lower order of magnitude than 1/N .

And we see that for N large, it is reasonable to set the infinitesimal mean vector as the generator

of the deterministic flow of a deterministic analogue of the stochastic SIR model. And by (2.10),

(2.11) and (2.12) we obtain



∂s(t)

∂t
= −p1βi(t)s(t),

∂i(t)

∂t
= p1βi(t)s(t)− p2γi(t),

∂r(t)

∂t
= p2γi(t),

s(0) = s0, i(0) = i0, r(0) = r0,

(2.25)

where s(t), i(t), and r(t), t ∈ (0,∞) are the deterministic versions of sN(t), iN(t), and rN(t),

respectively, and s0 = S0/N, i0 = I0/N, r0 = R0/N . We note that the ODEs in Eqs. (2.25) do not

explicitly include the population size N , and thus, are independent of N . Note that the deterministic

analogue of the stochastic SIR model (2.25) are the same as the classical deterministic SIR model

(without vital dynamics) as in e.g. [KMW27] rescaled by N .

2.3.4 Numerical simulations

We compare the stochastic and deterministic analogue of the stochastic SIR model through simula-

tions. For the stochastic case, we use the classical Gillespie algorithm for continuous-time Markov
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processes (see e.g. [Gil76]). Roughly speaking, we first simulate the sojourn times using expo-

nential distribution generators, and then simulate the sample paths of the embedded discrete-time

Markov process as described in Section 2.2.1. The algorithm ensures that independent Poisson

clocks advance randomly without a prescribed diagram. Namely, we do not require that the i-clocks

and r-clocks advance sequentially with a pre-determined arrangement. In this way, we are able to

produce a number of sample paths corresponding to random realizations of sequences of events.

We focus on the cases when the basic reproduction number R0 is near the self-sustaining level

of R0 = 1, as is typical in a scenario where public health measures trade off against economic and

educational needs of the population1. Specifically, we consider the cases when R0 = 0.95, 1.1, 1.2,

and 1.3, respectively. Parameters of the simulations are recorded in the figure caption.

In all the cases, we show output of the SIR-IPC model simulations with N = 102.5, 103, 103.5,

and 104, represented by the blue, orange, green, and red lines, respectively (Figs. 2.1b, 2.1d, 2.1f,

2.1h). For the case when R0 = 0.95, we infer from (2.25) that the parameters and data used to obtain

the blue, orange, green, and red lines in Fig. 2.1b give rise to the same solution (s(t), i(t), r(t)) to

the deterministic SIR Model. Therefore, we only display the deterministic output once in Fig. 2.1a.

This same arrangement also applies to other cases with different values of R0, which are displayed

in Figs. 2.1c, 2.1e, and 2.1g, respectively. In all the figures, black, magenta, and cyan lines represent

s(t), i(t), and r(t) associated with the deterministic simulation, respectively.

The finite-size effects are exhibited. As the population size decreases, deviations of dynamics of

the stochastic SIR model from its continuum equation increase. The same simulation output is also

observed over other random paths.

1As a specific example we note that the dynamic reproductive number has been estimated weekly in Los Angeles
County using a Bayesian SEIR model applied to hospital demand data—during the period July 2020–April 2021 it
remained within a 25% window of one [BBC21].
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(a) s(t), i(t), r(t),R0 = 0.95 (b) iN (t), i(t),R0 = 0.95

(c) s(t), i(t), r(t),R0 = 1.1 (d) iN (t), i(t),R0 = 1.1

(e) s(t), i(t), r(t),R0 = 1.2 (f) iN (t), i(t),R0 = 1.2

(g) s(t), i(t), r(t),R0 = 1.3 (h) iN (t), i(t),R0 = 1.3

Figure 2.1: Plots of infected compartment fractions iN (t) for the stochastic SIR and s(t), i(t), and r(t) for deterministic

SIR. For both models, p1 = 0.5, p2 = 0.5, γ = 1, T = 23, s0 = s0N = 0.96, i0 = i0N = 0.04, r0 = r0N = 0. In Figs.

2.1b and 2.1a, 2.1d and 2.1c, 2.1f and 2.1e, and 2.1h and 2.1g, β = 0.95, 1.1, 1.2, 1.3, respectively. For the SIR-IPC

model displayed in Figs. 2.1b, 2.1d, 2.1f, and 2.1h, N = 102.5, 103, 103.5, 104 in every panel.
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2.4 Mathematical analysis of the finite-size effects

In Theorem 2.3.3, a global upper bound of the same order of magnitude of 1/N is derived and the

result indicates the order of the magnitude of the martingale infinitesimal variances when N → ∞.

To further understand the martingale variances when N is relatively smaller, in this section, we

analyze the finite-size effects, based on the martingale formulation, and simulations are run which

support our theoretical conclusion.

2.4.1 Scaling property of the stochastic component

We analyze the deterministic and stochastic component of the martingale formulation with varying

population size N . We fix the initial condition of the compartment fractions and denote them as

(s0N , i0N , r0N) ≡ (s0, i0, r0). (2.26)

We analyze the martingale formulation of the stochastic SIR model with varying population size N .

Applying (2.9) and (2.13) to (sN(t), iN(t), rN(t)) over a small time step ∆t, we obtain


sN(t+∆t) = sN(t) + G(1)

N (t)∆t+M(1)
N (t+∆t)−M(1)

N (t) ,

iN(t+∆t) = iN(t) + G(2)
N (t)∆t+M(2)

N (t+∆t)−M(2)
N (t) ,

rN(t+∆t) = rN(t) + G(3)
N (t)∆t+M(3)

N (t+∆t)−M(3)
N (t) .

(2.27)

By (2.13) and additivity of the variance in time for martingales, we have

√
Var
(
∆M(l)

N (t)
)
∼=
√

E
[
V(l)
N (t)

]
∆t, l = 1, 2, 3, (2.28)

where ∆M(l)
N (t) = M(l)

N (t+∆t)−M(l)
N (t), l = 1, 2, 3. This together with (2.27) implies that the

infinitesimal variances are the key to estimate the infinitesimal standard deviation of the stochastic

component and the deviation of the trajectories of the evolution of the model from its deterministic
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component.

We perform estimates at the first time step. At time zero, from (2.14)–(2.16) we infer

V
(1)
N (0) =

1

N
p1βi0s0, (2.29)

V(2)
N (0) =

1

N
(p1βi0s0 + p2γi0) , (2.30)

V(3)
N (0) =

1

N
p2γi0, (2.31)

which implies that the infinitesimal variances for the attractiveness are each inversely proportional

to N :

V(l)
N (0) ∝ 1

N
, l = 1, 2, 3. (2.32)

This together with (2.28) implies that at the first time step we have

Var
(
M(l)

N (∆t)
)
∝ 1

N
, l = 1, 2, 3. (2.33)

From (2.33) and (2.27) we infer that at the first time step a smaller value of N leads to a larger

deviation of the trajectory of (sN(ω, t), iN(ω, t), rN(ω, t)) from its deterministic component. This

explains the finite-size effects at the first time step. This suggests that smaller value of N leading to

a larger deviation remains to be true at an arbitrary later time, namely,

V(l)
N (t) > V(l)

Ñ
(t) , for 0 < N < Ñ and t > 0, l = 1, 2, 3, (2.34)

which leads to a theory of the finite-size effects at an arbitrary later time.

Next we estimate the right-hand-side of formulas (2.14)–(2.16), so that we can estimate V(l)
N (t) , l =

1, 2, 3, at later times for t > 0.

In the prior literature of stochastic partial differential equations (see e.g. [Br, CGS13, Rao99,

Uch08, WTG11]), usually Itô calculus is applied, as the infinitesimal variances are multiplied by

Wiener processes, and the population or number of particles is required to be large, which does not
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fit with the cases on which our focus here. We conjecture that formulas (2.29)–(2.31) can be written

for an arbitrary t > 0 with the same leading order:

V(1)
N (t) ∝ 1

N
p1βi0s0, (2.35)

V(2)
N (t) ∝ 1

N
(p1βi0s0 + p2γi0) , (2.36)

V(3)
N (t) ∝ 1

N
p2γi0. (2.37)

If our conjecture above is true, then we can fix a time period [T1, T2], and integrate of both sides of

(2.35)–(2.37) over the time period [T1, T2]. By taking the average we obtain

V(1)
N ∝ 1

N
p1βi0s0, (2.38)

V(2)
N ∝ 1

N
(p1βi0s0 + p2γi0) , (2.39)

V(3)
N ∝ 1

N
p2γi0, (2.40)

where V(l)
N , l = 1, 2, 3 denotes the time average of the infinitesimal variance over this time period:

V(l)
N :=

1

T2 − T1

∫ T2

T1

V(l)
N (t) dt, l = 1, 2, 3. (2.41)

Here we slightly abuse the notation and omit the dependence of the time average over T1 and T2.

2.4.2 Numerical simulations

To check the validity of (2.34), we perform direct simulations of the infinitesimal standard deviations,

namely

σ
(l)
N (t) =

√
V(l)
N (t), l = 1, 2, 3. (2.42)

Example output can be found in Figure. 2.2. Figs. 2.2a, 2.2c, and 2.2e show results of σ(l)
N (t),

l = 1, 2, 3, in the case with R0 = 0.95 < 1. The blue, orange, green and red lines show results
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with the same realizations from simulations with the corresponding colors in Fig. 2.1b. Figs. 2.2b,

2.2d, and 2.2f show results of σ(l)
N (t), l = 1, 2, 3, in the case with R0 = 1.3 > 1. The blue, orange,

green and red lines show results with the same realizations from simulations with the corresponding

colors in Fig. 2.1h.

The outputs of the simulations agree with (2.34). The same simulation results are also observed

over other random paths. We validate our conjecture of (2.38)–(2.40) through the following

numerical simulation.

Fig. 2.3 shows the log–log plot with error bars for (2.38) - (2.40). The lines show the theoretical

scaling with slope as −1 and the x-intercepts as log(p1βi0s0), log(p1βi0s0+p2γi0), and log(p2γi0),

respectively, and the error bars show the true scaling with the x-coordinate and y-coordinate as

follows:

(x, y) =
(
logN, log

(
V(l)
N

))
, l = 1, 2, 3, (2.43)

for N = 102.5, 103, 103.5, 104, and l = 1, 2, 3. Here [T1, T2] are chosen as [0, 10], [1, 11], [2, 12], ...,

and [13, 23]. The minimum and maximum values of y = log
(
V(l)
N

)
, l = 1, 2, 3, taken over all such

intervals are set as the upper and lower bounds of the error bars. Figs. 2.3a, 2.3c, and 2.3e show

results in the cases when R0 = 0.95 for l = 1, 2, and 3, respectively. The error bars with horizontal

x-axis as 2.5, 3, 3.5, and 4 show results with the same realization from simulations of the blue,

orange, green, and red lines in Fig. 2.1b, respectively. Figs. 2.3b, 2.3d, and 2.3f show results in the

cases when R0 = 0.13 for l = 1, 2, and 3, respectively. The error bars with x-axis as 2.5, 3, 3.5,

and 4, show results with the same realization from simulations of the blue, orange, green, and red

lines in Fig. 2.1h, respectively.

The output shows that the error bars include the straight lines representing the theory and scale

with the line. The same simulation results are also observed over other random paths. These results

support the validity of equations (2.38)–(2.40) and our theory for the finite-size effects based on the

martingale formulation.
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(a) R0 = 0.95 (b) R0 = 1.3

(c) R0 = 0.95 (d) R0 = 1.3

(e) R0 = 0.95 (f) R0 = 1.3

Figure 2.2: Examples of the infinitesimal standard deviation for σ(l)
N (t), l = 1, 2, 3. In both cases, p1 = 0.5, p2 = 0.5,

γ = 1, T = 23, s0 = s0N = 0.96, i0 = i0N = 0.04, r0 = r0N = 0. In the cases with R0 = 0.95 < 1 in Figs 2.2a,

2.2c, and 2.2e, β = 0.95. The blue, orange, green, and red lines show results with the same realization from simulations

with the corresponding colors in Fig 2.1b. In the cases with R0 = 1.3 > 1 in Figs 2.2b, 2.2d, and 2.2f, β = 0.95. The

blue, orange, green, and red lines show results with the same realization from simulations with the corresponding colors

in Fig 2.1h.
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(a) R0 = 0.95 (b) R0 = 1.3

(c) R0 = 0.95 (d) R0 = 1.3

(e) R0 = 0.95 (f) R0 = 1.3

Figure 2.3: Comparisons of the log–log plot of the theoretical and empirical scaling for V(l)
N , l = 1, 2, 3, as in (2.38) -

(2.40). The vertical bars are the error bars of the empirical scaling of the infinitesimal variance from the same realization

as in Figs. 2.1b, and 2.1h. We set [T1, T2] as [0, 10], [1, 11], [2, 12], · · · and [13, 23]. The minimum and maximum values

of y = log
(
V(l)
N

)
, l = 1, 2, 3, taken over all such intervals are set as the upper and lower bounds of the error bars. The

straight lines with slope −1 show the theoretical scaling with the x-intercepts as log(p1βi0s0), log(p1βi0s0 + p2γi0),

and log(p2γi0), for l = 1, 2, 3. In all figures, p1 = 0.5, p2 = 0.5, γ = 1, T = 23, s0 = s0N = 0.96, i0 = i0N = 0.04,

and r0 = r0N = 0. In Figs. 2.3a, 2.3c, and 2.3e, β = 0.95. In Figs. 2.3a, 2.3c, and 2.3e, β = 1.3.
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2.5 Case studies of a small county and a cruise ship

In the following experiments, we set parameters to mimic real world cases of a small county or a

cruise ship. We will display plots for the fractional of compartment and the infinitesimal standard

deviations, and analyze the role of stochastic variances in each case. The infinitesimal variances

represent chance variations that lead to deviations from the deterministic SIR model. Through

simulations of infinitesimal variances as in (2.14)–(2.16), we can produce ranges that encompass

a majority of the random paths. Realistically, our findings suggest that for small populations, the

estimating probabilities of rare events, e.g. the early-die-out or early-outbreak, are important.

We study the outbreak of COVID-19 in Churchill County, Nevada from July, 2020 to March,

2021 and on the Diamond Princess cruise ship from February to March, 2020. Since early testing

on the Diamond Princess was done by sampling from the population due to limited availability of

testing, there is an under-reporting issue in the infected counts. The data of Churchill County was

collected from [DDG20] and the reported number of confirmed cases of Princess Diamond, and the

quarantine process were retrieved from the Princess Cruise website of the Carnival Cooperation

[Cru21] and the official website of Ministry of Health, Labor and Welfare, Japan (Ministry of

Health, Labor and Welfare, Japan [HW20].

We plot the daily confirmed cases with 30 realiations from the SIR-IPC models in Fig. 2.4.

For Fig. 2.4a, the total population is set to be Churchill County’s population N = 25715 and the

basic reproduction number R0 = 1.007 using linear regression optimized by a grid search. For

Fig. 2.4c the total population N is the total number of passengers and crew on Diamond Princess

and N = 3711. Cruise ships carry a large number of people in confined spaces with relative

homogeneous mixing, amplifying an already highly transmissible disease. Following the estimation

of the dynamic basic reproduction number in [RSW20], we take an average of these estimates from

Feb 5 to Feb 26, resulting in R0 = 2.02. With these smaller populations, the infinitesimal standard

deviations are non-negligible in the stochastic SIR model. Public health officials thus need to be

aware of the variability of possible outcomes due to finite-size effects.
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(a) Churchill. R0 = 1.007, N = 25715
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(b) The range of the Churchill simulated data.
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(d) The range of the Diamond Princess simulated data.

Figure 2.4: Comparison of field data (solid black line) for daily confirmed case percentages with 30 realisations of the

stochastic SIR model for Churchill County, NV and the Diamond Princess Cruise Ship.
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2.6 Discussion

Compartmental models are a powerful tool to predict and control infectious diseases. In this chapter,

we study theoretically and numerically the finite-size effects arising in stochastic compartmental

models, where individual realizations of the models deviate from their fluid limit. We apply com-

pound Poisson processes to the classical SIR compartmental models without vital dynamics. The

result is a continuous-time Markov pure jump process, and a martingale approach can be applied to

this process. The process is expressed as the sum of a deterministic and a stochastic component,

which provides us with a tool to study both the statistical and stochastic features of the process.

The deterministic part coincides with the classical deterministic SIR model. By providing a bound

of the variances of the martingale, we show that the fluid limit is indeed the deterministic SIR model.

However, a small population size leads to stochastic fluctuations that deviate from the deter-

ministic SIR model. Numerical and theoretical analysis of these finite-size effects have not been

well-studied. We found a theoretical explanation for the finite-size effects by observing that the

stochastic component of the martingale formulation scales as the inverse of the square root of the

population size. A larger variance both in the outbreak size and its temporal behavior arises as

population size decreases. This scaling property is verified at time zero with equilibrium initial data.

