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Multi-compartment diffusion
magnetic resonance imaging
models link tract-related
characteristics with working
memory performance in healthy
older adults
Christopher E. Bauer1, Valentinos Zachariou1,
Pauline Maillard2,3, Arvind Caprihan4 and Brian T. Gold1,5*
1Department of Neuroscience, University of Kentucky, Lexington, KY, United States, 2Department of
Neurology, University of California at Davis, Davis, CA, United States, 3Center for Neuroscience,
University of California at Davis, Davis, CA, United States, 4The Mind Research Network,
Albuquerque, NM, United States, 5Sanders-Brown Center on Aging, Lexington, KY, United States

Multi-compartment diffusion MRI metrics [such as metrics from free water

elimination diffusion tensor imaging (FWE-DTI) and neurite orientation

dispersion and density imaging (NODDI)] may reflect more specific underlying

white-matter tract characteristics than traditional, single-compartment

metrics [i.e., metrics from Diffusion Tensor Imaging (DTI)]. However, it remains

unclear if multi-compartment metrics are more closely associated with age

and/or cognitive performance than single-compartment metrics. Here we

compared the associations of single-compartment [Fractional Anisotropy

(FA)] and multi-compartment diffusion MRI metrics [FWE-DTI metrics: Free

Water Eliminated Fractional Anisotropy (FWE-FA) and Free Water (FW); NODDI

metrics: Intracellular Volume Fraction (ICVF), Orientation Dispersion Index

(ODI), and CSF-Fraction] with both age and working memory performance.

A functional magnetic resonance imaging (fMRI) guided, white matter

tractography approach was employed to compute diffusion metrics within a

network of tracts connecting functional regions involved in working memory.

Ninety-nine healthy older adults (aged 60–85) performed an in-scanner

working memory task while fMRI was performed and also underwent multi-

shell diffusion acquisition. The network of white matter tracts connecting

functionally-activated regions was identified using probabilistic tractography.

Diffusion metrics were extracted from skeletonized white matter tracts

connecting fMRI activation peaks. Diffusion metrics derived from both single

and multi-compartment models were associated with age (ps ≤ 0.011 for

FA, FWE-FA, ICVF and ODI). However, only multi-compartment metrics,

specifically FWE-FA (p = 0.045) and ICVF (p = 0.020), were associated with
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working memory performance. Our results suggest that while most current

diffusion metrics are sensitive to age, several multi-compartment metrics (i.e.,

FWE-FA and ICVF) appear more sensitive to cognitive performance in healthy

older adults.

KEYWORDS

aging, brain, white matter, diffusion tensor imaging (DTI), free water, neurite
orientation dispersion and density imaging (NODDI), working memory, functional
networks

Introduction

Diffusion tensor imaging (DTI), which is based on a single
compartment MRI diffusion model, has shown promise as a
method for identifying white matter networks associated with
specific cognitive functions and how they are influenced by
age (Minati et al., 2007; Gunning-Dixon et al., 2009; Madden
et al., 2012; Bennett and Madden, 2014). DTI is an in-vivo
method used to explore white matter microstructural properties
by estimating the rate and direction of water diffusion within
specific tracts of interest (Basser et al., 1994; Pierpaoli et al.,
1996; Le Bihan et al., 2001). One of the most commonly
used DTI metrics is fractional anisotropy (FA), which reflects
the directional variance of apparent diffusion coefficients and
broadly indexes neurite density, neurite orientation distribution
and other microstructural properties (Beaulieu, 2009; Wheeler-
Kingshott and Cercignani, 2009).

However, DTI metrics such as FA are known to have several
limitations including an inability to account for crossing fibers,
and partial volume effects, which limit interpretations that
can be drawn (Wheeler-Kingshott and Cercignani, 2009). For
example, concerning partial volume effects, FA is known to be
susceptible to free water contamination, which is particularly
salient when studying participants who vary in amount of
atrophy and ventricular enlargement. These limitations have led
to the development of multi-compartment models that make use
of multiple diffusion weightings to separate the diffusion signal
into tract-related and free water [or cerebrospinal fluid (CSF)]
compartments (Pasternak et al., 2009). Two compartment, free
water elimination (FWE) models can yield metrics of free water
(FW) and the more white matter tract-related metric of free
water eliminated FA (FWE-FA) (Ji et al., 2017; Duering et al.,
2018; Maillard et al., 2019, 2022; Bergamino et al., 2021).

More recent three-compartment models estimate additional
tract-related metrics. For example, neurite orientation
dispersion and density imaging (NODDI) (Zhang et al.,

Abbreviations: MRI, magnetic resonance imaging; DTI, diffusion tensor
imaging; FA, fractional anisotropy; FWE, free water elimination; NODDI,
neurite orientation dispersion and density imaging; ICVF, intracellular
volume fraction; ODI, orientation dispersion index; WMN-WM, working
memory network white matter.

2012) models diffusion data as one of three distinct diffusion
patterns (and inferred anatomical compartments): isotropic
diffusion (CSF or Free Water compartment), hindered diffusion
[extraneurite compartment; space around neurites (i.e., axons
and dendrites) including neuronal and glial cell bodies]
and restricted diffusion (intraneurite compartment; intra
axonal/dendritic space). The resulting metrics derived from
NODDI are intracellular volume fraction (representing neurite
density), orientation dispersion index (representing angular
variation of neurites), and CSF Fraction (representing FW).
NODDI metrics have been shown to be highly reproducible
(Chang et al., 2015; Lehmann et al., 2021).

