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Abstract

What do the behavior of monkeys in captivity and the financial system have in common? The 

nodes in such social systems relate to each other through multiple and keystone networks, not just 

one network. Each network in the system has its own topology, and the interactions among the 

system’s networks change over time. In such systems, the lead into a crisis appears to be 

characterized by a decoupling of the networks from the keystone network. This decoupling can 

also be seen in the crumbling of the keystone’s power structure toward a more horizontal 

hierarchy. This paper develops nonparametric methods for describing the joint model of the latent 

architecture of interconnected networks in order to describe this process of decoupling, and hence 

provide an early warning system of an impending crisis.
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1. Introduction

Humanity is becoming increasingly interconnected. This interconnectivity has clear benefits, 

such as food security, technological innovation, and rapid information exchange. However, 

an increased connectivity can introduce vulnerabilities of its own — a common feature of 

complex systems. These vulnerabilities are such that they can sometimes threaten the 

integrity of the entire network directly. Examples include catastrophic failures, such as stock 

market crashes; the rapid propagation and dissemination of adverse entities, such as disease 

outbreaks or internet viruses; and the concentration of key resources around central hubs or 

clusters, such as oil in OPEC countries, or rare earth minerals in China. This paper 

introduces non-parametric methods for detecting the build-up of these vulnerabilities 

empirically. The objective is to provide an early warning system that can be used to prevent 

a crisis from breaking out.

Social network analysis has become a natural tool for modeling a variety of complex 

dynamic systems (see, e.g., the special issue on "Complex Systems and Networks" in 

Science, 2009). Although there is no generally accepted definition, it seems fair to say that a 

system is complex when there are emergent phenomena that are the spontaneous outcome of 

the interactions of many constituent elements (see for example Amaral & Barthélemy, 2003; 

Amaral & Ottino, 2004; and Barabási, 2005). Network theory is designed to reveal the 

hidden architecture of complex systems (Simon, 1962) and the candidate sources of a 

network’s instability. When paired with computational statistics, this theory can be used to 

detect the early formation of network vulnerabilities empirically. Ultimately, the objective is 

not only to identify these network vulnerabilities and prevent them from materializing, but 

also to design more resilient structures that maximize social welfare and minimize the costs 

of increased connectivity. Therefore, the concept of a network’s resilience has received a 

considerable amount of attention and is related to the literature on percolation in complex 

directed networks (see e.g. Newman, Strogatz, & Watts, 2001; Schwartz, Cohen, ben 

Avraham, Barabási, & Havlin, 2002; Dorogovtsev & Mendes, 2001; and Boguñá & Serrano, 

2005).

The recent Global Financial Crisis laid bare some of these vulnerabilities, and in its 

aftermath, considerable research effort has been dedicated to understanding its causes. 

Research focusing on network theory has appeared particularly promising (see for example 

May & Arinaminpathy, 2010; and Haldane & May, 2011). Initially, financial crises were 

characterized as being the result of exogenous shocks that propagate through a static 

network. More recently, the literature has evolved to incorporate endogenous tuning factors 

that allow for richer and more realistic dynamics of network propagation (see for example 

Arinaminpathy, Kapadia & May, 2012).
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The structures of the social systems that we investigate are characterized by nodes that relate 

to each other through multiple networks. Each network has its own topology, and the 

networks are related to each other in varying degrees. Moreover, we distinguish between the 

keystone network and the subsidiary networks. The keystone network is most closely 

associated with the hierarchy prevailing among the nodes in the social system.

It is important to recognize that a network’s topology is often endogenous, and, as a 

consequence, is dynamic rather than static. The connections across networks are dynamic as 

well. Importantly, a network’s global characteristics can be very sensitive to local 

perturbations, especially in directed networks. A theoretical model of a social system with 

these characteristics is difficult to construct. In this paper, we argue that certain features of 

social systems can be determined using data-driven, nonparametric-based methods — a 

natural complement to existing methods which are based on a more structural approach.

One basic assumption of our analysis is that information is available to all nodes in a social 

system equally. One important reason to entertain such an assumption is in order to give 

more weight to endogenous mechanisms that generate phase transition dynamics. Assuming 

that nodes have a heterogeneous access to information tends to place more weight on 

exogenous factors as an explanation for phase transition dynamics, thus inherently 

explaining these transition dynamics outside the system.

