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G R A P H I C A L A B S T R A C T
� Transfer learning is leveraged to
accommodate the state transition issue
in battery lifetime prediction.

� Two novel transfer learning methods are
proposed to effectively utilize data with
variations in accessibility.

� Experimental results demonstrate that
the proposed method outperforms base-
lines by up to 41%.

� The proposed methods demonstrate
strong explainability to uncover the
electrochemical principals behind state
transition.
A R T I C L E I N F O
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A B S T R A C T

Battery lifetime prediction at early cycles is crucial for researchers and manufacturers to examine product quality
and promote technology development. Machine learning has been widely utilized to construct data-driven so-
lutions for high-accuracy predictions. However, the internal mechanisms of batteries are sensitive to many factors,
such as charging/discharging protocols, manufacturing/storage conditions, and usage patterns. These factors will
induce state transitions, thereby decreasing the prediction accuracy of data-driven approaches. Transfer learning
is a promising technique that overcomes this difficulty and achieves accurate predictions by jointly utilizing
information from various sources. Hence, we develop two transfer learning methods, Bayesian Model Fusion and
Weighted Orthogonal Matching Pursuit, to strategically combine prior knowledge with limited information from
the target dataset to achieve superior prediction performance. From our results, our transfer learning methods
reduce root-mean-squared error by 41% through adapting to the target domain. Furthermore, the transfer
learning strategies identify the variations of impactful features across different sets of batteries and therefore
disentangle the battery degradation mechanisms and the root cause of state transitions from the perspective of
data mining. These findings suggest that the transfer learning strategies proposed in our work are capable of
acquiring knowledge across multiple data sources for solving specialized issues.
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1. Introduction

Energy storage technology plays a prominent role on the world's
sustainability and offers reliable energy sources to various real-world
applications, such as consumer electronics [1–4], electric vehicles
[5–7], and power grids [8–10]. Rechargeable batteries, especially Li-ion
batteries (LIBs), are among of the most recognizable energy storage
technologies, and they have already significantly impacted human life-
style and industrial activities due to their excellent energy and power
densities [11–14]. As rechargeable batteries will be increasingly critical
in the foreseeable future, their quality and reliability are of vital
importance to our society [15]. Furthermore, the close relevance of these
parameters to battery lifetime [16–19] makes lifetime prediction at early
cycles a crucial task for researchers and manufacturers to examine their
product quality [20] and facilitate decision making on product mainte-
nance and Research and Development (R&D) [21]. In recent years, ma-
chine learning (ML) techniques have gained significant popularity in the
renewable energy domain [22,23]. Instead of the conventional electro-
chemical model-based approaches, machine learning has been employed
to construct data-driven approaches for highly efficient lifetime predic-
tion of rechargeable batteries [16,24,25]. A precursor in this line of
research established an ElasticNet model trained using the data collected
from the first 100 discharge cycles of 41 lithium-ion rechargeable bat-
teries, which achieves a high prediction accuracy with 9.1% test error
using discharge voltage curves from early cycles [26]. Inspired by the
early success, a number of subsequent research papers have focused on
investigating the latest developments in machine learning models for
superior prediction accuracies [27–32].

Despite the above advances, there exist the following challenges that
prevent the large-scale deployment of data-driven battery lifetime pre-
diction techniques in practice. First, as the measurement of battery lifetime
Fig. 1. Background for transfer learning in accurate battery life prediction. (a) Pot
ElasticNet from Severson et al. [26] and our work. (c) Storage time of each dataset. (d
constant charging rate at the first and second step, respectively. Q1 is the State of Char
80%. (e) C1 of each dataset. (f) Q1 of each dataset. (g) Flowchart illustrating the pr
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is usually associated with long feedback time and costly testing channels/
sensors, the predictionmodels need to be trained using a limited amount of
data samples in most scenarios, which can potentially induce overfitting
and weaken the generalization capability of the models [33–37]. Second,
the internal features of batteries are sensitive to multiple complex factors
such as test temperature [14], charging/discharging protocols, manu-
facturing/storage conditions, and usage pattern (Fig. 1a) [38–42]. The
variations of these external factors can induce transitions to the correla-
tions between battery lifetime and the related measurements. Thus, the
accuracy of a predictionmodel may substantially decrease when applied to
a set of batteries other than the training dataset, even if they use the same
type of batteries. This has been demonstrated in the previous study [26],
where the model performs substantially worse on the secondary testing
dataset (root mean square error (RMSE) > 200) compared with the pri-
mary testing dataset (RMSE > 100), as shown in Fig. 1b.