Direct numerical simulations of the theoretical infinitesimal variance support our theory as output

shows that the dependence on population size remains to be true at any time. Here we simulate

with fixed initial fractions of compartments and different total population sizes To the best of our

knowledge, this is the first time that simulations of theoretical infinitesimal variances for stochastic

compartmental models are implemented. In previous works only empirical variations are simulated

(see e.g. [RMK18], [Ish91]), and the focus was on the effects of statistical fluctuations on the basic

reproduction number assuming varying initial compartment fractions [AG18]. We also simulate

finite-size effects with small populations and analyze with real data. All the simulations support our

theory. Our results exhibit the danger of fitting data collected during an outbreak to deterministic
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counterparts of the stochastic compartmental models, especially for small populations.

finite-size effects are observed in Markov processes for population dynamics in many fields

([CTW19, GWW19, Ham18, HMZ18, IMM18, Jim18, KWT18, KW18, PNW19, TW18, TWW18,

War18]) but there have been few quantitative studies to date about finite-size effects in epidemics.

The methodology developed here may be broadly useful for quantitative social and natural sciences

may provide a mathematical and theoretical framework that may contribute to epidemic policy for

public health agencies.

So far, the analysis is purely theoretical. It remains an open problem to integrate the real-world

data to the model and provide insights from the data to control the disease. One example is that in

order to control the spread, governments should know when and where to take certain measures to

reduce the transmission rate β.

From Fig. 2.5c, with a smaller population, the range of synthetic data can be wide. Additionally,

the process with a smaller population also has more paths that die out early in the process (see

Fig. 2.2a, 2.2c, 2.2e, and 2.5a). Our work provides a guide for authorities of smaller populations

like cruise ships and small towns to estimate risk over time in order to prepare for outbreaks. It

is important to bear in mind that the broader variations in the pandemic caused by the smaller

population lead to a wide outcome when it comes to estimating risk. In the past hundreds of years of

human history, there have been several infectious diseases, including SARS, and MERS. However,

only few of them, e.g. COVID-19 and 1918 influenza escalated into a pandemic. It is important to

understand when, why and how a disease dies out and a future direction is to quantitatively study

the die-out event and its relations to finite size population and basic reproduction number R0.
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(a) Deterministic i(t) with 50 simulations of stochastic
i(t). The parameters are estimated using daily infected
counts and total population of San Luis Obispo county,
CA and β = 0.13, γ = 0.11, N = 4777.

(b) Deterministic r(t) with 50 simulations of stochas-
tic r(t).

(c) Deterministic i(t) with its theoretical Confidence
band with the width being 6

√
VI(t).

(d) 10-day moving average of the daily confirmed
cases in 3 counties in California. Ventura’s peak is
around end of July, San Luis Obispo’s peak is around
mid August.

Figure 2.5: 10-day moving average of the daily increased confirmed cases in 3 counties in California. Ventura’s peak is

around end of July; San Luis Obispo’s peak is around mid August.
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CHAPTER 3

Multi-regional Policy-making and the Epidemics

This chapter is based on collaborative work with Andrea Bertozzi, P. Jeffrey Brantigham and

Yevgeniy Vorobeychik. The problem and approach was suggested by the collaborators. I developed

the numerical methods and all the simulations as well as fine-tuning the details of the models.

3.1 Background

In the course of battling COVID-19, public health policies determine enforced non-pharmaceutical

interventions to slow down or halt the spread of the pandemic. Some of them include ‘safer-at-

home’, ‘maintaining 6 feet distance’ and ‘mask wearing’ which were considered crucial during the

early stage prior to the availability of vaccines. The timeline of COVID-19 globally and locally

([Cena, Wika]) indicates that the evolution of policy affects the evolution of the pandemic and

vice versa. For example, in the county of Los Angeles, physical distancing was first mandated

[Dep22] on March 21, 2020, about a month after the first reported COVID-19 case in LA. Around

that time, the mayor’s office released ‘safer-at-home’ [Los20]. One week later, beaches, hiking

trails, dog parks, skate parks, etc., and more public sites and facilities were temporarily closed. As

infected cases continued to increase, a month later, on May 1st, facial coverings were suggested.

In hindsight, a natural question to ask is whether the policies that were enforced were done so in

an optimal way. What can we learn from past examples and by using mathematical modeling to

understand the interplay between policy and spread of disease. This chapter introduces a policy

model coupled with the susceptible–infected–recovered (SIR) epidemic model to study interactions

between policy-making and the dynamics of epidemics. There have been several studies on the
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relationship between policies and epidemics [BKM02, BF07, PHB18, BEC06]. In study analyzing

data from 16 US cities during the 1918 pandemic [BF07], Bootsma and Ferguson analyzed specific

outcomes related to the impact of the delay of lockdown policies on the total deaths and also on

the appearance of second waves of outbreaks due to reopening too early. That analysis was done

fitting to an SEIR model. For optimal control, they considered the simple SIR and the end-state

of the pandemic, noting that there exists an optimal control level with fewer deaths and no second

wave. More recently, Bliman et al. [BDP21] develop a theoretical study of the optimal control of a

classical SIR outbreak. In their work, the do not consider the possible of vaccines or pharmaceutical

interventions. Focusing exclusively on NPIs, the ask the question of how to design an optimal

policy that achieves an end state as close as possible to the herd immunity threshold. This is the

same problem considered briefly in a section of [BF07]. Bliman et al prove the existence and

the uniqueness of the solution and showed the optimal social distancing polity is a bang-bang

controller [BD21], generalizing the results of [BDP21] by modeling without prescribing the onset

of the policy. Their model assumes a policy that can change continuously in time, however this

is impractical in real-life situations. As observed during the COVID-19 pandemic, Policy-makers

must provide easy-to-follow policies, with a small number of different intensity levels (see Fig.

3.5b). Moreover, policies can not change frequently in time or they can not be easily followed. A

practical implementation requires a minimum time duration for a particular stage of the policy. This

can be modeled as a piece-wise constant function of time with a minimum time interval for each

policy stage. With this idea in mind, we model policies as piece-wise linear functions in time and

aim to find a optimal and most practical policy among all piece-wise policies. Another practical

issue is the trade off between decreased infections and negative impact on other aspects of society

such as remote learning for young students, lack of employment for people in certain job sections,

and lack of services provided to the public. The prior models do not consider these important issues.

In this work, we modify the model in [BDP21] to take into account all of the practical issues

describe above. The chapter is organized in the following way: we first introduce the work in

[BDP21] and reproduce the results using our methods. We discuss different optimal policies
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resulting from different parameters. Next, we discuss a case study of the 2nd wave (November

2020–May 2021) in the county of Los Angeles, California and a simulated case with multiple

regions. Lastly, we study a case of three counties with and without a governing state as an example

of the multi-layer multi-regional model

3.2 Policy model using optimal control

A policy function is a continuous function that has a range of [0, 1]. As the numerical value increases,

the strictness of the policy decreases. The Numerical value 0 denotes a total lockdown and 1 denotes

no control. We assume a policy u(t) directly influences the level of a lockdown, which affects the

rate of the population transport from compartment S to I . We use the following policy-incorporated

SIR: 

dS(t)

dt
= −u(t)β I(t)S(t)

N
,

dI(t)

dt
= u(t)β I(t)S(t)

N
− γI(t),

dR(t)

dt
= γI(t),

S(0) = S0, I(0) = I0, R(0) = R0.

(3.1)

In [BDP21], a policy u(t) is assumed to belong to the admissible set Uαmax,T0 defined by

{u ∈ L∞([0,+∞]), αmax ≤ u(t) ≤ 1 if t ∈ [0, T0], u(t) = 1 if t > T0}.

The constant T0 characterizes the duration of the policy, and αmax its maximal intensity. In [BDP21],

Theorem 2.1 states that no finite time intervention is able to stop the epidemics before or exactly at

the herd immunity. However, one may stop arbitrarily close to the latter by allowing sufficiently

long intervention, provided that the intensity is sufficiently strong. Therefore, stopping S arbitrarily

close to the herd immunity threshold is only possible by sufficiently long intervention of a strong

enough intensity. To determine the closest state to this threshold attainable by control of maximal
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intensity αmax on the interval [0, T0], one is led to consider the following optimal control problem:

sup
u∈Uαmax,T′

S∞(u). (3.2)

Furthermore, they prove, in theory, the existence and uniqueness of the optimal solution to problem

3.2 and that the solution is a bang-bang controller (a control that switches from one extreme to the

other). More specifically, they have the following theorem:

Theorem 3.2.1. (Theorem 2.1 in [BDP21]) Let αmax ∈ [0, 1) and T0 > 0. Problem 3.2 admits a

unique solution u∗. Furthermore,

(i) the maximal value S∗
∞,αmax,T0

:= {maxS∞(u) : u ∈ Uαmax,T0}is non-increasing with respect to

αmax and non-decreasing with respect to T0 .

(ii) there exists a unique T ∗
0 ∈ [0, T0) such that u∗ = uT ∗

0
:= 1[0,T ∗

0 ]
+ 1[T ∗

0 ,T0] + 1[T0,+∞) (in

particular, the optimal control is bang-bang).

3.3 Models

We use the same policy-incorporated SIR model for the epidemic dynamic as in [BDP21]. Instead of

minimizing the final epidemic size alone, we adopt a similar policy-making process as in [JML21]

by using a cost function that takes into account the cost of implementing the policy, the impact of

the infection and a penalty for being non-compliant. We also consider the practical implementation

constraints, namely that the policy can only be implemented using a finite number of discrete levels

of control and with a minimal time interval of during for each level. As an example, consider the

policy implementation in France during the year 2020 and 2021 shown in Fig. 3.1 [Wikb]. This

discrete model is not only practical in a use-case setting but also allows for ease of numerical

computation of the optimal policy by searching through a discrete set of values rather than a

continuum of policies.
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Figure 3.1: Timeline of COVID-19 Restrictions in France. Note the discrete nature of the restrictions, both in terms of

the small number of categories and the fixed time intervals of enforcement.

3.3.1 The policy-incorporated SIR model

To model the evolution of the pandemic, we discretize the system of ODE using forward Euler’s

method with a time step of 1:

S(t) = S(t− 1)− αβ I(t−1)S(t−1)
N

,

I(t) = I(t− 1) + αβ I(t−1)S(t−1)
N

− γI(t− 1),

R(t) = R(t− 1) + γI(t− 1),

S(0) = S0, I(0) = I0, R(0) = R0.

(3.3)

Eqn. 3.3 can be seen as a first order approximation of the system of ODE.

3.3.2 The policy model

Policy function Instead of assuming policy functions to be continuous, we consider a more

realistic set of policies by assuming policies have different stages. Therefore, we consider policy
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functions from a subset of the admissible set Uαmax,T0 in [BDP21]: we define the minimal policy

time interval (MPTI) as the minimal duration time during which a policy remains unchanged. This

notion assumes that there is a minimal duration time of different stages of a policy. In addition

to u ∈ Uαmax,T0 , we assume that every policy u has a minimal policy time interval ∆t and in

our simulations, the duration of each stage is a multiple of the MPTI. We denote this subset

of policy functions as U∆t
αmax,T0

. In the past, many public health agencies enforced policies for

time periods that corresponded to the work week (e.g. seven days) or multiples of this (e.g. one

month). For the purpose of this chapter, we assume the MPTI is an integer multiple of seven

days. We additionally assume that policy functions take value from a finite number of intensity

levels A [αmax, 1], corresponding to different stages of the policy. In the simulations, we use

A = {αmax,
αmax+1

2
, 1}. As a result, policy functions we consider are in a special form of piece-wise

functions.

Cost function At time t, let u(t) = α. The cost at time t is defined by:

c(α) = κcimplementation(α) + ηcimpact(α) + (1− κ− η)cnon-compliance(α) (3.4)

The cost function is a linear combination of three parts:

(i) the impact cost, which represents the impact of the epidemic on economy and medical system,

etc.

(ii) the implementation cost, which represents the psychological and economic costs of a lock-

down.

(iii) the non-compliance cost, which is a penalty imposed by a policy-maker upon an agent within

its jurisdiction for deviating from its recommendation (e.g., a fine or litigation costs).

The implementation cost is a non-increasing function of α and the impact cost function is a non-

decreasing function of α. The coefficients κ, η ∈ [0, 1]. The cost from time t1 to t2 is defined as the
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averaged integral of the cost function over a total time period T :

ct1t2(u) =
1

T

∫ t2

t1

c(α(t))dt. (3.5)

There are different ways to parameterize the cost function. In this chapter, the cost function is

parameterized in the following way:

ct1t2(u) = κ(1−
∫ t2
t1

u(t)dt

T
) + ηRt2(u) + (1− κ− η)

1

T

∫ t2

t1

(u(t)− π(u(t)))2dt, (3.6)

where Rt2(u) is the fraction of the recovered population at time t2 if policy u is adopted during [t1, t2]

and π(u) is the policy of the agent one level above. The parameterization of the implementation

cost and the non-compliance cost are adopted from [JML21]. The impact cost is parameterized

as the recovered population at time t2 to approximate the impact on the medical system since a

fraction of the recovered represents the hospitalized population. Assume the cost function over time

interval [t1, t2] is constant α, the cost can be simplified as:

ct1t2(u) = κ
t2 − t1

T
(1− α) + ηRt2(α) + (1− κ− η)

t2 − t1
T

(α− π(α))2. (3.7)

An example of cost functions of different weights using the above parameterization is shown in Fig.

3.3.

3.3.3 The Policy model for a single region

In our simulation for a single region, we use a averaged total cost over a time period T as the

following:

ctotal(u) =
1

T

∫ T

0

c(α(t))dt

= κ(1−
∫ T

0
α(t)dt

T
) + ηRT (α) + (1− κ− η)

∫ T

0

(α(t)− π(α(t)))2dt.

(3.8)
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If at time T , the SIR model has reached the equilibrium, we can use RT (α) to approximate R∞–the

fraction of the final size of the recovered population. To find the optimal policy, we solve for the

following optimization problem:

u(t) = argmin
u′

ctotal(u
′) (3.9)

3.3.4 The policy model for multi-layer multiple regions

In our framework, the policy-making goes top-down across layers. For example, in a three-layer

model, the federal government makes the decision first, followed by the states, and counties (see

Fig. 3.2). Within a layer, the regions make decision in a game-like situation. There are several ways

to model this ‘game’. One type of game is that the counties unilaterally make the best decision

given the policies of other counties are fixed, whereas in the Pareto game [Deb54], the counties

make decisions jointly. An optimal outcome is said be the Pareto efficient if there is no outcome

that can increases at least one player’s payoff without decreasing anyone else’s.

There are several differences between our work and [JML21]’s. First, their model is based on

Nash equilibrium, where agents make decisions with other agents’ possible actions in mind. We

use the idea of ‘learning in game’ [FL98]. We assume that the agents gradually evolve towards

the best decisions instead of being optimal instantly. In practice, each region in the game assume

other regions’ policies stay the same when optimizing for its cost function. Second, we focus on the

dynamics, instead of a snapshot in time.

Network SIR In practice, the counties can hardly be treated as independent. People travel across

counties, e.g. work and visiting families and friends. The majority of the literature ([KMS17])

of network style SIR focus on the single people as a node and study the effects of interpersonal

network on the pandemics. For example, [MSH12] empirically study how well various centrality

measures perform at identifying which nodes in a network will be the best spreaders of disease.

[TKH20] explains why most COVID-19 infection curves are linear after the first peak in the context
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Figure 3.2: An example of a three-layer hierarchical structure.

of the contact network using the SIR model. There are a few works that study the interplay between

different geographical regions rather than the interpersonal contact network. In [GKG21], a kernel-

modulated SIR model was introduced to model the spread of COVID-19 across counties. The kernel

is based on the spatial proximity between regions. Metapopulation epidemic models are based on

the spatial structure of the environment, and the detailed knowledge of transportation infrastructures

and movement patterns. The metapopulation dynamics of infectious diseases has generated a

wealth of models and results considering both mechanistic approaches taking explicitly into account

the movement of individuals ([GEG03, KR02, RWL06]). For example, in [RWL06], the authors

proposed a multi-regional compartmental model using medical geography theory (central place

theory) and studied the effect of the travel of individuals (especially the infected and exposed ones)

between regions on the global spread of severe acute respiratory syndrome (SARS). Another way to

account for the interplay between regions is to use a cross excitation matrix [YLB19]. This scheme

assumes the a uniform mixing of the population across regions and the infected population in one

region can trigger the infection in another. The entries of the matrix records the pair-wise cross

excitation from one region to another. In this chapter, we assume uniform mixing in the population

and use an excitation matrix K = {Kaa′} to model the travel and infections across counties. Our
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network-style SIR is the following:

dSa(t)

dt
= −αaβ

∑
a′ Kaa′

Ia′ (t)Sa(t)

Na
,

dIa(t)

dt
= αaβ

∑
a′ Kaa′

Ia′ (t)S(t)
Na

− γIa(t),

dRa(t)

dt
= γIa(t),

S(0) = S0, I(0) = I0, R(0) = R0.

(3.10)

For any county a, the rate of change from Sa to Ia triggered by Ia′ depends on Kaa′ , the current

fraction of the susceptible Sa in county a and the current fraction of the infected I ′a in county a′.

Note that Kaa = 1. When K = I , the network SIR is the independent SIR.

Cost function Consider the i-th time interval [i∆t, (i+1)∆t] and u(t) = α for t ∈ [i∆t, (i+1)∆t].

Regions adopt the following cost function:

ci∆t,(i+1)∆t(α) = κ(1− α)∆t/T + ηRT (α) + (1− κ− η)(α− π(α))2∆t/T.

For the top-layer regions, there is no non-compliance cost and the cost function is

c∆t(α) = κ(1− α)∆t/T + ηRT (α),

where κ+ η = 1.

