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How to Count Structure

Thomas William Barrett∗

Abstract

There is sometimes a sense in which one theory posits ‘less structure’
than another. Philosophers of science have recently appealed to this idea
both in the debate about equivalence of theories and in discussions about
structural parsimony. But there are a number of different proposals cur-
rently on the table for how to compare the ‘amount of structure’ that
different theories posit. The aim of this paper is to compare these pro-
posals against one another and evaluate them on their own merits.

1 Introduction

The history of classical spacetime theories is often presented as a progression
towards a ‘less structured’ spacetime.1 Indeed, the story is often told as follows.

We began long ago with Aristotelian spacetime. Aristotelian space-
time singles out a preferred location as the center of the universe.
When we moved to Newtonian spacetime we did away with this
structure. Newtonian spacetime does not single out a preferred lo-
cation, but it does single out a preferred inertial frame as absolute
rest. Finally, we moved to Galilean spacetime and again did away
with structure. Galilean spacetime does not even single out a pre-
ferred rest frame.

It is standard to draw the following conclusion from this story. It is, in fact,
implicit in the way the story is usually told.

Conclusion 1. Each of these classical spacetime theories posits less structure,
or ascribes less structure to the world, than its predecessors. Galilean
spacetime, for example, is obtained by ‘taking something away’ — namely,
the concept of absolute rest — from Newtonian spacetime.

The aim of this paper is to better understand claims like Conclusion 1. In
particular, the aim is to understand what this relationship of ‘positing less
structure than’ amounts to.

∗Forthcoming in Noûs. I can be reached at tbarrett@philosophy.ucsb.edu. I’m especially
grateful to Hans Halvorson and Jim Weatherall for many helpful conversations about this
material over the years. Thanks to audiences in Munich and Irvine for discussion.

1See for example Geroch (1978), Friedman (1983), Earman (1989), and Maudlin (2012).
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While Conclusion 1 is itself intuitive, there are more difficult cases outside
the realm of classical spacetime theories that one might want to consider. For
example, North (2009) has recently argued that the Hamiltonian formulation of
classical mechanics posits less structure than the Lagrangian formulation. And
Rosenstock et al. (2015) have argued that, contrary to what Earman (1986,
1989) claims, the standard geometric formulation of general relativity does not
posit more structure than its algebraic formulation, which appeals to the math-
ematical apparatus of Einstein algebras. Since there are these more difficult
cases of structural comparison, we want to have some general criteria that we
can use to tell whether one theory posits less structure than another.

There are two main reasons why this structural relationship is philosophi-
cally important. The first has to do with another inter-theoretic relation that
philosophers have recently been examining: equivalence of theories. It is natural
to draw the following corollary from Conclusion 1.

Conclusion 2. Each of these classical spacetime theories is not equivalent to its
predecessors. Aristotelian and Newtonian spacetime, for example, disagree
about whether or not there is a center of the universe.

Equivalent theories are supposed to be mere ‘notational variants’ of one another;
they say the same thing about the world, but say it in different ways. They
might, for example, be formulated using different languages or different mathe-
matics, but all of the differences between them are taken to be inconsequential.
The two most cited examples of equivalent theories in physics are the Heisen-
berg and Schrödinger formulations of quantum mechanics and the Hamiltonian
and Lagrangian formulations of classical mechanics. But the general question of
when we should consider two theories to be equivalent — and indeed, whether
or not these purported examples are actual cases of equivalence — has recently
been the subject of significant debate.2

The story of classical spacetime theories — and in particular the move from
Conclusion 1 to Conclusion 2 — suggests a particular way to approach questions
of equivalence. Since the Aristotelian, Newtonian, and Galilean theories of
spacetime all ascribe different amounts of structure to spacetime, they all say
different things about the world, and therefore must be inequivalent theories.
They disagree about the amount of structure that the world has. In general, this
kind of reasoning about amounts of structure should carry over when we consider
whether other theories are equivalent: If two theories posit different amounts of
structure, then they must be inequivalent. This method of answering questions
of equivalence has, in fact, already been employed. North (2009) infers from
her claim that Hamiltonian mechanics posits less structure than Lagrangian
mechanics that the two theories must actually be inequivalent, dissenting from

2See, for example, Andréka et al. (2005), Barrett (2017), Barrett and Halvorson (2016a,b,
2017a,b), Coffey (2014), Curiel (2014), Halvorson (2013), Glymour (2013), Hudetz (2015,
2017), Knox (2011, 2014), North (2009), Rosenstock et al. (2015), Rosenstock and Weatherall
(2016), Teh and Tsementzis (2017), Tsementzis (2015), Van Fraassen (2014), and Weatherall
(2017a). See also the classic work of Glymour (1971, 1977, 1980), Quine (1975), and Sklar
(1982). See Weatherall (2019a) for a review of recent work.
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the standard view. This is one reason why it is important for us to better
understand claims like Conclusion 1. We would thereby gain a tool that we can
use to judge whether two theories are equivalent.

There is a second reason why it is important to understand claims like Con-
clusion 1. The story about the progression of classical spacetime theories has
motivated some metaphysicians, philosophers of physics, and physicists to adopt
a version of the following methodological principle.

Structural parsimony. All other things equal, we should prefer theories that
posit less structure.

North (2009, p. 64), for example, puts this idea as follows:

This is a principle informed by Ockham’s razor; though it is not just
that, other things being equal, it is best to go with the ontologically
minimal theory. It is not that, other things being equal, we should
go with the fewest entities, but that we should go with the least
structure.