In order to tackle the aforementioned challenges, transfer learning, a
specific strategy of machine learning that enables knowledge sharing
between similar/related tasks, has been employed in several recent
works to help adapt the originally trained models to fit new scenarios
[43–47]. As the internal mechanisms of the widely used LIBs follow
common electrochemical principles [48], different sets of batteries share
strong similarities despite the potential state transitions. This makes
transfer learning a natural option to update a base model trained using
the data from the source domain to a new target domain through
fine-tuning with limited data sampled from the new dataset. In return,
transfer learning also improves the efficiency for training a model in the
target domain through incorporating prior knowledge from the source
domain [43,44]. Generally, transfer learning can be classified into three
main categories, i.e., transductive transfer learning, inductive transfer
learning, and unsupervised transfer learning. Transductive transfer
learning targets the scenarios with identical tasks, but different data
ential factors that would influence the cycle life of batteries. (b) The RMSE of
) Illustration of charging protocols used to obtain the datasets. C1 and C2 are the
ge (SOC) at which the currents change, and Q2 is the SOC from current switch to
ocess of the proposed transfer learning methodology.
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distributions in the source and target domains. In contrast, inductive
transfer learning tackles the challenges when variations exist between
the tasks in source and target domains. Unsupervised transfer learning
considers a similar scenario with inductive transfer learning, while the
data are unlabeled in both source and target domains [49–52]. Based on
these advances, impressive progress has been made in recent recharge-
able battery-related research, which demonstrated that the modeling
accuracy can be significantly improved through taking a peek at the
target dataset via transductive transfer learning [45–47]. Apart from
accuracy, explainability is another critical issue for the data-driven ap-
proaches of rechargeable battery research, since important decisions
cannot be made without a solid understanding of safety and reliability. In
this work, we desire to investigate the explainability of transfer learning
methods. To reach this goal, transfer learning algorithms are investigated
in conjunction with explainable machine learning techniques. The con-
clusions drawn from the aforementioned workflow are analyzed using
electrochemical principles to examine the determining factors of battery
lifetime during state transitions and fully discover their impact to the
internal degradation mechanisms of lithium-ion batteries. This can also
help us propose appropriate strategies on the design, manufacture, usage,
storage, and maintenance of rechargeable batteries. However, existing
research in this field primarily focuses on the enhancement of modeling
accuracy provided by transfer learning, while overlooking the signifi-
cance of explainability and the influence of external factors on the state
transition of discharging characteristics [45–47].

In this paper, we investigate the explainability of transfer learning in
addition to accuracy for battery lifetime prediction. Unlike existing
research that transfers to the target task through fine-tuning the pa-
rameters of specific layers in the base model [46,47], we focus on
modifying the selection and weighting of input features to efficiently
evaluate the variations of impacting factors in the target domain.
Furthermore, as the accessibility of prior knowledge can be different due
to the real-world constraints, we consider two scenarios, where we can
get access to the base model only and to the data used to train the base
model, respectively. Two individual transfer learning algorithms,
Bayesian Model Fusion (BMF) [53] and an innovative Weighted
Orthogonal Matching Pursuit (W-OMP), are developed correspondingly
for whether only the model or raw data are available in these scenarios.
Compared with the base mode used in previous research [26], transfer
learning models can reduce the prediction root-mean-squared error
(RMSE) by up to 41% and recognize the dominant impacting factors for
battery lifetime in the target domain. Additionally, leveraging data
directly from the source domain for knowledge sharing is more effective
than fine-tuning the base model, resulting in lower prediction errors with
less data from the target domain. While most of the recent research form
the prediction models based on deep learning techniques for higher
prediction accuracy [46,47], our methods are established using simple
linear regression-based techniques due to the following advantages: First,
the proposed algorithms are efficient to implement and transparent to the
researchers, such that one can seek the explainability of the prediction
models and understand the impact of considered factors through directly
analyzing the weights corresponding to the input features. Second, the
proposed algorithms are flexible and have a strong capability for
generalization. In fact, the deep learning models for battery lifetime
prediction can basically be regarded as linear regression models that take
the output of early layers as input features. It means that our proposed
transfer learning algorithms have high potentials to be applied to deep
learning models as well. Thus, the proposed models can be generalized to
accommodate both handcrafted features and those extracted by deep
neural networks. These advantages enable the proposed models to be
more reliable for tackling the challenges in real-world scenarios.

2. Results

In order to demonstrate the capability of the developed transfer
learning methods for battery lifetime prediction, we conduct our
3

experiment using the lithium iron phosphate (LFP)/graphite open-
source data from the earlier investigation [26]. For comparison, we
apply the ElasticNet algorithm, which was utilized in previous work
[26], as a baseline to evaluate the improvement of prediction accuracy.
To ensure the efficacy of our proposed algorithms, we utilize the same
features employed in the full model introduced by the precursor
research [26], which utilizes nine features to predict battery cycle life.
The dataset initially contains 140 batteries with 1.1 Ah nominal ca-
pacity, which are separated into three sub-datasets named training
dataset, primary testing dataset, and secondary testing dataset, con-
taining 46, 48, and 46 batteries, respectively. After removing a few
irregularities for each dataset, we finally include 124 batteries, con-
taining 41, 43, and 40 batteries for the aforementioned datasets,
respectively. In the precursor research [26], although the predictive
RMSE in the training and primary testing datasets are 51 and 116,
respectively, it reaches 214 on the secondary testing dataset, which
indicates that the effectiveness of the model can suffer from large
variance across different datasets (Fig. 1b). This is validated in this
paper as well through training an ElasticNet model in a similar way,
where a similar pattern of predictive RMSE is achieved compared with
the previous study (Fig. 1b) [26]. To understand this phenomenon, we
analyzed the three datasets and found at least two inherent differences
between these datasets. Firstly, the calendar aging of batteries within
these datasets are different (Fig. 1c, around one-year extra storage time
for secondary testing dataset), resulting in low initial capacity for the
batteries of secondary testing dataset (Supplementary Fig. 1). Aging is a
degradation process influenced by various factors, including battery
chemistry, temperature, moisture, and time itself, regardless of whether
the battery is actively cycled or stored. And it commences immediately
upon battery production, and persists throughout the entire battery
lifetime, encompassing storage, charging and discharging processes
[54,55]. Secondly, compared with other datasets, secondary testing
dataset has its unique charging protocol (Fig. 1d), reflected by a nar-
rower distribution of initial charging rate (C1, Fig. 1e) and State of
Charge (SOC) when C1 ends, which is referred to as Q1 (Fig. 1f, also see
Supplementary Figs. 2 and 3). In this paper, we desire to investigate the
impacts of these variations on battery lifetime prediction and explore
the way to improve the modeling accuracy in these scenarios. For this
purpose, we only focus on the training dataset and secondary testing
dataset since the primary testing dataset has a strong similarity with the
training dataset and the model trained using training dataset can ach-
ieve a sufficiently high accuracy on it.

