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Abstract 

Real-world time-series data can show substantial short-term 
variability as well as underlying long-term trends. Verbal 
descriptions from a pilot study, in which participants 
interpreted a real-world line graph about climate change, 
revealed that trend interpretation might be problematic 
(Experiment 1). The effect of providing a graph interpretation 
strategy, via a linguistic warning, on the encoding of long-
term trends was then tested using eye tracking (Experiment 
2). The linguistic warning was found to direct visual attention 
to task-relevant information thus enabling more detailed 
internal representations of the data to be formed. Language 
may therefore be an effective tool to support users in making 
appropriate spatial inferences about data.  

Keywords: graph comprehension; language; visual attention  

 

Line graphs can be a powerful communication tool to 

visually demonstrate important relationships in time-series 

data. They are ubiquitous in everyday life and graph 

interpretation is considered an important skill for a 

scientifically literate society (Glazer, 2011). Many types of 

real-world data exhibit substantial short-term variability as 

well as long-term trends, e.g. global mean surface 

temperature records (IPCC, 2013), share prices (Schwert, 

2011), and incidence of certain diseases (e.g. Subak, 2003). 

In visualizations of such data, can users efficiently and 

accurately identify underlying long-term trends? If not, how 

might users be supported in doing so?  

Comprehension of graphs involves an interaction between 

bottom-up sensory processes and top-down cognitive 

constraints, and is thought to involve two key cyclical 

processes (Carpenter & Shah, 1998; Freedman & Shah, 

2002). First, users construct an internal representation of the 

display by encoding perceptual features of the graph, guided 

by prior knowledge. Then knowledge is applied to integrate 

the representation into a coherent mental model. If relevant 

information is represented directly in the graph and can be 

easily linked with existing knowledge, this integration phase 

is comparatively effortless. However, if information is not 

explicitly  represented in  the graph and/or the user lacks the 

 

required knowledge to form an accurate model, or cannot 

easily access the required knowledge, then comprehension 

is likely to require much more effort.  

For example, a climate scientist will know to consider the 

long-term trend when interpreting temperature records and 

so may effortlessly transform and encode visual features 

from the data that support a representation of the long-term 

trend. In contrast, a climate science ‘novice’ may encode 

visual features that are explicitly represented in the graph, 

such as the amplitude of peaks or troughs, which may 

support an understanding of short-term fluctuations, but 

make inferences about the long-term trend rather effortful 

and less likely. Hence, graphs that organize and structure 

data, such that emergent visual properties explicitly reveal 

important relationships, e.g. based on Gestalt laws, may be 

particularly effective (Kosslyn, 1989; Zacks & Tversky, 

1999), by reducing the cognitive effort that might otherwise 

be needed (Hegarty, 2011). 

Although a line graph may be a single unit by the Gestalt 

law of connectedness (Ali & Peebles, 2013), a complex line 

may be decomposed into parts or ‘chunks’, based on local 

curvature extrema (Hoffman & Richards, 1984). Time-

series datasets that show significant short-term variability 

may have numerous curvature extrema (e.g. trend reversals) 

creating multiple visual chunks. These chunks may serve as 

units on which inferential processes, required for 

interpretation, act (Freedman & Shah, 2002). 

Trend reversals can increase study time, and also increase 

local content and decrease global content of verbal and 

written interpretations of line graphs (Carswell, Emery, & 

Lonon, 1993). In this study it was hypothesized that each set 

of continuous non-reversing data points constitutes a chunk 

of information in an individual's internal representation. 

Hence local curvature extrema may indicate boundaries in 

the perceptual grouping of connected lines thus creating 

numerous visual chunks for higher level cognitive 

processing. Interpreting long-term trends may therefore be 

difficult, because it requires integration of these visual 
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chunks, which may require effortful cognitive processes 

such as spatial transformations. 

If this is the case, language might be a useful tool to 

support spatial cognition. Evidence suggests that attending 

to spatial language when encoding visual scenes can help 

construct representations that support spatial reasoning 

(Loewenstein & Gentner, 2005) and can influence memory 

of spatial scenes (Feist & Gentner, 2007). Furthermore, 

language can provide a user-goal during the study of a 

visual scene (i.e. a purpose for engaging with the scene), 

which may then activate relevant schema and guide visual-

spatial attention (Brunyé & Taylor, 2009; Rothkopf, 

Ballard, & Hayhoe, 2007; Yarbus, 1967). Eye-tracking 

studies of relatively simple graphs indicate that visual 

attention appears to be driven by user-goals and graph 

knowledge (Carpenter & Shah, 1998; Peebles & Cheng, 

2003) and hence using language to influence these top-down 

processes might help users to attend to and encode 

appropriate information in time-series line graphs. 

