
UC San Diego
UC San Diego Previously Published Works

Title
Biometrics of complete human pregnancy recorded by wearable devices.

Permalink
https://escholarship.org/uc/item/1j2507nj

Journal
npj Digital Medicine, 7(1)

Authors
Keeler Bruce, Lauryn
González, Dalila
Dasgupta, Subhasis
et al.

Publication Date
2024-08-12

DOI
10.1038/s41746-024-01183-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j2507nj
https://escholarship.org/uc/item/1j2507nj#author
https://escholarship.org
http://www.cdlib.org/


npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01183-9

Biometrics of complete human pregnancy
recorded by wearable devices

Check for updates

Lauryn Keeler Bruce1,2, Dalila González 3, Subhasis Dasgupta 4 & Benjamin L. Smarr3,5

In the United States, normal-risk pregnancies are monitored with the recommended average of 14
prenatal visits. Check-ins every few weeks are the standard of care. This low time resolution and
reliance on subjective feedback instead of direct physiological measurement, could be augmented by
remote monitoring. To date, continuous physiological measurements have not been characterized
across all of pregnancy, so there is little basis of comparison to support thedevelopment of the specific
monitoring capabilities. Wearables have been shown to enable the detection and prediction of acute
illness, often faster than subjective symptom reporting. Wearables have also been used for years to
monitor chronic conditions, such as continuous glucose monitors. Here we perform a retrospective
analysis on multimodal wearable device data (Oura Ring) generated across pregnancy within 120
individuals. These data reveal clear trajectories of pregnancy from cycling to conception through
postpartum recovery. We assessed individuals in whom pregnancy did not progress past the first
trimester, and found associated deviations, corroborating that continuous monitoring adds new
information that could support decision-making even in the early stages of pregnancy. By contrast, we
did not find significant deviations between full-term pregnancies of people younger than 35 and of
people with “advanced maternal age”, suggesting that analysis of continuous data within individuals
can augment risk assessment beyond standard population comparisons. Our findings demonstrate
that low-cost, high-resolution monitoring at all stages of pregnancy in real-world settings is feasible
and that many studies into specific demographics, risks, etc., could be carried out using this newer
technology.

Pregnancy remains surprisingly underexplored at high temporal resolution,
despite the importance to every single human, and the emergence of new
tools in the formofwearable sensor devices (“wearables”) that allowefficient
longitudinal measurement of physiology. In the United States, normal-risk
pregnancies are monitored with the recommended average of 14 prenatal
visits, beginning with monthly appointments from 8 to 28 weeks, biweekly
until 34weeks, andweekly check-ins until birth1. This infrequent scheduling
has thus only enabled a low-resolution understanding of a few biometric
modalities throughout pregnancy2–4. Wearables might be used to improve
the continuity of pregnancy monitoring, but to date no wearable-derived
high temporal-resolutions descriptions have been published examining this
potential value across all stages of pregnancy.

Wearables have emerged as a tool for describing,monitoring, and even
predicting illnesses, both acute (COVID5–7, flu8,9) and chronic (Diabetes10,11,

Atrial fibrillation12,13). Continuous monitoring during pregnancy is now
possible and could lead to similar functionalities for pregnancy – high-
resolution description, surveilling of trajectories, and prediction of events
(adverse complications or positive events, as in labor prediction)14–19.
Decision support tools using these data would provide an opportunity for
early detection of pregnancy abnormalities and reduction of maternal and
infant morbidity and mortality20.

Many recently published studies have focused on assessing accuracy,
feasibility, and acceptability of wearable devices with regards to
pregnancy20–25, developingmodels or protocols for implementing real-world
continuous monitoring of pregnancy22,26,27, monitoring or diagnosing spe-
cific conditions such as gestational diabetes28–30 or designing interventions to
implement lifestyle changes during pregnancy31–33. Most studies that have
focused on analyzing patterns of change have explored continuous activity,
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heart rate (HR), heart rate variability (HRV), or sleep throughout pregnancy,
but did not include the data before or at conception and generally included
low numbers of participants6,18,32–35. The two studies that included data prior
to conception analyzedHRandHRV36 and distal body temperature (DBT)37

using two different wearables, included 18 and 30 participants respectively,
and have set groundwork for the work presented here.

Wehavepreviously shown thatpregnancyonset canbeclearly identified
through changes in continuous temperature captured by a wearable37. We
hypothesize that othermodalities will showdifferent patterns of change, in as
far as they reflect changes in different physiological systems. Many preg-
nancies are suspected to experience naturally arising terminal complications
in the first several weeks—often before the pregnant person is aware of the
pregnancy38–40. We, therefore, hypothesize that these patterns of change over
time should look different when reflecting different outcomes, as in preg-
nancies that come to term versus those that experience early fetal loss (EFL).