Several studies have assessed the potential advantages
offered by multi-compartment models, relative to DTI, in
predicting age and/or cognitive performance (Cox et al., 2016;
Ji et al., 2017; Chad et al., 2018; Duering et al., 2018; Maillard
et al., 2019; Beck et al., 2021). Results from these studies have
suggested that metrics derived from multi-compartment models
may be more sensitive predictors of age (Billiet et al., 2015; Cox
et al., 2016; Kodiweera et al., 2016; Chad et al., 2018; Beck et al.,
2021) and/or cognitive performance in older adults (Merluzzi
et al., 2016; Ji et al., 2017; Duering et al., 2018; Maillard et al.,
2019; Fu et al., 2020). Notably, most studies have focused on
white matter across the brain (Ji et al., 2017; Chad et al., 2018;
Duering et al., 2018; Maillard et al., 2019, 2022; Beck et al.,
2021) and/or explored individual white matter tracts that form
portions of multiple cognitive networks (Cox et al., 2016; Ji et al.,
2017; Chad et al., 2018; Beck et al., 2021).

Less remains known about which diffusion metrics are
the most sensitive predictors of age and/or performance
within large-scale, task-relevant white matter networks. This
issue is relevant in that cognitive functions are known to
arise from connected brain networks (Bressler and Menon,
2010; Petersen and Sporns, 2015). Here we address this issue
via a combined fMRI-guided, DTI tractography approach
in which we define a set of white matter tracts inter-
connecting functionally activated working memory regions.
A working memory fMRI task was used because working
memory declines significantly with age and is predictive of later
cognitive impairment in older adults (Zacks et al., 2000; Reuter-
Lorenz and Sylvester, 2005; Blacker et al., 2007; Glisky, 2007;
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Belleville et al., 2008). Diffusion metrics from single and
multi-compartment models were extracted from the common
working memory network of white matter tracts and their
associations with age and working memory performance were
explored in linear regression models that controlled for shared
variance.

Materials and methods

Participants

Ninety-nine healthy older adults were recruited for
the experiment (61 women, age range 60–85 years). All
participants provided informed consent under a protocol
approved by the Institutional Review Board of the University
of Kentucky. Participants were recruited from an existing
longitudinal cohort at the Sanders-Brown Center on Aging
(SBCoA) and the Lexington community. Participants from
the SBCoA were cognitively intact based on scores from the
Uniform Data Set (UDS3) used by US ADRCs [procedure
outlined in Besser et al. (2018)] and clinical consensus
diagnosis. Participants recruited from the community did
not complete the UDS3 battery but were required to
score 26 or above on the Montreal Cognitive Assessment
(MoCA; Nasreddine et al., 2005) as a study inclusion
criteria.

Exclusion criteria were significant head injury (defined
as loss of consciousness for more than 5 min), stroke,
neurological disorders (e.g., epilepsy, dementia), psychiatric
disorders (e.g., schizophrenia, active clinical depression),
claustrophobia, pacemakers, the presence of any metal
fragments or implants that are incompatible with MRI,
diseases affecting the blood (anemia, kidney/heart
disease) or significant brain abnormalities detected
during imaging. One participant was excluded from
analyses due to the presence of an old stroke that was
not clinically evident at study enrollment. Detailed
characteristics of the final participant cohort are reported
in Table 1.

TABLE 1 Group demographics and Montreal Cognitive
Assessment (MoCA) scores.

Mean (S.D.) N

Age (Years) 70.0 (5.8) 99

Gender Ratio (F:M) 61:38 99

Education (Years) 16.6 (2.4) 99

MoCA 27.2 (2.2) 93

The table lists the mean (sd) for age, the female/male ratio, and the mean (sd) years of
education and MoCA scores.

Image acquisition

Participants were scanned in a 3 Tesla Siemens Magnetom
Prisma MRI scanner (software version E11C), using a 64-
channel head coil, at the University of Kentucky’s Magnetic
Resonance Imaging and Spectroscopy Center (MRISC). Data
from 5 sequences were collected in the following order (1)
a 3D multi-echo, T1-weighted magnetization prepared rapid
gradient echo (T1) sequence; (2) a T2∗-weighted, gradient-
echo, echo-planar sequence sensitive to the BOLD response; (3)
a double-echo, gradient-echo sequence used to create a field
map image for spatial distortion correction of the fMRI data;
(4) a spin-echo, echo-planar multi-shell diffusion sequence and
(5) a spin-echo, echo-planar diffusion-weighted sequence with
reverse phase-encoding direction from the main multi-shell
diffusion sequence to correct susceptibility-induced distortions
in the main multi-shell diffusion scan. This main multi-shell
diffusion sequence is also collected as part of our Alzheimer’s
Disease Neuroimaging Initiative (ADNI3; Gunter et al., 2017)
scanning protocol. Data from several other sequences were
collected during the scanning session related to different
scientific questions and are not discussed further here.