The assumption that information is available to all nodes equally is certainly justifiable in 

the context of the two systems investigated here. However, although we assume that all 

nodes have an equal access to information, we allow the nodes to have heterogeneous 

information processing capabilities. This heterogeneity leads to the formation of asymmetric 

and diverse hierarchical structures, and this diversity in turn becomes an endogenous source 

of tension and a natural source of instability.

The non-parametric methods that we discuss are applied to a primate social system (a large 

captive group of rhesus macaques), which are observed under both stable and unstable states 

or phases. This set-up has many points of commonality with the architecture of a banking 

system. We argue that the mechanics of systemic risk propagation in a monkey social 

system which is on the brink of social collapse are comparable to those in a banking system 

on the brink of a financial crisis.

Admittedly, comparing rhesus macaques to a financial system is unconventional. However, 

we believe that readers will find this comparison compelling. The fundamental mechanisms 

underlying the instabilities in these two systems are, in fact, quite similar. Small-scale 

models of social systems can be quite effective when thinking about models which are 

applicable to larger human systems (in both scope and scale). Our methods show one 

approach that could be scaled up in order to model the vulnerabilities of the financial 

system.
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2. Systemic risk propagation: When multilayered networks decouple under 

primary network collapse

The broad outline of the methods that we describe below can be sketched in a few sentences. 

We assume that the nodes in the system under consideration all have an equal access to 

information. However, we also assume that the nodes each have different information 

processing abilities. This way of introducing heterogeneity is computationally convenient 

and leads to the endogenous formation of a power structure within the system. The nodes are 

related to each other in a variety of different ways. Each results in a different network within 

the system. In normal times, the hierarchical structure of the system results in a natural 

pattern of network interactions. However, a degradation of the power structure results in a 

degradation of the relationships across networks, or decoupling. During a crisis, the power 

structure collapses and the system’s networks decouple. The endogenous dynamics of the 

system in the aftermath of the crisis are quite different from those before the crisis strikes. 

However, it is difficult to predict when a crisis will arise based solely on observations of the 

behaviors of the individual networks in the system in isolation. Instead, we argue that one 

can detect when a crisis is likely to set in by modeling the evolution of the degree of 

decoupling across the system’s networks.

Consider two features of a dynamic system which are relevant for our analysis: (1) the 

power structure of the primary network; and (2) the assumption of global collection of local 

(GCL) information. The power structure characterizes the major flow of information 

through network connectivity characteristics. It is determined endogenously as the system 

evolves over time. The GCL information assumption means that each node in the system has 

an equal access to information that may be local to any given node. The heterogeneity in 

node-specific information processing abilities leads to the formation of vertical hierarchies 

within the system — a power structure.

The nodes within a social system interact in many different ways, and each type of 

interaction generates a different network. Thus a system will typically exhibit a variety of 

networks that probably interface with each other. In a banking system, examples include: 

interbank lending, syndication of loans, bond issuance advisory services, insurance, etc. In a 

monkey system, monkeys groom each other, fight with each other, offer coalitionary support 

during fights, and display status signals. Behavior-based connectivity generates a directed 

node-to-node relation. The collection of directed relationships typically constitutes a 

directed network.

However, not all behavioral networks are created equal — some networks within a given 

social system have more fundamental roles than others. The reason for this is that they 

govern or influence the manner in which the remaining networks in the system interact. In 

the field of primatology, evidence is mounting that the subordination signaling network is 

the fundamental network of monkey society, as these signals (a) influence the long-term 

affiliation and aggression (Beisner & McCowan, in press), (b) demonstrate decoupling from 

other behavioral networks when the system becomes unstable (Chan, Fushing, Beisner, & 

McCowan, 2013), and (c) have a perfectly transitive network structure, the rigidity of which 

appears to structure other behaviors (Fujii, Fushing, Beisner, & McCowan, submitted). We 
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refer to this fundamental behavior as a keystone network in social dynamics. The social 

hierarchy that arises from this keystone network is expected to be the most relevant for 

understanding the underlying system dynamics.

Different networks generate different hierarchical arrangements. Some networks contain 

many connections, such as grooming and aggression networks in the monkey system, and 

corporative bond holdings in a banking network. In the parlance of network theory, they are 

assortative. In contrast, other networks contain very few or no upstream connections and 

consist of a strict downward flow of dominance, such as the status network in a monkey 

society or inter-bank lending in a banking network — that is, they are disassortative. The 

rigid flow structure of these last two networks makes them good candidates for being the 

keystone networks of their respective systems, particularly because power structures are 

characterized by having a primarily downward flow of connectivity (Fujii et al., submitted).