Due to the aforementioned data variations induced by battery states
transitions, a lifetime prediction model trained on a dataset can hardly
achieve an equally high prediction accuracy when applied to a set of
batteries with state transitions. Therefore, transfer learning is utilized to
establish prediction solutions to adapt the knowledge extracted from the
training dataset to fit the target testing dataset through taking a peek at it
(Fig. 1g). As transfer learning is a machine learning strategy that can
improve the model performance on a new task by reusing information
acquired from a different but similar problem [43], it is a natural option
to accommodate a potential state transitions in a wide variety of domains
including battery lifetime predictions [39,56,57]. Note that the avail-
ability of information for reusing in transfer learning can be different due
to practical limitations. For example, one might obtain access to the raw
data used for training the base model or only to the base model itself. In
this work, we investigate both situations and aim to develop distinct
algorithms to explore the effective utilization of available information, as
depicted in Fig. 1g. For the scenario when only a base model is accessible,
we train a linear regression model with ElasticNet regularization using
the training dataset [26]. Subsequently, that linear regression model is
used as the base model, which is fine-tuned based on limited data sam-
ples from the secondary testing dataset using BMF [53], a specific
transfer learning technique that combines the prior knowledge and
late-stage observations using maximum-a-posteriori (MAP) estimation,
to re-assign the weights of input features (Figs. 2a and b). In the scenario



Fig. 2. Algorithm flowcharts and Pseudo codes. (a) Flowchart of the Bayesian model fusion for cycle life prediction. (b) Detailed algorithm of the Bayesian model
fusion. (c) Flowchart of Weighted OMP for cycle life prediction. (d) Detailed algorithm of Weighted OMP.
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where the raw dataset for training the base model is accessible, a novel
W-OMP algorithm is proposed to train a linear regression model through
achieving a reasonable tradeoff between training dataset and the data
sampled from the testing dataset as well as selecting the impactful fea-
tures (Figs. 2c and d). Since the base model is basically an encoded format
of the knowledge in the training dataset, fine-tuning from the base model
can potentially induce the loss of information compared to directly uti-
lizing the training dataset, and consequently lead to inferior prediction
accuracy. Hence, we expect theW-OMPmethod to generate more reliable
prediction while BMF is more adaptable since it is not limited to the
accessibility of information. The details of the transfer learning algo-
rithms are presented in Methods section.

In order to evaluate the developed transfer learning algorithms, we
randomly divide the secondary testing dataset into two parts including
the developing part and testing part. The developing part consists of 10
data samples, and the testing part consists of 30 data samples where the
developing part is used to draw observations from the target domain for
transfer learning, and the testing part is used to evaluate the prediction
accuracy. While training the transfer learning models, we increase the
number of data samples drawn from developing part from 6 to 10 and
compute the prediction RMSE on the testing data samples for each case.
We compare with two baseline algorithm including the ElasticNet algo-
rithm used in the previous research [26] and the Orthogonal Matching
Pursuit (OMP) algorithm [58] based on the prediction RMSE on the test
part of the secondary testing dataset. Both these algorithms can effec-
tively train a linear regression model using limited number of data
samples while OMP is proven to be more reliable when the problem is
highly under-determined due to the strict L0-norm regularization, which
poses a constraint on the number of non-zero features included in the
model. The ElasticNet algorithm is purely trained using the training
dataset to match the scenario in earlier investigation [26] and the OMP
algorithm is trained using the data drawn from the developing part.
Similar to the transfer learning algorithms, we increase the number of
developing data samples for training OMP from 6 to 10 and compute the
prediction RMSE for each case. Note that ElasticNet and OMP fit the
prediction models based on the information individually from the
training and secondary testing datasets, respectively. We would like to
compare with these baselines to demonstrate the advantages of transfer
4

learning for knowledge sharing over utilizing the information from
source or target domain only. For each of the transfer learning algorithms
we need to tune the hyper-parameters to achieve a reasonable tradeoff
between the prior knowledge from the training dataset and the devel-
oping data samples (Fig. 2). Furthermore, the number of features selected
for modeling also needs to be selected as a hyper-parameter for W-OMP
(Fig. 2c). These hyper-parameters are selected using leave-one-out cross
validation (LOOCV) on the developing data samples. As the base model is
trained under ElasticNet regularization, the coefficients corresponding to
the less-important features are shrunk to 0, which provide no prior
knowledge to the transfer learning algorithms. In BMF, this issue can be
tackled using two methods: 1) exclusively updating the non-zero model
coefficients, and 2) learning the features without any prior knowledge
and relying solely on data samples from the target domain. In this work,
we train the BMF model using the second approach since it can help
explore the impact of the factors with substantially higher importance in
the target domain compared with the source domain, thereby recog-
nizing the state transition. However, we also implement the first
approach, which is referred to as BMFwithout theMissing Prior (BMF-W)
for comparison, to demonstrate the efficacy to explore the features with
zero coefficients from ElasticNet.