The T1 scan had four echoes [first echo time
(TE1) = 1.69 ms, echo spacing (1TE = 1.86 ms)], and
covered the entire brain [256 × 256 × 176 mm3 acquisition
matrix (176 slices), 1 mmisotropic voxels, repetition time
(TR) = 2530 ms, flip angle = 7◦, scan duration = 5.88 min].
Two fMRI runs were acquired and covered the entire brain
[192 × 192 × 120 mm3 acquisition matrix (40 slices),
3 mm isotropic voxels, TR = 2500 ms, TE = 30 ms, flip
angle = 90◦, scan duration = 4.12 min per run]. The
gradient echo field map scan was acquired immediately
after the two fMRI runs [TR = 450 ms, TE1 = 5.19 ms,
TE2 = 7.65 ms, flip angle = 60◦, scan duration = 1.23 min]
and had the same field of view, number of axial slices, and
resolution as the fMRI scans. The main multi-shell diffusion
scan was acquired with 126 separate diffusion directions
[232 × 232 × 162 mm3 acquisition matrix (81 slices), 2 mm
isotropic voxels, TR = 3400 ms, TE = 71 ms, simultaneous
multislice acceleration factor = 3, phase partial Fourier = 6/8,
scan duration = 7.45 min, and posterior-to-anterior phase
encoding direction] distributed among 4 b-values [0 s/mm2

(12 directions), 500 s/mm2 (6 directions), 1000 s/mm2 (48
directions), and 2000 s/mm2 (60 directions)]. The brief (28 s)
reverse-phase encoding (anterior-to-posterior) scan was
acquired immediately following the main multi-shell diffusion
scan [232 × 232 × 162 mm3 acquisition matrix (81 slices),
2 mm isotropic voxels, TR = 3400 ms, TE = 71 ms, simultaneous
multislice acceleration factor = 3, phase partial Fourier = 6/8,
and 2 b-values (0 and 2000 s/mm2)]. Only the non-diffusion
weighted (b0) images were used to correct for susceptibility-
induced distortions in the main multi-shell diffusion scan, as
recommended by FSL’s topup (Andersson et al., 2003). These
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MRI sequences are further summarized in Supplementary
Table 1.

Functional magnetic resonance
imaging task paradigm

The visual working memory paradigm used in the current
study is the same as the one described in detail in Zachariou
et al. (2021). Briefly, participants performed an N-back task
with 3 conditions (compare, 1-back, 2-back). A blocked design
was used with each of the 3 conditions interleaved within two
separate fMRI runs. Task stimuli consisted of eight consonant
letters and responses (“same” or “different”) were made using
MRI compatible button-boxes (one in each hand). For the
working memory conditions of the task (1-back, 2-back)
participants decided if the consonant letter presented in the
current trial matched the one presented in the previous trial
(1-back condition) or two trials back (2-back condition). For
the control condition (compare) participants decided if two
consonant letters presented simultaneously on either side of the
screen were the same or different.

Behavioral data analysis
Behavioral data collected during the scans were used

to calculate D-prime (Stanislaw and Todorov, 1999) for
each of the task conditions. D-prime is a measure of
discrimination performance corrected for response bias, which
is the participants’ tendency to respond “same” or “different”
when they do not perceive a difference or are not certain.
Therefore, in forced-choice discrimination tasks, D-prime is
a more optimal measure of discrimination performance than
accuracy, which does not account for response bias (Swets et al.,
1961). D-prime was log transformed in all analyses due to a
non-normal distribution and the assumption that diffusion-
based measures will logarithmically predict D-prime, as done in
Zachariou et al. (2021). N-back task performance was ultimately
expressed as the log of averaged D-prime (averaged across the
1-back and 2-back conditions).

Defining the functional magnetic resonance
imaging working memory network

The fMRI data were corrected for field inhomogeneity
using the field map in FMRIB software library (FSL; Smith
et al., 2004), were motion-corrected, and were despiked when
required using AFNI (3dDspike; Cox, 1996). The fMRI data
were then aligned to the structural T1 scan (after the 4 echoes
from the T1 scan were averaged into a single root mean
squared image) and warped into MNI space (MNI ICBM152
1 mm 6th generation atlas; Grabner et al., 2006) via non-linear
transformation (3dQwarp; Cox, 1996). Finally, the fMRI data
were smoothed with a 6.0 mm full width at half maximum

Gaussian kernel and mean-based intensity normalized using
AFNI (Cox, 1996).

Group-level, whole brain analyses were then conducted
using AFNI and a linear mixed effects model (3dLME; Chen
et al., 2013) with participant age added as a covariate.
Specifically, this analysis used a whole-brain functional contrast
[(1-back/2 + 2-back/2) > Compare] to identify brain regions
significantly more active during the 1-back and 2-back
conditions of the working memory task than during the
compare control condition. The resulting activation map was
adjusted for multiple comparisons using the false discovery
rate (FDR) approach (Figure 1). A conservative threshold of
qFDR = 2 × 10−13 was used to limit activations to the most
significantly active voxels in order to delineate distinct peaks
of activity for use as seed regions in a subsequent probabilistic
tractography analysis. Twelve brain regions were identified
using this threshold and are reported in Table 2. Lastly, an
8 mm diameter sphere was centered on the most statistically
significant voxel of each of these twelve brain regions. These
8 mm diameter spheres acted as seed regions of interest (ROIs)
in a subsequent probabilistic tractography analysis (Section
“Probabilistic tractography”).

Diffusion magnetic resonance imaging
preprocessing

Diffusion MRI data were preprocessed as follows: each
participant’s main diffusion MRI data were corrected for
susceptibility induced field distortions using their reversed
phase-encoded scan in FSL’s topup (Andersson et al., 2003),
skull-stripped using BET (Smith, 2002), and non-linearly
corrected for eddy currents and participant motion with eddy
(Andersson and Sotiropoulos, 2016) using the Compute Unified
Device Architecture (CUDA; version 9.1) command variant
(eddy_cuda9.1) to increase data analysis processing speed.
Diffusion MRI data were examined visually for quality. The
average head motion across volumes for each participant was
assessed using the eddy QC tools (average voxel displacement
across all voxels within a brain mask relative to the first volume;
Bastiani et al., 2019), with a 2 mm threshold used for exclusion.
No participants exceeded this threshold. Each participant’s
motion-corrected data were subsequently used as input for
further diffusion processing and probabilistic tractography.