Consider how this power structure develops and arises in a monkey system. Each monkey 

(node) has a different ability to gather and exploit resources, such as food, mates, alliance 

partners, and social information. Monkeys that are more intelligent or more socially adept 

will be more successful in gathering resources than less intelligent or less socially adept 

individuals. The same is true of a banking system — some banks have a greater ability to 

process information, thus allowing them to make better lending and investment decisions, 

and therefore grow larger. This diversity in ability, which produces heterogeneity in “size” 

and “dominance,” generates a “ranking” structure. This structural pattern is particularly 

ubiquitous in the stable phase of many systems.

In the monkey system that we analyze, there are no visual barriers within the cage in which 

the monkeys are kept, and therefore any monkey can observe the behaviors displayed by any 

subgroup of his peers. The type of information that a monkey in a cage can collect includes 

those with whom his or her siblings and family members are cooperating or fighting; which 

families are harassing or being harassed by other families; who is challenging the dominance 

rank; who is grooming or being groomed; and many other positive and negative behaviors. 

Thus, the captive cage environment in which the monkeys live allows each monkey to have 

unlimited access to GCL information regarding all events within the group.

It is important to note that neither humans nor monkeys evolved in an environment in which 

they had access to the same types of information as other group members, nor having access 

to such large volumes of information. In today’s world of social media, cell phone and 

internet technologies, humans find themselves in an unnatural environment where they have 

economic, financial, social, and political information at their fingertips. Similarly, in 

captivity, monkeys find themselves in an unnatural environment without visual barriers such 

as dense foliage, where they are able to observe the interactions of all their group mates 

freely. Further details of these unnatural environments are provided below.

A network with GCL information tends to generate two distinct power structures. In the 

stable phase, heterogeneity in information processing ability results in a more unequal 

distribution of resources, and therefore, a well-defined vertical hierarchy. In the unstable 

phase, nodes revert to their survival instincts and largely disregard the extant hierarchy. 
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Informational advantages no longer play a role, and the hierarchical arrangement becomes 

virtually horizontal.

The transition from a subtle and complex vertical power structure to an unsophisticated 

horizontal power structure is called social collapse. In many ways, this collapse is 

equivalent to the concept of a tipping point in the dynamic systems literature — a point in 

time when the system suddenly shifts from one phase to a drastically different phase. A 

good example from thermodynamics is when matter changes from a solid to a liquid. This 

paper illustrates just such a collapse in the context of a captive monkey system. The recent 

financial crisis also exhibited many of these traits. Importantly, the sudden wholesale 

shutdown of connectivity does not appear to be the result of contagion. Instead, the apparent 

synchronicity observed is better explained as being the result of a simultaneous response by 

all nodes to the same constraints under GCL information.

The identification and detection of the process leading to tipping-points is still in its infancy 

(see Scheffer et al., 2009 for a review). The major obstacle lies in capturing its onset — an 

extremely difficult task. Our approach differs from that which has been customary hitherto. 

The onset of a tipping point is hardly predictable when using only one dimension (i.e., 

network) of the dynamic system, which has been the focus of past efforts. Instead, we 

propose a multidimensional (i.e., many networks) approach. In particular, we introduce a 

new way of monitoring when a social system may be approaching a tipping point.

As the system approaches the tipping point, its multiple behavioral networks gradually 

decouple from the keystone network, as its power structure crumbles. In the stable phase of 

the dynamic system, rules, norms, or even cultures and traditions, govern and regulate 

members’ behaviors. Behavioral dynamics are interconnected or tightly coupled, probably 

through the underlying power structure, expressed by the keystone network of the system. 

Fujii et al. (submitted) provide evidence on this very issue. However, such rules and norms 

can be disrupted, and hence the system’s networks decouple from one another during a 

system’s collapse. In particular, determining when the keystone network decouples from the 

subsidiary networks could be used to identify the onset of the tipping point.

We propose to model the evolution of the interaction of multiple networks in order to 

determine when decoupling begins to occur. The computational technique required to model 

this evolution relies on a joint model of a system’s networks (see e.g. Chan et al., 2013). 

Decoupling is measured using the variation in the degree of inter-network dependence. In 

this paper, we implement these ideas using a captive monkey social system as a model of a 

case in which a real social collapse was observed. We explain the details of our approach 

below.