The aim of Experiment 1 was to characterize difficulties, 

if any, in trend interpretation by asking participants to look 

at and then describe a real-world time-series graph that 

contained an underlying long-term trend as well as 

substantial short-term variability. Experiment 2 then asked 

whether a linguistic warning, providing an interpretation 

strategy, might improve encoding of long-term trends. 

Experiment 1  

To see if people correctly identify long-term trends from 

time-series graphs that also show significant short-term 

variability, verbal descriptions were collected from 

individuals exposed to a real-world graph showing such 

characteristics. The graph chosen (Figure 1) shows data for 

Northern Hemisphere spring snow cover extent between 

1922-2012, published by the Intergovernmental Panel on 

Climate Change (IPCC, 2013). The IPCC is an international 

scientific body tasked with communicating policy-relevant 

scientific information to policy makers. The figure therefore 

has societal relevance. Furthermore, the data indicate a 

significant downward trend over the whole time-period, 

together with substantial inter-annual variability. The 

authors indicate that snow cover extent has decreased since 

the mid-20th century (IPCC, 2013), suggesting that this is 

an important communication goal. 

Method 

Participants  Twelve undergraduate students (10 female, 

two male) from the University of East Anglia took part in 

the study in return for course credit or a nominal payment. 

Their average age was 21 years (range 19–29 years). None 

of the participants were studying environmental sciences. 

 

Apparatus and Materials  The stimulus was presented on 

a TFT LCD monitor (51cm x 29cm), set to 1280 x 720 

pixels. Eprime Version 2.0 (Psychology Software Tools 

Inc.,   Sharpsburg,   USA)   was  used   to   control  stimulus  

 
 

Figure 1: SPM.3a from Figure SPM.3: Multiple observed 

indicators of a changing global climate (IPCC, 2013).
1
 

 

presentation and record data. Verbal responses were 

captured via a headset microphone. The stimulus consisted 

of Figure SPM.3a from the IPCC Summary for Policy 

Makers (IPCC, 2013) (Figure 1).  

 

Procedure  The figure was presented for 15 seconds – 

during this time, participants were asked to simply look at 

the figure. They then saw a ‘Now describe’ prompt and the 

same figure re-appeared on the screen, at which point 

participants were asked to describe what they thought it was 

trying to show. The figure remained on screen until the 

participant completed their verbal response, up to a 

maximum time limit of 45 seconds. 

 

Coding  Verbal descriptions were coded to assess the 

presence (1) or absence (0) of the following aspects: (a) the 

data represent changes in snow cover over time; (b) a 

general downward trend; (c) a downward trend between 

~1960 and ~2012; (d) short-term variability/fluctuation.
2
   

Results and Discussion 

All twelve participants correctly identified that the data 

represented changes in snow cover over time, but only five 

participants (42%) described a downward trend over the 

whole data. One of these participants also described a 

downward trend between ~1960 and ~2012. Of the five 

participants who described either type of downward trend, 

one also described the short-term variability (20%), but of 

the seven participants who did not describe either downward 

trend, five described the short-term variability (71%) 

(p=.01, Fisher’s Exact Test). These pilot data suggest that 

when presenting graphs that contain an underlying long-

term trend and substantial short-term variability, 

spontaneous interpretation of the long-term trend may be far 

from guaranteed.  

                                                           
1 Multiple observed indicators of a changing global climate: (a) 

Extent of Northern Hemisphere March-April (spring) average 

snow cover. All time-series (coloured lines indicating different 

data sets) show annual values, and where assessed, uncertainties 

are indicated by coloured shading. 
2 Inter-rater reliability across all aspects and all coding: κ = 

1.000, p<.001. 
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Experiment 2 

The pilot data from Experiment 1 indicate that the long-term 

trend may not be readily interpreted in graphs that also show 

substantial short-term variability. The aim of Experiment 2 

was therefore to test whether a linguistic warning that 

provides a strategy for interpreting long-term trends (by 

ignoring task-irrelevant features) would improve encoding 

of the long-term trend; and if so, whether this is driven by 

changes in visual attention (measured using eye tracking). 

In addition, Experiment 2 investigated whether reducing, or 

removing intermediary x-axis tick marks and labels might 

have a beneficial effect on the encoding of long-term trends, 

as their presence might cue people to read-off data values or 

focus on short-term (inter-tick/-label) trends.  