3.4 Algorithms

We discretize time by MPTI ∆t and the policy intensity into multiple levels. Let T be the total time

and A be the set of possible policy intensities (e.g., A = {0, 0.5, 1}).
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Figure 3.3: Different cost functions vs policy intensity α.

3.4.1 Single region model

We search for all the policies that lead Sfinal ∈ (Sherd − ϵ, Sherd + ϵ), for some small ϵ using a depth-

first search algorithm [Tar71]. The depth-first search algorithm stores the cost up to current time

interval and reuse the this result to get the total cost for each policy function through backtracking.

Let N = T
∆t

and N denote the number of stages of a policy. In total, there are |A|N policies. We

initialize the minimal cost cmin to be 9999. For n-th time interval (n < N ), we choose a value from

the set intensity levels A that is not used before, calculate the cost for the policy intensity, add it to

the previous cost, and move to (n+ 1)-th time interval. If the end time interval is reached, check

if Sfinal ∈ (Sherd − ϵ, Sherd + ϵ). If Sfinal ∈ (Sherd − ϵ, Sherd + ϵ), calculate the cost for the final time

interval and add it to the previous cost to get the current total cost c. If the total cost c is smaller

than cmin, we update cmin with the total cost c, and the optimal policy uopt with u. Next, we go back

to the previous time interval and repeat the same procedure. After searching over all policies, the

policy with the lowest cost is the optimal policy (Alg. 2).
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Algorithm 2 SINGLE-REGION POLICY SIR
1: Input: Time T , intensity levels A, minimal policy time interval ∆t, policy end time T0,

Tol ϵ
2: Initialize county policies, minimal cost cmin = 9999, current cost c = 0
3: N = T

∆t
, n = 1

4: if n == N then
5: for intensity level α ∈ A do
6: calculate Sfinal using the intensity level α
7: if Sfinal ∈ (Sherd − ϵ, Sherd + ϵ) then
8: calculate the cost ctemp = C(α) for N -th time interval, c += ctemp

9: if c ≤ cmin then
10: cmin = c, uopt = u
11: end if
12: c −= ctemp

13: end if
14: end for
15: else
16: for intensity level α ∈ A do
17: calculate the cost ctemp = C(α) for the n-th time interval, c += ctemp

18: n+ = 1
19: repeat line 4–18 until n = N
20: c −= ctemp

21: end for
22: end if
23: return cmin, uopt

3.4.2 Multiple-layers multiple-regions model

The single region algorithm minimizes over all admissible piece-wise functions, while the multiple-

region algorithm only minimizes over every time interval. We use an example of a two-layer model

(states and counties) to illustrate the algorithm. At n-th time interval, we first determine the optimal

policy intensity that minimizes the cost for each state Cs
n∆t,(n+1)∆t for the period [n∆t, (n+ 1)∆t]

unilaterally, i.e., assuming other states follow their previous policies. Next, we choose the optimal

policy intensity for the counties in the same manner, except the cost functions Ca
n∆t,(n+1)∆t include

the non-compliance cost. The full details of the two-layer model is in Alg. 3
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Algorithm 3 GAME POLICY SIR
1: Input: Time T , excitation matrix K, intensity levels A, time interval ∆t
2: Initialize state, county policies
3: Number of policy stages N = T

∆t
, n = 1

4: while n ≤ N do
5: t = n∆t
6: while t < T do
7: for every state s do
8: for every county a in state s do
9: update Sa, Ia, Ra according to the current policy αa and the excitation matrix K:

10: Sa(t) = Sa(t− 1)− αaβ
∑

a′ Kaa′
Ia′ (t−1)Sa(t−1)

Na

11: Ia(t) = Ia(t− 1) + αaβ
∑

a′ Kaa′
Ia′ (t−1)S(t−1)

Na
− γIa(t− 1)

12: Ra(t) = Ra(t− 1) + γIa(t− 1)
13: end for
14: end for
15: t += 1
16: end while
17: for every state s do
18: αs = argminα′∈A Cs

n∆t,(n+1)∆t(α
′)

19: for every county a in state s do
20: αa = argminα′∈A Ca

n∆t,(n+1)∆t(α
′)

21: end for
22: end for
23: n += 1
24: end while

3.5 Simulations

In this section, we present the results for both single-region and multiple-region cases. We first

compare the results of our discretized algorithm with the results from [BDP21]. Next, we study the

second wave (November 2020–May 2021) in the county of Los Angeles. In addition, we present a

3-county example of the multiple regions game and a 3-county example with a state.

3.5.1 Optimal policy in France

We compare the results from [BDP21] to our model with the same cost function but only three

possible levels of policy intensity α. As in [BDP21], the general cost function (3.8) reduces to the
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impact cost and is parameterized as the final epidemic size R∞. In their work, an assumption is

made that the paths considered all reach herd immunity. Therefore, in our search for the optimal

policy, we filtered out those cases that do not reach herd immunity. Note that without this constraint,

the optimal solution is the strictest policy starting from the beginning of the pandemic, resulting in

the least number of infections. For ease of computation, we consider three levels of policy intensity:

0, 0.5, 1 and fixed time intervals for the MPTI. We use the same set of parameters for the SIR model

as in [BDP21]: N = 6.7× 107, I0 = 103, S0 = N − I0, R0 = 2.9. Following [BDP21], we choose

the policy end time T0 as close as possible to 100, thus setting T0 = 98 since the time interval needs

to be a multiple of the MPTI of seven days. Our algorithm produces the result in Fig. 3.4a which

we compare to the result from [BDP21], shown in Fig. 3.4b. Both solutions exhibit a bang-bang

controller. The solution using our model starts the control on day 63 rather than day 61.9 it is a

multiple of seven. Slightly more people are infected with the policy that is forced to use seven day

intervals rather than a finer gradation in time.

Using a larger minimal policy time interval of 28 days and T0 = 112, the optimal solution

is no longer a bang-bang controller, shown in Fig. 3.4c with a larger S∞ = 0.32. The optimal

policy starts with a looser policy and then a stricter one. Interestingly, in practice, during COVID-

19 it was common for policies to start with the strictest restrictions followed by partial opening

[Wikb, Dep22]. Thus it is interesting to contrast the optimal policy with a policy in which the two

stages are flipped in time, see Fig. 3.4d. The flipped policy is not the optimal solution—it results in

a larger pandemic size and a second wave of infections, as was often seen during the first two years

of the COVID-19 pandemic. Nevertheless, the policy in Fig. 3.4d, while infecting more people,

divides this population into two waves which could decrease daily hospital demand over the course

of the outbreak. Our policy model does optimize for hospital demand. Since many public health

agencies considered hospital demand when making policy decisions, it might be interesting to

consider it in further studies. The model considered here is idealized and meant to provide some

insights for future research on policy rather than to directly create policy change. However future

policy-makers may want to review these results in light of the additional infections a policy might
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produce.
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(a) Optimal policy with the minimal policy time interval
∆t = 7 days, S∞ = 0.296
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(b) Optimal policy in [BDP21], S∞ = 0.311
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(c) Optimal policy with the minimal policy time interval
∆t = 28 days, S∞ = 0.32
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(d) Flipped policy from panel (c), S∞ = 0.174

Figure 3.4: Optimal policy and the SIR model of France from March 17 to May 11 2020.

3.5.2 Case study—2nd wave in Los Angeles

We first present the infection in three counties in California and their corresponding ‘stay-at-home’

policy from Mar 2020 to Sept 2021. Fig. 3.5a shows the 7-day rolling average of the fraction of

the daily increased infected cases based on the data from [DDG20] in 3 counties with the largest

population density in California, namely, San Francisco (SF), Orange county (OC), and Los Angeles

(LA). There were 3 major outbreaks during the given time interval. For the first and the second
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wave, orange county and LA county have similar situations while SF stayed more contained. Due to

the massive travel in the holiday season, the second wave has a much larger size than the first one.

In [Cenb], the US Centers for Disease Control and Prevention describes six levels of ‘stay-at-

home’ policy. The intensity of the policy decreases as the numerical value increases. The exact

descriptions of the five levels of policies and their numerical representation are shown in Table 3.1.

Fig. 3.5b shows the change of the intensity of the ‘stay-at-home’ policy during the same period.

The policy during the first wave was proactive, whereas the policy for the second wave was more

reactive.Society is vigilant when the virus first shows up, but the fatigue in policy-making and

compliance with the masking wearing and stay-at-home order increases the response time.

Numerical value ‘Stay-at-home’ policy
0 Mandatory for all individuals

0.2 Mandatory only for all individuals in certain areas of the jurisdiction
0.4 Mandatory only for at-risk individuals in the jurisdiction
0.6 Mandatory only for at-risk individuals in certain areas of the jurisdiction
0.8 Advisory/Recommendation
1 No order for individuals to stay home

Table 3.1: CDC stay-at-home policies. There are 6 levels of policies and we map the levels linearly onto the interval

[0, 1] for simplicity. The numerical value on the left is used to graph actual policies over time in Fig. 3.5b.
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Figure 3.5: The fraction of the infected and ‘stay-at-home’ policy over time in Los Angeles, San Francisco, and Orange

County.
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During the second wave, with a relatively strict policy, the regions all stayed below herd

immunity. With vaccination available in early 2021, the pandemic in all three regions tapered off.

Now we consider a counterfactual study of how the pandemic would evolve if herd immunity

is reached during the second wave, controlled by our policy model, using parameters measured

from the Los Angeles data. We choose to study the period of the second wave for several reasons.

First, the reporting scheme of COVID-19 is improved compared to the first wave and the data

during the second wave is more accurate. In addition, with the experience and knowledge gained

from the first wave, it’s more likely for the authorities to make optimal decisions. Given that

there was no complete lockdown during the second wave, we consider the policy intensity levels

A = {0.2, 0.6, 1}, and use the minimal policy time interval ∆t = 7. We choose 0.2 as our maximal

policy intensity because full lockdown was not desirable during this period. We choose a second

policy level of 0.6 because it is the average of 0.2 and 1. In all simulations we optimize for final

pandemic size and compare the optimal controls found.

In Fig. 3.6, the left column (Figs. 3.6a, 3.6c, 3.6e) is the simulated SIR with the optimal policy

when the basic reproduction number R0 = 2.5 and the initial recovered r0 = 0.1, 0.2, 0.3. The right

column (Figs. 3.6b, 3.6d, 3.6f) is the simulated SIR with the optimal policy when the reproduction

number R0 = 2.15 and the initial recovered r0 = 0.1, 0.2, 0.3. This value R0 = 2.5 is estimated

from the early COVID-19 infected data ([DDG20]) and the R0 = 2.15 is using the infected data

from October to early November 2021 ([DDG20]), prior to the second wave. All optimal policies

have a bang-bang-like shape. The policy started approximately around the peak of the infected

curve, and the resulting dynamics approach herd immunity. For larger values of r0, we expect that a

shorter period of high intensity policy is needed to reach herd immunity and our results confirm this.

Once enough of the population is infected and recovered, a shorter control policy is needed.
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(a) R0 = 2.5, r0 = 0.1.
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(b) R0 = 2.15, r0 = 0.1.
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(c) R0 = 2.5, r0 = 0.2

11/11/20
12/01/20

12/21/20
1/10/21

1/30/21
2/19/21

3/11/21
3/31/21

4/20/21
5/10/21

Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n S

I
R

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y

policy
Sherd

(d) R0 = 2.15, r0 = 0.2
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(e) R0 = 2.5, r0 = 0.3
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(f) R0 = 2.15, r0 = 0.3.

Figure 3.6: Optimal policy in Los Angeles with the basic reproduction number R0 = 2.5, 2.15 and the fraction of the

initial recovered population r0 = 0.1, 0.2, 0.3.
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3.5.3 Multiple regions

It is interesting to extend this model to the case of multiple regions. First, we discuss when one layer

exists, i.e., only counties. The game between the counties is through cross excitation of infection

among the counties. Next, we study the case when a governing state is added.

We consider three interacting counties with the excitation matrix K:

K =


1 0 0

0.1 1 0

0 0.1 1


Counties 1, 2, 3 have initial fractions of the infected population as i0 = 0.2, 0.1, 0.1, respectively.

This implies that county 1 has a bigger outbreak initially, and part of the infection in county 2 is

excited from county 1 and part of the infection in county 3 is excited from county 2. The cost

functions for all counties consist of an implementation cost and an impact cost with equal weights

(η = κ = 1/2). The minimal policy time interval ∆ is set to be 7.

The left column (Figs. 3.7a, 3.7c, 3.7e) are the simulations for the counties without any

intervention and the right column (Figs. 3.7b, 3.7d, 3.7f) are the simulations with interventions.

Without intervention, we see propagation of waves of infection from county 1 to county 2 and then

to county 3. All of the counties reached herd immunity eventually. With interventions, the policies

started on day 7 and for county 2 and 3, the infected curves decrease before reaching their peaks.

With the control, county 1 contained the pandemic and the final S∞ is close herd immunity level

Sherd. With a fewer infected population to begin with, county 2 and 3 contained the pandemic

before reaching herd immunity. Fig. 3.8d shows the results of adding a governing state on top

of the county layer. We keep the ratio of the weights for the implementation cost and the impact

cost to be 1:1, the same as in the no-state case in Fig. 3.7. The state has slightly different weights,

with the ratio of the weights for the implementation cost and the impact cost being 1:2. Compared

to Fig. 3.7, by adding a state, the three counties ended up with the same policy. In this case, the
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(a) County 1. No intervention.
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(b) County 1.
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(c) County 2. No intervention.
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(d) County 2.
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(e) County 3. No intervention.
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(f) County 3.

Figure 3.7: An example of three dependent counties without and with interventions. With intervention, for all counties,

the coefficients for the implementation cost κ = 1
2 and the coefficients for the impact cost η = 1

2 . The minimal policy

time interval ∆t = 7.
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noncompliance cost results in each county choosing the same policy as the state rather than different

policies.
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(a) County 1 with a state.
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(b) County 2 with a state.
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(c) County 3 with a state.
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(d) State policy and counties’ policies.

Figure 3.8: An example with 3 counties and a governing state. For all counties, the coefficients for the implementation

cost κ = 1
6 , the coefficients for the impact cost η = 1

6 and the coefficients for the impact cost η = 1
2 and the coefficients

for the non-compliance cost 1 − κ − η = 2
3 . For the state, the coefficients for the implementation cost κ = 1

3 , the

coefficients for the impact cost η = 2
3 . The minimal policy time interval ∆t = 7.

3.6 Discussion and future work

We propose a policy-making model coupled with the SIR model to study a single region and game-

like interactions between multiple regions. The model demonstrates its ability to model real-life

situations with different sets of parameters in both one region and multiple regions scenarios. One
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can extend the model to a hierarchical structure by building multiple layers of the multiple regions

model and study the cross-layer effects.

In the search for the optimal policy, we use a naive depth-first search algorithm for the one-region

model. One can speed up the algorithm by removing some of the obvious non-optimal paths.

In our model, the policy intensity α is a heuristic representation of the lockdown, social dis-

tancing and mask policy. It remains to be discussed how other policies, for example, vaccination

policies, affects the spreading in the different stages of the pandemic. The model ignores some of the

important features like the limitation of the hospital capacity, which could be added as constraints

when minimizing the cost function. Fig. 3.5b shows the policy for the first wave is proactive while

the one for the second wave is reactive. This implies that as the pandemic goes on, the fatigue of

policy-making start to show up. So far, the model does not have the capability of modeling this

fatigue. In the future, one could consider an adaptive term in the cost function to model it.
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CHAPTER 4

COVID-19 Literature Topic-Based Search via Hierarchical

nonnegative matrix factorization (NMF)

This chapter is adapted from an original paper [GHH20] that I co-authored with Rachel Grotheer,

Longxiu Huang, Yihuan Huang, Alona Kryshchenko, Oleksandr Kryshchenko, Pengyu Li, Elizaveta

Rebrova, Kyung Ha, and Deanna Needell. The problem and approach were suggested by Deanna

Needell . I prepossessed the data set, developed and implemented the numerical method for HNMF

and analysed topic similarities with the rest of the collaborators.

4.1 Background

The appearance of the novel SARS-CoV-2 virus on the global scale has generated demand for

rapid research into the virus and the disease it causes, COVID-19. However, the literature about

coronaviruses such as SARS-CoV-2 is vast and difficult to sift through. This chapter describes an

attempt to organize existing literature on coronaviruses, other pandemics, and early research on

the current COVID-19 outbreak in response to the call to action issued by the White House Office

of Science and Technology policy [SP] and posted on the Semantic Scholar [Sch20] and [Kag20]

websites. The original dataset posted on that site is augmented by adding articles drawn from other

databases in order to make the final interactive organizational structure more robust for researchers.

Our primary goal is to create a framework for a topic-based search of papers within this dataset

that is helpful to those investigating the novel coronavirus, SARS-CoV-2, and the global COVID-19
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pandemic. In order to discover the latent topics present in the collection of scholarly articles, as

well as to organize them into a hierarchical tree structure that allows for an interactive search, we

use a modified hierarchical nonnegative matrix factorization (HNMF) approach. A website1 that

allows users to walk through the topic tree based on the top keywords associated with each topic is

created using this hierarchical organization of the papers.