3. Contagion versus synchronicity, statics versus dynamics

When it comes to characterizing network vulnerability, the state-of-the-art follows a well-

worn path. Models of electric grid networks (Amin & Schewe, 2007), ecosystems (Haldane 

& May, 2011; May, Levin, & Sugihara, 2008; May & Arinaminpathy, 2010) and flow 

networks have inspired network-based explanations of the most recent financial crisis. These 
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applications share a common theme: they are based on approximating the complex dynamics 

of the system considered using a single behavioral network.

The literature views each node as only taking in information from local interactions and 

local connections. Similarly, each node is thought to affect only its local neighborhood. This 

is the primary method of shock propagation and risk contagion considered. Such a localized 

perspective of risk contagion is reflected further by the definition of systemic risk used by 

the Bank for International Settlements: “the risk that the failure of a participant to meet its 

contractual obligations may in turn cause other participants to default with a chain reaction 

leading to broader financial difficulties.”

The view that local information flows propagate through contagion is at odds with the 

wealth and speed of local information transfer at a global level. Information disseminates at 

a much faster pace than the slow, chain-reaction effects delivered by contagion mechanisms. 

Instead, a more sensible position is to characterize the information-processing heterogeneity 

of commonly available information, even if this information refers to the local level outside 

the node’s neighborhood. In recognizing such effects, Arinaminpathy et al. (2012) include 

“confidence” and “individual health status” components in their systemic risk modeling in 

order to go beyond the usual rigid network propagation constraint.

Moreover, another critical assumption which is made in the literature is that the network 

remains static as shocks propagate. This is the implicit assumption of the ecological, power-

grid, and flow-theory modeling approaches, see for example Gai and Kapadia (2010). This 

assumption, however, ignores the “feedback and mutuality” mechanisms between a node 

and the banking system. Instead, network connectivity is likely to evolve dynamically.

Our premise is that, collectively, nonlinear feedback loops can change the network topology 

very quickly, that such changes occur continuously over time, and that they are endogenous. 

Specifically, under GCL information, both large and small nodes interact with the system as 

a whole directly and closely, producing mutually reinforcing feedback loops. This feedback 

mechanism and the resultant changes in the network’s topology present a challenge to the 

traditional analysis of systemic risk in a banking system.

Justification for this endogenous, multidimensional and dynamic view of banking networks 

is easy to find. Diminishing inter-bank loan availability, including “liquidity hoarding” and 

“funding liquidity shocks”, is a natural consequence of feedback mechanisms and the 

resultant re-wiring in the network. This sort of outcome is a manifestation of the systemic 

risk being studied. It should not be designated as the initial exogenous shock, as is typical of 

studies of systemic risk contagion.

Finding an early-warning signal using a static, one-dimensional network driven by 

exogenous shocks is likely to provide an incomplete signal. At the same time, we are well 

aware of the complications that modeling a dynamic, multidimensional, endogenous 

network would entail. The solution we offer is to have a more modest goal: that of providing 

a computationally tractable summary of multidimensional network connectivity that can be 

used to detect the onset of a tipping point before the next crisis strikes.
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4. Banks and monkeys are two sides of the same coin

The way in which individuals respond to GCL information depends on the endogenous 

stable/unstable state of the network at any given time, as well as the individual’s information 

processing ability. In the stable phase, individuals can engage in riskier behavior under the 

protection of the hierarchy, but are also constrained by the boundaries of a social-norm. In 

an unstable phase, the breakdown of the hierarchy and the need for self-preservation can 

quickly modify risk-taking behavior as a new social norm emerges (for a recent experiment 

reflecting disruption-induced local changes in risk-taking behavior by monkeys, see Flack, 

Girvan, de Waal, & Krakauer, 2006).

The topology of a banking system has a clear hierarchy. Trillion dollar global players 

interact in the same ecosystem as hundred million dollar small community players. The 

network relationships among these bank nodes are defined by a variety of modes of 

connection, ranging from formal ongoing contractual relations, and inter-bank lending in the 

reserves market, to syndication through common assets, and various other financial products 

and banking arrangements. The key concept here is that each type of inter-bank relationship 

constitutes one banking network (for example, lending networks describe inter-bank lending 

relationships), and each banking behavior network can be used to approximate a single 

dynamic aspect of the banking system under study. That is, versatile relationships are 

represented by multiple networks pertaining to the same collection of banks. It is the 

dynamic interactions across these different network layers that best characterize the state of 

the system as a whole.