Method 

Design  To test spatial representations of the long-term 

trend (i.e. gradient) and short-term variability (i.e. 

amplitude), a forced choice task was employed in which 

participants were shown a graph to study and then asked to 

make a ‘same’ or ‘different’ judgment on a following test 

graph. The test graph was either identical to the study graph 

(same); had the same peaks and troughs as the study graph 

but with a different gradient (gradient different); had the 

same gradient as the study graph but with exaggerated peaks 

and troughs (amplitude different); or was completely 

different to the study graph (completely different). The 

number of x-axis ticks, either 2, 5 or 9, was varied across 

each type of test graph (see Figure 2 for examples). 

To test the effect of a linguistic warning on cognition of 

the graph, participants were randomly allocated to either 

receive a warning asking them to ignore extreme values in 

order to consider the long-term trend (warning), or to 

receive no such warning (no warning). The experiment was 

therefore a 4 (trial type) x 3 (x-ticks) x 2 (warning) design, 

with trial type and x-ticks as within participant variables and 

warning as a between participant variable.  

 

Participants  Forty undergraduate students (29 female, 11 

male) from the University of East Anglia took part in the 

study in return for course credit or a nominal payment. Their 

average age was 21 years (range 18-30 years). 

 

Apparatus  A Tobii TX300 Eye Tracker (Tobii Technology 

AB, Danderyd, Sweden) with integrated TFT LCD monitor 

(51cm x 29cm) set to 1280 x 720 pixels was used for 

stimulus presentation and collection of eye gaze data at 

300Hz. Eprime Version 2.0 (Psychology Software Tools 

Inc., Sharpsburg, USA) was used to control stimulus 

presentation and record data. Responses for same-different 

trials were given using the ‘Z’ and ‘M’ keyboard keys. 

Response key mappings were reversed and counterbalanced 

between warning conditions. Verbal responses were 

recorded via a headset microphone. Eye gaze data were 

analyzed using OGAMA Version 4.5 (A. Voßkühler, Freie 

Universität Berlin, Germany), using default parameters for 

fixation detection.  

Linguistic Warning  The linguistic warning was displayed 

in 28pt Calibri and read: “WARNING When looking at 

graphs, people are often misled by extreme data points – 

short-term fluctuations in the data can obscure the long-term 

trend. To avoid errors, it is useful to ignore extreme data 

points to correctly identify the long-term trend.”  

 

Graph Stimuli  Twenty-four study time-series graphs were 

created (1126 x 510 pixels), each plotting 17 data points. 

Graphs showed an underlying positive, negative or flat 

long-term trend. Data points for each graph were created by 

sampling residuals at random from a normal distribution, 

which were then applied to a baseline positive, negative or 

flat linear trend graph. The x-axis was labelled ‘Years’ and 

the y-axis was labelled either as ‘Medication use (doses)’, 

‘Infections (patients)’, ‘Temperature (
o
C)’, ‘Rainfall (mm)’, 

‘Income (GBP £)’, or ‘Expenditure (USD $)’. The x-axis 

covered a range of 16 years, with the starting year always 

between 1900 and 1994. A caption was created for each 

graph that simply read ‘[variable] over time.’  

A positive, negative and flat trend study graph was 

allocated to each trial type. A test graph was then created for 

each study graph. Test graphs for the same condition were 

identical to their corresponding study graph. Test graphs for 

the gradient different condition were created by a 

transformation of the study graph that resulted in a visual 

rotation of the graph line by ±2 degrees. Test graphs for the 

amplitude different condition were created by multiplying 

the residuals of the study graph by a factor of 1.4. Three 

new graphs were created to serve as test graph pairings for 

the completely different trials. For each study and test graph 

pairing, three variants were created, each showing 2, 5 and 9 

x-ticks (Figure 2). The remaining study graphs were 

allocated to true-false and describe filler trials, which also 

included variations for each level of x-ticks. 

 

Areas of Interest (AOI)  AOIs were defined for each study 

graph by first determining a circle around each data point 

with a maximum diameter that would avoid overlapping 

adjacent data points (58 pixels). A parallelogram with 

height 58 pixels, width 1002 pixels (2.0 x 34.5 degrees of 

visual angle), was then fitted over the line of best fit of the 

graph data, determined by linear least squares regression. 

This formed the line of best fit AOI (6.3% of screen area). A 

convex hull was then determined around the outer edges of 

these shapes, which formed the whole data AOI (mean 

22.1% of screen area). An extreme data AOI was defined as 

the area of the whole data AOI that sat outside of the line of 

best fit AOI (mean 15.8% of screen area) (Figure 3). 