4.1.1 Contributions

Our methods help make sense of a vast and rapidly growing body of COVID-19 related literature.

The main contributions of this chapter are as follows:

• A diverse dataset of COVID-19 related scientific literature is compiled, consisting of articles

with full-text available drawn from several online collections.

• A tree-like soft2 cluster structure is created of all the papers in the dataset based on inherent

relations between their topics using hierarchical NMF.

• The best number of topics for each layer is defined as the number that produces the most

consistent clustering of the dataset with random initializations of NMF algorithm. A variance

analysis method is used to identify the best number of topics on each layer.

• The effectiveness of the method is measured by exploring the coherence of each topic and

dissimilarity between the topics.

• The discovered topics and distribution of articles into each of the topics are discussed,

revealing major areas of interest and research in the early months of the pandemic, as well as

how existing epidemic literature can be effectively organized to allow efficient comparison to

COVID-19 related research.

1http://covid-19-literature-clustering.net/

2Soft here means that clusters can intersect, as one paper could belong to more than one topic.
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• The theoretical results are complemented with an interactive website:

http://covid-19-literature-clustering.net/

4.1.2 Related work

Some relevant works that motivate our approach are briefly reviewed. NMF was first proposed

for document clustering [XLG03], and since then many variants of the NMF method have been

proposed and applied to help organize various types of data [LS99, Buc08, KCP15]. In particular,

there exist several recent papers that use NMF to find a hierarchy of topics in a set of documents.

For example, [KP13] apply a rank-2 NMF to the recursive splitting of a text corpus and also provide

an efficient on-the-fly stopping criterion. In [GHM19], the authors discuss a different version of

HNMF, when the hierarchy of topics is generated by aggregation of the topics (rather than splitting).

The first application of NMF produces the initial set of the most refined topics, and the subsequent

NMF iterations find supertopics in which the previous set of topics can be summarized. This

approach is referred as a bottom-to-top viewpoint, and the former as a top-to-bottom. Approaches

that utilize tools from neural networks such as back propagation to improve the topic representations

have also been developed recently [TBZ16, RHW15, SNT17, GHM19]. In [TCL18] a hierarchical

online non-negative matrix factorization method (HONMF) is proposed to generate topic hierarchies

from data streams. The proposed method can dynamically adjust the topic hierarchy to adapt to the

emerging, evolving and fading process of the topics. This work most closely aligns with what we

present here, and although we do not consider the online setting, our method can easily be adapted

to such.

Finally, several authors have sought to address the issue of interpretability of topics discovered

by NMF, especially in datasets comprised of text documents. For example, in [ASN17], the authors

apply NMF to the documents using a word embedding model, Word2Vec [MSC13], that focuses on

the semantic relationship between words. We make use of this embedding to analyze the usefulness

of the topics generated by examining their semantic similarity.
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4.2 Data description

The dataset used is compiled from 4 different databases that contain scholarly articles related

to COVID-19, various coronavirus diseases, other infectious diseases, and epidemiology [Sch20,

DP, Bio20b, bio20a]. From each of these databases, only articles written in English that have a

complete abstract and text body available are included. Punctuation and words on the NLTK English

stopwords list [BKL09] are removed from the text body and abstract of each article. An initial

application of NMF generated a topic consisting primarily of words that, upon further investigation,

were found to be part of the copyright and publishing information present at the top of articles

primarily drawn from the bioRxiv database, and not the content of the articles themselves. Therefore,

we also remove the top 30 keywords of that topic from the corpus. See Appendix 4.7.1 for the list

of these removed keywords. Finally, the articles are lemmatized and each word in the text body and

abstract is represented by a TD-IDF embedding [SB88].

After processing and cleaning, the final dataset contains 25,663 articles. Most of these databases

are regularly updated and one of the important future directions of this work will include developing

a dynamic tree structure that pulls new articles from these databases weekly.

4.3 Hierarchical NMF for topic detection

In a vector space model, a corpus can be represented by a d× n matrix X , where d is the size of

the vocabulary, and n is the number of documents. The underlying assumptions in topic modeling

using NMF [BL07] are that a latent topic can be represented as a distribution over the words, and

that every document is a mixture of topics, i.e. comprises a statistical distribution of topics that can

be obtained by “adding up” all of the distributions of all the topics covered. In this section, we will

introduce how to apply hierarchical NMF for topic detection and creation of the hierarchical tree

structure. As a preliminary step, a brief introduction to using NMF for topic detection is given.
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4.3.1 NMF for topic detection

In NMF, the bag-of-words model is used to format the documents into inputs. It takes in the corpus

and creates a vocabulary out of each unique word in the corpus. It then models each document as

a vector with length equal to the number of words in the vocabulary where entry i in the vector

corresponds to how many times word i occurred in the document. Thus, the bag-of-words model

gives us a matrix X with dimension d× n where n is the number of words in the vocabulary, and d

is the number of documents. Then corpus matrix X ∈ Rd×n
≥0 is decomposed into a pair of low-rank

nonnegative matrices W ∈ Rd×k, also known as the dictionary matrix, and H ∈ Rk×n, also known

as the coding matrix, by solving the following optimization problem

inf
W∈Rd×k

≥0 , H∈Rk×n
≥0

∥X −WH∥2F , (4.1)

where ∥A∥2F =
∑

i,j A
2
ij denotes the matrix Frobenius norm. Solving NMF using iterative optimiza-

tion algorithms, has a drawback: the objective function is usually non-convex and has multiple local

minima. Therefore a different random initialization of the NMF procedure will result in a different

matrix factorization. More importantly, this changes the interpretation of the results, including

topic vector representations (W ) as well as the relevance between articles and topics (H). Another

possible source of variability in the algorithm is the choice of the number of topics, k. Different

combinations of initializations of W , H , and k yield different topics, leading to different article

clustering results. See Section 4.5.1 for more discussion and implementation details in this vein.

4.3.2 Hierarchical NMF

The traditional NMF method treats the detected topics as a flat structure, which limits the ability of

the representation of such method. In contrast, a hierarchical NMF (HNMF) framework is able to

detect supertopics, subtopics, and the relationship between them, creating a tree structure. Compared

with traditional NMF, HNMF improves topic interpretability. For instance, while both NMF and
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HNMF may produce topics that are similar to one another, if these topics are in the bottom layer of

the tree structure provided by HNMF, their associated supertopics provide additional context to help

distinguish the related subtopics. Besides improving topic interpretability, HMNF also provides a

more user-friendly search framework, which is suitable for building website. The hierarchy allows

users to search for relevant topics more effectively, while progressively narrowing their search.

Given the complex nature of the coronavirus literature corpus, such a hierarchical approach

is appealing. Thus, we apply the HNMF algorithm summarized in Algorithm 4. Note that this

algorithm is similar to the one in [TCL18], which has been shown to be effective for topic detection.

In HNMF, NMF is first applied to the original corpus matrix X to obtain the dictionary matrix

W and coding matrix H . The documents are then sorted into matrices X1, X2, . . . , Xk, each repre-

senting a different topic, according to the coding matrix H , or into the matrix Xe that temporarily

holds unassigned articles. Whether the leaves need to be further divided depends on the number of

the documents in each topic matrix (leaf). If the number of documents sorted into a topic is greater

than a pre-specified value m, then a further division is needed. The above process is repeated until

the number of documents in each leaf is less than m. More details on the implementation of the

HNMF algorithm are provided in Section 4.5.2.

4.4 Discussion of results

This section begins with a discussion and visualization of the hierarchical tree structure obtained

using Algorithm 4. Then in Sections 4.4.3 and 4.4.4 quantitative evidence is provided that the

discovered topics are reasonable. In doing this, we seek to measure both the rationality of a given

topic and the similarity between topics to evaluate whether the topics differ enough to be useful for

a user.
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Algorithm 4 Hierarchical NMF
1: Input:Corpus matrix X .
2: [W,H] = NMF(X, k∗) where topic number k∗ is chosen by Algorithm 5
3: assign articles to the related topics X1, . . . , Xk∗ according to the threshold α in H , and any

remaining articles to “Extra Document” matrix Xe

4: while # of the articles assigned to a topic i > m do
5: determine the # of sub-topics k∗

i of the topic i in Xi by Algorithm 5
6: [Wi, Hi] = NMF(Xi, k

∗
i )

7: assign the documents to the topics by the a threshold α in His
8: assign the rest to Xe

9: end while
10: for article xi in Xe do
11: calculate cosine similarity between xi and leaves, and assign the article to the most related

leaf
12: end for
13: repeat both while and for loops until the number of the articles assigned to each topic is less

than m.

4.4.1 Topic visualization

Implementation of Algorithm 4 on the dataset results in a hierarchical clustering of the articles

into eight supertopics, each with five to six subtopics. Two of these subtopics, the first and fourth

subtopics of supertopic 7, are further decomposed into a third layer of subtopics as the number of

articles assigned to the first and fourth subtopics are larger than the selected m in Algorithm 4. The

full hierarchical tree structure is visualized in the diagram in Figure 4.1. Each color represents one

of the eight supertopics and the size of each slice is proportional to the number of articles that are

clustered into that topic. It is important to note that only the top three words associated to each topic

are shown due to space constraints, but in some cases extending the list of highly related words

is necessary to clarify the difference between the subtopics. For reference, the top ten keywords

associated with each topic and subtopic can be found in Appendix 4.7. Additionally, the five most

probable words associated to each topic are displayed on the associated website to aid users in more

effectively choosing the topics of personal interest.

In order to examine the structure in more depth, Figure 4.2 displays a branch of the resulting

tree represented by word clouds, generated from the top five words associated with each topic. The
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Figure 4.1: Sunburst Diagram of the complete hierarchical structure. The top three relevant words per topic are shown.

The area of each region is proportional to the number of articles in that topic. See appendix for the keywords associated

with the third layer. The inner circle numeric labels are corresponding to topic number in Figure 4.2
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Figure 4.2: Part of Topics from HNMF and related topic coherence: The first row shows the the key words for the

topics in the first layer, the second row shows the subtopics of Topic 7 and the subtopics of Topic 7-1 is showed in row

3. Corresponding topic coherence score (see Section 4.4.3 for more details) is underneath each word cloud.

size of the words in each word cloud cell are proportional to their weight in the corresponding

W matrices, and thus, the probability they are associated with that topic. In particular, the figure

follows one path down the tree structure, focusing on Topic 7 and its associated subtopics, and then

continuing to the subtopics of Topic 7-1. When moving to deeper layers in the tree, the general

“health” and “model” topic further differentiates into subtopics ranging from public health to animal

to human transmission diseases, and data modeling. Finally, the public health subtopic leads to

clusters of articles specifically related to China or hospital care, for example.

4.4.2 Discussion of topics

Perhaps not surprisingly, the topic to which the highest number of articles are assigned, Topic 7, is

about the general study of the disease (with the most highly associated words being “health, model,

disease, case, epidemic, outbreak, public, country, population, transmission”), further split into two

additional layers of subtopics. This is the only topic that was split into a third layer, allowing a more

effective differentiation between articles covering a similar topic.

Also unsurprisingly, much of the literature, which was compiled early on during the pandemic,

63



is clustered around the study of other coronavirus-caused diseases. Topic 8, for example, focuses on

vaccine development through the lens of the Porcine Epidemic Diarrhea Virus (PEDV). Although

this is a coronavirus found only in pigs, several vaccines have been developed, especially within

the last seven years, when PEDV was first discovered in North America [GZ17]. Hence, it is

reasonable that this topic would be of interest to current researchers looking to develop a vaccine

for SARS-CoV-2. Similarly, Topic 1 focuses on coronaviruses known to infect humans, such as

SARS-CoV, and MERS-CoV. Topic 4 also contains a couple of subtopics that look specifically at

the genetic structure of SARS-CoV.

Other topics of interest focus on articles about diseases with related symptoms, although they

may be caused by a different type of virus. For example, both Topics 5 and 6 examine literature

related to respiratory illnesses such as influenza, though Topic 5 clusters articles more related to

laboratory study and Topic 6 clusters articles more related to hospital studies and patient care.

Other major topics focus more on microbiology, including the genomic structure of the virus,

the cellular infection and immuno-response, and cell-protein interaction. Thus, the hierarchical tree

structure separates papers between macro- (public health) and micro- (biological) studies of the

virus, and into papers that study related viruses. This creates a clear delineation of topics for those

investigating papers, and gives insight into areas of interest for early researchers of SARS-CoV-2.

This organizational structure appears to be more robust and high-level than e.g. a keyword based

search or organization.

4.4.3 Topic coherence

One measure of effectiveness of the topics discovered by HNMF is topic coherence. Topic coherence

is a quantitative measure of how well the keywords that define a topic make sense as a whole to a

human observer and collectively provide a consistent interpretation of the topic.

While many topic coherence measures have been proposed, [RBH15] found that the CV co-

herence metric correlates the most closely with evaluation by human experts. The CV measure
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calculates the similarity between two words wi and wj using the normalized pointwise mutual

information (NMPI) metric defined as,

NPMI(wi, wj)
γ =

 log
P(wi,wj)+ϵ

P(wi)·P(wj)

− log(P(wi, wj) + ϵ)

γ

(4.2)

where P(wi) and P(wi, wj) are probabilities defined as the number of documents in which either

wi or (wi, wj), respectively, appear, divided by the total number of documents. These probabilities

are calculated using a sliding Boolean window of size s that slides over a document at the rate

of one word per step. The sliding window allows for the proximity of the words to be taken into

account. The γ allows for more weight to be placed on higher NPMI values. After the NPMI score

is calculated between each of the top N words, W ′, in each topic W = {W1,W2, . . . ,WN} and

each of the remaining N − 1 words, W ∗, these scores are added together to form a context vector

v⃗(W ′). Using the notation given by [SS17],who applied the CV metric to topics found using latent

Dirichlet allocation (LDA), we define the context vector as,

v⃗(W ′) =

{ ∑
wi∈W ′

NPMI(wi, wj)
γ

}
j=1,...,N

(4.3)

Finally, the cosine similarity between all context vector pairs within Si = (W ′,W ∗) is calculated,

giving the confirmation measure ϕSi
,

ϕSi
(u⃗, w⃗) =

∑N
i=1 ui · wi

||u⃗||2 · ||w⃗||2
(4.4)

which is a measure of how well word W ′ in topic W is supported by the word W ∗ relative to all the

words in W .

To further support these results, we additionally calculate the coherence score defined by [MWT11]

65



Topic CV C
1 0.68 321
2 0.63 442
3 0.68 407
4 0.56 419
5 0.61 405
6 0.66 420
7 0.63 441
8 0.59 378

Table 4.1: The coherence scores based on both the C and CV metric for each of the 8 topics in the first layer of the tree.

for each topic. The coherence score Ci for topic i, i = 1, . . . , k is given by,

Ci(W
(i)) =

N∑
p=2

p−1∑
ℓ=1

log
P (w

(i)
p , w

(i)
ℓ ) + 1

P (w
(i)
ℓ )

. (4.5)

The topic coherence scores for each of the topics in the first layer, using both the CV and C metrics

are in Table 4.1.

The CV coherence metric has values between 0 and 1, with values closer to one indicating

that the keywords form a topic that would be highly ranked by human expert. A positive, large

coherence score using the C metric indicates the same. A coherence score that is close to 0 (for

CV ) or negative (for C) indicates that a topic is less meaningful, which may occur, for example, if

the associated keywords fall into two unrelated groups, or if the keywords are seemingly random

and have no obvious connection. Most of our identified subtopics have coherence scores whose

values suggest that they are understandable and useful to human users. The CV scores for each of

the subtopics can be found in Appendix 4.7.2.

4.4.4 Topic similarity

Another test of the usefulness of the hierarchical structure generated is to evaluate whether the topics

are different enough to allow for informative choice between them. To evaluate this, we quantify

topic similarity using a metric known as the Word Mover’s Distance (WMD). WMD is a popular
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tool for measuring distances between documents [KSK15]. WMD utilizes Word2Vec [MCC13], a

word embedding technique, and treats each document as a set of vectors in the embedded vector

space. This embedding allows the WMD metric to consider the semantic meaning of a given word,

rather than just its spelling. Thus, for example, it allows for identification of synonyms as having

the same meaning in a given context despite being different words, which makes it more preferable

than traditional metrics such as cosine similarity or Euclidean distance. The distance between two

documents A and B is defined as the minimum cumulative distance that words from document A

need to travel to match exactly the words of document B. We note that while there are other state

of the art semantic representations, such as BERT [DCL19] and ELMo [PNI18], and associated

metrics, since the topics extracted are a bag of words with weights, the WMD with Word2Vec is

sufficient for our purposes.

The topic similarity across the layers and within each layer is evaluated by computing the WMD

between a topic and its associated subtopics and between the subtopics themselves, where each topic

is represented by its 100 most related words. The similarities between all topics in the hierarchical

structure obtained from HNMF is visualized in the heat map in Figure 4.3. As indicated by the

overall dark colors, in general each topic in the tree is dissimilar from the others.

When examining the similarities between a topic and its subtopics, results show that for a given

topic, its subtopics are less correlated with each other than with their parent topic. For example, in

Figure 4.4, for Topic 7, the similarity scores between its subtopics are much lower than the scores

between subtopics and their parent Topic 7. Similar results can be drawn for Topic 7-1 and its

subtopics, as shown in Figure 4.5.