Monkey society is also a complex system consisting of many layers of inter-behavioral 

relationships. Monkeys groom each other, fight with each other, offer coalitionary support 

during some of these fights, and exchange status signals that communicate social power and 

dominance (Sade, 1972; Datta, 1986; Beisner, Jackson, Cameron, & McCowan, 2011; 

McCowan et al., 2011; Beisner and McCowan, in press). Each type of behavior can be used 

to construct a network for a single aspect of monkey society. The interactions of these 

behaviors offer the clearest picture of the stability and hierarchy of the society.

A banking crisis can be best described by a sudden, unintended, system-wide loss of inter-

banking interactions. Monkey societies in captivity suffer from analogous crises, known as 

cage wars or social collapses, in which serious fighting erupts because group members no 

longer agree on the dominance hierarchy (Oates-O’Brien, Farver, Anderson-Vicino, 

McCowan, & Lerche, 2010). Typically, these societal collapses involve lower-ranking 

monkeys attacking and killing the highest ranking family, which completely disrupts the 

dominance hierarchy. These tragic events, while relatively infrequent, are extremely costly 

and create many management problems, as the entire group must be disbanded and relocated 

elsewhere.

Such behaviors, whether in a monkey society or a banking system, give rise to a (weighted) 

directed network. A directed path between two nodes is called a “flow”, and multiple flows 

may exist between a pair of nodes. Collectively, these network flows constitute a 

computable flow-chart. Some behaviors (flows) are more informative and important than 
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others. Here, by relying on expert knowledge (e.g., a primatologist or an economist, 

depending on the problem), both systems are equipped with one fundamental or keystone 

behavior, the flow-chart of which constitutes a power structure of the system.

5. Visualizing the power structure through flow topology

As the keystone behavior, status interactions are governed by dominance — they are signals 

given by a subordinate animal to a dominant animal. Most important among them is the 

“silent-bared-teeth” (SBT) display, as a peaceful communication of subordination. Because 

the SBT is a unidirectional submission signal (always given by a subordinate to a dominant 

animal), unlike other dominance communications, whose direction can vary depending upon 

social context, it conveys a higher degree of dominance certainty than other submission 

signals (de Waal, 1986; Flack and de Waal, 2007; Beisner and McCowan, in press).

SBTs express true dominance relationships. Once dominance is understood, it governs 

aggression, grooming, and alliances (Beisner & McCowan, in press). Aggression is mostly 

from dominant to subordinate; grooming is often from subordinate to dominant, unless 

dominants initiate grooming as reconciliation after a fight; and alliances are most often made 

between kin, which rank near each other. In this way, the status network provides the basis 

for all other behavioral relationships.

The power structure of a monkey society can be visualized through flow topology. 

Basically, flow topology summarizes the status relations between nodes, and, as these 

relations evolve over time, so do the topological features of the power structure. A pairwise 

comparison of flow topologies for two different behaviors can also be usefull, while changes 

in the interactions between two networks over time can reveal (social) stress particularly 

well.

Fujii et al. (submitted) provides a detailed description of the construction of the power 

structure of a network using flow topology. We provide a brief summary of the steps 

involved in Appendix A. Below, we show flow topologies of SBT networks using data from 

one monkey group both at a stable time point (in 2009) and at an unstable time point (in 

2011), four months before a social collapse.

The trickling-down percolation algorithm allows one to visualize the power structure of the 

monkey society at two points in time. In the 2009 flow topology, there is a clear hierarchical 

structure linking a large membership, with female n. 1 and male n. 35 at the top of the power 

pyramid. This corresponds to a stable period of time. By 2011, the flow-topology strongly 

indicates that the previous power structure has almost entirely disintegrated. Many previous 

relationships have disappeared. The remaining power structure is much more horizontal and 

fragmented, with female n. 22 now leading a small group that appears disconnected from the 

remainder. This topology predates the social collapse that ensued four months later.

What caused this social collapse? Was it driven by the breakdown in a dyadic relationship 

that propagates through the entire society? Or did endogenous changes in GCL information 

prompt a synchronous adaption by society members, each according to their information 

processing abilities? These are important causal questions, but extend beyond the scope of 
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this paper. Instead, we focus on designing structural methods that can help us uncover the 

shift in group dynamics displayed in Figure 1.

6. Early-warning patterns: Cross-network dependence through maximum 

entropy

The calculation of the flow topology of the society’s power structure through trickling-down 

percolation is a useful descriptive device. The variation in the flow-topology over time helps 

in visualizing the disintegration of the power structure before a complete social collapse. 