Diffusion tensor imaging processing

Fractional anisotropy (FA) maps were calculated using FSL’s
DTIFIT. This function computes the diffusion tensor model
and eigenvalues (λ1, λ2, λ3) within each voxel using each
participant’s preprocessed diffusion MRI data as described in
Section “Diffusion magnetic resonance imaging preprocessing.”
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FIGURE 1

fMRI regions showing functional activation during the N-back tasks. The figure displays the positive functional activation using a group level
functional contrast [(2-back/2 + 1-back/2) > Compare] overlaid onto a 1 mm MNI ICBM152 template (MNI ICBM152 1 mm 6th generation atlas;
Grabner et al., 2006). fMRI data were thresholded (q = 1 × 10-10) and clusterized (minimum cluster size = 20) in this figure to optimize display.
ACC, anterior cingulate; pMFG, posterior middle frontal gyrus; IPL, inferior parietal lobule; PreCun, precuneus; DLPFC, dorsolateral prefrontal
cortex; FPC, frontopolar cortex.

Free water elimination processing
Both free water [FW; representing cerebrospinal fluid

(CSF)] and free water eliminated (FWE, or CSF-eliminated)
FA maps were calculated for each participant using a two-
compartment model of the multi-shell Free Water Diffusion
Tensor Imaging algorithm (Henriques et al., 2017) from the
open-source software package Diffusion Imaging in Python
(DIPY; Garyfallidis et al., 2014). All voxels with values above
the 80th percentile of values in the CSF/FW compartment map
were set to zero in the corresponding FWE-FA map, in order to
suppress any remaining CSF signal (e.g., within the ventricles)
that could contribute to partial volume effects (Zhang et al.,
2012).

Neurite orientation dispersion and density
processing

Neurite orientation dispersion and density imaging employs
a three-compartment model which distinguishes between
isotropic diffusion (CSF or FW compartment), hindered
diffusion (extraneurite compartment) and restricted diffusion
(intraneurite compartment) (Zhang et al., 2012). Three diffusion

metrics are subsequently calculated per-voxel using these
compartments. Intracellular volume fraction (ICVF) is the
intraneurite compartment divided by the sum of the intraneurite

TABLE 2 fMRI regions showing functional activation during the
N-back tasks.

Anatomical region Hemisphere Peak coordinates
(X, Y, Z)

Frontopolar cortex L −33, 52, 6
Frontopolar cortex R 32, 55, 8
Dorsolateral prefrontal cortex L −44, 29, 33
Dorsolateral prefrontal cortex R 41, 37, 30

Posterior middle frontal gyrus L −26, 12, 52
Posterior middle frontal gyrus R 28, 13, 52
Anterior inferior parietal lobule L −43, −59, 50
Anterior inferior parietal lobule R 44, −60, 49
Posterior inferior parietal lobule L −34, −77, 42
Posterior inferior parietal lobule R 42, −72, 37
Anterior cingulate cortex L −6, 24, 43
Precuneus L −7, −68, 52

The table lists the regions that were most significantly active during the working memory
(1-back and 2-back) conditions compared to the control condition (functional contrast
of [2-back/2 + 1-back/2] > Compare). The peak coordinates are reported in MNI space
(LPI/SPM) and refer to the voxel with the greatest positive activation.
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and extraneurite compartments, and represents neurite density
(Zhang et al., 2012). Orientation dispersion index (ODI) is
the angular variation in neurite orientation, and CSF Fraction
(FW) is the CSF/FW compartment divided by the sum of all
three compartments. All three metric maps were calculated for
each participant using the default settings from the NODDI
MATLAB toolbox [toolbox version 1.04 (Zhang et al., 2012);
MATLAB version R2019 Update 7]. As done in the free
water elimination model, any voxels that were above an 80%
threshold in the CSF Fraction/FW map were set to zero in the
corresponding ICVF or ODI maps to reduce partial volume
effects (Zhang et al., 2012).

Probabilistic tractography

Estimates of anatomical, white-matter connectivity between
the 12 seed ROIs defined in Section “Defining the fMRI
working memory network” were calculated using probabilistic
tractography in FSL, as described in our previous work (Brown
et al., 2015, 2017). First, the CUDA/GPU version of BEDPOSTX
(BEDPOSTX_GPU) was used to construct per participant maps
of the distribution of diffusion parameters at each voxel,
from the eddy corrected diffusion data (described in Section
“Diffusion magnetic resonance imaging preprocessing”) as input
(Behrens et al., 2007). The distribution of diffusion parameters
was modeled using zeppelins (model 3).

Next, each participant’s high resolution T1 image was
aligned to a b0 image from their motion-corrected diffusion
MRI data (Section “Diffusion magnetic resonance imaging
preprocessing”) using the AFNI function align_epi_anat.py
and a local Pearson correlation cost function. The aligned T1
image was then non-linearly warped to MNI152 space (MNI
ICBM152 1 mm 6th generation atlas; Grabner et al., 2006) using
the AFNI function auto_warp.py. Finally, the inverse of the
transformation matrix obtained in the previous step was used
to warp the 12 seed gray matter fMRI ROIs (defined in Section
“Defining the functional magnetic resonance imaging working
memory network”), and a brainstem mask created from the
Harvard-Oxford Subcortical Atlas (Desikan et al., 2006), from
MNI152 space to each participant’s native diffusion MRI space
using 3dNwarpApply and a nearest neighbor cost function.
The brainstem mask was used to constrain the probabilistic
tractography step described below.