In this manuscript we attempt to provide high-resolution trajectories
of pregnancy across time, from before conception through to after delivery,
using multiple measurement modalities, generated on the same individuals
from the same device throughout. By providing these unique views into the
pregnant physiology from 97 full-term pregnancies and 23 instances of
early fetal loss (EFLs), we aim to test two hypotheses: (1) that high-
resolution data across pregnancy provides insight into variance across
time, across individuals, and between the modalities used; (2) that such
data provide information different than and so complementary to current
risk categories.

Through retrospective analysis of continuous, multimodal physiolo-
gical records from 97 full-term pregnancies and 23 pregnancies that
experience EFL, we confirm thatmultiple physiologicalmodalities captured
from off-the-shelf wearable devices allow for the construction of high-
resolution full-term pregnancy trajectories. We find that different sensor
modalities reflect different changes at different times across pregnancy,
which is important to inform future device engineering and experiment
design choices targeting specific times of pregnancy or specific changes.
These full-term profiles further allow us to identify early deviations in high-
risk individuals, as well as in pregnancies that experience EFL, demon-
strating that continuous, real-world monitoring across all of pregnancy is
feasible and yields distinct insights. Recent reviews have pointed out the
need for high-resolution physiological time series analyses across
pregnancy16. Here, we provide such profiles from before conception to
several months post-delivery, along with analyses that confirm potential
uses of these profiles in augmenting risk assessments using such data.

Results
For the 97 full-term pregnancies, the 10th, 50th, and 90th quantiles by
trimester are displayed in Table 1 and visualized in Fig. 1a. Nightly peak
temperature (°C) and nightly trough temperature revealed two separate
trends. Nightly peak temperature (Fig. 1b, first row, Table 2) was sig-
nificantly different between the time prior to pregnancy (-1 trimester) to the
first trimester, first to second trimester, and second to third trimester. The
profile of the nightly peak temperature (Fig. 1a, first row) showed the pre-
pregnancy ovulatory cycle between -60 and -30 days prior to the date of
known pregnancy. Following conception, instead of adhering to the
expected temperature decrease seen after the luteal phase during
menstruation41, temperature increased past the pre-pregnancy temperature
peak and slowly decreased across the pregnancy to lower than the pre-
pregnancy average temperature. Nightly trough temperature was only sig-
nificantlydifferent (Table 2) between the secondand third trimester (Fig. 1b,
second row) and the overall trend was opposite to peak temperature, with a
decrease in nightly temperature trough at pregnancy onset followed by a
steady increase until the day of delivery (Fig. 1a, second row).

Differences by modality from pre-conception through post-
delivery
The same analyses were performed for four other data modalities: activity
(metabolic equivalent task/metabolic equivalents; MET), heart rate (HR;

beats/minute, bpm), heart rate variability (HRV; root mean square of suc-
cessive differences (rmssd)), and respiratory rate (RR; respirations/minute
(rpm)) (Table 1). Median activity was not significantly different between
successive trimesters (Fig. 1b, third row) though a slight downward trendwas
present aspregnancyprogressed (Fig. 1a, third row,n.s.).HRwas significantly
different between the first and second trimesters and between the third and
fourth trimesters (Fig. 1b, fourth row). In general, HR increased from a pre-
pregnancy state to a local peak about 14 days following conception then
briefly dropped, subsequently, trended upward until a few weeks before
delivery (Fig. 1a, fourth row). HRV was also significantly different between
the first and second trimesters and the third and fourth trimesters (Fig. 1b,
fifth row) and mirrored the HR trend decreasing following conception and
thendecreasinguntil a fewweeksbefore thedayof delivery (Fig. 1a,fifth row).
RRwasnot significantly different between anyof the trimesters anddisplayed
a slight decrease across pregnancies (Fig. 1a, b, sixth row, n.s.).

Z-score transformation of the data against pre-pregnancy baseline
values allows for the investigation of intra-individual deviation from a pre-
pregnancy state. Populationmedian and 95% confidence interval across the
whole population reveal substantial relative change between modalities

Table 1 | Participant summary statistics by trimester

Data Type Trimester

-1
(91
days)

1
(91
days)

2
(91
days)

3
(97
days)

4
(91
days)

Nightly Peak
Temperature

μ(#
days)

57 88 86 92 75

quantile

10 35.96 36.13 36 35.88 35.72

50 36.27 36.44 36.28 36.18 36.14

90 36.52 36.71 36.56 36.45 36.43

Nightly Trough
Temperature

10 28.22 28.23 29.33 29.94 30.28

50 31 30.97 31.43 32.28 32.08

90 32.85 32.74 33.24 33.7 33.25

24 h Peak
Activity

μ(#
days)

19 48 59 69 62

quantile

10 1.8 1.75 1.61 1.66 1.62

50 2.2 2.19 2.1 2 2.03

90 2.79 2.61 2.62 2.54 2.48

Nightly
Peak HR

μ(#
days)