However, a single behavioral network (such as the fundamental network upon which the 

power structure is based) is not sufficient to detect the collapse in power structure or the 

tipping point. This section introduces methods of multidimensional network analysis which 

can quantify the inter-network dependence. Thus, we can monitor a society approaching 

collapse using the variation over time in this type of dependence.

In a stable monkey society, primatologists have discovered that social dynamics are 

governed by a set of general rules and constraints. For example, females form close alliances 

with kin in order to defend their resources and their family rank against other families in the 

group. This means that aggression, status, and alliance interactions all have 

interdependencies. Dyads that form alliances tend not to fight much (and are likely to be 

kin). Aggression and status both follow dominance relationships and are primarily 

unidirectional. We holistically term the overall interrelationships behavioral subtlety.

As the society migrates to a more unstable phase, behavioral subtlety gradually decreases. 

For example, if dominance no longer governs aggressive and status interactions, then the 

inter-dependencies between these two networks will gradually be lost, and they will become 

increasingly independent.

However, the dependencies between two or more behaviors are not observable directly. This 

section shows how such dynamic features can be evaluated by coupling multiple network 

data. Note that a monkey can only interact with another through one behavior at a time. That 

is, the data are not multivariate for any given point in time. As a result, the classical Pearson 

correlation and its variants are not applicable directly. Instead, behavior-specific networks 

are constructed across a temporal span. The unique features of these data require new 

methods of analysis. We have developed one evaluation technique based on the maximum 

entropy principle found in statistical mechanics (Chan et al., 2013). This technique is one 

way to provide essential early-warning pattern information.

The maximum entropy-based, joint modeling approach is described briefly below (for full 

details about this methodology, see Chan et al., 2013). Recall that SBT status behavior is 

taken as the closest marker of the power structure. We therefore focus on coupling this 

keystone network with the grooming, aggression, and alliance networks. Here, we only 

discuss pairwise coupling, for simplicity. In the case of the banking system, one would need 

to determine the equivalent primary and subsidiary networks based on the available data and 

the specifics of that problem.
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As an illustration, our basic idea is to model two binary (unweighted) networks jointly, 

corresponding to two types of social behaviors. The specific goal is to model the 

probabilistic distribution of a link in one network being associated with a link in the other 

network. For a given network, each directed link between two nodes is classified with a 

binary code: 00 if no relationship exists, 01 if there is a unidirectional relationship (notice 

that, since we do not identify the nodes, the 10 code is equivalent), or 11 if the relationship 

is bidirectional. Therefore, a two-behavior directional network can be catalogued using a 4-

dimensional binary code, with the first two figures belonging to one network and the latter 

two belonging to the other network.

For example, consider two behaviors: grooming and aggression. A monkey dyad with 

mutual grooming but no aggression can be represented by the 4-dimensional code vector 

(11, 00). An example of this case can be seen between nodes 2 and 3 in Figure 2. A pair of 

monkeys with opposite directional grooming and aggression is represented by the vector 

(10,01). An example of this case can be seen between nodes 3 and 4 in Figure 2. In 

principle, there are 16 possible 4-dimensional linkage vectors, although there are only 10 

biologically-distinct vectors (again, since the network-specific 10 and 01 codes are 

equivalent). The empirical distributions of these 10 categories of linkage vectors represent 

the empirical information association between these two behaviors of interest. Figure 2 

provides an example of two small grooming and aggression networks (Panel (a) of Figure 2) 

and how they can be combined (Panel (b) of Figure 2).

The maximum entropy-based, joint modeling approach proposed here involves constructing 

a 4-dimensional distribution model via the following iterative updating procedure:

1. Choose a known baseline (null) distribution, such as one that assumes component-

wise independence, and compute the expected counts (Ei) of the 10 categories 

under the baseline distribution.

2. Calculate the Chi-square value, (Oi − Ei)2 / Ei, as a measurement of discrepancy 

between the empirical and expected counts, that is, Oi vs Ei, for each of the 10 

categories. Here, Oi denotes the observed count.

3. Remove the largest Chi-square value, then add a new structural constraint into the 

baseline distribution via the maximum entropy approach (see the Appendix).

4. Take the modified distribution as the new baseline distribution and repeat steps 1–3 

until the sum of 10 Chi-square values is less than a threshold value chosen 

according to the Chi-square distribution with nine degrees of freedom.