The 12 native-space-warped seed ROIs obtained previously
were used as inputs to the CUDA/GPU version of FSL’s
PROBTRACKX2 (PROBTRACKX2_GPU) in order to calculate
estimates of anatomical connectivity between the seed ROIs
(Behrens et al., 2003, 2007). PROBTRACKX2_GPU was
executed using modified Euler streamlining in network mode.
Five-thousand streamlines were generated from each voxel
within each of the seed ROIs, with a maximum of 2,000 steps
per streamline, a step length of 0.5 mm, a minimum streamline

length of 20 mm, a curvature threshold of 0.2 (curvature angle
could not exceed approximately 80◦), and the default fiber
volume threshold of 0.01. To prevent tracking of streamlines
across the brainstem, the native-space-warped brainstem mask
(obtained in the previous step), was used as an exclusion
mask as described in our previous work (Brown et al., 2015).
Tracking between seed ROIs for any streamline stopped if any
of the following failure criteria were met: streamlines extending
from one seed ROI did not reach any of the other seeds, the
minimum streamline length requirements were not met, the
streamline curvature threshold was exceeded (greater than 80◦),
the streamline exited the brain, or looped back on itself, or the
streamline entered the exclusion mask (brainstem).

The output of PROBTRACKX2 is a streamline density map,
containing successful streamlines per voxel for each participant.
A proportion image was then created for each participant by
dividing each streamline density map by the sum of all voxels
across the seed ROIs within that participant, to correct for
any potential differences in the total number of streamlines
generated between participants. Therefore, each participant’s
proportion image provides a quantitative measure of the
proportion of successful streamlines that passed through each
voxel. Next, each participant’s proportion image was divided by
the waytotal, which is the sum of all the successful streamlines
for that participant, to account for differences in the “ease of
tractability” across all participants (Brown et al., 2015).

Tract-based spatial statistics

Each participant’s FA map was transformed into standard
space and skeletonized using FSL’s tract-based spatial statistics
(TBSS) pipeline (Smith et al., 2006), as described in our previous
work (Bauer et al., 2021). After an initial preprocessing step
(tbss_1_preproc), non-linear voxel-wise registration was used to
transform each participant’s FA image into 1mm FMRIB58_FA
space. These transformed images were then averaged to create
a mean FA image (tbss_2_reg and tbss_3_postreg), from
which a common white matter tract skeleton was created. All
participants FA data was then projected onto this skeleton [i.e.,
“skeletonized”; thresholded at FA > 0.2 (tbss_4_prestats)] to
correct partial volume effects that may occur after warping.
All other diffusion metric maps (Section “Diffusion tensor
imaging processing”; FW, FWE-FA, ICVF, ODI, CSF Fraction)
from each participant were likewise processed with the same
templates, transformations, and skeletonization using FSL’s
tbss_non_FA pipeline. Each participant’s waytotal-normalized
proportion images (Section “Probabilistic tractography”) were
also processed with the same templates and transformations
using tbss_non_FA, but were not skeletonized. All participants
non-skeletonized waytotal-normalized proportion images in
FMRIB58_FA space were used to produce a group working
memory network white matter (WMN-WM) mask (Section
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“Extracting diffusion metrics from the group WMN-WM
mask”).

Extracting diffusion metrics from the group
WMN-WM mask

A group working memory network white matter (WMN-
WM) mask was created by averaging each participant’s
waytotal-normalized proportion image into a group mean
image (Figure 2; Supplementary Figure 1) and applying a
percentile threshold to include only the voxels with values
in the top 3% using AFNI’s 3dttest++ and a clusterization
procedure (3dclust; minimum cluster size = 100) to remove
any voxels that survived the threshold but were not connected
to the primary WMN-WM mask. Several other threshold
values (top 2%, top 5%, top 10%) were also explored
but yielded poorer results (Supplementary Tables 2, 3 and
Supplementary Figure 2), and produced a network which
was either too restrictive (top 2%) or less specific (capturing
white matter less relevant to working memory; top 5% and top
10%).

Each participant’s skeletonized diffusion metric maps (FA,
FW, FWE-FA, ICVF, ODI, CSF Fraction; Section “Tract-based
spatial statistics”) were then restricted to voxels overlapping with
the binarized group WMN-WM mask and the mean of non-
zero voxels was extracted from each participant’s maps using
FSL (fslmeants).

Statistical analyses

Statistical analyses were conducted using SPSS 27 (IBM,
Chicago, IL, USA). In our initial analyses we compared both
mean D-prime and mean log D-prime between the compare
and N-back (averaged across the 1-back and 2-back conditions)
conditions using a paired-sample t-test. For our fMRI-diffusion
MRI analyses, we first report the network of brain regions
showing functional BOLD activation during the working
memory task (Figure 1 and Table 2) and the white matter
tracts connecting these functionally activated brain regions
(Figure 2). Subsequent analyses explored how strongly each
diffusion metric within the identified white matter tracts was
associated with age and with log D-prime from the N-back tasks
(Section “Behavioral data analysis”). As mentioned in Section
“Extracting diffusion metrics from the group WMN-WM
mask,” we thresholded the group mean waytotal-normalized
proportion image to include only those voxels with values in
the top 3%, but other thresholds were tested both qualitatively
(Supplementary Figure 2) and for quantitative assessment with
age (Supplementary Table 2) and cognition (Supplementary
Table 3).