Sider (2013, p. 240) argues that “‘structurally simpler’ theories are more likely
to be true”, which would certainly give us good reason to prefer them. Earman
(1989, p. 46) argues that we should avoid theories that use “more space-time
structure than is needed to support the laws”. Friedman (1983, p. 112) argues
the same. And even the mathematical physicist Geroch (1978, p. 52) comes close
to endorsing the structural parsimony principle. After discussing the transition
from Newtonian to Galilean spacetime, he writes:

Although the evidence on this is perhaps a bit scanty, it seems to
be the case that physics, at least in its fundamental aspects, always
moves in this one direction. It may not be a bad rule of thumb to
judge a new set of ideas in physics by the criterion of how many of
the notions and relations that one feels to be necessary one is forced
to give up.

Even though the structural parsimony principle is often endorsed, it stands
in need of clarification. One needs to clarify exactly what the other things are,
what it might mean for them to be equal, and exactly what kind of preference the
principle licenses. The most essential clarification that must be made, however,
is the one that we intend to pursue in this paper. In order to even say which
pairs of theories the structural parsimony principle is applicable to, one needs
to understand the conditions under which one theory posits less structure than
another. In other words, one needs to understand how to count, or compare,
amounts of structure. A number of different proposals for how to compare
amounts of structure have recently been put forward.3 But there has so far

3See the classic discussions of Earman (1989) and Friedman (1983). Recently these issues
have been discussed by North (2009), Swanson and Halvorson (2012), Barrett (2015a,b),
Weatherall (2016b), Nguyen et al. (2017), and Feintzeig (2017). Note that depending on
exactly what tools we end up with to compare amounts of structure, it may be that structure
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been no systematic evaluation of them. The aim of this paper is to provide such
an evaluation.

The proposals naturally divide into two broad approaches: the automor-
phism approach and the category approach. The former tries to answer the
question of how to compare amounts of structure by looking to the automor-
phisms, or symmetries, of the objects under consideration, while the latter tries
to answer the question by looking to the categories in which the objects reside.
Both have recently been employed by philosophers of physics. After evaluating
these two approaches in detail, I will conclude by returning to these more gen-
eral issues of structural parsimony and equivalence. Our discussion will yield
two modest payoffs. The first concerns the conditions under which the struc-
tural parsimony principle is applicable; the second concerns the conditions under
which we are licensed to infer the inequivalence of two theories from apparent
structural differences between them. In both of these cases, the conditions are
harder to satisfy than one might have initially thought.

2 The automorphism approach

It is useful to begin with some simple examples. In addition to the three classical
spacetime theories already discussed, the following examples provide an intuitive
starting point for our investigation into what this relationship of ‘having more
structure than’ amounts to.

Example 1. A topological space (X, τ) has more structure than a set X. It
has topological structure τ in addition to the basic set structure of X. y

Example 2. An inner product space (V, 〈−,−〉) has more structure than a
vector space V . It has the inner product structure 〈−,−〉 in addition to all of
the basic vector space structure of V . y

Example 3. A Riemannian manifold (M, gab) has more structure than a smooth
manifold M . It has the metric structure gab in addition to all of the manifold
structure of M . y

These examples are uncontroversial. They are exactly the kinds of examples
that are standardly cited as instantiating the ‘has more structure than’ relation.
But not all cases of structural comparison are this straightforward, so we would
like to have a general method of determining when one mathematical object has
more or less structure than another.

A particularly natural method of comparing amounts of structure has been
suggested by both Earman (1989) and North (2009). We will call this method

is not the kind of thing that can be genuinely counted ; it may be that we cannot represent
‘amounts of structure’ with the ordering of the real numbers. For example, as we will see,
many standards of structural comparison deem it possible for objects to have incomparable
amounts of structure, in the sense that neither has more nor less nor the same structure as
the other.
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the automorphism approach, since it appeals to the automorphisms, or symme-
tries, of the mathematical objects in question. An automorphism of a mathe-
matical object X is a bijective structure preserving map from X to itself. There
is a long tradition in mathematics and physics of looking to the automorphisms
of an object for insight into the object’s structure. Weyl (1952, p. 144–5) writes,
for example, that a “guiding principle in modern mathematics is this lesson:
Whenever you have to do with a structure-endowed entity X, try to determine
its group of automorphisms, the group of those element-wise transformations
which leave all structural relations undisturbed. You can expect to gain a deep
insight into the constitution of X in this way.” The automorphism approach is
based on precisely this idea. We should look to the automorphisms of objects
in order to tell how much structure they have.

Since the automorphisms of an object bear such a close relationship to the
structure of the object, one is led to the following kind of criterion for comparing
amounts of structure. We use the notation Aut(X) to denote the group of
automorphisms of a mathematical object X.4

SYM. A mathematical object X has more structure than a mathematical object
Y if and only if the automorphism group Aut(X) is ‘smaller than’ the automor-
phism group Aut(Y ).

The basic idea behind SYM is clear. If a mathematical object has more au-
tomorphisms, then it intuitively has less structure that these automorphisms are
required to preserve. Conversely, if a mathematical object has fewer automor-
phisms, then it must be that the object has more structure that the automor-
phisms are required to preserve. The amount of structure that a mathematical
object has is, in some sense, inversely proportional to the size of the object’s au-
tomorphism group. Earman (1989, p. 36) puts this basic idea as follows: “As the
space-time structure becomes richer, the symmetries become narrower.” And
North (2009, p. 87) writes that “stronger structure [. . . ] admits a smaller group
of symmetries.”