 

Procedure  Participants were informed that the study was 

investigating how people understand line graphs and they 

then received instructions on screen before a practice block 

of trials. The eye tracker was calibrated and then 

participants in the warning condition received the warning 

on screen and were instructed to read it before starting the 

first   of   three   blocks   of   trials.   Participants  in   the  no  
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Figure 2: Three examples of the study and test graphs in 

Experiment 2. 

 
warning condition simply started the first block of trials 

after eye tracker calibration. Each trial consisted of a study 

phase (Figure 4) during which participants were asked to 

look at and study the caption and the graph. The caption was 

presented prior to the graph to help control time spent 

reading the caption. The study phase was followed by one 

of three task cues (Figure 4). For same-different trials, 

participants had to make a same-different judgment about a 

test caption and then about a test graph in comparison to the 

study caption and study graph. Participants were instructed 

to give a response as quickly as possible when the 

caption/graph appeared.  

Each block consisted of 12 same-different trials (three of 

each of the different trial types), presented in random order. 

Three true-false trials and three describe trials were included 

in each block to encourage participants to study the graphs 

in a naturalistic way and to ensure depth of encoding. Each 

x-tick variation of a given graph was presented in a different 

block. Blocks of trials were counterbalanced across 

participants and the eye tracker was re-calibrated at the start 

of each block. At the end of the third block, participants in 

the warning condition were asked what they remembered 

about the warning. The study lasted approximately 1 hour. 

 
 

Figure 3: Line of best fit AOI and extreme data AOI for one 

of the 24 study graphs in Experiment 2. 
 

Results and Discussion 

Only same-different trials in which a correct response was 

given to the test caption and a response was given to the test 

graph were included in the analyses (i.e. trials in which 

participants correctly remembered the caption and then went 

on to make a judgement about the graph). Six participants 

were removed from further analyses: one participant who 

subsequently reported monocular vision impairment; one 

participant whose accuracy on completely different trials 

was 11% (lower than three SD from mean accuracy); and 

four participants in the warning condition who could not 

remember any detail about the warning when asked at the 

end of the study (and so may not have encoded it). 
 

Task Performance  Sensitivity to detect differences 

between the graphs of same-different trials was measured 

using d' in order to assess response accuracy with the effects 

of response bias removed. Participants’ d' scores were 

analyzed with a 3 (trial type) x 3 (x-ticks) x 2 (warning) 

mixed ANOVA. There was a main effect of trial type, 

F(2,64)=59.603, p<.001, partial η
2
=.651. Bonferroni post-

hoc tests indicated a significant difference between 

amplitude different trials and completely different trials 

(p<.001), and gradient different trials and completely 

different trials (p<.001), indicating that participants had a 

greater ability to detect differences between study and test 

graphs when the test graph was completely different, than 

when only the amplitude or gradient was different. 

There was no main effect of x-ticks, F(2,64)=0.504, 

p=.606; and no main effect of warning, F(1,32)<0.001, 

p=.994. However there was a significant interaction 

between trial type and warning, F(2,64)=3.459, p=.037, 

partial η
2
=.098 (Figure 5). Post-hoc examination indicated 

that participants in the no warning condition performed 

significantly worse on gradient different trials (M = 0.251, 

95% CI ±0.222) than amplitude different trials (M = 0.667, 

95% CI ±0.274) (p=.008), whereas those in the warning 

condition performed about equally on gradient different 

trials (M=0.504, 95% CI ±0.293) and amplitude different 

trials (M=0.479, 95% CI ±0.349). There was no significant 

x-ticks x warning interaction, F(2,64)=3.041, p=.055; and 

no three-way interaction, F(4,128)=1.162, p=.331, 

indicating that the number of intermediary x-ticks did not 

influence sensitivity to detect changes in the long-term trend. 
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Figure 4: Presentation of same-different and filler trials. 

 

Using language to provide task-relevant knowledge 

improved sensitivity to detect differences in task-relevant 

information (i.e. the long-term trend) relative to other 

information (i.e. amplitude). Furthermore, this did not 

appear to come at the expense of an impaired sensitivity to 

detect differences in the other information.  