A single model with all diffusion metrics predicting age
could not be employed as values from several diffusion metrics
were correlated and overlapped in the intended diffusion

measurement. For this reason, three conceptually-grouped
models were used to predict age. The first model was based
on the single-compartment DTI data, where only standard
FA in the working memory network white matter (WMN-
WM) regions was used as a predictor of age. The second
model was grouped based on the two-compartment free water
elimination model, with both the FWE-FA and FW in WMN-
WM regions included as predictors. The final model was
grouped based on the three-compartment NODDI model,
with ICVF, ODI, and CSF Fraction in WMN-WM regions
included as the predictors. In all three models, sex was
used as a covariate.

The same strategy of grouping predictors was used in three
models predicting log D-prime during the N-back tasks (Model
1; FA, Model 2; FW and FWE-FA, Model 3; ICVF, ODI, and
CSF Fraction). In these three models, both age and sex were
used as covariates.

Results were considered statistically significant at p < 0.05.
Statistical outliers were defined as values greater than 3 standard
deviations from the group mean and were excluded from
relevant analyses. Error residuals in all linear regression models
were examined for the assumption of normality using Q-Q
plots (Supplementary Figure 3). The variance inflation factor
(VIF) between predictors in linear regression models was not
permitted to exceed a value of 5 (Stine, 1995) to limit the effects
of collinearity.

Results

Participant and data characteristics

Participant summary demographics are presented in Table 1
(Section “Participants”). Error residuals in all linear regression
models followed a normal distribution (Supplementary
Figure 3). In all linear regression models, the VIF for all
predictors was less than 2 and tolerance was greater than 0.5.

N-back task performance

D-prime data from one participant were unavailable and
data from another participant had one D-prime outlier value,
which was removed from relevant analyses (Sections “N-back
task performance” and “Association between diffusion metrics
and working memory performance”; N = 97 for Section “N-
back task performance”). Mean D-prime across participants was
6.43 in the compare condition and 3.45 in the averaged 1-
back and 2-back conditions, which was a significant difference
(t = 14.138, p < 0.001). Participants also had a significantly
higher log D-prime score in the compare condition than
in the averaged 1-back and 2-back conditions (t = 10.914,
p < 0.001), as expected.
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FIGURE 2

Group-level working memory network white matter mask. The figure displays the group-level white matter tracts (red), identified via
probabilistic tractography, which make up the WMN-WM mask (Section “Extracting diffusion metrics from the group WMN-WM mask”) overlaid
onto a 1 mm MNI ICBM152 template (MNI ICBM152 1 mm 6th generation atlas; Grabner et al., 2006). Peak regions of activation during the fMRI
working memory task were used as seed regions (Table 2 and Figure 1) to create this WMN-WM mask.

Functional magnetic resonance
imaging working memory network

We identified twelve regions significantly more active in the
N-back conditions than the compare control condition. These
included bilateral dorsolateral prefrontal cortices, posterior
middle frontal gyri, frontopolar cortices, anterior inferior
parietal lobules, posterior inferior parietal lobules, left anterior
cingulate cortex and left precuneus (Figure 1 and Table 2). The
peak coordinates from all positively active regions (Table 2)
were used as inputs in the Neurosynth database (Yarkoni et al.,
2012), which revealed that our peaks directly overlapped with,
or were immediately adjacent to, core working memory network
regions identified using a meta-analysis of 1,334 working
memory-related studies.

Probabilistic tractography

The white matter tracts connecting the fMRI-defined
working memory network included the body and splenium
of the corpus callosum, bilateral portions of the superior

longitudinal fasciculus, and bilateral portions of the corona
radiata (Figure 2). The frontal and parietal fMRI seeds are
interconnected with their contralateral homologues primarily
through the corpus callosum while the ipsilateral frontal and
parietal fMRI seeds are primarily interconnected through the
superior longitudinal fasciculus.

Association between diffusion metrics
and age

Data from two participants were excluded from the
Sections “Association between diffusion metrics and age” and
“Association between diffusion metrics and working memory
performance” due to visible artifacts in diffusion data and the
presence of outlier values in calculated diffusion metrics (N = 97
for Section “Association between diffusion metrics and age” and
N = 95 for Section “Association between diffusion metrics and
working memory performance”). All diffusion metrics in the
Sections “Association between diffusion metrics and age” and
“Association between diffusion metrics and working memory
performance” were computed from skeletonized tracts within
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the WMN-WM mask (Section “Extracting diffusion metrics
from the group WMN-WM mask”; Figure 2). FA was negatively
correlated with age (β = −0.425; p < 0.001) in the first
model (Table 3). In the second model, FWE-FA was negatively
associated with age (β = −0.407; p = 0.001), while FW was not
associated with age (β = 0.069; p = 0.570). In the final model,
ICVF was negatively associated with age (β = −0.377; p < 0.001),
ODI was positively associated with age (β = 0.247; p = 0.011),
and CSF Fraction was not associated with age (β = 0.140;
p < 0.137).

Association between diffusion metrics
and working memory performance

Fractional anisotropy was only marginally correlated with
D-prime (β = 0.185; p = 0.088) in the first model (Table 4
and Figure 3). In the second model, FWE-FA was positively
associated with D-prime (β = 0.272; p = 0.045), but FW was
not associated with D-prime (β = 0.050; p = 0.693). In the final
model, ICVF was positively associated with D-prime (β = 0.250;
p = 0.020), while ODI (β = −0.089; p = 0.396) and CSF Fraction
(β = 0.047; p = 0.643) were not associated with D-prime.

