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Abstract 

Computational psychiatry applies advances from 
computational neuroscience to psychiatric disorders. A core 
aim is to develop tasks and modeling approaches that can 
advance clinical science. Special interest has centered on 
reinforcement learning (RL) tasks and models. However, 
laboratory tasks in general often have psychometric 
weaknesses and RL tasks pose special challenges. These 
challenges must be addressed if computational psychiatry is to 
capitalize on its promise of developing sensitive, replicable 
assays of cognitive function. Few resources identify these 
challenges and discuss strategies to mitigate them. Here, we 
first overview general psychometric challenges associated with 
laboratory tasks, as these may be unfamiliar to cognitive 
scientists. Next, we illustrate how these challenges interact 
with issues specific to RL tasks, in the context of presenting a 
case example of preparing an RL task for computational 
psychiatry. Throughout, we highlight how considering 
measurement issues prior to a clinical science study can inform 
study design. 

Keywords: computational modeling; reinforcement learning; 
measurement; psychometrics; computational psychiatry 

 

A core aim of the emerging field of computational psychiatry 

is to translate tasks and modeling approaches from 

computational neuroscience into sensitive assays that can 

advance clinical treatment, diagnosis, practice, and theory 

(Hitchcock, 2017; Redish & Gordon, 2016). New assays may 

advance clinical science by facilitating early illness detection, 

predicting illness progression, separating patients into 

subgroups, predicting type and extent of treatment indicated, 

and allowing measurement of the effects of emotion 

regulation strategies (Huys, Maia, & Frank, 2016). 

 The effort to develop laboratory tasks into assays has been 
ongoing for years, but the use of computational cognitive 

models that describe the trial-by-trial behavior of subjects 

(Daw, 2011) is newer to clinical science. In theory, 

parameters derived from these models should compactly 

describe individual or group differences by revealing aspects 

of cognitive processing that are obscured in behavioral 

measures (Huys et al., 2016). An especially promising 

domain in this regard is reinforcement learning (RL). RL 

refers to a broad class of trial-and-error learning tasks 

wherein learning is driven mainly by a scalar reinforcement 

signal (Sutton & Barto, 1998). Over the past twenty years, 
computational models of RL have grown in sophistication 

and maturity (O’Doherty, Cockburn, & Pauli, 2017). In 

addition, there has been a string of successful applications of 

RL modeling to clinical problems. These early successes may 

portend widespread use of RL assays in clinical science 

(Maia & Frank, 2011).  

 Yet the history of converting laboratory tasks to clinical 

assays suggests caution is warranted. Laboratory tasks tend 

to have substantial (and often underappreciated) 

psychometric weaknesses (Lilienfeld, 2014). Consider the 

example of the dot probe task, an attention paradigm 

introduced over 30 years ago (Bar-Haim, Lamy, Pergamin, 
Bakermans-Kranenburg, & Van Ijzendoorn, 2007). By 2007, 

35 clinical studies using the task had been conducted. A meta-

analysis that year concluded the task reliably detects attention 

differences between anxious and non-anxious groups (Bar-

Haim et al., 2007). Dozens of studies subsequently tested 

“modification” variants of the task (which aim to retrain 

attention) (Hallion & Ruscio, 2011). Yet recent meta-

analyses suggest modification training produces very small 

effects and that extant modification studies evince 

publication bias (e.g., Heeren, Mogoașe, Phillippbot, & 

McNally, 2015). These disappointing results prompted re-
examination of the evidence for reliable, stable group 

differences per the original dot probe. Recent critiques, which 

have referenced a slew of null findings since 2007, concluded 

that the evidence for such differences is weak (Rodebaugh et 

al., 2016; Van Bockstaele, Verschuere, Tibboel, De Houwer, 

Crombez, & Koster, 2014).  

 What went wrong? It is noteworthy that, although 

researchers have been employing the original dot probe since 

the 1980s, the first examination of its test-retest reliability 

was not published until 2005 (Schmukle, 2005). That study 

and others (e.g., Price et al., 2015) found the dot probe 

exhibits close to 0 test-retest reliability when analyzed using 
standard methods. These results suggest it is not possible to 

extract stable measures of differences in attention using the 

standard versions/analyses of the task (Rodebaugh et al., 

2016; Van Bockstaele et al., 2014). 
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Developing Computational Psychiatry Tasks with 

Strong Psychometric Properties 

The dot probe paradigm provides a cautionary tale about 

pushing too quickly from a lab paradigm to applied research. 