Figs. 3a and b show the hyper-parameter selection of BMF andW-OMP,
respectively. The hyper-parameter of BMF, η, represents the importance of
pre-trained base model. W-OMP requires two hyper-parameters (α and λ),
which represent the tradeoff between two datasets and the number of
selected features, respectively (Fig. 2). We generate five random splits of
developing/testing parts on the secondary testing dataset and run the ex-
periments in five trials accordingly. Taking the first trial as an example, the
optimal parameters are selected as η ¼ e18.24 for BMF (Fig. 3a) and α ¼
6.28 billion, λ ¼ 3 for W-OMP (Fig. 3b). As shown in the experimental
results, the testing RMSE of the ElasticNet model is 295.22. We can also
observe that the OMP algorithm can significantly improve the prediction
performance and has an average test RMSE of 241.61 when the number of
training samples increases from 6 to 10. Impressively, the lowest RMSE
sharply declines to 179.93 when 10 data samples are used for training,
which indicates OMP is a strong baseline model as one of the state-of-the-
art algorithms for sparse data [59]. Compared with these baselines, the
BMF method significantly outperforms both of them with an average



Fig. 3. Results. (a) The validation RMSE of BMF for cycle life prediction. The optimal ln η ¼ 18.24 in the first trial of experiments. (b) The validation RMSE of W-OMP
for cycle life prediction. On the axis corresponding to the value of α, the capital letter B stands for billion. The optimal hyper-parameters are α ¼ 6.28 � 109 with 3
features in the first trial of experiments. (c) The testing RMSE of estimated cycle life versus real cycle life from ElasticNet, OMP, Bayesian model fusion and W-OMP in
the first trial. Test results of estimated capacity versus real capacity by (d) ElasticNet, (e) OMP, (f) BMF, and (g) W-OMP. (h) The percentage error of algorithms when
using eight developing data samples. (i) The average test RMSE with one standard deviation summarized from five trials.
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RMSE of 203.16 and the lowest RMSE of 176.06. Furthermore, W-OMP
performs the best with an average RMSE of 175.93 and the lowest RMSE of
172.14, and the prediction power remains stable across 6 to 10 developing
data samples (Fig. 3c).

To better understand the predictions generated in the first trial,
Figs. 3d�h visualize the predicted cycle life against the true values and
the percentage errors for ElasticNet, OMP, BMF, andW-OMPwhen 8 data
samples from developing part are utilized. ElasticNet tends to underes-
timate the cycle life and produce negative percentage errors, as many
data points are located below the diagonal. On the contrary, over-
estimation occurs for OMP with more positive percentage errors. Our
transfer learning algorithms (BMF and W-OMP) intelligently extract in-
formation from both resource and target domains to avoid estimation
bias, and hence, their percentage errors are approximately normally
distributed with a mean around zero (Fig. 3h). Furthermore, the per-
centage error of W-OMP is well controlled as the majority distributes
within the range from �10% to 10%, which has smaller variability than
BMF and therefore makes better predictions. We summarize the
modeling accuracy of all trials in Fig. 3i to validate the robustness of
proposed methods, and the error bars (one standard variation of the test
RMSE) are shown to demonstrate the reliability of model predictions [60,
61]. Similar observations have been made as the first trial, such that
W-OMP still performs the best, and BMF outperforms ElasticNet and OMP
in those additional trials (Fig. 3i). A larger sample size is associated with
a lower average testing RMSE and a better model robustness for BMF. For
the scenarios with extremely few data samples, BMF cannot sufficiently
5

catch the distribution of the target domain, thereby resulting in relatively
large variations of test RMSE between trials. However, as the sample size
increases, BMF could acquire more information from the target domain
and quickly adapt to the new context, resulting in lower test RMSE
compared to the baseline with stable performance across trials. If we use
10 data samples from the developing part, BMF-W has an average test
RMSE of 228.52, which is 12.9% higher than BMF (average RMSE:
202.48, Supplementary Fig. 4). That is because BMF-W only re-assigns
the weights of important features selected based on the training data-
set. However, the importance of features may suffer from significant
variations due to state transitions, which cannot be captured by BMF-W.
In contrast, BMF can learn the weights of the features without prior
knowledge using the information drawn from the developing part of
secondary testing dataset, thereby leading to superior accuracy for pre-
diction. Note that the improvement brought by transfer learning attri-
butes to both incorporating extra knowledge and learning the
appropriate approaches to utilize the incorporated knowledge. In order
to demonstrate this, a new baseline is implemented, which trains a model
based on all available source and target domain data without distinction
using the OMP algorithm. In this comparison, the training dataset serves
as the source domain data. We randomly shuffle the secondary testing
dataset 100 times, and after each shuffle, we utilize the first 6 developing
data samples as target domain data. In Supplementary Fig. 5, we present
a visualization of the comparison between Unweighted OMP (U-OMP)
and W-OMP, showcasing 20 cases where W-OMP outperforms U-OMP
based on the corresponding test RMSE. With the same number of source
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and target domain data across these 100 trials, W-OMP has a median test
RMSE of 201.29, which outperforms the new baseline U-OMP (median
RMSE: 212.24). This clearly demonstrates the advantage of the proposed
transfer learning methods by optimizing the weighting between source
and target domain information.