But SYM is not useful until we spell out precisely what it means for one
automorphism group to be ‘smaller than’ another. Swanson and Halvorson
(2012) and Barrett (2015a,b) have suggested the following way of making this
idea precise.

SYM∗. A mathematical object X has more structure than a mathematical object
Y if and only if Aut(X) ( Aut(Y ).

The condition Aut(X) ( Aut(Y ), i.e. that Aut(X) is a proper subset of
Aut(Y ), is one way to make precise the idea that Aut(X) is ‘smaller than’
Aut(Y ). There are two simple arguments that proponents of SYM∗ give in its
favor: the argument from examples and the argument from size. Neither of
these arguments, however, are entirely compelling. There is a third argument
for SYM∗, the argument from definability, that is more involved and given
substantially less often. We will discuss these three arguments in turn.

4The names “SYM” and “SYM∗” come from Swanson and Halvorson (2012) and Barrett
(2015a,b).
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The argument from examples

The first argument is an appeal to examples. SYM∗ makes intuitive verdicts in
easy cases of structural comparisons like Examples 1–3, so we should expect it to
make the correct verdict in more difficult cases too. In Example 1, for instance,
we see that every homeomorphism from the topological space (X, τ) to itself is
trivially a bijection from the set X to itself. This means that all automorphisms
of the former are automorphisms of the latter. But in general the converse does
not hold; there are bijections X → X that are not homeomorphisms from (X, τ)
to itself.

One reasons in a perfectly analogous manner to show that SYM∗ makes in-
tuitive verdicts in other simple cases as well. For example, one can show that
it judges each of the classical spacetime theories discussed above to have less
structure than its predecessors (Barrett, 2015b). The fact that SYM∗ captures
some easy examples speaks in favor of the criterion, but it is not entirely con-
vincing. In particular, one would like some kind of conceptual explanation of
why SYM∗ is capturing facts about structural comparison.

The argument from size

The second argument in favor of SYM∗ takes a step in this direction. In fact,
we have already seen this argument in the gloss that we gave on SYM earlier.
If Aut(X) ( Aut(Y ), this means that X has fewer automorphisms than Y ,
which — since automorphisms are structure preserving maps from an object
to itself — suggests that X has more structure that these automorphisms are
required to preserve. This argument is more convincing that the argument from
examples. It gives us a kind of explanation for why we should expect SYM∗ to
make reasonable verdicts in cases of structural comparison.

The argument from definability

But one can do better. There is a third argument for SYM∗ that is based on
considerations from model theory, and in particular, the theory of definability.
These considerations are gestured at by Swanson and Halvorson (2012), but
one can make their point more precise. This argument is more convincing, and
certainly more illuminating, than either of the previous arguments for SYM∗,
so it is worth going through it in detail. The remainder of this section will be
devoted to doing this.

The simple examples presented above suggest a particularly natural place to
start looking for a method for comparing amounts of structure. Consider the
following desideratum.

Desideratum. A mathematical object X has more structure than a mathemat-
ical object Y if and only if X has all of the structures that Y has, but X has
some structure that Y lacks.

The idea behind this desideratum is simple, and it coheres well with what is
going on in the examples discussed above. Indeed, in each of these cases one can
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simply read off from the notation that the one object has more structure than
the other according to the desideratum. An inner product space (V, 〈−,−〉),
for example, has all of the structures that a vector space V has, and it has the
additional structure provided by the inner product 〈−,−〉. The notation that
we use in these cases allows us to easily point to the additional piece of structure
that the one object has. This kind of desideratum is not novel. North (2009,
p. 65–66), for example, suggests that one object has more structure than another
when the former has additional ‘levels’ of structure. This idea is essentially the
same as our desideratum.

The process of determining whether or not a particular object has a certain
piece of structure, however, is not always as simple as just examining notation.
Indeed, the notation we use for mathematical objects is not always perfectly
transparent with respect to structure. We cannot always read off from the
notation we use whether or not X has all of the structures that Y has. Consider
the following two examples.

Example 4. A metric space (X, d) has more structure than a topological space
(X, τ). At first glance, the notation suggests that a topological space has a
piece of structure that a metric space lacks in the form of the topology τ . It
is well known, however, that a metric space naturally comes equipped with —
indeed, the metric d determines — a canonical topology τd. So despite the fact
that it cannot be read off simply by looking at the notation, there is a clear
sense in which a metric space (X, d) has all of the structures that a topological
space has, and in addition, it has metrical structure d that the topological space
lacks. y

Example 5. A Riemannian manifold (M, gab) has more structure than a man-
ifold with only a derivative operator (M,∇). Once again it might appear as
if a Riemannian manifold does not have all of the structures that a manifold
with derivative operator has; the derivative operator (or ‘affine connection’) ∇
is not explicitly appealed to in the notation that we use for a Riemannian man-
ifold. It is nonetheless well known that a Riemannian manifold comes equipped
with a canonical derivative operator, the Levi-Civita derivative operator. Once
again, it cannot be read off of notation, but there is nonetheless a strong sense
in which a Riemannian manifold has all of the structures that a manifold with
a derivative operator has and more. y

The phenomenon illustrated in these two examples is already familiar to
mathematicians and logicians. In each case, although the notation we use for
the latter object explicitly appeals to some structures that are not among the
structures explicitly appealed to in the notation used for the former object,
the structures of the former object suffice to define all of the structures of the
latter object. The topological space (X, τ) has the topological structure τ ,
which is not among the structures appealed to in the notation we use for the
metric space (X, d). But the metric d suffices to define the metric topology τd
in a perfectly standard manner. Because of this, it is standard to say that the
metric space (X, d) ‘determines’ or ‘comes equipped with’ or ‘naturally gives rise
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to’ topological structure. The same holds in Example 5. Since the metric gab
defines the Levi-Civita derivative operator ∇ on that manifold, it is standard to
think of the Riemannian manifold (M, gab) as determining or coming equipped
with a derivative operator.5

These two examples show that in general a mathematical object comes
equipped with some structures that are not explicitly appealed to in its no-
tation. In fact, it is natural to think of an object as coming equipped not
just with its ‘basic level’ of structure, but also with all of those structures that
the basic level defines. With this idea in mind, we can take a step towards
sharpening our original desideratum.