53 83 84 90 74

quantile

10 56.77 59.22 60.16 62.22 55.63

50 66.91 68.01 72.63 75.25 66.06

90 75.94 77.55 80.81 83.02 74.67

Nightly
Peak HRV

10 34.51 34.66 27.49 24.29 40.46

50 68.66 66.73 50.01 45.62 73.29

90 106.53 105.89 97.1 90.26 112.96

Nightly
Peak RR

μ(#
days)

22 56 71 85 73

quantile

10 16.15 16.35 16.08 16.07 15.7

50 17.61 17.94 17.71 17.46 17.08

90 19.87 20.12 19.9 19.62 18.82

Quantile values bounding the 10–90% quantile shading in Fig. 1a for the six data modalities for all
full-term pregnancies by trimester. Average days (μ) by data modality for all 97 pregnancies (nightly
peak/trough temperature as well as and Heart Rate/Heart Rate Variability produced the same
average number of days with measurements respectively).
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Fig. 1 | Multimodal trajectories reveal distinct changes across trimesters.
aMedian value (black solid) and quantiles (color) shaded for nightly peak tem-
perature (blue), nightly trough temperature (blue), 24-h peak activity (orange),
nightly peakHeart Rate (HR; green), nightly peakHeart RateVariability (HRV; red),
nightly peak Respiratory Rate (RR ; purple). All pregnancies were aligned by ‘date
know pregnant’ (DKP, green dashed line) and ended within 3 weeks of the 40-week
line (40W, black dashed). b Pregnancy profiles displayed as boxplots (box =

interquartile range (IQR) 1st to 3rd quantile, median = center line, lower whiskers =
1.5 * IQR below the 1st quantile, upper whiskers = 1.5 * IQR above the 3rd quantile)
for 97 full-term pregnancies by trimester (trimester: -1 = -13 to 0 weeks prior to
onset, 1 = 0 - 12 weeks of pregnancy, 2 = 13 - 26 weeks of pregnancy, 3 = 27 to
40weeks of pregnancy, 4 = 40 to 53weeks) by datamodality. Bonferroni corrected p-
value annotations for 4 comparisons: * : 2.5e-3 < p <= 0.0125, **: 2.5e-4 < p, ***:
2.5e-5 < p, ****: p <= 2.5e-6.
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across pregnancy (Fig. 2a, b), consistent with the idea that different mod-
alities contain complementary information. Aligning the data by ‘date
pregnancy stop’ (DPS) shows patterns of each modality just before and
following the day of delivery (Fig. 2c) revealed that all modalities also
showed substantial changes following delivery, with several showing trends
of change in anticipation of the end of pregnancy (Fig. 2c), with (for
example) HR and HRV inverting relative to each other, returning to pre-
pregnancy levels for the first time since conception.

Observation of early fetal loss (EFL)
DBT of individuals whose pregnancies stopped within the first trimester,
here referred to as early fetal loss (EFL) pregnancies, showed a significant
deviation from the trajectory of full-term pregnancies around the time of
EFL.Whenaligned by ‘dateknowpregnant’ (DKP,Fig. 2d), the temperature
of individuals who go on to full-term pregnancies plateaued for the first 8
weeks of pregnancy then slowly decreased; by contrast, we found that EFLs
occurred throughout the first trimester, and that EFL events at different
times within pregnancy nevertheless shared a characteristic decline in
nightly peak temperature around the time of EFL. We observed differences
in the slopes of the nightly peak temperatures following an EFL event
(Fig. 2d) and thus analyzed how time and EFL or full-term status affected
temperature using aGeneralized Estimating Equation (GEE). The data used
for theGEE analysis included the 7 days postDPS fromeachEFLpregnancy
(22 total) and 5 time-matched full-term pregnancies for each EFL (110 full-
term pregnancies whichwere time-matched such that data from a full-term
matchedpregnancy started the sameday as the EFL’sDPS to 6 days after the
EFL’s DPS - note that DPS was a retrospective, recalled date, and so bio-
medical tests or confirmations at the time might potentially have come
before or after the post-facto defined DPS). The GEE revealed a significant
effect betweenday, category (EFLor full-term), and theday atwhich theEFL
occurred (pregnancy length threshold, 3-way interaction, p = <0.01,
Table 3). This is consistent with the apparent decrease in slope and further
supports thenotion that thephysiological change associatedwith theEFLs is
itself changing as a function of days from conception.

Comparison of physiological signatures from broad risk
categories
Increased age of pregnant people has been shown to correlate with higher-
risk pregnancies, with the age of 35 commonly used as a threshold for

increased risk42,43. However, the majority of pregnancies in people 35 or
older are still healthy pregnancies. This raises the question of whether the
risk category correlates to significant physiological differences between
individuals in these categories absent pregnancy complications.We split the
full-term cohort by the age threshold of 35 years (49 individuals < 35 years
old, 48 individuals >35years old), toevaluate if there aredifferences between
median values of the differentmodalities (Fig. 3). No statistically significant
differences were found at weekly or 4-week aggregated resolutions between
the less than and greater than 35-year-old groups.