The explainability of the considered algorithms is investigated
through analyzing the features selected for prediction and their impor-
tance in the corresponding models. The importance of each feature is
measured using the average of absolute Shapley additive explanation
(SHAP) values [62]. SHAP is an explanation machine learning technique
that utilizes linear Local Interpretable Model-agnostic Explanations
(LIME) [63] and game-theoretic approaches to identify the contribution
of each attribute in the feature space to the final predictions. A feature
may impact a prediction in either positive or negative way, and the mean
absolute SHAP value shows us how much a single feature affects the
predictions for a batch of data samples. For a linear model, the SHAP
value of a specific feature is equal to the product of the feature's
regression coefficient and the difference between the feature values and
its own average [64]. Figs. 4a and d show the ranking of feature
importance for ElasticNet, OMP, BMF, and W-OMP, respectively (F1–F9
are features extracted from the datasets, which their definition will be
introduced in details in discussion section and can be found in Supple-
mentary Table 1). ElasticNet and OMP select completely different sets of
features since they are trained on datasets with different conditions.
From these figures, we can observe that F2 is the most important feature
of ElasticNet (mean absolute SHAP: 127.26, Fig. 4a), and F6, F8, and F4
are also included (mean absolute SHAP: 76.54, 26.84, and 14.94,
respectively). OMP only selects F1 and F9 (mean absolute SHAP: 901.87
and 439.9, respectively, Fig. 4b). BMF outperforms the baseline models
as it combines the top 2 features selected by ElasticNet (F2 and F6, mean
absolute SHAP ¼ 155.06 and 70.51) and the features selected by OMP
(F1 and F9, mean absolute SHAP ¼ 413.09 and 244.87; Fig. 4c), which
reflect the important information in both source and target domains.
Compared with OMP, the feature importance of F1 in BMF decreased due
to its multi-collinearity with F2 (Pearson’s correlation ¼ 0.997) in the
training dataset. W-OMP selected F3 and F5 (mean absolute SHAP: 74.59
and 49.95, respectively), which have not been selected as important
features in aforementioned methods (Fig. 4d), besides F2. To disentangle
the discrepancy between the feature extraction mechanisms of proposed
algorithms, we visualize the Pearson's correlations between features and
Fig. 4. Feature importance ranking in algorithms and datasets (a) The Shapley Additi
(d) Weighted OMP; (e) The Pearson’s correlation between each feature and cycle life
cycle life in secondary testing dataset.
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cycle life in the training dataset and secondary testing dataset in Figs. 4e
and f, respectively, which can be viewed as the “ground truth”. Under
ideal situations, features with a high Pearson’s correlation with the cycle
life are regarded as key features and should be included in the models.
For ElasticNet, the top chosen features (F2, F6, and F8) have very high
Pearson's correlations with the cycle life in the training dataset (Fig. 4e).
In contrast, F9, F3, and F5 are included in OMP or W-OMP, while none of
them seems to have a strong correlation with cycle life in both training
dataset and secondary testing dataset (Figs. 4e and f). Therefore, we
would like to further explore the reason why these features are selected
associated with both the scheme of OMP-based algorithms and the
electrochemistry in lithium-ion batteries in the Discussion section.

3. Discussion

We now analyze and reveal the relationship between algorithms,
datasets, and their choice of features. ElasticNet and OMP are the base-
line models trained on training dataset and secondary testing dataset,
respectively. ElasticNet selects F2, F6, F8 and F4 as the key features,
while OMP chooses F1 and F9. Compared with these baselines, BMF
obtains a more accurate prediction since it simultaneously considers the
knowledge provided by two datasets to extract the key features with high
importance in the OMP and ElasticNet models, respectively. As shown in
Fig. 4c, this method selects the most important features (F9, F2, F1, F6)
selected by ElasticNet (F2 and F6) and OMP (F1 and F9). However,
instead of using data directly, the knowledge of training dataset is
abstracted as a pre-trained model, so BMF may fail to capture key fea-
tures that represent the essential differences between training dataset
and secondary testing dataset, such as F5. On the other hand, W-OMP
balances the importance of two data sources by directly utilizing the data
and hence includes F2, F3, and F5 as the key features. F1 and F2 are
extracted from the capacity–voltage curve and mainly concern about the
voltage decay of batteries, so they have a strong correlation on both
datasets (training dataset: 0.996; secondary testing dataset: 0.997,
Fig. 5a, Supplementary Fig. 6). F3 refers to the capacity degradation rate
in the early cycling, and F9 is the difference in internal resistance be-
tween cycle 100 and cycle 2 (Supplementary Table 1). Solid electrolyte
interphase (SEI) growth usually occurs during the early cycling, which
causes loss of lithium inventory and the internal resistance changes in
battery. Thus, F3 and F9 have similar data distributions with a high
ve explanation (SHAP) values of ElasticNet; (b) OMP; (c) Bayesian model fusion;
in the training dataset; (f) The Pearson’s correlation between each feature and