Desideratum. A mathematical object X has more structure than a mathemat-
ical object Y if and only if X can define all of the structures that Y has, but X
has some piece of structure that Y does not define.

With this sharpened desideratum in hand, one can ask whether or not SYM∗

satisfies it. The following question does just this.

Question 1. Is it the case that X has more structure than Y according to SYM∗

if and only if X defines all of the structure that Y has, but X has some piece of
structure that Y does not define?

The argument from definability is an argument for the claim that SYM∗

does satisfy the desideratum. It answers Question 1 in the affirmative.
At this point, we still need to make precise what it means for X to ‘define

all of the structures’ that Y has. The concept of definability is well-understood
in the context of model theory. We therefore need some basic preliminaries
on this framework.6 A signature Σ is a set of predicate symbols, function
symbols, and constant symbols. The Σ-terms, Σ-formulas, and Σ-sentences are
recursively defined in the standard way. A Σ-structure A is a nonempty set
in which the symbols of Σ have been interpreted. One recursively defines when
a sequence of elements a1, . . . , an ∈ A satisfy a Σ-formula φ(x1, . . . , xn) in
a Σ-structure A, written A � φ[a1, . . . , an]. We will use the notation φA to
denote the set of tuples from the Σ-structure A that satisfy a Σ-formula φ. A
Σ-sentence is a Σ-formula with no free variables. An automorphism of a
Σ-structure A is a bijection from A to itself that preserves the extensions of all
of the predicates, functions, and constants in Σ.

The basic set-up that we will employ in order to discuss definability is the
following:

• Let Σ1 and Σ2 be signatures. The elements of Σ1 and Σ2 represent the
‘basic structures’ on the two objects that we will consider. These can be
thought of as the structures that are explicitly appealed to in the notation
we use to describe the objects.

5Any topology textbook will give the familiar explicit definition of τd in terms of d. Geroch
(1972) shows how one can explicitly define ∇ using gab and the Lie derivative. See Barrett
(2018) and the references therein, for a sampling of the rich literature on definability in logic.

6The reader is encouraged to consult Hodges (2008) for further details.

8



• Let A be a Σ1-structure and B a Σ2-structure. We will think of A and
B as the two objects (that is, X and Y from our desideratum) whose
structures will we be comparing. In order to simplify matters here, we
will assume that A and B both have the same underlying set.7

We need to make precise what it means for A to define all of the basic structures
that B has, or in other words, what it means for A to define all of the elements
of Σ2. So let p ∈ Σ2 be one of the basic structures on B. We assume without
loss of generality that p is a predicate symbol. There are now two particularly
natural ways to make precise what it means for A to define this additional piece
of structure p. We will consider the following two. We say that the Σ1-structure
A explicitly defines pB if there is a Σ1-formula φ such that φA = pB . And
we say that the Σ1-structure A implicitly defines pB if h[pB ] = pB for every
automorphism h : A→ A of A.8

The intuition behind these two notions of definability is easy to appreciate.
If A explicitly defines the structure pB , this shows that the structure pB can be
‘constructed from’ the basic structures in Σ1 that A is equipped with. Indeed, it
is natural to think of pB as an ‘abbreviation’ of the structure φA that A already
has. On the other hand, suppose that A implicitly defines pB . When this is
the case, one often says that the structure pB is ‘invariant under’ or ‘preserved
by’ the symmetries of A. And it is common to infer from this that A comes
equipped with the structure pB .9 The relation between these two varieties of
definability is already well known. If A explicitly defines pB , then A implicitly
defines pB . But the converse does not hold.

We now have two varieties of definability on the table, so we have a choice
about exactly how to make Question 1 precise. We begin by considering the
version that asks about implicit definability. We will return to the explicit
definability version in the following section.

Question 1 (Implicit definability). Is it the case that X has more structure
than Y according to SYM∗ if and only if X implicitly defines all of the structure
that Y has, but X has some piece of structure that Y does not implicitly define?

One can easily prove the following proposition, which shows that that the
answer this version of Question 1 is yes.

Proposition 1. The following are equivalent:

1. For every symbol p ∈ Σ2, A implicitly defines pB, but there is a q ∈ Σ1

such that B does not implicitly define qA.

7This assumption seems innocuous at this point — after all, the pairs of objects under
consideration in Examples 1–5 all had the same underlying set — but we will return to it
later when discussing shortcomings of SYM∗.

8It is important to note here that there are a number of different varieties of implicit
definability that are often considered. The kind of invariance under symmetry condition that
we provide here is one of the weaker varieties. The reader is encouraged to consult Barrett
(2018), Hodges (2008), and Winnie (1986) and the references therein for further details on
implicit and explicit definability.

9For discussions about the sense in which this inference is justified, see Barrett (2018) and
Dasgupta (2016) and the references therein.
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2. Aut(A) ( Aut(B)

Proof. Immediate from definitions.