Each modality alone might show too small a change to yield a sig-
nificant difference, and yet in sum, the differences across modalities might
reveal an overall physiological separation between the two categories as
small differences accumulate across time. To test this possibility, we com-
pared cumulative multimodal distance from 4 weeks prior to pregnancy to
40 weeks for individuals in each age group, and assessed whether small
differences in each modality might add up to a larger net distance in a
composite multimodal space. The final values in each age category were
compared using the Kruskal-Wallis test, which found that no significant
difference had accumulated by 250 days (U-stat = 2.36, p-value = 0.12).

Discussion
Here we show high-resolution, multimodal physiological trajectories across
the whole of human pregnancy, from cyclicity through conception and
following delivery, from 97 full-term pregnancies. We found many sig-
nificant differences across trimesters. Notably, different modalities had
significant differences at distinct times across full-term pregnancies, sug-
gesting that different physiological modalities may be more desirable for
tracking pregnancy health at different times during pregnancy; each mod-
ality seems to likely be reflecting unique physiological processes, rather than
being redundant. We then compared these trajectories to pregnancies for
which the pregnant people reported early fetal loss and confirmed that the
losses were associated with detectable changes in physiology throughout
the first trimester: downward deflections of the temperature trajectory.
The amplitude of deflection decreased with time from conception until it
became non-significant toward the end of the first trimester. This loss of
significance over time is likely an artifact of our relatively lowN for late first-
trimester Early Fetal Losses (EFLs); larger prospective studies with clinical
verification of time of loss would clarify the physiological trajectories best
suited for the detection or prediction of EFL across pregnancy, and might
allow for the development of early alert or prediction systems.This confirms
that continuous, longitudinal data can reveal previously unseen signs of
clear relevance for pregnancy care decisions.

Complementing this existence proof, we rejected the hypothesis that
current risk categories based ondemographics necessarily correlate strongly
with physiological change:we found that a broad risk category, pregnancy at
an advanced maternal age, did not show significant differences from
reference trajectories in any modality. This is probably not so surprising, as
no one should expect that a person’s physiological radically changes on their
35th birthday, but we feel it is important to have explicit numerical
demonstrations that longitudinal physiological measurements contain
information substantially different—and hopefully additive to—current
standards of risk assessment.

Together these twofindings—observationof individualEFLsbutnot of
differences between full-term pregnancies from broad risk category—sup-
port the hypothesis that individualized monitoring could augment broader
risk assessments. Our work complements recent work showing that similar
trajectories can be used to detect conception41 and also likely complications
closer to delivery18,19. Here we show that this approach reveals a change in
physiology consistent with a transition back to a pre-pregnancy physiolo-
gical state following an EFL. Our findings do not support any one modality
as ideal for revealing all of pregnancy, as each showed changes at different
stages of pregnancy. Similarly, our findings suggest that algorithms for
detection and prediction of adverse events should assess the changes to the
patterns being detected across stages of pregnancy, aswas observed for EFLs
across the first trimester.

Table 2 | Statistical comparisons of modalities by trimester

Data Type Mann-Whitney-Wilcoxon Test U stat (p-value)

-1 vs 1 1 vs 2 2 vs 3 3 vs 4

Nightly
Peak
Temperature

2893
(<0.001)****

6215
(<0.001)***

5937
(<0.01)**

5265
(0.0647)

Nightly
Trough
Temperature

4794 (-0.82) 3814
(-0.023)

3488
(<0.01)**

4862 (0.43)

24 h
Peak
Activity

1792 (0.3) 2910 (0.54) 4058 (0.16) 3836 (0.82)

Nightly
Peak
HR

3856 (0.25) 3450
(<0.01)*

3839 (0.03) 6914
(<0.001)****

Nightly
Peak
HRV

4429 (0.68) 5593
(<0.01)*

5280 (0.11) 2206
(<0.001)****

Nightly
Peak
RR

1441 (0.21) 3132 (0.19) 3832 (0.49) 4772 (0.02)

Mann-Whitney-Wilcoxon test two-sided U-statistic and p-value for trimester comparisons in Fig.
1b. P-value significance thresholds with Bonferroni correction for 4 comparisons: * : 2.5e-3 < p <=
0.0125, **: 2.5e-4 < p, ***: 2.5e-5 <p, ****: p <= 2.5e-6.
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This retrospective analysis has several limitations that highlight
important areas of future exploration before descriptions like those we have
provided here should be trusted generally across diverse populations. First,
all participants were current owners of the wearable device which may bias
the data towards a more healthy and compliant population. Similarly, these
individuals were likely of higher socioeconomic status (SES) and also edu-
cational achievement to have disposable income to spend onwearables, and
data literacy to make use of the resulting outputs; they likely also do not
come from disenfranchised groups, as by participating they appear to
assume their experience should be counted. All of these conditions (higher

SES, educational attainment, enfranchisement) are not evenly or well dis-
tributed across the population of people who might benefit from the
potential improvements these technologies might make possible (i.e.
everyone). Clearly more studies like this one, targeting specific (different)
populations, and different conditions or outcomes of pregnancy, are
necessary before any one finding or algorithm could be assumed to repre-
sent all pregnancy experiences accurately.