Fig. 5. Analysis and interpretation of key features selected by proposed algorithms (a) The Pearson's correlation between cycle life and each feature from the
combination of training dataset and secondary testing dataset, in which the training dataset is scaled by the optimal weight from Weighted OMP. CL stands for “cycle
life”. (b) Discharge capacity at 2nd cycle (F5), and (c) cycle life of battery in different datasets. (d) Relationship between Weighted I and cycle life. (e) Distribution of
F2 in different datasets. (f) Overview of F2, Weighted I and cycle life.
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Pearson’s correlation of 0.6 (Supplementary Figs. 7a and 7b, 8). In
conclusion, BMF and W-OMP have successfully selected features that
reflects the characteristics of the two algorithms and datasets, and
demonstrated significantly improved prediction accuracy compared with
ElasticNet. However, only W-OMP captures F5 since W-OMP could
directly utilize the data from training dataset and the secondary testing
dataset, and balance the weights between them.

F5 is defined as the discharge capacity (cycle 2) of batteries, which
describes the battery aging state between datasets in a straightforward
manner. Compared to training dataset and primary testing dataset, sec-
ondary testing dataset has significantly smaller F5 values (Fig. 5b, Sup-
plementary Fig. 1) due to its approximately one-year extra storage time,
inducing the calendar aging. Calendar aging experiences slow self-
discharge aging of battery in open circuit state [54,65]. During this pro-
cess, active lithium (lithiated graphite) slowly reacts with electrolyte and
electrode materials under slow self-discharging condition, which contin-
uously builds up SEI on electrode surface and causes battery aging [66–69].
Under ideal storage conditions, the battery capacity slowly decreases, and
electrolyte solvent gradually forms passivation interphase in negative
electrode [70]; as storage time increases, electrolyte can uniformly infil-
trate on battery interfaces across multiple length scales, forming excellent
SEI [71,72]. According to previous findings [55,73], long storage time or
low current formation during early-stage charging significantly reduces
SEI's charge transfer resistance, resulting in uniform and stable SEI and
better cycling performance [73,74]. This agrees well with our observation
among the three datasets, which the aged cells in the secondary dataset are
with lower capacity increasement and prolonged cycle life (Supplementary
Fig. 9, Fig. 5c). SEI growth is accompanied by the consumption of active
lithium and thereby reduces the initial capacity, matchingwith the average
7

lowest initial capacity in secondary testing dataset among three datasets
(Fig. 5b). Furthermore, the capacity degradation rate (F3) in secondary
testing dataset is lower than other two datasets (Supplementary Fig. 7a,
Supplementary Table 1), which agrees with extremely small loss of active
lithium and excellent SEI on negative electrode [72]. The high-quality SEI
enhances the cycling performance and extends battery cycle life.

Apart from F5, we observed other phenomena that distinct batteries
in secondary dataset from those in training and primary datasets. The
three datasets have diverse calendar aging conditions and 72 different
charging protocols. We develop a novel indicator,Weighted I, as weighted
average charging rate to quantify the impacts of charging protocols on
various features and datasets. The Weighted I is defined as the weighted
average charging rate at 0–80% SOC, which is equal to C1 � Q1 þ C2 �
Q2. Fig. 5d shows that the Weighted I have profound effects on cycle life
for inadequate aging batteries (training and primary datasets), but suf-
ficient aging (secondary datasets) would mitigate such effects. Those
findings show the distinct difference between the three datasets, and
further validate the benefits of appropriate aging on prolonging cycle life.
F2 depicts the electrochemical side reactions inside battery [75] and
clearly shows the degradation state of lithium iron phosphate battery
during early cycling [26]. Secondary testing dataset has smaller F2 values
than other datasets and reveals less battery degradation and longer cycle
life (Fig. 5e, Supplementary Fig. 8). However, in contrast to Weighted I,
the linear association between F2 and cycle life persists across all the
datasets (Fig. 5f), indicating F2 as a key feature for battery lifetime
prediction. This is also why F2 and F1 are always chosen as key features
in all algorithms applied in this research. The detailed analysis of other
features indicating the different between secondary dataset and the other
datasets is listed in the Supplementary Fig. 8.



Fig. 6. The importance of information from training batteries and secondary test batteries for each algorithm.
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In our work, we apply four algorithms to tackle different levels of data
accessibility (Fig. 6). The test time of the secondary testing dataset was
approximately 10–11 months later than the training dataset and primary
testing dataset (Supplementary Fig. 2). ElasticNet or OMP are used if we
have poor access to the data and only one battery dataset is available.
Under the best scenario in which we have data from both batches, W-
OMP is an ideal choice to balance the weights between two data sources.
If we have the base model from the training dataset and data from the
secondary testing dataset, we should apply BMF. We have also run BMF-
W [53], which is a basic version of BMF algorithm mentioned before.
However, BMF-W produces a testing RMSE near 229 across five trials
using ten developing sample sizes, and the improvement on prediction
accuracy is inferior to that of BMF (Supplementary Fig. 5). That is
because BMF-W only re-assigns the weights of important features from
the source domain, while BMF can incorporate extra dominating factors
from the target domain to include more information. Hence, the BMF
method should be preferred over BMF-W.