The second statement in Proposition 1 says that A has more structure than
B according to SYM∗; the first statement says that A has more structure than
B according to our desideratum, once sharpened using the concept of implicit
definability. So Proposition 1 illustrates that SYM∗ is in fact equivalent to our
desideratum in the first-order case, answering Question 1 in the affirmative.
This is the argument from definability. It can be summarized as follows. Once
one makes it precise using the concept of implicit definability, our desideratum
— a particularly natural starting place when looking for a criterion to compare
amounts of structure — is the same thing as SYM∗.

3 Problems with the automorphism approach

The three arguments in the previous section demonstrate that SYM∗ is a plau-
sible criterion for comparing amounts of structure. And indeed, it has already
been fruitfully used to clarify the relationships between different spacetime the-
ories (Barrett, 2015b; Weatherall, 2019a; Bradley, 2020) and between different
formulations of classical mechanics (Barrett, 2015a; Swanson and Halvorson,
2012). But the criterion nonetheless suffers from two shortcomings.

Sensitivity

The first problem is easy to appreciate.10 SYM∗ is too sensitive to the underly-
ing sets of the objects being compared. The following simple example illustrates
this problem.

Example 6. Let (X, τ) be a topological space and Y a set that is not equal to
X. One wants to say that (X, τ) has more structure than Y . It has topological
structure that Y does not have. But it is easy to verify that SYM∗ does not
make this verdict. In fact, no automorphism of (X, τ) is an automorphism of Y
and no automorphism of Y is an automorphism of (X, τ). This is because an
automorphism of (X, τ) is a bijection from X to itself, and therefore, since X
and Y are different sets, not even a function from Y to itself. So according to
SYM∗ these two objects have incomparable amounts of structure. They clearly
do not have the same structure, but neither has more nor less structure than
the other. y

This verdict is troubling, and one can easily come up with many other ex-
amples of this same kind. Examples like this show that there is a sense in which
SYM∗ is too strict a criterion for comparing amounts of structure. There are
pairs of objects X and Y — like the ones from Example 6 — such we want to
say that X has more structure than Y , but SYM∗ does not make this verdict.

10This problem is gestured at in the discussion of a criterion called SYM∗∗ by Barrett
(2015a), and it is mentioned explicitly by Barrett (2015b, p. 3).
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At the very least, the sensitivity problem shows us that SYM∗ is only a useful
tool for comparing structure when the objects under consideration have the same
underlying set. While there are cases of interest, like many spacetime theories,
where the objects under consideration do have the same underlying set, there
are also cases of interest where this condition does not hold. The statespace
of Lagrangian mechanics is the tangent bundle T∗M , while the statespace of
Hamiltonian mechanics is the cotangent bundle T ∗M . These objects do not
have the same underlying set. Similarly, a relativistic spacetime and an Einstein
algebra do not have the same underlying set. But we nonetheless want to be
able to compare the structures of these objects. SYM∗ is not a tool that allows
us to do so.

Triviality

The second problem is of a slightly different character. SYM∗ makes implausible
verdicts when presented with objects whose only automorphism is the identity
map. In such cases we say that the object has a trivial automorphism group.
The following example makes this problem precise.

Example 7. Let Σ1 = {c1, c2, c3, . . .} be a signature containing a countable
infinity of constant symbols, and let Σ2 = Σ1∪{p}, where p is a unary predicate
symbol. We define a Σ1-structure A and a Σ2-structure B in the following
manner. We let the domains of A and B both be the set {0, 1, 2, . . .} and we
let cAi = cBi = i for each i. Now note that since there are uncountably many
subsets of A, but only countably many Σ1-formulas, there must be some subset
of A that is not equal to φA for any Σ1-formula φ. We let pB be one such subset.

There is a sense in which B has more structure than A. Indeed, B is obtained
from A by ‘adding’ a piece of structure in the form of the predicate symbol p.
Moreover, because of how we constructed the piece of structure pB , it is not
explicitly definable in terms of the structures on A. But SYM∗ does not consider
B to have more structure than A. Since every automorphism h of A satisfies
h[cAi ] = cAi , the only automorphism of A is the identity map. So A has a trivial
automorphism group. It therefore cannot be the case that the automorphism
group of B is a proper subset of the automorphism group of A. This means that
it is not the case that B has more structure than A according to SYM∗. y

In brief, the triviality problem that SYM∗ faces is the following: When an
object X has a trivial automorphism group, there is no object that has more
structure than X according to SYM∗. Even if an object Y is constructed by
adding a level of structure to X — as is the case in the Example 7 — Y will
not have more structure than X according to SYM∗. That is troubling.

It is worth taking a moment to further unravel Example 7. This example
demonstrates a sense in which SYM∗ actually does not perfectly satisfy our
desideratum, pointing to a flaw in the argument from definability. Consider
again the objects A and B. According to the desideratum, it should be that B
has more structure than A. B trivially has all of the structure that A has, and it
has more, in the form of the predicate symbol pB that is not definable from the
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structures on A. But SYM∗ does not make this verdict. The proper diagnosis
of this situation is the following. When the argument from definability — and
in particular, Proposition 1 — answered Question 1 in the affirmative, we were
employing the notion of implicit definability. Proposition 1 demonstrates that
X has more structure that Y according to SYM∗ if and only if X implicitly
defines all of the structures that Y has, but X has some piece of structure
that Y does not implicitly define. But this variety of implicit definability is
a particularly weak kind of definability. Indeed, if an object X has a trivial
automorphism group, every new piece of structure is implicitly definable from
the basic structures on the object, since every piece of structure is invariant
under the identity map.