The computational psychiatry community can learn from this 

example. Fortunately, the community appears aware of the 

challenges posed by laboratory tasks. For instance, Paulus, 

Huys, and Maia (2016) proposed a pipeline (Figure 1) for 

turning a task into an assay that can ultimately be used for 

assessment or as a treatment target in randomized control 

trials (RCTs). The authors emphasize establishing 

psychometric properties early in the pipeline—before relying 

on the task as a primary measure in RCTs.  

Yet researchers entering computational psychiatry from the 
cognitive sciences may be unfamiliar with how the 

psychometric challenges of laboratory tasks interact with 

clinical design issues. Thus, this paper offers an overview of 

the relevant issues. Specifically, the rest of paper is part 

theoretical overview and part annotated case example of 

preparing a specific RL task for use in clinical science. We 

begin with a theoretical issue that may be unfamiliar to many 
in cognitive science. 

General Psychometric Challenges Associated with 

Laboratory Tasks. A general—and formidable—challenge 

for extrapolating from laboratory task behavior is that 

subjects naturally vary in the state that they are in (e.g., tired, 

distraught, cognitively taxed) when they arrive at the 

laboratory. A classic solution to this random state variation 

problem—a problem that confounded social and personality 

psychologists for decades (Kenrick & Funder, 1988)—is to 

assess the same subject at many time points and average over 
measurements. This approach can dramatically increase the 

convergent validity of lab tasks with self-report measures, 

presumably because an average over many time points yields 

a more stable, trait-like measure than one-time measurement 

(as the latter is often biased by state variation; Epstein, 1979). 

However, assessing a single subject at many time points can 

be infeasible. First, much time is often needed to complete 

lab tasks, and thus repeating assessments on many occasions 

can substantially raise subject burden. Second, in some cases 

it is unrealistic to ask subjects to complete the task more than 

once. For example, a researcher may wish to examine how 

depressive rumination—repetitive, negative, self-referential 

thinking—alters cognitive processing. This could be done by 

asking depressed subjects to complete a laboratory task while 
under the effects of a rumination induction. Many past studies 

have experimentally induced rumination in this way but, as 

far as we are aware, none has asked subjects to ruminate on 

more than one occasion. Indeed, it seems unreasonable and 

unrealistic to ask depressed subjects to undergo more than 

once a manipulation that—by design—provokes distress.  

The effects of random state variation can be mitigated 

through study design. For example, a researcher investigating 

the effects of rumination on some task might ask subjects to 

perform the task once before and once while under the effects 

of rumination. Such a design should increase the ratio of 

systematic variability (variability due to induced rumination) 
to unsystematic variability (variability due to subjects being 

in different states when they enter the lab) because it delivers 

pre- as well as post-induction measures for each subject. A 

subject is unlikely to dramatically change the state she is in 

from pre- to post-induction (an unusually tired subject at 

baseline will likely remain so while under the effect of 

rumination induction). Thus the within-subject design 

controls for some of the unsystematic variability due to state 

variation. However, note that individual differences in 

susceptibility to the experimental perturbation (e.g., 

propensity to ruminate upon receiving the induction) will be 
affected by subjects’ states. Thus this approach is helpful in 

minimizing noise but does not solve the random state 

variation problem.  

The random state variation problem entails that a subject’s 

parameter estimates in a laboratory measure will be corrupted 

by noise with respect to the subject’s “true” parameter value, 

when the true parameter value is conceived of as a 

psychological variable akin to a trait. This noise will limit the 

predictive power of measures. Thus, when random state 

variation is expected (e.g., when a design only permits 

administering the task once or a few times), it is critical that 

the psychometric properties of the task are strong so that 
other sources of noise are minimized. For a more general 

discussion of how computational modeling may help remedy 

the random state variation problem, see Hitchcock (2017). 