There are primarily two limitations in our proposed transfer learning
methods. Firstly, our methods require obtaining external data from the
target domain, which cannot be ensured in every scenario. Secondly, our
algorithms initially incorporate all features from the external data and
subsequently select the optimal ones; however, certain features from the
external data might adversely affect predictions due to measurement
errors or biases. For these features, we expect to learn their weights on
target domain data only, which is not supported in the algorithms pro-
posed in this work. In our future work, we would like to resolve those two
limitations and enhance the robustness of our transfer learning frame-
work. A major advantage of the proposed methods is the strong real-
world applicability and high interpretability of linear models, which
showcase satisfactory predictive performance when data samples are
limited. To compare various methods on computational efficiency, scal-
ability, and real-world applicability, we randomly shuffle the secondary
testing data of MIT-Stanford datasets [26], while 10 and 30 data samples
in the dataset are used for training and testing in each random trial.
Under this setup, we validate the predictive performance of deep learning
models, tree-based models, gaussian process regression, and linear
models and summarize the characteristics of each method in Supple-
mentary Table 2. Among these methods, linear models showcase
computational advantages and the lowest peak memory usage (0.03 Mb
for one trial). Due to the low computational cost and high real-world
applicability, linear models are capable of being integrated into
real-world Battery Management Systems for battery lifetime prediction
[76]. Compared to some “black-box” deep learning-based methods that
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can usually achieve superior prediction accuracy, our proposed methods
are directly established based on features with stronger interpretability,
which can help us to disentangle the underlying physical mechanisms
behind the state transitions [26,77]. With only ten training samples, the
linear models outperform all other aforementioned methods, making
them the ideal choice for battery lifetime prediction under limited data
size (Supplementary Table 2). Another strength of these algorithms is
their high adaptability to deep neural networks. Essentially, deep neural
networks for predicting battery lifetime can be viewed as linear regres-
sion models, using the output from hidden layers as input features. While
the proposed transfer learning algorithms can be applied to update the
weights of hand-crafted features, they can also accommodate features
automatically extracted using deep neural networks. In other words, the
proposed transfer learning algorithms are not restricted to linear
regression models; they offer a versatile framework that can accommo-
date various model architectures. Thirdly, the proposed methods are
tailored to various levels of data accessibility, which not only satisfies the
mathematical rigor but also provides enough flexibility for solving
real-world applications.

4. Conclusions

In this work, transfer learning approaches are investigated for battery
life prediction under state transitions to achieve superior prediction ac-
curacy as well as excellent explainability. In specific, we developed two
transfer learning methods, BMF andW-OMP, to strategically combine the
prior knowledge provided by a related task with limited information
extracted from the target dataset to achieve a superior prediction per-
formance compared to using each dataset individually. Apart from
improving the modeling accuracy, the explainability of these models is
studied through analyzing the impactful features for battery lifetime
prediction. Experiments are conducted on public datasets created using
commercial lithium-ion batteries, where we found that the transfer
learning methods can reduce the prediction RMSE by up to 41% through
adapting to the target domain from either model or data perspective.
Furthermore, it is also demonstrated that the transfer learning strategy
can help identify the variations of impactful features across set of
batteries, which provides novel insights for disentangling the battery
degradation mechanisms and the root cause of state transitions from
the perspective of data mining. Those findings suggest that transfer
learning strategy used in our work has an outstanding capability to
acquire knowledge across multiple data sources for solving specialized
issues. In general, our transfer learning methods can complement or
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integrate with electrochemical-based approaches to accurately predict
the lifetime of lithium-ion batteries under state transitions.

5. Methods

The dataset used in this work is adopted from Severson et al. [26].
The dataset includes a total of 124 cylindrical LFP/graphite A123
APR18650M1A batteries with 72 fast charging protocols, which their
discharging rate is 4C. The nominal capacity of these batteries is 1.1 Ah
and the average lifetime is 806 cycles (ranging from 150 to 2300). It
consists of three sub-datasets, including training dataset, primary testing
dataset, and secondary testing dataset with 41, 43, and 40 batteries,
respectively. The primary testing and training datasets consist of a fusion
of data from Batch1 (batteries tested by 05/12/2017) and Batch2 (bat-
teries tested by 06/30/2017). The disparity in calendar aging between
these datasets is negligible. Furthermore, the charging protocols
employed in both the primary testing and training datasets exhibit sub-
stantial similarities. In contrast, the secondary dataset was gathered at a
significantly later date (04/12/2018), and the charging protocols
employed demonstrate a narrower range of charging rates. Consequently,
the inclusion of the primary testing dataset in our study is unnecessary
since the training and secondary datasets adequately address the objec-
tives of our research. The features for lifetime prediction are computed
using the measurements obtained from the first 100 charge–discharge
cycles. In this work, we consider 9 features denoted by F1 to F9 (details
listed in Supplementary Table 1), which are extracted from capaci-
ty–voltage curve (Supplementary Fig. 10), discharge capacity fade curve
(Supplementary Fig. 11), and other measurements (e.g. temperature and
internal resistance, Supplementary Fig. 12).