Explicit definability is a stronger kind of definability. One might hope that
Question 1 can be answered in the affirmative when it is made precise in the
following way.

Question 1 (Explicit definability). Is it the case that X has more structure
than Y according to SYM∗ if and only if X explicitly defines all of the structure
that Y has, but X has some piece of structure that Y does not explicitly define?

Unfortunately, the answer to this question is no, and Example 7 demon-
strates precisely this. The object B explicitly defines all of the structures that
A has, A does not explicitly define the structure pB that B has, but nonetheless
it is not the case that B has more structure than A according to SYM∗.11 The
triviality problem therefore shows us that while the argument from definability
goes through if one is employing the weak notion of implicit definability, it does
not go through if one is employing the stronger notion of explicit definability.

We therefore have the following precise diagnosis of what is generating the
triviality problem. SYM∗ is a tool for tracking facts about implicit definability,
but it does not perfectly track facts about explicit definability. And this is a
definite shortcoming of SYM∗ as a criterion for comparing amounts of struc-
ture. One might hope for a criterion that is more closely connected to explicit
definability.12

11One can easily verify that A does implicitly define pB , showing, as we remarked earlier
without proof, that this variety of implicit definability does not entail explicit definability.

12One might just put forward our desideratum itself — made precise using the notion of
explicit definability — as a criterion for comparing amounts of structure. The main issue with
this is that in order to apply this desideratum to a pair of objects, one would first have to
know what “languages” are used to describe the objects. One cannot speak precisely of explicit
definability without having a clear picture of what languages the objects are formulated in.
Most mathematical objects are not presented to us using a formal language, and this criterion
would not be easily applicable in such cases. Our best hope, therefore, is to find a criterion
like SYM∗ (or the categorical criterion that we will discuss shortly) that is easily applicable
to mathematical objects “in the wild”, but that also bears a close relationship to explicit
definability in the cases where the objects under consideration are presented to us in formal
languages.

12



4 The category approach

Fortunately, there is another approach to comparing amounts of structure that
is already on the table: the category approach.13 This approach involves a shift
of emphasis from the automorphism approach. Criteria like SYM∗ tell us how
to compare amounts of structure between individual objects X and Y . There is
a sense in which the category approach changes the question. It instead tries to
capture when one type of mathematical object has more structure than another
type of mathematical object or when one theory posits more structure than
another theory.

This section will examine one particular way to use categories to compare
structures between theories that has recently received attention from logicians
and philosophers of physics. In order to explain this method of comparing
amounts of structure, we need some basic category theoretic machinery.14 The
class of models of a theory often has the structure of a category. We will call this
category the category of models of the theory. A category C is a collection
of objects with arrows between the objects that satisfy two basic properties.
First, there is an associative composition operation ◦ defined on the arrows of
C, and second, every object c in C has an identity arrow 1c : c→ c. Let C and
D be categories. A functor F : C → D is a map from objects and arrows of C
to objects and arrows of D that satisfies

F (f : a→ b) = Ff : Fa→ Fb F (1c) = 1Fc F (g ◦ h) = Fg ◦ Fh

for every arrow f : a → b in C, every object c in C, and every composable
pair of arrows g and h in C. Functors are the ‘structure preserving maps’
between categories; they preserve domains, codomains, identity arrows, and
the composition operation. One can think of them as ‘translations’ between
categories; they map objects and arrows of one category to objects and arrows
of the other. One property that a functor might have will be crucial in what
follows. A functor F : C → D is full if for all objects c1, c2 in C and arrows
g : Fc1 → Fc2 in D there exists an arrow f : c1 → c2 in C with Ff = g.

Baez et al. (2006) classify functors between categories based on ‘what they
forget.’ Most important for our purposes is the following.

The Baez method. Let C and D be categories with F : C → D a functor.
We say that F forgets structure if F is not full.

The existence of a functor F : C → D that forgets structure captures a
sense in which — relative to the comparison generated by F — objects of D
have less structure than objects of C. So in order to say whether objects in C
have more or less structure than objects in D, the Baez method advises us to
look to the kinds of functors that exist between these two categories. Given two

13A criterion that replaces the subset relation of SYM∗ with the subgroup relation, called
SYM∗∗, has also been discussed (Barrett, 2015a). The problem with this criterion is that
it compares too many different mathematical objects and in doing so actually moves farther
away from our desideratum than SYM∗.

14The reader is encouraged to consult Mac Lane (1971) or Borceux (1994) for further details.
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theories T1 and T2, we look to the functors that exist between their categories of
models Mod(T1) and Mod(T2) to tell whether one of the theories posits more or
less structure than the other. This method of comparing amounts of structure
has recently been used widely in philosophy of physics. For example, Feintzeig
(2017) uses it to compare structures in quantum theory, Rosenstock et al. (2015)
use it to compare formulations of general relativity, Rosenstock and Weatherall
(2016), Nguyen et al. (2017), and Weatherall (2016b, 2017a) apply it to different
gauge theories, and Barrett (2017) uses it to compare structures in classical
mechanics.15

The three arguments that we gave in favor of SYM∗ all translate into argu-
ments in favor of the Baez method. As before, arguments from examples and
size are found more often in the literature, but they are less compelling than
the argument from definability. Our next aim is to go through these arguments
in detail, just like we did for SYM∗.

The argument from examples

Recall our simple examples from above. One can use the Baez method to capture
the structural relationship in each of these cases.