In the rest of this paper, we give a case example of 

preliminary efforts to establish the psychometric properties 

of a multidimensional RL task known as the Dimensions Task 

(Niv et al., 2015; Leong, Radulescu, Daniel, DeWonskin, & 

Niv, 2017; Radulescu et al., 2016). The task itself is not the 

paper’s focus, but we briefly describe it, our approach to 

modeling it, and its promise for clinical science in the next 

Figure 2. The Dimensions Task (Niv et al., 2015), designed 

to investigate the role of attention in reinforcement learning.  

Figure 1. Pipeline for a computational psychiatry assay 

proposed by Paulus et al. (2016). 

2218



section. The description will make subsequent sections, on 

the task’s measurement properties and their relation to 
modeling issues, easier to follow.  

The Dimensions Task. Trial-and-error learning in the real 

world often requires learning about a small set of stimulus 

features embedded in a milieu of irrelevant stimuli. Imagine 

telling (what you hope is) an amusing story to a friend and 

attempting to learn about the effects of specific actions—

dramatic pauses, rhetorical flourishes, funny faces, etc. 

Learning about the effect of these actions requires attending 

to just a few fleeting features on the face of and in the body 
language of your friend while ignoring many irrelevant 

features—pimples on your friend’s forehead, your computer 

screen flickering behind you, your internal dialogue about 

what to say next, etc. (Niv et al., 2015).  

The Dimensions Task was designed to study such a scenario 

where only some aspects of the task are relevant and most can 

be ignored, as is so often required in the real world. Briefly 

(see Niv et al., 2015 for details), on each trial of the task 

subjects must select one of three possible stimuli. Each 

stimulus is composed of 3 features defined on 3 stimulus 

dimensions (for example, color, shape, and pattern) (Figure 
2). Subjects play a set of games that can vary in length from 

15-30 trials. Within a game, features of only one dimension 

(e.g., color) determine the probability of reward. Within this 

relevant dimension, one target feature (e.g., red) leads to 

reward with 75% chance whereas the other 2 features in the 

dimension (e.g., yellow, green) lead to reward with 25% 

chance. The target feature and relevant dimension change 
every game. The start of a new game is signaled to subjects. 

Computational Model. Previous work (e.g., Niv et al. 2015; 

Radulescu et al., 2016) tested various computational models 

designed to reproduce subjects’ trial-by-trial behavior in the 

task and found that human behavior is well described by a 

feature-level RL (fRL)+decay model. The fRL+decay model 

maintains weights reflecting the values of each of the 9 

features. It linearly sums these weights to calculate the 
estimated value of each (3-feature) stimulus 

                            V(S) = W(f)          f S                    (1) 

For example, the model’s estimate of the value of yellow- 

waves-triangle in the above trial is equal to the sum of the 
weights of yellow, waves, and triangle. Once a reward is 

received (0 or 1 points), the weights of the 3 features of the 

selected stimulus are updated based on the discrepancy 

between the obtained reward, Rt, and the model’s estimate of 

the chosen stimulus’s value, V(SChosen), with update rate 

controlled by a learning rate free parameter, η  

Wnew(f) = Wold(f) + η[Rt – V(Schosen)]     f  Schosen     (2) 

For the other 6 features on a trial—those comprising the 2 

stimuli not selected—the model decays the associated 

weights with a second free parameter, d 

Wnew(f) = (1–d)Wold(f)     f  Schosen                (3) 

The decay parameter reflects the fact that subjects are 

selectively attending to (and learning about) few dimensions 

(Leong, Radulescu et al., 2017). The “forgetting” of the 

weights of unchosen features allows the model to “undo” 

learning about features not chosen on a trial. 
Finally, the model assumes that the subject’s probability of 

choosing each stimulus is proportional to the estimate of the 

value of the stimulus, as defined by a softmax equation with 
a third free parameter, β  

p(choose Si)  eβV(Si)                                              (4) 

The model thus has three free parameters: softmax action 

selection noise β, learning rate η, and decay parameter d. See 
Niv et al. (2015) for more details. 

Stage in the Assay Development Pipeline. With respect to 

Paulus et al.’s (2016) pipeline (Figure 1), most prior studies 

using the Dimensions Task and fRL+decay model fall into 

the Preclinical and Phase1a phases. 

Notably, Radulescu et al. (2016, study 2) also provided a 

test of the task’s promise for measuring group differences. 