Step 3 is the key step in this iterative updating procedure. A large Chi-square value indicates 

a significant discrepancy between the baseline and empirical distributions. This discrepancy 

leads us to modify the baseline distribution so as to fit the data better. The choice of 

structural constraint in the form of a correlation is established between two component 

dimensions or two behaviors. The final distribution model is then taken as the data-driven 

joint modeling of the empirical distribution. Each structural (inter-relational) constraint is 

taken as one piece of learned knowledge that is supported by the data. The set of structural 

constraint components reveals all key association information embedded within the 
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empirical distribution. That is, scientists need to accommodate all of these aspects of learned 

knowledge in order to create a realistic parametric probability model that fits the empirical 

data. The advantage of using maximum entropy is that no extra or artificial assumptions are 

imposed on the modeling.

We illustrate this approach using three models of the status network against each of the 

following three behaviors: grooming, alliance and aggression. Next, we consider four 

different types of constraint. The network data refer to data collected in 2009 and 2011. The 

notation  stands for the 4-dimensional vector and  stands for the 

null marginal distribution, which is evaluated as the empirical count proportions,

(1)

(2)

(3)

(4)

For a more detailed description of the methods described here, the reader is referred to Chan 

et al. (2013).

Our expectation is that, if each of the three behavioral networks is jointly linked or coupled 

to the keystone status network under the stable condition but not the unstable condition, 

then, as constraints are added at each additional step, the Chi-square values should fall to 

significant levels at a greater rate under the unstable condition than under the stable 

condition.

Table 1 summarizes the main results. The iterative procedure via the four structural 

constraints described in Eqs. (1)–(4) does improve the model’s fit at each step. Some 

network dependence pairs are modeled very well from the outset, while others require more 

structural constraints to be discovered and incorporated. For instance, the 2009 inter-

relationship between status and aggression behaviors is rather complicated. The Chi-square 

values are reduced at each step, though they never reach critical levels. In other words, these 

four constraint functions are not sufficient to model the 2009 network data. However, in 

sharp contrast, the same set of structural constraints works well for the 2011 data. As 

expected, the Chi-square values fall to significant levels at a greater rate in the unstable than 

in the stable conditions. This pattern reflects behavioral subtlety in the stable phase of the 

2009 dynamics, while the same inter-behavioral relationship loses a large degree of subtlety 

in the unstable phase of the 2011 dynamics.
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In fact, this loss in pattern is rather consistent across all pairwise comparisons between 2009 

and 2011. These results strongly suggest that changes in the pairwise inter-network 

dependence could be used as an early warning signal of social collapse in captive monkey 

societies. It is natural to think that similar computations could potentially lead to an early 

warning signal for impending financial crises in a banking system.

7. Final thoughts

Our study of a captive monkey society is characterized by a particular set of features. 

Critically, data are available for several different behaviors (thus generating multiple layered 

networks), and are observed during both a stable phase and an unstable phase immediately 

preceding a social collapse. That is, there are observable and quantifiable characteristics pre-

dating a complete social collapse — the equivalent of a financial crisis in our banking 

system analogy. This dynamic feature of the data serves to inform our approach. This 

approach is based on two assumptions which are likely to characterize a banking system as 

well: that local information is available globally to all nodes, but that this information can be 

processed differently by each node.

These assumptions lead us to characterize the social system otherwise than has been 

commonplace in the network literature, especially considering the manner in which this 

literature has been adapted to characterize the banking system. Examples include the “social 

network” topology of the Austrian interbank market by Boss, Elsinger, Summer, and 

Thurner (2004) and of the federal funds market by Bech and Atalay (2008). The social 

network analyses in these studies rely on a single network and its characteristics. Moreover, 

these studies only report network summary statistics. Rather than thinking of the crisis as 

originating from the propagation of an exogenous shock or shocks through a static network, 

we believe that it is more fruitful to consider a banking system’s network topology to be 

endogenous, varying over time, and multilayered.

The salient features of our analysis include a primary or keystone network that summarizes 

the overall relationship status across nodes, and a set of subsidiary networks. Each 

subsidiary network is related to the keystone network, and in fact may be partially governed 

or influenced by this network, but it also conveys independent information. Therefore, by 

examining the evolution of dependence patterns between the keystone network and its 

subsidiaries over time, we provide a natural metric of stress or tipping points that can be 

used as an early-warning indicator of a network collapse.

The flow topology of interbank lending is a natural candidate for the implementation of this 

nonhuman primate model-informed approach and its methods, as introduced in this paper. 