Additionally, reaching out to the community to request retro-
spective data allowed us to quickly collate pregnancies without
restriction to specific recruitment locations; online recruitment also

Fig. 2 | Normalized trajectories reveal signatures
around conception, delivery, and early fetal loss.
The Z-scored median (line) and 95% confidence
intervals (shading) from the full-term population
aligned by ‘date know pregnant’ for modalities
derived from the wearable’s a thermistor (tem-
perature nightly peak and trough) and accel-
erometer (24 h max metabolic equivalents (MET))
and b photoplethysmography (ppg; Heart Rate
(HR), Heart Rate Variability (HRV), Respiratory
Rate (RR)) sensors. c Z-scored values from all
modalities aligned by ‘date pregnancy stop’ (DPS).
d Z-scored temperature of Early Fetal Loss (EFL)
pregnancies, grouped by gestation length past ‘date
know pregnant’ (DKP) (darkest earliest: lightest
latest) and full-term pregnancies (blue) aligned by
DKP (green dashed line). Solid lines transition to
dashed indicate all pregnancies in the group
have ended.
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led to the inclusion of reports from many participants for which
either physiological or self-report data were missing. In the interest of
reducing participant burden and encouraging recruitment, surveys
were of limited scope. Data were aligned based on the date each
individual knew they were pregnant, presumably from a positive test,
but this might be improved with reports of the start date of the most
recent menstrual cycle, or with clinical confirmation in future pro-
spective studies. Similarly, the lack of ethnicity and other non-age
demographics (such as chorionicity or whether the pregnancy was
medically assisted) and outcomes limit the number of subgroup
comparisons possible in this data set. EFLs occurred in a compara-
tively small portion of participants; this allowed us to confirm that
such events can be detected by wearables. We do not know from
these data the cause or even exact timing of events that lead to the
end of each pregnancy. That we found significant patterns associated
with EFLs here suggests that sufficiently focused, prospective studies
might be able to develop early detection or even prediction algo-
rithms for the purposes of improving care around EFL events, as well
as differentiating potential causes of spontaneous fetal loss. Because
the end of pregnancy date was reported retrospectively by the par-
ticipant, and not by a clinical definition or measurement, we do not
attempt to interpret details around these events further here. Future
studies could focus on high-risk pregnancies alongside normal-risk
pregnancies, ensuring a diverse cohort of individuals (racially, eth-
nically, income status, education, etc.), and expanding the monitor-
ing periods both before and after pregnancy.

Collecting more data with patient consent from electronic health
records and/or more in-depth surveys with questions focusing more on
physical and mental health, symptoms experienced (nausea, pain, etc.),
individuals’ experiences trying to become pregnant, and recovery fol-
lowing, seem feasible, and would support deeper exploration of the
potential for individualized pregnancy monitoring and analysis. Addi-
tionally, the ability of the pregnant participant to view their data over
time provides a potential avenue to support behavioral interventions;
people may change their behavior, sleep, etc., if they can see that their
physiological trajectory is deviating from expectation. With sufficiently
diverse and broad participation, it should be possible to learn best
practices in steering these trajectories specific to the needs of specific
groups or individuals.

Our work supports the notion that remote monitoring is feasible and
allows formore fine-grain insight into each individual’s pregnancy between
standard clinical appointments. For individuals from lower socioeconomic
conditions, and those without easy access to healthcare infrastructure,
wearable-supported analyses18,19,41 could provide an important supple-
mental source for monitoring and risk assessment. As recently shown19,
development of machine learning models from data generated by

individuals from diverse backgrounds are feasible. Use of participant-led
researchmay improve the inclusionof individualswhomost stand tobenefit
from wearable device-driven augmentations of standard but more cen-
tralized healthcare infrastructure.

In summary, wearable devices make it possible to generate and follow
trajectories of physiological variables across the entirety of an individual’s
pregnancy journey. Comparison of individual pregnancy journeys to
healthy population reference trajectories has now been shown to have
relevance from conception through delivery. We found that such com-
parisons provided indications for early fetal loss as well.