To investigate if the effect of the warning on gradient 

performance deteriorated over time, d' values were 

recalculated by collapsing data across x-ticks (as there was 

no significant x-ticks main effect or interaction), and then 

splitting out the data by block. A 2 (warning) x 3 (trial type) 

x 3 (block) mixed ANOVA was then performed. Results 

were consistent with the first mixed ANOVA, and there was 

no three way interaction between trial type, warning and 

block, F(2.903,92.895)=0.189, p=.898 (with Greenhouse-

Geisser correction), indicating that there was no evidence to 

suggest that the trial type x warning interaction was 

modulated by the duration between the warning and the 

block of trials. This suggests that the warning was encoded 

into long-term memory and applied throughout the study. 

These results indicate that the warning had a lasting effect 

on participants’ judgements, suggesting that in the absence 

of explicit user-goals, using language to impart graph 

knowledge may direct subsequent interpretation of the data. 

 

Visual Attention  To investigate if the improved 

discriminability of the gradient found in the warning 

condition might be driven by differences in visual attention 

during encoding, fixation durations for the AOIs of the 

study graphs were calculated. Fixations were calculated for 

same-different trials in which a correct response was given 

to the caption and a response was  given to the test graph, all 

 
 

Figure 5: Average sensitivity (d') for each trial type and 

warning group, with 95% confidence intervals. 

 

true-false trials in which a response was given, and all 

verbal trials. Trials for four participants were excluded from 

further analysis as they had poor eye tracking calibrations. 

Individual trials were excluded if >15% of eye tracking 

samples were missing, or if there was a continuous period 

>700ms of data missing (10.7% of trials). As there was no 

main effect or interaction of x-ticks in the d' data, fixation 

data were collapsed across x-ticks. 

At study, participants in the warning condition spent 

significantly longer fixating within the line of best fit area 

than participants who did not receive the warning, 

t(19.802)=2.119, p=.024 (one-tailed, equal variances not 

assumed) (Table 1). Conversely, there was no significant 

difference in total fixation duration of the extreme data area 

between the two groups, t(25.137) =-0.352, p=.728 (two-

tailed, equal variances not assumed), nor a significant 

difference in total fixation duration in the whole data area, 

t(28)=1.288, p=.208 (two-tailed, equal variances assumed). 

Taken together, the task performance and visual attention 

results suggest that using language to provide graph 

knowledge can direct visual attention to task-relevant 

information during encoding, which then enables the 

creation of a more detailed internal representation of the 

graphed data (rather than merely an alternative 

representation) and can influence subsequent interpretation.  

 

Table 1: Mean (M) and standard deviations (SD) of 

fixation duration in ms during study for each AOI. 

Area of  No warning (n=16) Warning (n=14) 

interest M      SD M      SD 

Line of best fit  1426 (432) 1919 (772) 

Extreme data 1587 (586) 1525 (356) 

Whole data 3013 (884) 3444 (952) 

General Discussion 

The research presented here supports and builds on existing 

theoretical research on display comprehension and has 

important implications for communicators of time-series 

data. Pilot data from Experiment 1 found that interpretations 
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of a real-world time-series line graph that contained a high 

degree of short-term variability (and therefore many trend 

reversals) did not elicit correct descriptions of the long-term 

trend in more than half of the participants. This is consistent 

with the hypothesis that trend reversals provide salient 

visual cues that break down connected lines into separate 

visual chunks, which may then be difficult to integrate into 

a representation of the long-term trend. Experiment 2 found 

that in the absence of an explicit user-goal or an 

interpretation strategy, users created better representations 

of the short-term variability than the long-term trend. 

However, when provided with an interpretation strategy via 

a linguistic warning, participants encoded both the long-

term trend and short-term variability equally well. 

In contrast to previous research investigating changes to 

the layout and format of a display in order to make task-

relevant patterns explicitly represented (e.g. Shah, Mayer, & 

Hegarty, 1999), the research presented here highlights top-

down cognitive processes on the identification and 

interpretation of data patterns. Language may be an 

effective way of providing graph knowledge, which can 

then be drawn on to direct visual attention to relevant visual 

features and support appropriate spatial inferences. 

This may be especially pertinent when communicating 

complex data sets that contain several communication goals. 

For example, climate scientists may wish to communicate 

the long-term trends of indicators of a changing climate, as 

well as enabling individuals to understand that short-term 

variability in these indicators exists. Language may provide 

a useful tool to direct users to consider aspects that require 

complex inferential processes (such as the long-term trend) 

in addition to the salient patterns in the display. Given the 

need for individuals to interpret graphs to make informed 

decisions and play an active role in society, there is a need 

to extend our theoretical understanding of display 

comprehension, and to apply and test out theoretical insights 

in real-world communication problems. The research 

presented here supports both of these aims.      
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