Discussion

We compared the strength of association between MRI
diffusion metrics derived from single-compartment and
multi-compartment models with age and working memory
performance in older adults. Comparisons between diffusion
metrics were performed within a targeted working memory
network of white matter tracts interconnecting functionally
activated working memory regions. Our results indicate that
FA and most multi-compartment diffusion metrics were strong
predictors of age. However, only multi-compartment metrics
[FWE-FA and ICVF (neurite density)] were associated with
working memory performance. Our results suggest that while

TABLE 3 Summary of linear regression models with diffusion metrics
extracted from the WMN-WMmask predicting age.

Diffusion metric Standardized beta T-value P-value

Model 1

FA −0.425 −4.518 <0.001*

Model 2

FW 0.069 0.570 0.570

FWE-FA −0.407 −3.348 0.001*

Model 3

ICVF −0.377 −4.029 <0.001*

ODI 0.247 2.611 0.011*

CSF fraction 0.140 1.499 0.137

FA, fractional anisotropy; FW, free water; FWE-FA, free water eliminated fractional
anisotropy; ICVF, intracellular volume fraction; ODI, orientation dispersion index; CSF
Fraction, cerebrospinal fluid fraction.
*p < 0.05.

TABLE 4 Summary of linear regression models with diffusion metrics
extracted from the WMN-WMmask predicting working
memory performance.

Diffusion metric Standardized beta T-value P-value

Model 1

FA 0.185 1.724 0.088

Model 2

FW 0.050 0.396 0.693

FWE-FA 0.272 2.034 0.045*

Model 3

ICVF 0.250 2.360 0.020*

ODI −0.089 −0.852 0.396

CSF fraction 0.047 0.465 0.643

FA, fractional anisotropy; FW, free water; FWE-FA, free water eliminated fractional
anisotropy; ICVF, intracellular volume fraction; ODI, orientation dispersion index; CSF
Fraction, cerebrospinal fluid fraction.
*p < 0.05.

FA is a robust predictor of age-related alterations, multi-
compartment diffusion metrics appear to be more sensitive
predictors of cognitive performance in older adults.

We first identified a set of brain regions showing strong
functional response during an N-Back working memory task.
The peak positive activations either directly overlapped with, or
were immediately adjacent to, peaks identified in a meta-analysis
of 1,334 working memory-related studies in the Neurosynth
database (Yarkoni et al., 2012). Probabilistic tractography was
then used to identify a white matter network composed of
tracts connecting the fMRI-defined visual working memory
network. The white matter tracts connecting our visual working
memory network included portions of the body and splenium
of the corpus callosum, bilateral portions of the superior
longitudinal fasciculus (SLF) and corona radiata. These tracts
have been shown to support working memory and other
executive function tasks (Kennedy and Raz, 2009; Madden et al.,
2009; Zahr et al., 2009; Gold et al., 2010). For example, the
SLF forms a key portion of the lateral frontoparietal network,
connecting the DLPFC with the IPL, and contributing to
working memory function (Menon, 2011) while the corpus
callosum connects the DLPFC and IPL with their contralateral
homologues.

Diffusion metrics and age

Our results demonstrated that FA, FWE-FA, ICVF, and
ODI values within a network of tracts supporting working
memory were all significant predictors of age. Previous results
have shown that conventional DTI metrics such as FA (Lebel
et al., 2012; Cox et al., 2016; Chad et al., 2018; Beck et al.,
2021), two-compartment metrics of FWE-FA and FW (Chad
et al., 2018), and three-compartment NODDI metrics [ICVF,
ODI, and CSF Fraction (Billiet et al., 2015; Cox et al., 2016;
Kodiweera et al., 2016; Beck et al., 2021)] are all significant
predictors of age throughout the majority of white matter
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FIGURE 3

Associations between diffusion metrics extracted from the WMN-WM mask and working memory performance. The figure displays scatterplots
of each diffusion metric against log D-prime during the N-back tasks. Only ICVF and FWE-FA were significantly associated with log D-prime
(middle row).

tracts studied. Our findings add to this literature by showing
that the majority of single and multi-compartment models
tested were negatively associated with age within a task-
relevant working memory network, even after controlling
for shared variance between metrics in our linear regression
models.

Diffusion metrics and working memory
performance

In contrast to our findings concerning age, our results
indicated that diffusion metrics extracted from a task-
relevant white matter network performed differently in

predicting working memory performance. FA was significantly
associated with working memory performance only after
FWE was applied [FA (β = 0.185; p = 0.088); FWE-
FA (β = 0.272; p = 0.045)]. In previous studies exploring
only uncorrected FA, age-related reductions in FA have
been found to contribute to poorer working memory or
related executive function performance in some studies
including our own (Charlton et al., 2006, 2010; Gold et al.,
2010; Bourbon-Teles et al., 2021) while other studies have
reported null results with uncorrected FA (Edde et al., 2020;
Gullett et al., 2020). In addition, uncorrected FA is often
associated with poorer performance on only a portion of
the executive function tasks explored (Grieve et al., 2007;
Kennedy and Raz, 2009).
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These mixed findings likely in part reflect that traditional
DTI measures such as FA are contaminated by FW partial
volume effects, particularly in studies with older adults, in whom
atrophy and ventricular enlargement are the norm (Pasternak
et al., 2009; Timmers et al., 2016). The limited sensitivity of
traditional DTI measures (FA) may also reflect that FA is
strongly affected by crossing fibers and inherently conflates
morphological features such as neurite orientation dispersion
and neurite density (Wheeler-Kingshott and Cercignani, 2009;
Szczepankiewicz et al., 2015).