Example 1 (continued). Consider the categories Set and Top. The objects of
Set are sets and the arrows are functions between sets. The objects of Top are
topological spaces and the arrows are continuous functions. One particularly
natural functor U : Top→ Set is defined by

U : (X, τ) 7−→ X U : f 7−→ f

for all topological spaces (X, τ) and continuous functions f . One can easily verify
that U is a functor. It converts a topological space into a set by ‘forgetting’
about the topology. Since there are functions between some topological spaces
that are not continuous, U is not full and therefore forgets structure. y

Example 4 (continued). The category Met of metric spaces contains objects
(X, d), where d is a metric on the set X. The arrows in Met are isometries,
i.e. functions f between metric spaces that preserve the metric d. There is a
functor V : Met→ Top defined by

V : (X, d) 7−→ (X, τd) V : f 7−→ f

where τd is the metric topology on X, i.e. the topology that contains all sets
that can be realized as unions of open balls according to d. One can easily verify
that V is a functor. It is not full, and therefore forgets structure, since there are
in general continuous maps between metric spaces that are not isometries. y

One can easily verify that the same holds of the other examples discussed
earlier. It is also worth seeing a case where the Baez method says that structure

15It is also well known in the category theory community. See Baez and Shulman (2010).

14



has not been forgotten. General relativity can be formulated either using the
formal apparatus of a manifold with metric of signature (1,3) or a manifold
with metric of signature (3,1). These two formulations only differ with respect
to a choice of sign convention, so there is a strong sense in which they ascribe
precisely the same amount of structure to spacetime. And indeed, the following
example shows that the Baez method makes exactly this verdict.16

Example 8. We define a category GR1 corresponding to the former formula-
tion. An object in GR1 is a pair (M, gab) where M is a smooth manifold and
gab is a metric on M of signature (1, 3). An arrow in GR1 is a smooth map
between manifolds that preserves the metric. Similarly, the category GR2 has
as objects pairs (M, gab), where M is a smooth manifold and gab is a metric of
signature (3, 1). An arrow in GR2 is again a smooth map between manifolds
that preserves the metric.

Consider the functor F : GR1 → GR2 defined as follows.

F : (M, gab) 7−→ (M,−gab) F : f 7−→ f

It is easy to check that F is indeed a functor between these two categories. And
furthermore, it is easy to verify that F is full. y

The Baez method makes intuitive verdicts in many other simple cases too.
This shows that the argument from examples translates into an argument in
favor of the Baez method too: It makes the intuitive verdicts in many easy
cases of structural comparison.

The argument from size

Furthermore, the general motivation behind the category approach is essentially
the same as that behind automorphism approach. This means that the argument
from size carries over to an argument in favor of the Baez method too.

Consider again the case of sets and topological spaces. Since the functor
U : Top → Set is not full, this provides a sense in which there are ‘more
arrows’ (relative to the comparison given by U) between objects in the category
Set than there are between objects in the category Top. Roughly, some of
the arrows between some sets are not in the ‘image’ of U . So there are in
general ‘more’ functions between the underlying sets X and Y than there are
continuous maps between the topological spaces (X, τ1) and (Y, τ2). The arrows
in these categories are structure preserving maps between the objects. Since
there are more structure preserving maps between the objects of Set than there
are between the objects of Top, the former must have less structure that these
maps are required to preserve.

The idea behind the argument from size for SYM∗ was that a larger auto-
morphism group should indicate that the object has less structure. The idea
behind the argument from size for the Baez method is perfectly analogous: a
larger collection of arrows in a category should indicate that the objects in the
category have less structure.

16See Barrett (2017) for further discussion of this case.
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The argument from definability

Since both the argument from examples and the argument from size translate
into arguments for the Baez method, one naturally wonders whether the ar-
gument from definability does too. The aim of this section is to show that it
does. This is important because, as with the automorphism approach, neither
the argument from examples nor the argument from size is entirely compelling.
The basic idea behind the argument from definability is the following. A full
functor F : C → D captures a sense in which the objects of C and D can define
one another’s structures. And when F is not full, that captures a sense in which
the objects of D do not define some of the structure that objects of C have.

In order to demonstrate this, we need some further preliminaries. A Σ-
theory T is a set of Σ-sentences. A Σ-structure M is a model of the Σ-theory
T if M � φ for all φ ∈ T . A Σ-theory T entails a Σ-sentence φ, written T � φ,
if M � φ for every model M of T . An elementary embedding f : M → N
between Σ-structures M and N is a function from M to N that satisfies

M � φ[a1, . . . , an] if and only if N � φ[f(a1), . . . , f(an)]

for all Σ-formulas φ and elements a1, . . . , an ∈ M . The collection of models of
a Σ-theory T has the structure of a category. We will use the notation Mod(T )
to denote the category of models of T . An object in Mod(T ) is a model M
of T , and an arrow f : M → N between objects in Mod(T ) is an elementary
embedding f : M → N between the models M and N . One can easily verify
that Mod(T ) is a category.

Recall the desideratum that we appealed to in the automorphism approach.
We want to capture a sense in which the Baez method also satisfies that kind
of desideratum. In order to be precise, however, we need to replace the talk
of individual objects in the earlier desideratum with talk of theories, since it is
the structure of entire theories, rather than individual objects, that the Baez
method is better equipped to compare. This replacement yields the following
desideratum.

Desideratum. A theory T2 posits more structure than a theory T1 if and only
if T2 defines all of the structures of T1, but T2 posits some piece of structure
that T1 does not define.