This retrospective analysis was carried out with data volunteered from
users of the commercially-available device Oura Ring, supporting the use of
wearable devices and community engagement for identifying natural
experiments as a complement to controlled experiments or trials. Our
findings also support the notion that wearable devices could be used to
develop relatively cheap and accessible high-resolution pregnancy mon-
itoring solutions for communities that lack major medical infrastructure.
Our work supports the feasibility of working with communities to docu-
ment their pregnancy journeys, and theuseof this approach todevelopdata-
driven, dynamic, personal risk assessment tools.

Methods
Wearable device and questionnaire data collection
All participantswere owners of theOuraRingGen2 (OuraHealthOy,Oulu,
Finland), a commercial wireless device worn on the finger that contains
3 separate sensors: negative coefficient (NTC) thermistor (resolution of
0.07 °C) to detect distal body temperature (DBT), a tri-axial accelerometer
to measure activity (metabolic equivalents, MET, resolution of 60 s), and a
photoplethysmography (ppg) sensor (signal sampled at 250Hz) that mea-
sured heart rate (HR), heart rate variability (HRV), and respiratory rate
(RR)7. All data was wirelessly synced via bluetooth from the ring to the
user’s smartphone when the Oura App was in use (Fig. 4). Data were then
sent by the app to Oura’s cloud architecture. Oura performed a one-time
data push from their secure Amazon storage (S3) to our S3 cloud storage
located on San Diego Supercomputer (SDSC) infrastructure.

In addition to the wearable data, participants had the option to answer
a questionnaire related to pregnancy via the app. Questionnaire data
included approximate age (“What was your approximate age for the
majority of this pregnancy? 20–24, 25–29, 30–34, 35–39, 40–44, 45–49),
date of conception (“If you know when you likely conceived, please list the
most likely date (please leave blank if youdon’t have a strong sense of this).”,
date the individual knew they were pregnant (‘date know pregnant’, DKP)
(“What was the date you first became aware of this pregnancy?”), date of a
positive pregnancy test (“If you used a test to confirm this pregnancy, what
was your first positive test date?”), date the pregnancy stopped (‘date
pregnancy stop’, DPS) (“What was the date this pregnancy concluded?”),

Table 3 | Statistics of multimodal model of early fetal loss

Statistic coefficient p (z) Confidence Interval [0.25, 0.975] standard error

Intercept 1.11 <0.001 (3.4) 0.48, 1.76 0.33

Day -0.23 <0.001 (-4.4) -0.33, -0.13 0.06

Category 0.5 0.23 (1.2) -0.31, 1.32 0.42

Day:category 0.25 <0.001 (4.4) 0.14, 0.36 0.06

Length threshold -0.01 0.44 (-0.8) -0.02, 0.01 0.01

Day: length threshold <0.01 0.01 (2.5) 0, 0.01 <0.01

Category:
length threshold

-0.01 0.22 (-1.22) -0.03, 0.01 0.01

Day:category:
length threshold

<-0.01 <0.01 (-2.7) -0.01, 0 <0.01

Statistics from the Generalized Estimating Equations executed on peak distal body temperature data comparing Early Fetal Loss (EFL) pregnancies to time-matched full-term pregnancies in the 7-days
following ‘date pregnancy stop’ (DKP) grouped by the pregnancy length threshold (<14, <28, <40, <63 days).
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and if the pregnancy was considered high risk (“Did a medical professional
tell you this was a “high risk” pregnancy? Yes or No”).

Data
TheUniversity of California SanDiego (UCSD) Institutional Review Board
(IRB, IRB# 201027X) approved all study activities, and all research was
performed in accordance with relevant guidelines and regulations and the
Declaration of Helsinki. All participants provided informed electronic
consent. We did not compensate participants for participation.

For each participant, a single parquet file for nightly aggregated data,
also referred to as sleep summary data, contained sleep-related data fields
(sleep time start, sleep time end) and the aggregated data fields: temperature
max, temperature trend deviation. A single row with the longest sleep
duration value for each date was chosen to ensure a single set of sleep
measurements per night. High-resolution physiological data included five
data modalities stored in separate CSV files for each participant per day.
DBT was measured by a negative coefficient (NTC) thermistor (0.07 °C
resolution) recorded at 1-minute intervals7 24 hours per day. TheMetabolic
equivalents activity metrics (MET) was measured by a tri-axial accel-
erometer and recorded at 1-min intervals 24 h per day. Data measured by a
photoplethysmography (ppg) sensor include heart rate (HR) and heart rate

variability (HRV) at 5-min intervals and respiratory rate (RR) at 30-s
intervals reported only when the wearer is at a rest or sleep state.