However, there are some high similarity scores between subtopics that belong to different topics,

for example the light off-diagonal spot in Figure 4.3 showing the similarities between Topics 6-3

and 5-3. Examining the top ten keywords associated with each topic, we find that both topics are

associated with the words “influenza”, “virus”, and “study” indicating that both topics deal with

studies related to the influenza virus.

The insight into the difference between the two subtopics comes from examining supertopics
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Figure 4.3: Topic similarity for all the topics from HNMF measured by WDM . A dark color indicates the topics are

dissimilar, while a light color indicates high similarity. Note that the topics are listed from first layer to third layer from

top to bottom or right to left on the vertical and horizontal axes, respectively.

5 and 6 and the keywords associated with each subtopic that do not overlap. Looking at words

such as “detection” and “assay” associated with Topic 5 and “surveillance”, “case”, “season”, and

“year” associated with Topic 5-3, it appears that Topic 5-3 is more associated with detecting and

monitoring the prevalence of cases of influenza in the general populace in a given flu season. On

the other hand, the presence of keywords “patient”, “hospital”, “clinical”, and “study” associated

with the parent topic, Topic 6, as well as “patient”, “child”, and “respiratory” associated with Topic

6-3, it seems that Topic 6-3, while also related to influenza studies, deals more specifically with

cases in a hospital setting, perhaps specifically related to children, and examining the relationship

with respiratory illness in general.
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Figure 4.4: Topic similarity between Topic 7 and its subtopics measured by WDM: Topic 7 has high topic similarity

with its five subtopics (7-1, 7-2, 7-3, 7-4, 7-5) and the five topics have low similarity between themselves.

Figure 4.5: Topic similarity between Topic 7-1 and its subtopics measured by WDM: Topic 7-1 has high topic similarity

with its four subtopics (7-1-1, 7-1-2, 7-1-3, 7-1-4) and the four topics have low similarity between themselves.

A study of similar subtopics such as these show the effectiveness of the tree in separating related

topics into more dissimilar supertopics to make navigation to articles of interest clear. However,

Algorithm 4 allows for an article to be assigned to more than one subtopic, acknowledging that a

single article may of equal interest to researchers investigating different, but related topics.

4.5 Implementation

In this section, we discuss the details of the implementation of HNMF and the construction of the

hierarchical structure.
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Algorithm 5 Determine optimal number of topics
1: Input: integer q, corpus matrix X
2: Determine a range for the potential topic number [k1, k2] by plotting increment in variance

explained by adding one more cluster to X
3: Randomly select q + 1 seeds for initialization
4: for integer k in [k1, k2] do
5: Generate topic sets {Tj}q+1

j=1 from NMF initialized by random seed j
6: Generate Skj for j = 1, 2, . . . , q where Skj is the cosine similarity matrix between topics in

Tj , Tj+1

7: for Skj , j = 1, 2, . . . , q do
8: LSSk = ∅
9: Add lss= min (max(sa.),max(s.b)) to LSSk, where sab is the (a, b)th entry of the matrix

Skj

10: end for
11: end for
12: return k∗ = argmaxk(median(LSSk))

4.5.1 Determining number of topics in each layer

As previously discussed, the latent topics discovered by NMF are sensitive to the initial state of the

algorithm, leading to different dictionaries for each topic. In order to reduce this sensitivity, we seek

to find an appropriate number of topics, k∗, in each layer such that if a k∗-topic NMF is initialized

using any two random seeds, the content in the topics discovered should be similar, as measured

by cosine similarity. We define this as a consistent number of topics. Algorithm 5 summarizes the

process to find the “best” number of topics, as defined in this manner, for a corpus matrix X .

In Algorithm 5, first the increment in proportion of variance explained by adding one more

cluster to split the corpus matrix X is plotted. This is calculated by looking at the singular values

of X . By examining this plot (Figure 4.6), a range [k1, k2] = [7, 11] in which a potential optimal

number of topics, k∗ can be found is obtained by noting where the proportion of variance explained

starts to level off.

To determine the value of k∗ in this range, first, q + 1 random seeds are randomly selected,

where q is a sufficiently large number. In this case, q = 30 was used. For each number of topics k ∈

[k1, k2], topic sets are generated {Tj}q+1
j=1 using each of the q + 1 random seeds for initializing NMF.
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Figure 4.6: Plot of marginal increment in proportion of variance explained by adding another cluster to split X . It is

determined that the ideal number of clusters/topics likely lies in the range [7, 11], as this is where the plot starts to level

off.

Then, the cosine similarity is calculated between each of the k topics for every consecutive

pair of Tj’s. The similarity scores between the topics for each pair (Tj, Tj+1) are stored in a matrix

Skj ∈ Rk×k. Therefore, q of such matrices are generated for each k ∈ [k1, k2]. For a fixed k, the

minimum of all maximum entries from each column and row of each similarity matrix Skj is defined

to be least seed similarity (lss) score for that k. The set containing the q, lss scores for a given

number of topics k is denoted LSSk. A consistent number of topics should have an overall high

similarity between the topics generated for each seed. Therefore, we choose k∗ in [k1, k2] to be the

“best” number of topics if the median of all its lss scores is the highest.

The boxplot in Figure 4.7 shows the distribution of the lss scores for k in [7, 11]. In this case, 8

is chosen as the “best” number of topics since it results in the highest median lss score.

4.5.2 Implementation of hierarchical NMF

A hierarchical NMF (see Algorithm 4) is applied to cluster the articles, where the number of topics

in each layer is determined by Algorithm 5. The hierarchical tree structure is established from top

to bottom and consists of three layers on this data set (see Figure 4.1).

To generate topics in the first layer, NMF is applied to the matrix X containing all the vectorized
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Figure 4.7: Box plot of LSSk: Topic number 8 is the “best” as it has the highest median lss (least seed similarity) score

and should be expected to yield consistent results with random seeds.

articles, resulting in a factorization with 8 topics, as determined by Algorithm 5. Next, a threshold α

(in this case, α = 0.05) is chosen, and the articles in X are assigned into a topic class X1, · · · , X8

if their corresponding document-topic correlation in the H matrix is greater than α. Note that by

this definition, one article could be assigned to one or more topic class. After this, any articles not

classified to one of the 8 topics are assigned to the “Extra Document” corpus, Xe. Now, the second

layer of the tree consists of text corpora X1, · · · , X8.

For each Xi, i = 1, 2, · · · , 8 in the second layer, the topic is further subdivided into a third

layer if the number of articles assigned to a topic class i is more than some m (in this analysis, we

chose m = 1400). If it is determined that text corpus Xi needs to be divided further using NMF,

the number of subtopics is chosen by Algorithm 5 and again, articles from Xi are assigned to each

subtopic based on the threshold α. As before, any articles that do not receive a classification are

assigned to Xe. This process is continued for each level in the tree until each leaf contains no more

than m articles.

Finally, the cosine similarity between each article in Xe and the dictionary associated to each

leaf (topic in the lowest layer in a given branch) is calculated. Note that the dictionary of a leaf is a

column of the W matrix of its parent topic. Then the articles in Xe are assigned to the leaf with the

highest cosine similarity. After this reassignment, the number of articles associated with each leaf is

calculated again, and any leaves containing more than m articles are further subdivided.
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We note that in this framework, newly published papers could be added to the tree by first

assigning them to Xe and then distributing them as described above. However, since the addition of

new papers may also necessitate the introduction of new topics, future work includes extending the

tool to an online version that would allow for new topics to be added as new papers appear.

4.6 Conclusion and future work

HNMF is used to organize existing literature on coronaviruses and pandemics, and early literature

on COVID-19 into an interactive structure easily searchable by researchers and available to use

through a corresponding website. The topics discovered by HNMF reveal that early research of

interest to the COVID-19 research community divides into diverse areas such as research related to

other coronaviruses, research related to other respiratory diseases, virology and genetic research, as

well as research relating to the public health response. A topic coherence metric reveals that the

topics discovered are consistent and semantically meaningful, while a topic similarity metric reveals

that the topics differ sufficiently from one another to allow for a diversity of choice and areas of

interest on the part of the user.

In the future, we hope to regularly update the hierarchical structure as well as the associated

website as new research papers are added, both by adding new papers and by adding and deleting

classifications as new research topics emerge. We hope to do this using an online version of the

HNMF algorithm such as the one in [TCL18].

4.7 Appendix

4.7.1 Keywords removed

Here is the list of top 30 keywords from the topic which is identified as not the content of the pub-

lishing information : without, also, biorxiv, perpetuity copyright, ccbyncnd international, ccbyncnd,

peerreviewed copyright, perpetuity peerreviewed, medrxiv preprint, made available, preprint peer-
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reviewed, available authorfunder, license made, international license, granted,perpetuity, display

preprint, preprint perpetuity, license display, authorfunder granted, granted medrxiv, medrxivlicense,

peerreviewed, holder, authorfunder, copyright, copyright holder, holder preprint, covid3, license,

medrxiv, preprint.

4.7.2 Topic keywords

Following tables list ten most probable keywords associated with each topic and subtopic in the tree

generated by HNMF and the CV coherence score associated with each. These keywords are visible

to website users to enable them to make choices to navigate through the tree. Note that for the first

layer we gave suggested topic titles. Not being experts in the field, these are only suggestions to

give an idea of the types of research someone may be looking for within that topic.

3We note that we performed a semantic comparison of topics generated using our algorithm both including and
removing the word “covid”. No significant differences in topic interpretation were found between the two results
indicating that including the word did not add additional information to the topic modeling in this case.
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Topic Number Key Words Possible Topic
1 merscov, bat, sarscov, camel, mers, merscov in-

fection, ace, human, virus, rbd
Coronaviruses affect-
ing Humans

2 cell, mouse, expression, infection, virus, gene,
response, viral, cytokine, immune

Cellular immune re-
sponse to viral infec-
tion

3 sequence, gene, genome, strain, rna, primer, ibv,
nucleotide, sample, using

Genetic characteris-
tics of the virus

4 protein, binding, residue, peptide, domain, struc-
ture, compound, membrane, cell, activity

Cell-protein interac-
tion

5 virus, influenza, child, rsv, respiratory, infection,
viral, sample, assay, detection

Detection and biolog-
ical study of respira-
tory viruses

6 patient, hospital, study, pneumonia, clinical, day,
infection, treatment, case, symptom

Clinical and hospital
studies (esp. of respi-
ratory illnesses)

7 health, model, disease, case, epidemic, outbreak,
public, country, population, transmission

Infection models and
experiments related to
public health

8 vaccine, antibody, pedv, mouse, serum, antigen,
pig, strain, protein, response

Vaccine development
(esp. of the coron-
avirus PEDV)

Table 4.2: The top 10 keywords associated with each of the 8 topics in the first layer of the tree

Topic Number Key Words CV

1-1 camel, merscov, dromedary, human, sample, dromedary
camel, animal, herd, sequence, study

0.56

1-2 sarscov, ace, protein, ncov, rbd, binding, sars, residue, se-
quence, virus

0.61

1-3 patient, case, merscov, infection, mers, hospital, outbreak,
disease, respiratory, day

0.63

1-4 bat, specie, virus, sequence, bat specie, human, sample, host,
covs, study

0.57

1-5 cell, merscov, mouse, protein, antibody, vaccine, virus, re-
sponse, infection, serum

0.55

Table 4.3: The top 10 keywords associated with each of the subtopics of Topic 1 in the 2nd layer of the tree and the CV

coherence score
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Topic Number Key Words CV

2-1 infection, response, lung, immune, cytokine, mouse, tlr, ifn,
virus, macrophage

0.59

2-2 virus, cell, viral, infection, infected, replication, vero, culture,
antiviral, vero cell

0.61

2-3 cell, antibody, tumor, antigen, culture, human, line, cell line,
surface, patient

0.41

2-4 protein, expression, gene, cell, figure, pathway, using, sirna,
activity, level

0.55

2-5 mouse, cns, brain, day, demyelination, cell, astrocyte, mhv,
day pi, spinal

0.74

Table 4.4: The top 10 keywords associated with each of the subtopics of Topic 2 in the 2nd layer of the tree and the CV

coherence score

Topic Number Key Words CV

3-1 bat, specie, covs, cov, bat specie, virus, sequence, human,
sample, coronaviruses

0.59

3-2 gene, rna, protein, cell, expression, mrna, sequence, codon,
virus, orf

0.61

3-3 sequence, virus, genome, read, viral, analysis, human, tree,
using, specie

0.47

3-4 sample, primer, assay, pcr, probe, detection, dna, virus, reac-
tion, amplification

0.70

3-5 strain, pedv, sequence, pedv strain, aa, vp, nt, diarrhea, gene,
china

0.55

3-6 ibv, strain, chicken, vaccine, ibv strain, isolates, virus, bird,
gene, flock

0.72

Table 4.5: The top 10 keywords associated with each of the subtopics of Topic 3 in the 2nd layer of the tree and the CV

coherence score
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Topic Number Key Words CV

4-1 compound, activity, inhibitor, drug, derivative, mmol, dock-
ing, pro, protease, ic

0.62

4-2 nsp, rna, sarscov, nsp nsp, mm, replication, protein, activity,
domain, rdrp

0.61

4-3 protein, sequence, interaction, gene, analysis, also, study,
function, method, used

0.40

4-4 protein, cell, antibody, mm, sarscov, using, min, expression,
serum, recombinant

0.61

4-5 virus, cell, viral, rna, replication, infection, membrane, host,
hcv, er

0.64

4-6 peptide, residue, structure, sarscov, binding, fusion, domain,
figure, sequence, hr

0.63

Table 4.6: The top 10 keywords associated with each of the subtopics of Topic 4 in the 2nd layer of the tree and the CV

coherence score

Topic Number Key Words CV

5-1 assay, pcr, sample, detection, primer, sensitivity, specimen,
method, amplification, probe

0.74

5-2 child, rsv, hmpv, infection, study, hbov, asthma, infant, respi-
ratory, age

0.79

5-3 influenza, ili, virus, surveillance, sari, case, influenza virus,
year, study, season

0.66

5-4 patient, respiratory, infection, study, pneumonia, viral, virus,
bacterial, pneumoniae, pathogen

0.60

5-5 virus, cell, influenza, infection, influenza virus, protein, viral,
antibody, ha, mouse

0.56

5-6 virus, sample, sequence, human, read, hbov, genome, viral,
sequencing, study

0.52

Table 4.7: The top 10 keywords associated with each of the subtopics of Topic 5 in the 2nd layer of the tree and the CV

coherence score
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Topic Number Key Words CV

6-1 patient, sarscov, display, ct, case, reserved reuse, allowed
permission, reuse allowed, permission display, wuhan

0.61

6-2 cap, patient, antibiotic, pneumonia, study, pneumoniae, bac-
terial, pathogen, infection, culture

0.64

6-3 virus, infection, respiratory, patient, viral, child, rsv, in-
fluenza, study, respiratory virus

0.59

6-4 sars, patient, hospital, contact, case, transmission, sars pa-
tient, outbreak, staff, care

0.67

6-5 patient, study, treatment, cell, disease, group, level, lung,
therapy, day

0.43

Table 4.8: The top 10 keywords associated with each of the subtopics of Topic 6 in the 2nd layer of the tree and the CV

coherence score

Topic Number Key Words CV

7-1 health, public, public health, care, patient, disease, emer-
gency, hospital, system, response

0.67

7-2 disease, animal, human, virus, pathogen, specie, host, infec-
tion, vaccine, zoonotic

0.61

7-3 model, individual, epidemic, network, parameter, infected,
node, contact, number, rate

0.57

7-4 data, model, study, used, analysis, case, variable, using,
method, time

0.44

7-5 case, available display, international made, display, made
available, day, wuhan, number, china, international

0.60

Table 4.9: The top 10 keywords associated with each of the subtopics of Topic 7 in the 2nd layer of the tree and the CV

coherence score
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Topic Number Key Words CV

8-1 pig, serum, antibody, virus, piglet, group, sample, day, prrsv,
tgev

0.58

8-2 mouse, cell, response, group, merscov, immunized, immu-
nization, dna, protein, antibody

0.55

8-3 vaccine, virus, response, influenza, disease, vaccination, im-
mune, human, development, antigen

0.51

8-4 pedv, strain, piglet, pedv strain, ped, cell, gene, diarrhea,
sequence, pig

0.56

8-5 protein, antibody, epitope, mabs, peptide, serum, sarscov,
mab, elisa, binding

0.61

8-6 ibv, chicken, strain, bird, ibv strain, group, virus, vaccine, ib,
egg

0.72

Table 4.10: The top 10 keywords associated with each of the subtopics of Topic 8 in the 2nd layer of the tree and the

CV coherence score
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Topic Number Key Words CV

7-1-1 china, research, chinese, disaster, government, social, also,
development, policy, people

0.62

7-1-2 patient, hospital, care, infection, staff, medical, health care,
nurse, physician, healthcare

0.66

7-1-3 health, public health, public, disease, surveillance, country,
system, global, laboratory, outbreak

0.65

7-1-4 pandemic, influenza, participant, respondent, sars, study,
outbreak, risk, public, information

0.55

Table 4.11: The top 10 keywords associated with each of the subtopics of Topic 7-1 in the 3rd layer of the tree and the

CV coherence score

Topic Number Key Words CV

7-4-1 study, risk, participant, age, influenza, respondent, factor,
country, health, population

0.52

7-4-2 sample, rat, cell, group, animal, cat, used, using, study, pro-
tein

0.35

7-4-3 model, data, case, outbreak, surveillance, disease, epidemic,
transmission, influenza, time

0.54

7-4-4 air, particle, concentration, wind, velocity, ventilation, flow,
airflow, temperature, room

0.73

7-4-5 calf, diarrhea, farm, colostrum, milk, fecal, cow, dairy, herd,
day

0.72

Table 4.12: The top 10 keywords associated with each of the subtopics of Topic 7-4 in the 3rd layer of the tree and the

CV coherence score
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CHAPTER 5

Adversarial Learning in Distributed Systems

This work is in collaboration with Longxiu Huang and Deanna Needell and is public on [LHN22].