Radulescu and colleagues found older adults were less 

accurate (p = .001, g = .94) than younger adults. These 

behavioral results appeared to derive in part from differences 

in the decay parameter (median = .52 v .42 for older vs. 

younger adults, respectively), implying that differences in 
this parameter may reflect meaningful differences in 

selective attention. These results suggest the task has promise 

as a sensitive measure of neuropsychological and clinical 

differences. Per Paulus et al.’s (2016) pipeline, this study 

marks the entrance into Phase 1b: examining clinical validity 

(see Radulescu et al., 2016 for discussion).   

Although the task has promise as a computational 

psychiatry assay, a number of modeling and psychometric 

obstacles must first be overcome. In the following sections, 

we report on efforts to explore the properties of the 

Dimensions Task and fRL+decay model using two previously 
collected datasets. The results have implications for the use 

of the Dimensions Task in computational psychiatry and thus 

are of specific interest to researchers interested in the 

construct of attention learning in computational psychiatry. 

But the more general interest aim of the following sections is 

to use this case study to illustrate some of the issues that arise 

in translating RL tasks to computational psychiatry.  

Methods 

Datasets are from Niv et al. (2015; hereafter D1) and 
Radulescu et al. (2016, study 2; hereafter D2).  

Specifications. In D1 (N = 22), subjects played 500 trials 

(number of trials per game was drawn from a Uniform(15,25) 

distribution, for a total of M=22.27, SD=1.45 games per 

subject). In D2 (N = 54), subjects played ~1400 trials 

(M=46.43, SD=5.41 games; subjects stopped playing after 
exactly 40 min.; all games 30 trials). 

Results 

Parameter Identifiability. A challenge in fitting RL 

parameters to individual subject behavior is that parameters 

2219



can be coupled and thus not fully identifiable. In the 

fRL+decay model, equations 1–4 show that the role of each 

parameter depends on the settings of the other parameters. 

Specifically, the values of the stimuli in equation 4 (in which 

choice is governed by β) depend—via equation 1—on the 
weights of the chosen and non-chosen stimuli. Those weights 

are in turn respectively governed by the learning rate (η, 

equation 2) and decay rate (d, equation 3).  

Coupling of the parameters modulating value estimation 

and choice is characteristic of many RL algorithms (Daw, 

2011; Gershman, 2016). Coupling comes in two flavors: 

severe and moderate (Daw, 2011). Under severe coupling, 

parameters can trade off; for example, increases in one 

parameter can be perfectly compensated by decreases in 

another. As a result, parameter values may not—even in 

principle—be uniquely identifiable. Severe coupling can be 

tested for by repeatedly run an off-the-shelf optimizer from 
different initial parameter settings and checking whether 

optimization converges on the same estimates every time. If 

parameters are structurally coupled (i.e., there is no unique 

set of estimates), the optimizer will find different estimates 

on different runs, provided initializations allow the optimizer 

to cover sufficient territory in likelihood space. In D1 and D2, 

an optimizer repeatedly converged on the same parameter 

estimates, suggesting identifiability issues are not too severe 

to prevent finding a unique optimum. 

However, there may still be more moderate identifiability 

issues. Intuitively, this is because maximum 
likelihood/maximum a posteriori (ML/MAP) estimates are 

tantamount to finding the highest point on the “hill” that 

defines the parameter surface in likelihood/posterior 

probability space. Yet they do not reveal the shape of the hill 

below: specifically, the shape of equal-likelihood ridges in 

the 3D likelihood space. If these ridges are diagonally shaped, 

they indicate covariance between the parameters. Intuitively, 

if changing a parameter in one direction (e.g., η from 0.08 to 

0.1) can be compensated for by changing another (e.g., β 

from 6.2 to 5.1), with only miniscule changes in the 

likelihood, then one cannot safely draw conclusions from the 
point estimate of either parameter.  

Identifiability and Computational Psychiatry. 
Identifiability poses a special challenge in the computational 

psychiatry domain, wherein the aim is often to derive 

parameters that can be used as predictors or outcome 

measures (Huys et al., 2016). Derived parameters whose 
point estimates have much uncertainty about them due to 

identifiability issues are unlikely to be useful for precision 
applications, such as prediction or diagnostic subtyping. 