Data processing
564 individuals responded to a survey distributed via the Oura App, and in
total, reported 704 unique pregnancies. High-resolution physiological data
was generated using the wearable deviceOura Ring (OuraHealthOy, Oulu,
Finland) and stored in large parquet files on the San Diego Supercomputer
Center (SDSC) and accessed via the Nautilus Portal44. Data preprocessing
included the generation of date-time indexing, normalization of indexes to a
‘local-time’, removal of duplicate time points, filtering of values below the
0.05 quantile and above 0.95 quantiles for each participant, annotation of
awake or asleep based on information contained in the sleep summary data,
and dropping of Temperature, HR, HRV, and RR values for timepoints
where corresponding activity recordings lower than 0.5MET (restingMET
is equal to 1 in these data) to remove potential artifacts from the data caused
when a user was not wearing the device.

Further filtering of each modality was applied by dropping values
below the 2% quantile and above the 98% quantile calculated for each
individual. The following individual daily values aggregated were then
calculated for each data type at both 24 h and nightly (8:00 pm to 8:00 am

Fig. 3 | Trajectories in advanced maternal age are not on average different from
other pregnancies.Median and 95% CI for individuals split by an age threshold of
35 years-old, with < 35 years of age represented in gray and >= 35-years of age in the
respective data type color: a Nightly peak temperature (blue), b nightly trough
temperature (blue), c 24 h peak activity (orange), d nightly peak Heart Rate (green),

e nightly Heart Rate Variability (red), f nightly Respiratory Rate (purple). g Legend.
h Cumulative multimodal (temperature peak and trough, HR, and HRV) distance
from -4 to 40 weeks of pregnancy split by age (NS: no significant effect, Kruskal-
Wallis U = 2.36, p = 0.12).
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‘local time’) resolutions: mean, median, average 90–95% quantile (referred
to as peak), and average 5–10% quantile (referred to as trough).

Subjects
Of the pregnancies reported, 52 were those of the respondent’s pregnant
partner and 392 took place outside of the wearable device data collection
timeframe (September 2019 to February 2022). Of the 224 pregnancies that
provided data within this timeframe and also ended in delivery, available
datawas very sparse (< 40%of dayswith temperature data in each trimester)
for 47 pregnancies for at least one of the trimesters and an additional 76
pregnancies were filtered for reasons such as sparse data directly around
pregnancy onset or end of pregnancy and during the time prior to preg-
nancy. Lastly, 4 preterm pregnancies (<37 weeks gestation) were not
included in the analyses, thus in total, 97 full-termpregnancies (>= 37weeks
gestation) were considered due to having daily temperature measurements
for at least 40% of days in all three trimesters, and all three trimesters falling
between September 2019 and February 2022. Of these, 17 were reported as
high risk (Table 4). All full-term pregnancies but two were reported by
unique individuals (96 individuals, 97 pregnancies); because the two preg-
nancies from the same parent occurred in different years, and because they
made up only a small percent of the total, we did not attempt to combine
them in any way to avoid pseudoreplication, instead including both to
maintain full resolution in all pregnancies compared. Within the full-term
subset, 5-year age bin counts of participants showed that the majority of
pregnancies for this cohort occurred between age 30–39 (Table 4). 34 early
fetal loss (EFL) pregnancies were reported and classified by participants as
miscarriages, ectopic, chemical pregnancies, terminations, or failure to
implant. Failure to implant pregnancies (n = 4) were not included in these
analyses. Of the 30 remaining EFLs, 3were filtered due to low first-trimester
data completeness and 4 due to another reason such as low prior-to-
pregnancy data completeness, resulting in an EFL cohort of 23 pregnancies.
In thefinal EFL cohort, age counts of participants split into 5-year binswere:
25–29 = 1, 30–34 = 5, 35–39 = 14, 40–44 = 3 (Table 4). Of the EFL

pregnancies, 7 were reported as high risk. All EFL pregnancies but six were
reported by unique individuals (20 individuals, 23 pregnancies); because the
lengths of the pregnancies were in different EFL pregnancy length threshold
groups andbecause theywere a small percent of the total, wedidnot attempt
to combine them and included them in the final comparisons. No other
demographic or risk factors were recorded in the survey.

Analysis methods
Alignment of pregnancies. Alignment of (full-term or EFL) pregnan-
cies was performed using two dates responders provided in the survey:
date the individual knew they were pregnant (referred to as ‘date
know pregnant’ (DKP) and often the same date as the date of their first
positive pregnancy test) or reported date that the pregnancy stopped
(‘date the pregnancy stopped’, DPS). The date the individual knew they
were pregnant aligned well with 28 days after the most recent trough of
nightly maximum measurement, which has been previously character-
ized as the start ofmenstruation45, thus alignment by that datewas used to
align near the start of pregnancy.