The informational assumptions we make are more natural than those characterizing 

networks for power grids or ecosystems. We recognize that a dynamic, multi-layered 

network specification in which crises can develop endogenously is inherently difficult to 

characterize fully. However, our approach is not about crafting a detailed model of the 

banking system; rather, it is about uncovering the empirical features of such a system that 

help describe and characterize its critical slowing, so as to identify the emergence of stress 

or tipping points. The nature of the information needed to apply this approach to interbank 
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lending or other financial (human) systems successfully is up to the experts, such as 

policymakers and financial analysts (as was true for the expert primatologists), and thus 

conveniently falls outside the scope of this paper.
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Appendix A. Trickling-down percolation

This appendix relies on the work of Fushing, McAssey, Beisner, and McCowan (2011) and 

Fushing, McAssey, and McCowan (2011). These papers describe the trickling-down 

percolation algorithm in more detail, together with its advantages over similar algorithms 

which are available in the literature. We provide the basic steps here.

Percolation relies on two components: the empirical (status) relational data matrix C = [cij] 

and the Beta random field {Beta(acij+b, acji+b)} which is built onto it. Using these 

components, the algorithm’s steps are:

• [P-0] Consider a potential dominance action initiated by the ith subject toward a 

randomly selected immediate neighbor, say the jth subject, that is, cij > 0. The 

probability of this action being successful is sij which is a random simulated 

strength from Beta(acij + b, acji + b).

• [P-1] Generate a Bernoulli random variable B(1, sij) with probability q(0) (i,j) for 

the outcome “success (= 1)”. If it turns out to be a “failure (= 0)”, this trickling 

down process stops.

• [P-2] Repeat steps [P-0]–[P-1] and cycle until it stops. Then record the trickling 

down path in a progressive fashion into a matrix format as follows:

1. Let the trickling-down path be < i − (i1, …..ik) − ik+1 > with i = i0 and only 

the ending action from ik to ik+1 being a failure;

2. The percolation matrix is denoted by Em = [ehl], which was initially set to 

zeros for all its entries, and then the entries on the ith row and {i1, …..ik} 
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columns are added by 1; the entries on the i1th row and {i2, …..ik} are added 

by 1. Proceed with this recording until the entry (ik−1, ik) is added by 1.

3. Record the path-ending action by adding 1 to the entry (ik+1, ik), since it is a 

failure.

• [P-3] Repeat step [P-2] M times in order to construct an ensemble of trickling down 

paths and record them in the ensemble .

• [P-4] Convert the ensemble matrix EM into an action transmission matrix AM = [aij] 

with .

• [P-5] Finally, perform the rescaling step: DAM = diag (…., Σj=1 cij,…‥)[aij] as the 

final conductance matrix.

Appendix B: Derivation of the maximum entropy procedure by Chan et al. 

(2013)

To simplify the notation, we let x be the four-dimensional vector . We 

maximize the relative entropy for m by maximizing

summed over all probabilities, where 0 is the null probability distribution and m refers to 

the probability distribution with maximum entropy, subject to the constraints of the data. 

These constraints are

where the expectation is determined by

Thus, we have two constraints:

and the sum of all probabilities is one:
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Therefore, we can maximize the entropy using the Lagrange operation

We take the derivative of the Lagrange operation to get

By solving this equation for 1, we get

Let Z (λ1) = Σx 0 (x) exp(−λ1f1(x)), which is called the partition function. Applying the 

constraint that all probabilities must sum to 1, we determine that

Then, applying the first constraint, we get

which is equivalent to

In order to find , we solve for λ1 

by the previous equation. This process can be repeated iteratively for each fk and k.
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Figure 1. 
Status power structure over time using trickling-down percolation: panel (a) 2009; panel (b) 

2011. Note the differences in structural subtlety and complexity between (a) stable and (b) 

unstable phases, with the unstable phase appearing bare and featureless in comparison to the 

stable phase.

Notes: each box indicates a monkey. Females are represented in red and males in blue. Each 

number denotes a different individual. Arrows point away from the dominant animal to the 
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subordinate animal, indicating that the subordinate animal gives status signals to the 

dominant animal.
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Figure 2. 
An example of network coupling of two directional networks (grooming and agression).

Notes: each network in panel (a) has four nodes. Directional links are represented by an 

arrow. Panel (b) shows how the information from the two networks can be combined using 

four binary element vectors.
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