The problem and approach were suggested by the collaborators. I developed the numerical methods

and all the simulations as well as fine-tuning the details of the model. Longxiu Huang and I

developed the theoretical convergence analysis.

5.1 Background

As machine-learning algorithms gain popularity in industrial applications, it is critical to make them

and their optimization subroutines to be robust and adversary-tolerant. Some types of adversaries

include evasion [GMP18], data poisoning [GFH20] and model extraction [WXG21, KTP19]. Large-

scale machine-learning problems are typically run on distributed systems and an attack in this setting

is the Byzantine attack [LSP82] where the individual computing units (also known as ‘workers

machines’ or simply ‘workers’) may return adversarial results. A common approach to address this

is to utilize redundancy; that is, to request the same computation from multiple workers. The main

challenge with such an approach is to leverage the outputs from these workers efficiently, and in

such a way that even seemingly catastrophic adversarial outputs can be identified and tolerated.

Let’s consider the optimization problem of the following form:

min
x∈Rd2

d1∑
i=1

fi(x) (5.1)
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where d1 is a finite integer. To solve the problem in an iterative approach, we have the updating rule:

xj+1 = xj + γj

d1∑
i=1

∇fi(xj) (5.2)

with some step-size γj . Such objective functions lend themselves naturally to distributed algorithms.

In the distributed setting, the central server distributes fi among the workers. Each worker returns

the corresponding gradient ∇fi(xj) and the central server aggregates those returns to compute or

approximate the updating step (5.2). In particular, we consider to solve the over-determined linear

system

Ax = b. (5.3)

This problem can be modeled as a least squares problem minx ∥Ax − b∥22 and the least squares

problem can be rewritten in the form of (5.1) with fi(xj) =
1
2
(Aixj − bi)

2, where A ∈ Rd1×d2 , b ∈

Rd1 , Ai is the i-th row of A, and bi is the i-th component of b. In this chapter, we mainly focus

on developing algorithms to solve (5.3). However, the algorithms can be easily generalized for

(5.1). The central server partitions the data matrix A into rows Ai which are distributed among

the workers. In the linear setting, each worker only needs to return the scalar Aixj − bi instead of

the gradient (Aixj − bi)A
⊤
i . Then the central server aggregates those returns and approximate the

updates in (5.2).

In this work, we consider the setting that some of the workers are adversarial, i.e., the workers

return noisy results or enormously large results. Our goal is to develop a variant of the randomized

Kaczmarz (RK) method [SV09] for adversarial workers to solve the linear system Ax = b. For

readers’ convenience, we restate the RK method in Algorithm 6. We assume that there is one

Algorithm 6 Randomized Kaczmarz Algorithm

1: Select a row index ij ∈ [d1] with probability pij =
∥Aij

∥22
∥A∥2F

2: Update xj+1 = argminx∈Rd2 ∥x− xj∥ s.t. Aijxj+1 = bij
3: Repeat until convergence

central server wc and N workers in total, among which p fraction of the unknown workers are
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adversarial and there are k error categories in total. During the initial data distribution, each row Ar

is distributed to Nr workers. Among those Nr workers, workers in ℓ-th category Cℓ take up a ratio

of pr,ℓ fraction of all workers, and the total adversarial rate for row r is pr =
∑k

ℓ=1 pr,ℓ. We assume

pr,ℓ < 1− pr, for all r, ℓ. Our approach utilizes simple statistics to identify and ignore adversarial

results, and thus the setting in which the adversarial workers communicate and select among k

types of errors to output is the most challenging for our approach. An adversarial worker wr
s in

category Cℓ returns the residual crs = br + eℓ,r − ⟨xj, Ar⟩, eℓ,r ∈ R, and a reliable worker returns

crs = br − ⟨xj, Ar⟩.

5.1.1 Contribution

Our main contributions are threefold: (i) develop efficient methods and algorithms to guarantee

accurate estimates for the true solution when adversaries are present, (ii) identify the adversar-

ial workers efficiently, (iii) provide theoretical convergence analysis with part of workers being

adversarial for solving large-scale linear systems.

5.1.2 Related work

Kaczmarz method. The Kaczmarz method is an iterative method for solving linear systems that

was first proposed by [Kac37]. The method is also known under the name Algeberaic Reconstruc-

tion Technique (ART) in computer tomography [GHJ75, HM93, Nat01] and has found various

applications ranging from computer tomography to digital signal processing. Later Strohmer et

al. [SV09] proposed a randomized version of Kaczmarz method, where the the probability of

each row being selected is set to be proportional to the Euclidean norm of the row and prove

the exponential bound on the expected rate of convergence. While we consider consistent linear

systems, others have analyzed variants of the Kaczmarz methods to handle inconsistent linear

systems ([PP16, Pop99, BW21, MNR15]). For example, in [Nee09], the author proved that RK

converges for inconsistent linear systems to a horizon that depends upon the size of the largest

83



entry of the noise. An adaptive maximum-residual sampling strategy has also been analyzed for

the inconsistent extension [PP16]. The randomized Kaczmarz method has also been studied in the

context of solving systems of linear inequalities [LL10, Agm54, BW19].

Robust optimization. A practical challenge in optimization problem is that there are almost

always adversaries present due to mistakes in data collection and data transmission, adversarial or

non-responsive workers (also known as ‘stragglers’), or modern storage systems that can introduce

corruptions. There have been ongoing researches on mitigating the issues with straggling workers.

For example, in [GBH70, KSD17], the authors introduced several encoding schemes that embed the

redundancy directly in the data itself to mitigate the effect of straggling. Later, Bitar et al. [BWR19]

proposed an approximate gradient-coding scheme for straggler mitigation when the stragglers are

uniformly random. An important branch of advances in the analysis of SGD-type methods deal with

robustness to adversaries from the data. In [CLZ19] and [HNR22], quantile-based methods were

designed to solve corrupted linear equations. To deal with adversarial workers, Yang et al. [YB19]

proposed a variant of the gradient descent method based on the geometric median in the setting

where the workers split all the data. Alistarh et al.[AAL18] discussed the problem of stochastic

optimization in an adversarial setting where the workers sample data from a distribution and an α

fraction of them may adversarially return any vector. These methods work only when the adversary

rate is less than 1
2
, whereas our algorithm is able to converge to the exact solution even with an

adversary rate higher than 1
2

by utilizing redundancy.

5.2 Method

In this section, we introduce a simple but efficient mode-based method to effectively solve linear

systems in the presence of the adversarial workers and identify the potential adversarial workers

(which are put in a block-list). The method detects the mode category based on the returned category

size. More specifically, for each row, the central worker groups the same results and find results

from the group with the largest size (i.e., mode). Among those modes for all rows, the central server
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then updates the guess with the mode with the largest size. If there is only one row, the central

server updates the guess with the mode.

Given n workers to deal with one specific row r, the expected number of workers from Cℓ is

npr,ℓ
1 and number of non-adversarial workers is n(1 − pr). In practice, we uniformly randomly

choose a group with the maximum group size, the result will be used to update the guess as long

as the group size is greater than n(1 − pr) (see Alg. 7 Line 7). If a user chooses to implement

the algorithm with the block-list, the block-list is updated through a frequency-based approach

throughout the iterations: each row has a counter and the counter records if a worker is chosen but

fails to be the mode during each iteration. After certain number of iterations, the worker with the

largest count in each counter is identified as the potential adversarial worker (see Alg. 7 Line 16–18)

and is put in the block-list. Once a worker is in the block-list, it will not be revisited. More details

are referred to Alg. 7. In the next section, the theoretical results are based on Alg. 7.

5.3 Theoretical results

In this section, we study the mode distributions and convergence of our method from a theoretical

perspective. For the readers’ convenience, we first summarize some important notation in Table 5.1.

5.3.1 Mode distribution

Algorithm 7 utilizes the mode to identify adversaries and achieve convergence. In this section,

we compute the probability that a category ℓ is the mode for each row during each iteration. For

simplicity, let C0 denote the category of “good” workers. For each row r, the fraction of good

workers holding row r is 1− pr. We use d0 rows for the computation per iteration. Recall that each

row r is held by Nr workers (fixed). Among those Nr workers, workers in the category ℓ take up

a fraction of pr,ℓ. At each iteration, the central worker uniformly randomly chooses a set of row

1The central worker wc uses first m iterations to determine the number of different groups of results during each
iteration and take the maximum number.
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Algorithm 7 DISTRIBUTED RANDOMIZED KACZMARZ WITH/WITHOUT BLOCK-LIST

1: Input: Worker sets Dr, the number of used worker for each row nr, a counter vector Er = 0 ∈
RNr for each row r, the number of used rows d0, MaxIter, Tol, cs = 2× Tol, checking period
T , Blocklist flag

2: if Blocklist flag then
3: initialize block-list B
4: end if
5: while j < MaxIter and |cs| > Tol, do
6: The central worker wc uniformly randomly select a subset of rows τ ⊂ [d1]
7: Sample wr

1, . . . , w
r
nr

for each row r ∈ τ , uniformly from Dr

8: Broadcast Ar to wr
1, . . . , w

r
nr

9: wr
s returns crs =

⟨Ar,xi⟩−br+el
∥Ar∥2 , if ws ∈ Cl

10: for r ∈ τ do
11: wc splits {crs}nr

s=1 into groups G1, . . . , Gkr

12: and choose from groups Gr
s∗ where Gr

s∗ = maxs′ |Gs′ | and Gs′ satisfies |Gs| ≥ nr(1 −∑kr
l=1 pr,l)

13: end for
14: cs∗ = maxr∈τ |crs∗|, where crs∗ ∈ Gr

s∗

15: Update xj+1 = xj + cs∗A
⊤
ij

16: Update E(s) = E(s) + 1, if crs /∈ Gr
s∗

2

17: if Blocklist flag & mod(j, T ) = 0 then
18: Update B by checking the value of entries in E
19: D = D \B
20: end if
21: Update j = j + 1
22: end while
23: if Blocklist flag then
24: Output: xj and B
25: else
26: Output: xj

27: end if

indices of size d0 and requests the corresponding workers to return their results. More specifically,

given a set of row indices τi at i-th iteration, the central server first finds the modes among the

results from each row r ∈ τi and among those modes, chooses the mode with the largest group size

(“the majority vote”).
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Table 5.1: Notation table

A The data matrix A, A ∈ Rd1×d2

Ã The row normalized version of matrix A
N Number of workers in total
Nr Number of workers holding row r
nr Number of workers chosen for row r
Cℓ ℓ-th error category
k Number of error categories in total
er,ℓ The error of the ℓ-th error category for a row r
er The vector form of errors in all error categories of row r, er := (er,1, . . . , er,k)
e The maxtrix form of errors in all error categories of all rows, e := {er,ℓ}r,ℓ
d0 Number of rows chosen
pr,l The adversarial rate of workers holding row r in error category ℓ

q̂ℓ,rmode
Probability that there is a mode among the outputs

of chosen workers of row r and the mode is in the category ℓ

qr
Probability that there is a mode among
the outputs of chosen workers for row r

[d1] The set of the integers from 1 to d1, [d1] := {1, . . . , d1}
τi The index set of chosen rows at i-th iteration, |τi| = d0
τ ′i The index set of chosen rows that have a mode, τ ′i ⊂ τi

ti = t(xi−1, τi) The index of the row that has the largest mode number

For any row r, let arg,ℓ be the coefficient of the term xnr−g of the polynomials

k∏
ℓ′=0,ℓ′ ̸=ℓ

g−1∑
j=0

(
Nrpr,ℓ′

j

)
xj.

Let bri be the coefficient of the term xnr of the polynomial

k∏
ℓ=0

(
g−1∑
j=0

(
Nrpr,ℓ

j

)
xj

)

Lemma 5.3.1. For a row r, the probability that the mode is in the category ℓ with mode number g

is P(r mode, g, ℓ) = (Nrpr,ℓ
g )arg,ℓ
(Nr
nr
)

.

Using Lemma 5.3.1, we obtain the following conclusions by going over all possible mode
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numbers or all error categories:

Lemma 5.3.2. For row r, the probability that the category ℓ is the mode is

q̂ℓ,rmode =
nr∑

g=g0(r)

(
Nrpr,ℓ

g

)
arg,ℓ(

Nr

nr

) .

where g0(r) = max(⌈ nr

k+1
⌉, ⌈nr(1− pr,0)⌉). Thus, the probability that there is a mode with mode

number g for the calculation of row r is

qrg =
k∑

ℓ=0

(
Nrpr,ℓ

g

)
arg,ℓ(

Nr

nr

) .

Additionally, the probability that there is a mode for the calculation of row r is

qr =
k∑

ℓ=0

q̂ℓ,rmode =
nr∑

g=g0(r)

k∑
ℓ=0

(
Nrpr,ℓ

g

)
arg,ℓ(

Nr

nr

) , (5.4)

where
(
nr

g

)
= 0 when nr < g.

In the following lemma, we also calculate the probability P(t, ℓ, g|τi, xi−1) that a mode produced

from row t in the category Cℓ with a mode number g when rows τi are used in the computation and

the previous estimate xi−1 is given. For simplicity, we omit the condition of τi, xi−1 in the notation

and denote P(t, ℓ, g|τi, xi−1) by P(t, ℓ, g).

Lemma 5.3.3. Given the previous estimate xi−1 and row indices τi, we have

P(ti, ℓ, g) =
(
Ntipti,ℓ

g

)
atig,ℓ(

Nti
nti

) ∏
s∈τi\ti

bsg(
Ns

ns

) .
Proof. The probability that the mode of row ti is produced by category ℓ with group size g

P(ti, l, g) =P(t mode, g, ℓ)× P(t is the mode with the largest mode number|t mode, l, g) (5.5)
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=

(
Ntipti,ℓ

g

)
atig,ℓ(

Nti
nti

) × P(ti is the mode with the largest mode number|ti mode, l, g) (5.6)

=

(
Ntipti,ℓ

g

)
atig,ℓ(

Nti
nti

) ∏
s∈τi\ti

bsg(
Ns

ns

) . (5.7)

Corollary 5.3.4. Iterating over all error categories, we get the probability that row ti produces the

mode with mode number g (g ≤ nti) :

P(ti, g) =
k∑

ℓ=0

P(ti, l, g) =
k∑

ℓ=0

(
Ntpti,ℓ

g

)
atg,ℓ(

Nt

nt

) ∏
s∈τi\{ti}

bsg(
Ns

ns

) = qtg
∏

s∈τi\ti

bsg(
Ns

ns

) . (5.8)

5.3.2 Convergence without block-list

Let ti be the row chosen at i-th iteration to update the guess x. For the convergence analysis, we

consider solving

Atix = bti ,

Atix = bti + eti,1,

...

Atix = bti + eti,k,

with probability q0, q1, . . . , qk respectively. For simplicity, we assume τi ∼ unif
((

[d1]
d0

))
. We would

either have the iteration

xi = xi−1 −
⟨Ati , xi−1⟩ − bti

∥Ati∥2
A⊤

ti
,

or

xi = xi−1 −
⟨Ati , xi−1⟩ − (bti + eti,ℓ)

∥Ati∥2
A⊤

ti
,

for ℓ = 1, . . . , k, and Ati is the ti-th row of matrix A.

In the following analysis, let Eτi denote expectation with respect to the uniformly random
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sample τi conditioned upon the sampled τj for j < i, and E denote expectation with respect to all

random samples τj for 1 ≤ j ≤ i where i is understood to be the last iteration in the context in

which E is applied.