Probing Identifiability. A first helpful step for probing 

identifiability is to examine and visualize the Pearson 

correlations between pairs of estimates. Figure 3 plots point 
estimates for pairs of parameters in D1 and D2, with 

regression lines drawn to aid visualization.  

Sets of parameters can fall along an elliptical contour in the 

likelihood space if there are identifiability issues, in which 

case the parameters will correlate. Thus, if parameter pairs 

closely correlate for most subjects in a dataset, this may 

indicate identifiability issues. However, correlations should 

only be a first step in checking for identifiability issues, for a 

couple reasons. First, to the extent that the parameters reflect 

meaningful psychological differences between individuals, 

we should expect they will correlate to some degree, because 

psychological variables often correlate within-subject 
(Lykken, 1968). Thus it can be difficult to determine whether 

correlations reflect modeling noise or true correlations 

between parameters. Second, correlations will not detect non-

linear relationships between parameters or other subtle 

identifiability issues (Gershman, 2016). Still, correlations are 

easily interpretable and a good place to start. 

Figure 3 shows that, in both D1 and D2, {d and β} and {d 

and η} modestly correlate whereas {η and β} strongly 

correlate. In particular, in D2, {η-β} estimates are nearly 

perfectly collinear for many subjects. Note also that, for all 

parameter pairs, the correlations are higher in D2, where there 
were more data, than in D1. In the test-retest reliability 

section below, we will present evidence suggesting that the 

parameter estimates may be more reliable in D2 than D1. Yet 

the higher correlations may also suggest more identifiability 

problems in D2. In fact, both possibilities—better parameter 

estimates and more identifiability problems—may be true. As 

noted, the equations in which the parameters are embedded 

dictate dependencies—and hence identifiability issues—

between the parameters. If the true parameters are correlated, 

then when the model does a better job of recovering their 

values from noisy behavioral data, the observed data will also 

correlate more strongly. Thus, the increased correlations may 
actually be good news from a parameter recovery 

perspective. However, the {η-β} collinearity does mean we 
should not treat these variables as independent.  

Diagnosing Issues with Model Fit. Plots also allow 

visualization of outlying values, which may reflect model fit 
issues for specific subjects. For example, the arrows in the 

second row, second column plot in Figure 3 point to subjects 

Figure 3. Parameter estimates in D1 (blue) and D2 (green). 
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with outlying η values. Outlying values might indicate 

fRL+decay does not well describe specific subjects’ choices 

in some or all of the task. However, the points could also 

reflect important individual differences, so additional checks 

are necessary to make a differential diagnosis.  
We do not delve into model fit issues for individual subjects 

(as such specifics would not generalize beyond the 

samples/data in D1 and D2), but offer some general 

guidelines for probing these issues. First, another useful 

diagnostic is to plot likelihoods for each potentially 

problematic subject. For example, Daw (2011) provides an 

example of a 2D heat map of likelihood values. A more 

quantitative assessment is the variance—covariance structure 

of parameter estimates; these structures can be examined by 

taking the inverse of the Hessian from optimization. On- and 

off- diagonal elements of H–1 respectively give the variance 

and covariance of parameters. Large values indicate poor 
parameter estimates (Daw, 2011). Finally, problematic 

subjects’ behavioral (and physiological, if available) data can 

be checked to see if these data are informative about the 

source of outlying parameter values (e.g., if reaction times 

were recorded, it can be useful to check if a subject responded 

atypically quickly or slowly during a subset or all of the task).  

Ultimately, if outlying parameter values for a subject do not 

appear to be due to individual differences, but rather to issues 

with model-fit, the researcher may wish to treat these 

parameters as missing: Parameter estimates derived from a 

model that poorly describes a subject’s behavior are 
meaningless. However, such decisions should be made—then 

adhered to—before inferential statistics, to avoid the “garden 
of forking paths” (Gelman & Loken, 2013). 

Subject-Specific Model Fit Issues and Computational 

Psychiatry. Our identification of apparent model fit issues 

among subjects illustrates the value of collecting data under 
different tasks specifications prior to attempting to develop a 

computational psychiatry assay. For instance, in the 

Dimensions Task, the presence of multiple individuals with 

apparently poor model fits suggests that some subjects in 

future clinical science designs will likely have missing data 

for model parameters (because, as noted, values from a model 

that poorly describes participant behavior should not be 

used). This is important information in the design phase of a 

clinical science study, as it may influence factors such as 

recruitment target, or collection of other data to aid 
estimation of anticipated missing values. 