The charging protocols are shown in Fig. 1d via three steps. The initial
charging rate (C1) would change into C2 if the state of charge (SOC)
reaches a designated level (Q1); after the SOC reaches 80%, it would start
galvanostatic charging at 1C to 3.6 V and then changes to potentiostatic
charging until fully charged, where a 1C charge rate represents the bat-
tery is fully charged in one hour, corresponding to a charging current of
1.1 A. The data distribution of C1 and Q1 are presented in Figs. 1e and f,
respectively. The training dataset and primary testing dataset have
similar charging protocols, while charging protocols in the secondary
testing dataset have significant differences. As these three batches of
batteries are maintained and measured under different conditions, the
prediction model trained using one dataset cannot guarantee to have an
equally high accuracy on another one, which can be observed from the
experimental results in previous work [26]. Therefore, two individual
transfer learning algorithms, i.e., BMF and W-OMP, are developed to
efficiently utilize the knowledge provided by the training dataset (prior
knowledge) and strategically combine it with the limited information
extracted from the target testing dataset (observations) to achieve a su-
perior performance. In this work, the prior knowledge is provided by the
training dataset and the observations are drawn from the developing part
of the secondary testing dataset. Furthermore, our proposed linear-based
transfer learning algorithms have excellent performance across multiple
criterions including accuracy, computation time, scalability, explain-
ability, and real-world applicability when compared to conventional
methods, such as electrochemical models, deep learning models (i.e.,
Neural Network), tree-based models (i.e., lightGBM), and Gaussian pro-
cess regression (Supplementary Table 2).

BMF is developed for the scenario where only the base model trained
on a related dataset is accessible. In this work, the base model is a linear
regression model represented by the coefficient vector WE such that the

lifetime for a batch of batteries can be computed by bY ¼ XWE , where bY
is a column vector and each row of the matrix X represent the feature
vector of the corresponding battery. As a common practice, we normalize
each input feature and the label, such that their mean and variance on the
training data are 0 and 1, before fitting the linear regression model.
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Hence, the intercept of the model is 0, and we only consider the co-
efficients corresponding to input features. The BMF algorithm intends to
fine-tune the base model and achieve a late-stage linear regression model
WL using a set of data samples in the developing part of the secondary
testing dataset, whose feature matrix and label vector are denoted by XL

and YL, respectively. The philosophy of BMF is to pose a prior distribution
constraint on the late-stage model such that WL � NðWE ; Iλ2W2

E Þ. Sub-
sequently, a posterior distribution is formulated as

pdf ðWLjYL;XLÞ∝ pdf ðWLÞ � pdf ðYLjWL;XLÞ;

where pdf ðWLÞ and pdf ðYLjWL;XLÞ are the probability density function
(pdf)s of the prior distribution and likelihood, respectively. As a common
routine for fitting a linear regression model, the likelihood for observing
a dataset is assumed to follow Gaussian distribution, such that YL

��WL;

XL � NðXLWL; Iσ2Þ. Thus, the posterior distribution pdf ðWLjYL;XlÞ is also
Gaussian, and hence, the maximum-a-posterior (MAP) estimation of WL

is equal to the mean of the posterior distribution as

WL ¼ΣL

�
η ⋅

h
W�1

E;1;…;W�1
E;M

iT
þXT

L YL

�
;

where ΣL ¼ ½η ⋅ diagðW�2
E;1 ;…;W�2

E;MÞ þ XT
L XL��1 is the covariance matrix.

The hyper-parameter η represents the importance of early-stage weights
and can be selected using LOOCV.

In contrast to utilizing only the base model, the W-OMP algorithm is
proposed to directly learn from the raw data in both the source and target
domain, to fit a linear regression model that strategically combines the
knowledge from these datasets. Let the dataset used to train the base
model be denoted by fXE ;YEg, where XE and YE are the feature matrix
and label vector, respectively. Given the set of data fXL;YLg sampled
from the developing part of the secondary testing dataset, it aims to learn
the model WL that satisfies

min α ⋅ kXEWL � YE

��j22 þ ��XLWL � YL

��j22 s: t: kWLk0 � λ;

where α controls the tradeoff of importance between the data from the source
and target domains. While the optimization of model parameters can be
formulated using MAP for BMF, the formulation of W-OMP can be derived
usingmaximum likelihood estimation (MLE). The statistical foundationofW-
OMP is presented in the Supplementary information. The L0-norm constraint
kWLk0 � λ indicates that the number of non-zero elements inWL is atmost λ,
which encourages the algorithm to select a subset of important features for
modeling, thereby avoiding overfitting. As both α and λ are hyper-
parameters, we select them using the LOOCV method. Given a fixed value
α and a subset of selected features Ω,WL can be analytically computed as

WL ¼
h
α ⋅ XT

E;ΩXE;Ω þ XT
L;ΩXL;Ω

i�1h
α ⋅XT

E;ΩYE þXT
L;ΩYL

i
;

where XE;Ω and XL;Ω are the feature matrices consisting of the columns
corresponding to Ω in XE and XL. Similar to the standard OMP algorithm,
the feature selection of W-OMP is conducted iteratively. It initializesΩ as
an empty set and include the feature maximally correlated with the label
in each iteration. After a new feature is selected, the labels are updated by
subtracting the contribution of the selected feature before next iteration.
Considering the tradeoff between the source and target domains, the
importance of a feature j is measured by���α ⋅XT

E;jYE þXT
L;jYL

���;
which represents their linear correlation considering the weighting of
data samples from the source and target domains, and the W-OMP al-
gorithm terminates after jΩj ¼ λ, which means that the required number
of features have been selected.
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