Lemma 5.3.5. The conditional expectation of the squared convergence error at i-th iteration

can be decomposed into three parts: the squared convergence error at (i − 1)-th iteration

∥xi−1 − x∗∥22, the conditional expectation of the squared errors (normalized) from the adversarial

workers EτiEtiEℓti

e2ti,ℓti
∥Ati∥

2
2
, and the conditional expectation of the squared residual (normalized)

EτiEti

⟨AT
ti
,xi−1−x∗⟩2

∥Ati∥
2
2

:

E∥xi − x∗∥22 = ∥xi−1 − x∗∥22 + EτiEtiEℓti

e2ti,ℓti
∥Ati∥22

− EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
. (5.9)

Proof. We start by decomposing the error:

∥xi − x∗∥22 = ∥xi−1 −
⟨AT

ti
, xi−1⟩ − (bti + eti,ℓti )

∥Ati∥22
A⊤

ti
− x∗∥22 (5.10)

= ∥xi−1 − x∗∥22 +
(⟨AT

ti
, xi−1 − x∗⟩ − eti,ℓti )

2

∥Ati∥22
(5.11)

− 2

∥Ati∥22
⟨xi−1 − x∗, AT

ti
⟩(⟨AT

ti
, xi−1 − x∗⟩ − eti,ℓti ) (5.12)

= ∥xi−1 − x∗∥22 −
⟨AT

ti
, xi−1 − x∗⟩2

∥Ati∥22
+

e2ti,ℓti
∥Ati∥22

(5.13)

Take the expectation, we get

E∥xi − x∗∥22 = ∥xi−1 − x∗∥2 + EτiEtiEℓti

e2ti,ℓti
∥Ati∥22

− EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
(5.14)

Next we compute the conditional expectation of the error part from the adversarial workers

EτiEtiEℓti

e2ti,ℓti
∥Ati∥

2
2

and the residual part EτiEti

⟨AT
ti
,xi−1−x∗⟩2

∥Ati∥
2
2

separately in the following lemmas.
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Lemma 5.3.6. The conditional expectation of squared residual can be bounded by:

EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
≥ Qmin

d0
d1

σ2
min(Ã)∥xi−1 − x∗∥2. (5.15)

Moreover, we have

∥xi−1 − x∗∥2 − EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
≤ (1−Qmin

d0
d1

σ2
min(Ã))∥xi−1 − x∗∥2 , (5.16)

where

Qmin = min
g,ti,τi

nt∑
g=g0(ti)

qtig
∏

s∈τi\{ti}

bsg(
Ns

ns

) .
Proof. The expectation of the squared residual can be calculated:

EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
= Eτi

∑
ti∈τi

nti∑
g=g0(ti)

k∑
ℓ=0

P(ti, l, g)
∥∥∥∥AT

ti
(xi−1 − x∗)

∥Ati∥

∥∥∥∥2 (5.17)

=
∑

τi∈([d1]d0
)

pxi−1(τi)

∑
ti∈τi

nti∑
g=g0(ti)

P(ti, g)
∥∥∥∥AT

ti
(xi−1 − x∗)

∥Ati∥

∥∥∥∥2 (5.18)

=
∑

τi∈([d1]d0
)

pxi−1(τi)

∑
ti∈τi

nti∑
g=g0(ti)

qtig
∏

s∈τi\{ti}

bsg(
Ns

ns

) ∥∥∥∥AT
ti
(xi−1 − x∗)

∥Ati∥

∥∥∥∥2 .
(5.19)

Let

Qmin = min
t,τi

nt∑
g=g0(t)

qtg
∏

s∈τi\{t}

bsg(
Ns

ns

) .
Then

EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
≥ Qmin

∑
τi∈([d1]d0

)

pxi−1(τi)

∑
t∈τi

∥∥∥∥AT
ti
(xi−1 − x∗)

∥Ati∥

∥∥∥∥2 (5.20)
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≥ pxi−1
(τi)Qmin

∑
τi∈([d1]d0

)

∑
ti∈τi

∥∥∥∥AT
ti
(xi−1 − x∗)

∥Ati∥

∥∥∥∥2 (5.21)

≥ pxi−1
(τi)Qmin

(
d1 − 1

d0 − 1

)
∥ÃT (xi−1 − x∗)∥22 (5.22)

≥ pxi−1
(τi)Qmin

(
d1 − 1

d0 − 1

)
σ2
min(Ã)∥(xi−1 − x∗)∥22, (5.23)

where Ã ∈ Rd1×d2 is obtained by normalizing each row of A. In fact, pxi−1(τi) is independent of

xi−1 since

τi ∼ unif(
(
[d1]

d0

)
).

We have

pxi−1
(τi) = 1/

(
d1
d0

)
=

d0!(d1 − d0)!

d1!
.

Note that pxi−1
(τi)
(
d1−1
d0−1

)
= d0

d1
, Qmin ∈ (0, 1). Therefore, we have

EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
≥ Qmin

d0
d1

σ2
min(Ã)∥xi−1 − x∗∥2,

∥xi−1 − x∗∥2 − EτiEti

⟨AT
ti
, xi−1 − x∗⟩2

∥Ati∥22
≤ (1−Qmin

d0
d1

σ2
min(Ã))∥(xi−1 − x∗)∥22

(5.24)

Lemma 5.3.7. The expectation of the squared error from the adversarial workers can be bounded

by:

EτiEtEℓ

e2t,ℓ
∥At∥22

≤
∑
t∈[d1]

qt∥ẽt∥22,

where ẽ2max = max
ti,ℓ

e2ti,ℓ
∥Ati∥22

,

Qmax(t, g, τi \ {t}) = max
ℓ

(
Ntpt,ℓ

g

)
atg,ℓ(

Nt

nt

) ∏
s∈τi\{t}

bsg(
Ns

ns

) ,
qt =

∑
τ̃t,i∈([d1−1]

d0−1 )

nti∑
g=g0(t)

1(
d1
d0

)Qmax(t, g, τ̃t,i).

(5.25)
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Proof. The expectation of the squared error from the adversarial workers:

EτiEtEℓ

e2t,ℓ
∥At∥22

=Eτi

∑
t∈τi

nt∑
g=g0(t)

k∑
ℓ=0

(
Ntpt,ℓ

g

)
atg,ℓ(

Nt

nt

) ∏
s∈τi\{t}

bsg(
Ns

ns

) e2t,ℓ
∥At∥22

(5.26)

Let ẽ2t,ℓ =
e2t,ℓ

∥At∥22
, ẽt = (et,1, . . . , et,k), and Qmax(t, g, τi \ {t}) = maxℓ

(Ntpt,ℓ
g )atg,ℓ
(Nt
nt
)

∏
s∈τi\{t}

bsg

(Ns
ns
)
.

Then

(5.25) =Eτi

∑
t∈τi

nt∑
g=g0(t)

k∑
ℓ=0

(
Ntpt,ℓ

g

)
atg,ℓ(

Nt

nt

) ∏
s∈τi\{t}

bsg(
Ns

ns

) ẽ2t,ℓ
≤Eτi

∑
t∈τi

nti∑
g=g0(t)

Qmax(t, g, τi \ {t})
k∑

ℓ=0

ẽ2t,ℓ

=Eτi

∑
t∈τi

nti∑
g=g0(t)

Qmax(t, g, τi \ {t})∥ẽt∥22

=
∑

τi∈([d1]d0
)

1(
d1
d0

)∑
t∈τi

nti∑
g=g0(t)

Qmax(t, g, τi \ {t})∥ẽt∥22

=
∑
t∈[d1]

∑
τ̃t,i∈([d1]\{t}d0−1 )

nti∑
g=g0(t)

1(
d1
d0

)Qmax(t, g, τ̃t,i)∥ẽt∥22 =
∑
t∈[d1]

qt∥ẽt∥22

(5.27)

with qt =
∑

τ̃t,i∈([d1−1]
d0−1 )

∑nti

g=g0(t)
1

(d1d0)
Qmax(t, g, τ̃t,i). Notice that

nt∑
g=g0(t)

k∑
ℓ=0

(
Ntpt,ℓ

g

)
atg,ℓ(

Nt

nt

) ∏
s∈τi\{t}

bsg(
Ns

ns

) ≤ 1,

we thus have
∑nt

g=i0(t)
Qmax(t, g, τi \ {t}) ≤ 1. Thus,

(5.25) ≤
∑

τi∈([d1]d0
)

1(
d1
d0

)∑
t∈τi

nti∑
g=g0(t)

Qmax(t, g, τi \ {t})∥ẽt∥22 ≤
d0
d1

d1∑
t=1

∥ẽt∥22. (5.28)

Combine lemma 5.3.6 and lemma 5.3.7, we have the following theorem.
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Theorem 5.3.8. Let A ∈ Rd1×d2 with d1 ≥ d2 and b, e1, . . . , ek ∈ Rd1 . Assume that we solve

Ax∗ = b via Algorithm 8; then

E∥xi − x∗∥22 ≤αi∥x0 − x∗∥22 +
1− αi+1

1− α

∑
t∈[d1]

qt∥ẽt∥22 , (5.29)

where
α = 1−Qmin

d0
d1

σ2
min(Ã),

Qmin = min
g,ti,τi

nt∑
g=g0(ti)

qtig
∏

s∈τi\{ti}

bsg(
Ns

ns

) ,
Qmax = max

g,ti,τi

nti∑
g=g0(ti)

qtig
∏

s∈τi\{ti}

bsg(
Ns

ns

) ,
∥ẽt∥22 =

k∑
ℓ=0

ẽ2t,ℓ, ẽ
2
t,ℓ =

e2t,ℓ
∥At∥22

,

qt =
∑

τ̃t,i∈([d1−1]
d0−1 )

nti∑
g=g0(t)

1(
d1
d0

)Qmax(t, g, τ̃t,i),

(5.30)

and Ã is the row normalized version of matrix A and σ2
min(Ã) is the smallest eigenvalue of Ã.

Lemma 5.3.9. Let Ã ∈ Rd1×d2 with d1 ≥ d2 and each row is normalized. Then σmin(Ã) ≤
√

d1/d2.

Proof. Notice that
∑d2

i=1 σ
2
i = d1, we have σ2

min ≤ d1/d2.

Remark 5.3.10. When d0 ≤ d2 we have 0 < 1− d0
d1
Qminσ

2
min(Ã) < 1

From (5.30), qt is not a simple linear function of d0 and increasing d0 may not necessarily

decrease qt. An example in Table 5.2 shows that increasing d0, to some extent, can decrease qt and

therefore, improves the speed of convergence. For more details about finding the optimal d0, one

can refer to remark 5.6.3 and remark 5.6.4 in the appendix 5.6.2. Meanwhile, one should be aware

of the increasing d0 leads to more communication cost. Thus, in practice, finding an optimal d0 is

not just minimizing qt but also reducing the communication cost.
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When adversaries {ẽt}t are relatively small, the method without the block-list can guarantee

a convergence error with the same or smaller magnitude as {ẽt}t using the right parameters.

However, from (5.30), when adversaries {ẽt}t are relatively larger, the convergence is not guaranteed.

Therefore, it is crucial introduce the block-list method to exclude the adversarial workers and with

block-list the convergence is also guaranteed in any hostile environment. In the following sections,

we first provide theoretical error bound for the method without block-list. Next we reason why the

block-list is necessary in certain cases and show the effectiveness of the block-list method.

Table 5.2: Total number of workers N = 10, number of error categories k = 3.

p n d0 Q qt

0.6
5 2 4.25× 10−3 8.5× 10−4

5 3 3.3× 10−4 9.9× 10−5

5 5 3.63× 10−6 1.82× 10−6

5.3.3 Block-list method

According to Alg. 7 after S iterations, the worker w∗ with the largest non-mode (being chosen but

not the mode) counts c+w∗ will be set in the block-list. To evaluate the effectiveness of the method,

it’s necessary to calculate the probability that a bad/good worker is put in the block-list. This

problem can be reformulated mathematically as the following:

Problem 5.3.11. Let c+w(S) := c+w , c
0
w(S) := c0w be the counters of the worker w is non-mode, and

mode or in no mode case respectively, among S iterations. Then we have 0 ≤ c+w , c
0
w ≤ S and∑N

w=1(c
+
w + c0w) = nS. The probability w∗ is in the block-list after S iterations can be calculated

as follows:

Pbl(w
∗) = P(c+w∗ > c+w ,∀w ̸= w∗) s.t.

N∑
w=1

c+w + c0w = nS (5.31)

Note that this probability can be calculated by using integer dynamic programming or estimated

by Monte Carlo simulations.
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Lemma 5.3.12. Run Alg. 7 with S iteration. Then the conditional probability that a good worker

w0 is in the block-list is
p0Pbl(w0)∑k
ℓ=0 pℓPbl(wℓ)

.

Similarly, the conditional probability that a bad worker wℓ′ in category ℓ′ is in the block-list is

pℓ′Pbl(wℓ′)∑k
ℓ=0 pℓPbl(wℓ)

.

To illustrate how the quantities changes with respect to S in Lemma 5.3.12, we consider the

following example.

Remark 5.3.13. Assume that there are two categories of workers i.e. k = 0, 1, and 5 workers

wi, i = 1, . . . , 5 in total with w1, w2 ∈ C1, w3, w4, w5 ∈ C0. Let n = 3. Note that Pbl(w1) =

Pbl(w2) := P1
bl and Pbl(w3) = Pbl(w4) = Pbl(w5) := P0

bl. The probability is estimated by Monte

Carlo simulations. We simulated the experiment 100 times and count the numbers of experiments

where each worker is listed in the block-list. Those numbers are used to calculate the frequency

and estimate the probability. The estimated results are summarized in Table 5.3. Table 5.3 shows

Table 5.3: Conditional probability of being in block-list.

S 5 10 50 100
P1

bl 0.403 0.452 0.5 0.5
P0

bl 0.065 0.032 ∼ 0 ∼ 0

that the probability of an adversarial worker in the block-list increases as the number of iterations

S increases. Meanwhile, the probability of a good worker in the block-list decreases. Using the

method with the block-list, we are able to avoid choosing the results from the adversarial workers.

As a results, the probability of using the adversarial workers decreases, i.e., qt decreases.
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5.4 Simulations

In this section, we test the performance of our approaches for solving consistent linear systems.

In the simulations, we randomly generate a row-normalized matrix A ∈ R1200×50, x ∈ R50 from

normalized Gaussian distribution and set b = Ax. For each row, there are the same number of error

categories k and the adversarial rate pr is same, i.e., pr = p/k, where p is the total adversarial rate.

The liner system Ax = b is solved via Alg. 7 with and without block-list. At each iteration, d0

rows of A are uniformly randomly chosen. For each row r in the selected d0 rows, nr workers are

randomly selected from Nr workers to participate the calculation. The simulation shows how the

number of used rows d0, the number of used workers nr, the total adversary rate p and the number

of the error categories k affect the performance.

Fig. 5.1 and 5.2 present the effects of the number of the used rows d0 and the convergence results

for our distributed Randomized Kaczmarz method with and without the block-list. The maximum

of adversary e is 10−3 and 500, respectively. In this example, increasing the number of used rows

d0 from 2 to 4 improves the convergence in both with and without block-list cases, regardless of

the adversaries’ magnitude. Fig. 5.1 shows the convergence results when ∥e∥∞ = 10−3. Using

the block-list, the convergence are fast over all choices of d0 when the adversarial rate p = 0.2

(Fig. 5.1a); the larger the number of used rows d0, the faster the convergence when the adversarial

rate p = 0.6 (Fig. 5.1c). In Fig. 5.1b, when d0 = 2, 4, the central server possibly uses a corrupted

step-size to update and oscillate around the solution and thus, the error converges to a range of

magnitude from 10−3 to 10−5; when d0 = 6, 8, the convergence error goes to 0 after 4000 iterations.

In Fig. 5.1d, the convergence errors of all choices of d0 are in the range of (10−3, 10−4). When

the magnitude of ∥e∥ is small, the method without the block-list can converge when increasing the

number of used rows d0. However, when the magnitude of the adversaries and the adversarial rate

are large ( 5.2d), the convergence is no longer guaranteed without a block-list.

Fig. 5.2 shows the convergence results when ∥e∥∞ = 5 × 102. In Fig. 5.2a, with the block-list,

the method reaches an accuracy of 10−14 regardless of the value of d0. Similar oscillations exist in

97



0 1 2 3 4 5
Number of iterations ×103

10 14

10 11

10 8

10 5

10 2

101
||x

j
x

* |
| 2

d0 =2
d0 =4
d0 =6
d0 =8

(a) Error vs. d0: p = 0.2; using Alg. 7 with block-list.
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(b) Error vs. d0: p = 0.2; using Alg. 7 without block-
list.
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(c) Error vs. d0: p = 0.6; using Alg. 7 with block-list.
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(d) Error vs. d0: p = 0.6; using Alg. 7 without block-
list.

Figure 5.1: Effects of the number of used rows d0 on convergence: Nr = 20, nr = 4, k = 3, ∥e∥∞ = 10−3. The error

norms were averaged over 50 trials (the solid lines) with 90% percentiles (the shaded areas).

Fig. 5.2b and Fig. 5.2c without the block-list. In particular, without the block-list, the convergence

is not guaranteed as we increase to d0 when p = 0.6. This suggests that in an environment with

larger outliers, it is efficient to use the block-list method. Fig. 5.3 presents the effect of the number

of the chosen workers nr when the adversary rate p is 0.2 and 0.6. As the number of chosen

workers n increases from 3 to 7, the convergence is faster for both without and with the block-list.

The method with the block-list, in general, guarantees better convergence compared to the one

without. The trade-off is the extra storage for the block-list. Without the block-list, when p = 0.2,

the convergence oscillates for nr = 3 and when the adversarial rate is increased to p = 0.6, the
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(a) Error vs. d0: p = 0.2; using Alg. 7 with block-list.
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(b) Error vs. d0: p = 0.2; using Alg. 7 without block-
list.
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(c) Error vs. d0: p = 0.6; using Alg. 7 with block-list.
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(d) Error vs. d0: p = 0.6; using Alg. 7 without block-
list.

Figure 5.2: Effects of different data sizes d0 on convergence: Nr = 20, nr = 4, k = 3, and ∥e∥∞ = 500. The error

norms were averaged over 50 trials (the solid lines) with 90% percentiles (the shaded areas).

convergence oscillates for nr = 3 and nr = 5. Fig. 5.5 presents the effect of the adversary rate.