Test-retest reliability. As the cautionary tale of the dot probe 

task suggests, it is critical to establish the test-retest reliability 

of potential outcome measures. High test-retest reliability 

scores increase confidence that the measure is tapping a 

stable psychological construct (Hitchcock, Radulescu, Niv, 

& Sims, 2017). Establishing stability of a measurement is a 
prerequisite for computational psychiatry designs that seek to 

use the measure to assess the effects of some experimental 

perturbation or group or individual differences. Nevertheless, 

the basic requirement of establishing test-retest reliability 

goes unmet with striking frequency in laboratory tasks 
(Lilienfeld, 2014). 

Table 1 presents test-retest reliability data for D1 and D2. 

These estimates were derived from splitting the data into 

approximately equal halves (specifically at the first game 

change after half of trials elapsed) and fitting the model to 

each (approximate) half. The test-retest reliabilities for {d 
and η} in D1 were quite low. This is likely because subjects 

only played 500 trials, and ~250—the approximate number 

of trials per half—may be too few trials to reliably estimate 

the parameters. In contrast, the D2 data suggest that ~700 

trials allows for better parameter estimation, as reflected in 

the fact that test-retest scores for {d and η} are much higher. 

 Universal norms for intra-class correlation coefficients 

(ICCs) are arguably not justifiable (Weir, 2005) and at 

present there are no ICC benchmarks for RL tasks. But, in all 

domains, uncertainties around parameters increase as ICCs 

decrease (Weir, 2005). Thus, the above data are relevant to 

clinical science designs because they show how ICCs can 
increase with more data (see also Hitchcock et al., 2017). 

Gathering this information before designing a computational 

psychiatry assay is useful because computational psychiatry 

designs must often balance competing goals. On one hand, 

parameter estimates tend to improve with more trials. On the 

other, it may be infeasible to have subjects complete too long 

a task. For instance, individuals with certain disorders may 

fatigue easily. Experimental manipulations (e.g., rumination 

inductions) may also quickly dissipate. Test-retest reliability 

data can help negotiate the tradeoff between optimizing 

parameter estimates and keeping time on task feasible. 

Conclusions  

Computational psychiatry promises to improve measurement 

and refine theory in clinical science (Hitchcock, 2017). 

Ultimately it may advance understanding of psychiatric 

disorders (Redish & Gordon, 2016). Yet there are significant 

barriers to developing computational psychiatry assays. 

These barriers are diverse; hence this paper was part 

theoretical overview and part case study. The overview part 

of the paper first built motivation by discussing the dot probe 

paradigm, a case in which failure to attend to measurement 

issues in a laboratory task had disastrous results. Dozens of 
studies were conducted and vast resources were expended, 

over decades, before the poor properties of the task measures 

were realized. Next, we reviewed why laboratory tasks are so 

vulnerable to measurement issues: Task performance is often 

skewed by random state variation. That is, behavior collected 

only once or a few times from a single subject is often 

corrupted by situational factors. These review parts of the 

paper highlighted that minimizing noise in laboratory task 

measures is imperative. In the case study part of the paper, 

we overviewed modeling issues in RL tasks that can add 

Table 1. Intraclass correlation coefficients of parameters. 
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noise to parameter estimates, using two datasets for 

illustration. We concluded by presenting test-retest reliability 

data from the Dimensions Task, using this example to 

illustrate how time-on-task can improve reliability. 

We should note that we have presented only some of the 
steps that should be taken when applying an RL task in 

clinical science. Other options include applying empirical 

priors (Gershman, 2016), using physiological data to aid 

parameter estimation (e.g., Leong, Radulescu, et al, 2017), 

and employing hierarchical modeling to weight parameter 

estimates by group statistics (Gelman & Hill, 2006), which 

can reduce the variance of parameter estimates (Daw, 2011). 

As computational psychiatry develops, we predict that 

psychometric, study design, and parameter estimation issues 

will come increasingly to the fore. 
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