We further explored the association between working
memory performance and NODDI-derived metrics. In a
model including all three NODDI metrics (ICVF; modeling
neurite density, ODI; modeling angular variability in neurite
orientation, and CSF Fraction; modeling free water), only
ICVF was associated with working memory performance
(p = 0.020). CSF fraction was again not associated with cognitive
performance (p = 0.643), in agreement with the free water
elimination model findings (p = 0.693). These cross-sectional
results suggest that neurite density may be a better predictor
of task performance in healthy older adults than either neurite
orientation dispersion (ODI) or free water (FW/CSF Fraction).
Additional work which explores multiple cognitive tasks will be
needed to explore this possibility.

Free water was not associated with age
or working memory performance

Our results demonstrated that FW was not a significant
predictor of age or cognition (in Model 2 or 3), contrasting
with some previous reports (Cox et al., 2016; Ji et al., 2017;
Maillard et al., 2019; Gullett et al., 2020; Beck et al., 2021).
This apparent discrepancy may be explained by several factors.
First, in contrast with other studies, we specifically investigated
a distributed network of tracts supporting working memory.
While FW in global white matter is associated with decreases
in cognitive performance (Ji et al., 2017; Duering et al., 2018;
Maillard et al., 2019), our results suggest that FW in a defined
working memory network is not strongly associated with
working memory performance specifically. Second, our study is
unique in that the shared variance between predictors in each
multi-compartment model was accounted for in subsequent
linear regression models (Models 2 and 3). Indeed, FW (from
the FWE model) was significantly associated with age (p = 0.001)
when shared variance was not controlled (Supplementary
Table 4), suggesting that FWE-FA accounts for more unique
variance than FW as a predictor of age in our participant sample.

However, in our study FW was not associated with working
memory performance even when it was entered as a sole
model predictor (Supplementary Table 5). Free water quantifies
highly isotropic diffusion, which is thought to primarily
reflect extracellular water content (Pasternak et al., 2009, 2012;

Maillard et al., 2019, 2022). Recent MRI studies further suggest
that FW may be a biomarker of global cerebral injury, as
elevated FW is associated with a variety of conditions including
schizophrenia (Pasternak et al., 2015; Lyall et al., 2018),
Alzheimer’s disease (Ji et al., 2017; Bergamino et al., 2021),
Parkinson’s disease (Ofori et al., 2015; Planetta et al., 2016),
and cerebral small vessel disease/vascular pathology (Ji et al.,
2017; Maillard et al., 2017, 2019; Duering et al., 2018). While
the exact underlying processes are currently unknown (Maillard
et al., 2019), FW is thought to represent relatively advanced
damage associated with more global neuroinflammation,
neurodegeneration, and/or vascular dysfunction (Ji et al., 2017;
Maillard et al., 2017, 2019). Therefore, our finding that FW was
not associated with working memory performance may relate
to our participant group, which consisted of cognitively normal
older adults likely to have less neurodegeneration and vascular
pathology than the patient groups described above.

Strengths of our study include the mapping of the white
matter connections between fMRI-defined working memory
network regions using probabilistic tractography, the use of
advanced multi-compartment modeling enabled by multi-shell
diffusion imaging, and the consideration of previously validated
diffusion metrics (Chang et al., 2015; Albi et al., 2017; Lehmann
et al., 2021; Maillard et al., 2022) as predictors of age and
cognition. Of particular note, in contrast to most published
studies, multiple diffusion metrics were included in the same
linear regression models when appropriate (Model 2: FWE-FA
and FW; Model 3: ICVF, ODI, and CSF Fraction) to account
for shared variance between predictors. Finally, we recruited a
moderately large sample size of older adults with a wide age
range (60–85 years), and the use of standardized processing
and analysis pipelines (AFNI, FSL, TBSS) more easily permits
replication.

Limitations

There are certain limitations to the current study that
highlight the need for follow-up investigation. First, our cross-
sectional study cannot determine how each diffusion metric
might predict declines in working memory performance.
Additional longitudinal work is needed to address this issue.
Second, as mentioned earlier, our study focused on cognitively
normal older adults and it is possible that our findings may
not generalize to individuals with more neurodegenerative
or cerebrovascular pathology. In particular, some multi-
compartment models such as NODDI can have limitations
which are exacerbated in the presence of pathology (Lampinen
et al., 2017; Kamiya et al., 2020). Future studies should take this
into consideration when exploring additional subsets of older
adults with elevated dementia or vascular disease risk. Third, our
study focused solely on one cognitive domain, working memory.
Future studies should compare the sensitivity of diffusion
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metrics to other cognitive domains, preferably controlling for
their shared variance when appropriate.

Finally, free water and NODDI metrics are only a subset
of advanced diffusion metrics developed to better model white
matter microstructure. Since the primary goal of the present
study was to specifically investigate whether multi-compartment
diffusion metrics better predict age and cognition than
traditional DTI metrics, rather than to compare and contrast
all diffusion metrics, many advanced diffusion metrics were
inevitably excluded. Further studies are needed to determine
the associations between other advanced diffusion metrics, such
as metrics from WM tract integrity (WMTI; Fieremans et al.,
2011), spherical mean technique (SMT; Kaden et al., 2016), or
diffusional kurtosis imaging (DKI; Jensen et al., 2005) with age
and cognitive performance.

Conclusion

Our results suggest that most MRI diffusion metrics derived
from current single and multi-compartment models contribute
unique variance in the prediction of age. In contrast, our
results also suggest that working memory performance in older
adults is more specifically associated with tract-related white
matter characteristics modeled by multi-compartment diffusion
models (i.e., FWE-FA and ICVF). Future longitudinal studies
replicating these findings in other older adult samples are
needed to confirm this possibility.
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