As the adversary rate p increases, the accuracy decreases. Even though the adversary rate is large,

the final results using the block-list method are still satisfying. Without the block-list, when the

adversarial rate p > 0.5, the central server fails to approach the true solution due to the adversarial

workers. This again shows the importance and effectiveness of using the block-list, especially in a

highly hostile environment with a higher adversarial rate and a higher magnitude of the adversary.

In addition, Fig. 5.4 shows the effect of the number of category types k with the block-list. The

method converges as k → ∞, i.e., with random noises when the adversarial rate is 0.2 and 0.6. In
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(a) Error vs. nr: p = 0.2; using Alg. 7 with block-list.
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(b) Error vs. nr: p = 0.2; using Alg. 7 without block-
list.
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(c) Error vs. nr: p = 0.6; using Alg. 7 with block-list.
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(d) Error vs. nr: p = 0.6; using Alg. 7 without block-
list.

Figure 5.3: Effects of the number of used workers nr: k = 3, d0 = 6, Nr = 20, ∥e∥∞ = 5× 102.

Fig. 5.6, we use the Wisconsin (Diagnostic) Breast Cancer data set, which includes data points

whose features are computed from a digitized image of a fine needle aspirate (FNA) of a breast

mass and describe characteristics of the cell nuclei present in the image ([DG17]). We set up the

experiment similar to [HNR22]: the collection of data points forms our matrix A ∈ R569×10. We

then normalize A and construct x and b using a Gaussian distribution to form a consistent system.

The convergence results in Fig. 5.6 show the effectiveness of our method solving this linear systems

in a relatively safer environment with an adversarial rate p = 0.3 (Fig. 5.6a) and a more hostile

environment with an adversarial rate p = 0.6 (Fig. 5.6b). When p = 0.3, the method converges

within 1000 iterations, and as d0 increases, the convergence speed becomes faster. Meanwhile,
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(a) Error vs. k: p = 0.6; using Alg. 7 with block-list.
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(b) Error vs. k: p = 0.6; using Alg. 7 without block-
list.

Figure 5.4: Effects of the number of categories k. Nr = 20, nr = 4, d0 = 4, ∥e∥∞ = 5× 102
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(a) Error vs. p :with block-list, ∥e∥∞ = 10−3
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(b) Error vs. p: without block-list, ∥e∥∞ = 500

Figure 5.5: Effects of the adversarial rate p, d0 = 3, Nr = 20, nr = 4, and k = 3. Squared error norms were averaged

over 50 trials with the 90% percentiles
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when p = 0.3, the method converges within 1500 iterations, and d0 = 8 has the fastest convergence

speed among all choices of d0.

Lastly, we study the effects of the number of iterations taken to update the block-list S. In

Table 5.4, we calculate the accuracy of the block-list method when S = 200, 500, 1000, 2000. The

two examples in the table show that as S increases, the accuracy is higher.
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(a) Error vs. d0, p = 0.3, with block-list.

0 2 4 6 8
Number of iterations ×103

10 14

10 11

10 8

10 5

10 2

101

104

||x
j

x
* |

| 2

p =0.2
p =0.3
p =0.4
p =0.5
p =0.6

(b) Error vs. d0, p = 0.6, with block-list.

Figure 5.6: Effects of number of used row d0 using the Breast Cancer Wisconsin data set, Nr = 10, nr = 4, k = 3,

∥e∥∞ = 500.

Table 5.4: Accuracy of the method with the block-list when number of iterations to update the block-list S =

200, 500, 1000, 2000, k = 3, Nr = 20, and nr = 4.

S 200 500 1000 2000
p = 0.6, d0 = 8 0.75 0.792 0.875 0.875
p = 0.4, d0 = 6 0.75 0.9375 1 1

5.5 Conclusion and future work

It is of great significant for optimization algorithms to be robust and resistant to adversaries. In

this work, we propose efficient algorithms based on mode for solving large-scale linear systems

with the presence of the adversarial workers. This kind of adversary has plenty of applications in

the real life, e.g. IoT (Internet of Things). We provide theoretical convergence guarantee and our

experiments support these theoretical results, as well as illustrate that the methods converge in many
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scenarios. The methods are able to deal with different adversarial rates. In particular, the method

with block-list is able to handle the adversarial rate p > 0.5, and at the same time, identify the

adversarial workers. In the numerical simulations, we also present the effects of several important

parameters of the adversaries and of anti-adversary strategies, namely, the number of used rows d0,

the number of error categories k, the adversary rate p, and the number of chosen workers n at each

iteration.

Currently, our methods assume that the good workers are more than each category of adversarial

workers. It is straightforward to adjust the method so that the case where the good workers

are the minority can be dealt with. We implemented the algorithms in a sequential manner to

mimic distributed computation. However, to consider the storage overhead, one should deploy the

algorithm in distributed systems. For future work, one can generalize this method to non-linear

convex problems and perhaps non-convex problems.

5.6 Appendix

5.6.1 Single row convergence without block-list

We present the algorithm and the theory for a special case when the number of used rows d0 is 1.

5.6.1.1 Algorithm

5.6.1.2 Convergence

Theorem 5.6.1. Let A ∈ Rd1×d2 with d1 ≥ d2 and b, e1, . . . , ek ∈ Rd1 . Assume that we solve

Ax∗ = b via Algorithm 8, then

E∥xi − x∗∥22 ≤ αi+1∥x0 − x∗∥22 +
1− αi+1

1− α

1

∥A∥2F

k∑
ℓ=1

qℓ∥eℓ∥2, (5.32)
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Algorithm 8 DISTRIBUTED RANDOMIZED KACZMARZ WITH BLOCK-LIST

1: Input: Initialize block-list B, good worker set D = [N ], a counter vector E = 0 ∈ Rn,
MaxIter, Tol, cs = 2 Tol, checking period T .

2: while j < MaxIter and |cs| > Tol, do
3: The central worker wc selects a row index ij ∈ [m] with probability pij =

∥Aij
∥22

∥A∥2F
4: Sample w1, . . . , wn uniformly from D
5: Broadcast Aij to w1, . . . , wn

6: ws returns cs =
⟨Aij

,xi⟩−bij
∥Aij

∥2 + el, if ws ∈ Cl

7: wc splits {cs}ns=1 into groups G1, . . . , Gk and randomly choose from groups Gs that satisfy
|Gs| ≥ n(1− p)

8: Update xj+1 = xj + cs0A
⊤
ij

9: Update E(s) = E(s) + 1, if cs /∈ Gs0

10: if mod(j, T ) = 0 then
11: Update B by checking the value of entries in E
12: D = D \B
13: end if
14: Update j = j + 1
15: end while
16: Output: xj and B

where σ2
min(A) is the smallest singular value of A, α = 1− σ2

min(A)

∥A∥2F
and qℓ =

q̂lmode
q

.

Additionally, if ∥eℓ∥ ≤ C, we have

E∥xi − x∗∥22 ≤ αi+1∥x0 − x∗∥22 +
1− αi+1

1− α

Cq0
∥A∥2F

. (5.33)

In (5.33) we use the fact that
∑k

ℓ=0 qℓ = 1. Furthermore, we assume that E∥eℓ∥2 = dσ2
ℓ at each

iteration.

To provide a quantitative understanding of Theorem 5.6.1, we present several examples in

Tables 5.5 and 5.6. For simplicity, assume that each error category has the same fraction pℓ = p/k.

Thus, all q̂ℓmode are equal. Here q0 is the probability that the algorithm chooses the right mode and q is

the probability that there is a mode. In these two tables, we present the values for q̂ℓmode, q̂
0
mode, q and

q0 by varying the number of error categories k, the number of chosen workers n and the adversarial

rate p. These two tables are generated by solving a linear system with a row-normalized matrix
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A ∈ R1000×100. As k increases, qℓ decreases and q0 increases. Therefore, the error bound in equation

(5.33) decreases with respect to k and thus reaches better convergence. When k is large enough,

qℓ ≈ 0. Therefore, when the noise is uniformly random error and there is a mode for the step-size,

the mode will be the correct mode. As n increases, there is a similar decrease effect and therefore a

better convergence.

Table 5.5: Total number of workers N = 100, number of chosen workers n = 5.

p k q̂ℓmode q̂0mode q q0

0.8
5 0.1 0.16 0.67 0.15
10 0.04 0.21 0.57 0.36
15 0.02 0.23 0.48 0.46

0.2
3 0.002 0.63 0.64 0.98
5 8× 10−4 0.65 0.65 0.99
10 2× 10−4 0.66 0.67 0.99
15 2× 10−4 0.685 0.689 0.99

Table 5.6: Total number of workers N = 100, number of error categories k = 5.

p n q̂ℓmode q̂0mode q q0

0.8
10 0.099 0.18 0.67 0.26
15 0.099 0.2 0.7 0.29
20 0.097 0.23 0.71 0.31

0.2
10 7× 10−6 0.904 0.90 1− 5× 10−6

15 5× 10−7 0.97 0.97 1− 3× 10−6

20 1× 10−7 0.99 0.99 1− 6× 10−7

Theorem 5.6.2. Let n, k, and each entry in {n̂i} < n be non-negative integers. The number of

solutions to the equations:  n1 + n2 + · · ·+ nk = n

s.t. 0 ≤ ni ≤ n̂i

is the coefficient of term xn in the polynomial

f(x) =

(
n∑

j=0

(
n̂i

j

)
xj

)k

105



Proof. Consider we have are k bins. The constrained problem is equivalent to choosing n apples

(different from each other) from k baskets; in each basket ni has n̂i apples, in total.

We first consider the problem without the constraint and every apple is the same. The number of ways

to choose the apples equals the coefficient of the term xn of the polynomial f(x) =
(∑n

j=0 x
j
)k

.

With the constraint and apples being different, there are
(
n̂i

j

)
ways to choose j apples from basket i.

Let j vary and since we have k baskets, in total the number of ways to choose equals the coefficient

of the term xn in the polynomial f(x).

Here is the proof of Theorem 5.6.1:

Proof. To prove Equation (5.32), at each iteration, we consider solving Ax = b, Ax = b+ e1,. . .,

Ax = b+ ek with probability q0, q1, · · · , qk, respectively. Therefore, for the (i+1)-th step, we have

the iteration

xi+1 = xi −
⟨Aj, xi⟩ − bj

∥Aj∥2
(Aj)

⊤,

or

xi+1 = xi −
⟨Aj, xi⟩ − (bj + eℓ(j))

∥Aj∥2
(Aj)

⊤.

for ℓ = 1, · · · , k, Aj is the j-th row of matrix A.

Notice that when xi+1 = xi − ⟨Aj ,xi⟩−bj
∥Aj∥2 (Aj)

⊤, we have

Ej∥xi+1 − x∗∥22

=Ej∥xi −
⟨Aj, xi⟩ − bj

∥Aj∥2
(Aj)

⊤ − x∗∥22

≤
(
1− σ2

min(A)

∥A∥2F

)
∥xi − x∗∥22.

(5.34)
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When xi+1 = xi − ⟨Aj ,xi⟩−(bj+eℓ(j))

∥Aj∥2 (Aj)
⊤, we have

Ej∥xi+1 − x∗∥22

=Ej∥xi −
⟨Aj, xi⟩ − (bj + eℓ(j))

∥Aj∥22
A⊤(j, :)− x∗∥22

≤
(
1− σ2

min(A)

∥A∥2F

)
∥xi − x∗∥22 + Ej

e2ℓ(j)

∥Aj∥22

=

(
1− σ2

min(A)

∥A∥2F

)
∥xi − x∗∥22 +

∥eℓ∥2

∥A∥2F
.

(5.35)

Combining (5.34) and (5.35), we have

Ej∥xi+1 − x∗∥22

≤
(
1− σ2

min(A)

∥A∥2F

)
∥xi − x∗∥22 +

1

∥A∥2F

k∑
ℓ=1

qi∥eℓ∥2.
(5.36)

Set α = 1− σ2
min(A)

∥A∥2F
. Therefore,

E∥xi+1 − x∗∥22

≤αi+1∥x0 − x∗∥22 +
1− αi+1

1− α

1

∥A∥2F

k∑
ℓ=1

qℓ∥eℓ∥2.
(5.37)

5.6.2 Finding the optimal d0

Remark 5.6.3. If we assume each row is held by the same number of workers and used workers, i.e.

nr ≡ n,Nr ≡ N and the probability of each error category ℓ (ℓ ̸= 0) for each row is the same, i.e.
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pr,ℓ ≡ p/k. Then g0(r) = max(⌈ nr

k+1
⌉, ⌈nr(1− pr)⌉). Moreover, we have

brg ≡ bg, the coefficient of term xn of

(
g−1∑
j=0

(
Np/k

j

)
xj

)k−1(g−1∑
j=0

(
N(1− p)

j

)
xj

)
,

arg,ℓ ≡ ag, the coefficient of term xn−g of

(
g−1∑
j=0

(
Np/k

j

)
xj

)k−1

,

qtg ≡ qg =

(
Np/k

g

)
ag(

N
n

) , g0(t) = max(⌈ n

k + 1
⌉, ⌈n(1− p)⌉),

Q(t, τi) ≡
n∑

g=g0

qg

(
bg(
N
n

))d0−1

= Qmax = Qmin := Q,

qt =
d0
d1

Qmax.

(5.38)

Let α(d0) = α = 1−Qd0
d1
σ2
min(Ã). Then the convergence error is bounded:

E∥xi − x∗∥22 ≤α∥xi−1 − x∗∥2 +
∑
t∈[d1]

qt∥ẽt∥22

=αi∥x0 − x∗∥2 + 1− αi+1

1− α

∑
t∈[d1]

qt∥ẽt∥22.
(5.39)

To study the relation between d0 and the convergence, consider

∂α(d0)

∂d0
∝ −

n∑
g=g0

qg

(
1 + d0 log(

bg(
N
n

)))( bg(
N
n

))d0−1

. (5.40)

If d0 ≥ − 1

log(
bg

(Nn)
)

for all g, then ∂α(d0)
∂d0

≥ 0. This implies that as d0 increases, α(d0) increases.

Remark 5.6.4. When g0 = n, we have

∂α(d0)

∂d0
∝ −

(
1 + d0 log(

bn(
N
n

)))( bn(
N
n

))d0−1

,
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and to reach the fastest convergence rate, d0 = − 1

log(
bg

(Nn)
)
. One can explore the minimizers for α in

more general cases, where multiple local minimizers could present in the landscape.

5.6.3 Other proofs

Here is the proof of lemma 5.3.12:

Proof. The probability that a good worker is put in the block-list is

p0NPbl(w0).

The probability that a bad worker wℓ′ in category ℓ′ is put in the block-list is:

pℓ′NPbl(wℓ′).

The probability that a worker, either good or bad, is put in the block-list is

k∑
ℓ=0

pℓNPbl(wℓ).
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CHAPTER 6

Conclusion

In this thesis, we studied modeling methods for different aspects of COVID-19 and algorithms for

least-squares problems in distributed systems with adversarial workers.

In chapter 2, we analyzed theoretically and quantitatively the finite-size effects arising in

stochastic compartmental models. We applied a martingale approach can be applied to the stochastic

model and show that the fluid limit is indeed the deterministic SIR model by providing a bound

of the variances of the martingale. We found a theoretical explanation for the finite-size effects by

observing that the stochastic component of the martingale formulation scales as the inverse of the

square root of the population size. A larger variance both in the outbreak size and its temporal

behavior arises as population size decreases. Our work provides a good guide for authorities of

smaller populations to estimate risk over time in order to prepare for the outbreak. It is important to

bear in mind that the broader variations in the pandemic caused by the smaller population would

lead to a wide outcome when it comes to estimating risk.

In chapter 3, we proposed a policy-making model coupling the SIR model for one region and

multiple regions. We introduced an existing approach of optimal control in the literature and

reproduce the results using our method. We also discussed the different policies and pandemic

dynamics resulting from different minimal policy time intervals and different parameters. In chapter

4, we proposed a HNMF to organize existing literature on coronaviruses and pandemics, and early

literature on COVID-19 into an interactive structure easily searchable by researchers and available

to use through a corresponding website. The topics discovered by HNMF reveal that early research

of interest to the COVID-19 research community divides into diverse areas such as research related
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to other coronaviruses, research related to other respiratory diseases, virology and genetic research,

as well as research relating to the public health response.

Lastly, we proposed efficient algorithms and provide theoretical convergence guarantee for

solving the least squares problem with the presence of the adversarial workers in distributed systems

(chapter 5). Our methods are able to deal with different adversarial rates as large as p > 0.5.

Additionally, the algorithm identifies the adversarial workers. We also present the effect of several

important parameters of the adversaries and of the anti-adversaries strategy, namely, the number of

error categories k, the adversary rate p, and the number of chosen workers n at each iteration.

The models we proposed are inspired by the real-world applications and yet they still have

limitations. For example, the SIR model and the excitation matrix used in our analysis assume

a perfect mixing in the population. In the policy function, the action parameter α is a heuristic

representation of the lockdown, social distancing and mask policies. It remains to be discussed

how other policies, for example, vaccination policies, affect the spreading in the different stages

of a pandemic. In our study of the adversarial learning, we assumed that the good workers are

the majority compared to workers from other error categories. However, the method can be easily

generalized to the case where the good workers are minority. Our models are by no means the most

practical. However, we believe that they improve upon previous works, serve as landmark for real

situations and provide insights for future research.
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