BoxandWhisker plotsof full-termpregnanciesby trimester.Median,
lower quartile, and upper quartile of the trimester means for the 97 full-
term pregnancies were plotted for five periods: 13 weeks before preg-
nancy onset (day -91 to date know pregnant (day 0) - 28 days,
13–14 weeks for each trimester (trimester 1: date know pregnant (day 0) -
28 days to day 63 [91 days], trimester 2: day 64 to day 154 [91 days],
trimester 3: day 155 to day 252 [97 days]) and the 13 weeks following
pregnancy (trimester 4: day 252 to day 343, [91 days]). Statistical sig-
nificance between trimester means was calculated using the Mann-
Whitney-Wilcoxon two-sided test with Bonferroni Correction for the 4
comparisons using the add_stat_annotation function from the statannot
(version 0.2.3, https://pypi.org/project/statannotations/) python (version
3.11.5) package.

Median and quantile analysis of full-term pregnancies. For each data
type, all pregnancies were aligned by ‘date know pregnant’ and the
median and quantile ranges were calculated across the cohort for each
day using built-in pandas (version 2.1.0)46 functions.

Z-score, median, and confidence interval analysis. For each indivi-
dual and each data type, daily aggregated datawas z-scored by calculating
the mean and standard deviation of data preceding pregnancy onset
(DKP- 60 days to DKP - 30 days) then calculating the z-score value for all
dates (z = (x - μ-60-30)/(σ-60-30)). After alignment of pregnancies either by
DKP or DPS, a rolling 7-day mean was calculated, then the median value
and 95% CI was calculated for each day (scipy47 package; version 1.10.1,
https://scipy.org/).

Cumulativemultimodal distance. For each participant, for each day, we
generated z-scored values for the 4 most complete data types (temp peak,
temp trough, HR, HRV) and stored the daily means as 4-dimensional

Fig. 4 | Pathway of data from the individual into analytic cyberinfrastructure.
Block diagram showing the flow of data from a pregnant person’s Oura Ring to the
UC San Diego Nautilus Portal for analysis in Jupyter notebooks hosted in the
Nautilus research environment on the San Diego Supercomputer (SDSC),

University of California, San Diego (UCSD). “Jupyter” and “Python” logos are
Trademarked and used in accordancewith their written use policies. “Nautilus” logo
is not protected.

Table 4 | Cohort Demographics and pregnancy outcomes by
maternal age

Full-term Early fetal loss

Age group All High Risk All High Risk

25–29 13 2 1 0

30–34 36 2 5 0

35–39 29 4 14 5

40–44 17 7 3 2

45–49 2 2 0 0

Total count 97 17 23 7

All available participant demographics for each unique pregnancy included age and patient-
reported high-risk labels during the 97 full-term and 23 Early Fetal Loss pregnancies for 96 and 20
participants, respectively.
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points. To calculate a multimodal distance for the >35 year-old subgroup
from the <35 year-old subgroup, we calculated the mean for each data
type for each day using daily values from the <35 subgroup. Then, we
computed the Euclidean distance between each >35 participant and the
<35 group mean at each time point. To calculate an individual’s multi-
modal distances for <35 population, we computed the Euclidean distance
between each participant <35 and the mean of all other <35 participants
at each timepoint (leave-one-out method). Each individual’s cumulative
distance was generated as the daily sum of all preceding daily distance
values for that participant. The cumulative values at 40 weeks for each
subgroupwere compared using aKruskal-Wallis test using scipy47 python
package (version 1.10.1, https://scipy.org/).

Generalized estimating equation statistical analysis. Data was pre-
processed by performing linear interpolation and applying a rolling 3-day
mean. Z-scoring was performed by calculating the mean and standard
deviation of data preceding pregnancy onset (DKP- 60 days to DKP -
30days) for all but oneof the23EFLpregnancies asdatabeforeonsetwasnot
available (22 EFLs total). Early fetal loss (EFL) pregnancies were separated
into groups based on pregnancy length from ‘date know pregnant’ to ‘date
pregnancy stop’ in days (thresholds: 14, 28, 40, and 60). For each EFLwithin
each length group, the 7 days following ‘date pregnancy stop’ were stored
along with the same days from 5 randomly selected full-term pregnancies
(e.g. if an EFLoccurred onday 10, valueswere selected fromdays 10 through
16 for that pregnancy and from 5 other, full-term pregnancies to ensure
time-matchedanalysis for each individual’sEFLdate); in thisway, if there are
5 EFLs in a length group, data from 25 full-term pregnancies was also stored
in the same array. The Generalized Estimating Equation (GEE) analysis was
performed using the python package statsmodels48 (version 0.14.0, https://
www.statsmodels.org/). The model used z-scored temperature as the
dependent variable (dv), with the day following the EFL, the pregnancy
category (full-term or early fetal loss), and EFL pregnancy threshold as the
independent variables (iv).

Data availability
Oura’s data use policy does not permit us to make wearable device data
(collected via the Oura Ring) available to third parties. Those seeking to
reproduce findings in this manuscript should contact the corresponding
author B.L.S.

Code availability
Code will be made available through the UC San Diego Library Digital
Collections repository with the DOI generated upon publication.
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