In order for the Baez method to satisfy this desideratum, it must be that a
full functor between categories of models of first-order theories witnesses that a
kind of definability relation holds between the two theories and that a non-full
functor witnesses that this definability relation does not obtain. In particular,
we would like the answer to the following question to be yes.

Question 2. Does the existence of a functor F : Mod(T2) → Mod(T1) that
forgets structure indicate that T2 defines all of the structures of T1, but T2 posits
some piece of structure that T1 does not define?

This question is asking whether or not the desideratum holds of the Baez
method. For our purposes, we will focus on a class of particularly ‘well-behaved’
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functors between categories of models. The general case is beyond the scope
of this paper.17 In order to answer Question 2 we will proceed in two steps.
First, we need to describe these well-behaved functors. Intuitively, they are
those functors that are induced by syntactic translations between the underlying
theories. And second, we present our main result, which isolates what the
fullness of a functor is saying about its underlying translation and allows us to
answer Question 2 in the affirmative.

We can roughly describe the special kind of functor that we will be consid-
ering in the following manner. We most often present a functor F : C → D by
laying down a ‘recipe’ for how to construct objects of D out of objects of C. For
example, the functor from Example 1 provides a recipe for how to construct a
set out of a topological space: We simply take the underlying set of the topo-
logical space. Similarly, the functor from Example 8 provides a recipe for how
to construct a manifold with metric of signature (3,1) out of a manifold with
metric of signature (1,3): We take the same underlying manifold and multiply
the metric by −1.

This method of defining a functor by providing a recipe is similar to the
process of specifying a ‘translation’ from D to C. Consider Example 4, where we
have a functor from the category of metric spaces to the category of topological
spaces. In this case, the recipe tells us to take the same underlying set as our
metric space, forget about the metric, but leave the metric topology. This recipe
goes hand-in-hand with a translation from the ‘language of topological spaces’
into the ‘language of metric spaces’. We know how to talk about topology using
only the apparatus of the metric d, and this is what allows us to define the metric
topology in the first place. We can, for example, express topological statements
like “the function f is continuous” or “the set O is open” using only the metric.
In other words, we know how to translate all ‘topological talk’ into talk of the
metric d. The well-behaved functors F : C → D that we will be considering
for the rest of this section have this same feature. They are associated with
translations from the ‘language of D’ to the ‘language of C’. It takes a moment
to precisely define this special kind of functor.

Let Σ1 and Σ2 be signatures, and for simplicity assume that they only contain
predicate symbols. A reconstrual F of Σ1 into Σ2 is a map from the elements
of the signature Σ1 to Σ2-formulas that takes an n-ary predicate symbol p ∈ Σ1

to a Σ2-formula Fp(x1, . . . , xn) with n free variables.18 A reconstrual F : Σ1 →
Σ2 extends to a map from arbitrary Σ1-formulas to Σ2-formulas in the usual
recursive manner. In the case where one is only considering signatures with
predicate symbols (as we are here), this map is particularly easy to describe.
Let φ(x1, . . . , xn) be a Σ1-formula. We define the Σ2-formula Fφ(x1, . . . , xn)
recursively as follows.

• If φ(x1, . . . , xn) is xi = xj , then Fφ(x1, . . . , xn) is the Σ2-formula xi = xj .

17Arbitrary functors between categories of models for first-order theories notoriously do not
have the kinds of nice properties that the functors we consider here have. See Barrett and
Halvorson (2016b) and especially Hudetz (2017) for examples.

18See Hodges (2008), Button and Walsh (2018), Barrett and Halvorson (2016a) for addi-
tional details. See Hudetz (2017) for a description of a similar kind of well-behaved functor.
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• If φ(x1, . . . , xn) is p(x1, . . . , xn), where p ∈ Σ1 is an n-ary predicate sym-
bol, then Fφ(x1, . . . , xn) is the Σ2-formula Fp(x1, . . . , xn).

• If Fφ and Fψ have already been defined for Σ1-formulas φ and ψ, then
we define the Σ2-formula F (¬φ) to be ¬Fφ, F (φ ∧ ψ) to be Fφ ∧ Fψ,
F (∀xφ) to be ∀xFφ, etc.

If T1 and T2 are theories in the signatures Σ1 and Σ2, then we say that
a reconstrual F : Σ1 → Σ2 is a translation F : T1 → T2 if T1 � φ implies
that T2 � Fφ for every Σ1-sentence φ. A translation F gives rise to a map
F ∗ : Mod(T2) → Mod(T1), which takes models of the theory T2 to models of
the theory T1. For every model A of T2 we first define a Σ1-structure F ∗(A) as
follows.

• dom(F ∗(A)) = dom(A).

• (a1, . . . , an) ∈ pF∗(A) if and only if A � Fp[a1, . . . , an].

One can show that M and F ∗(M) are related to one another in the following
way. One uses this lemma to show that F ∗(A) is indeed a model of T (Barrett
and Halvorson, 2016a, §4).

Lemma. Let M be a model of T2 and φ(x1, . . . , xn) a Σ1-formula. Then M �
Fφ[a1, . . . , an] if and only if F ∗(M) � φ[a1, . . . , an].

The map F ∗ naturally extends to a mapping on elementary embeddings so
that F ∗ : Mod(T2) → Mod(T1) is a functor between the categories of models
of T2 and T1. If f : M → N is an arrow between models of T2, then we
define F ∗(f) = f . One uses the Lemma to verify that F ∗(f) is an elementary
embedding. Altogether, this means that a translation F : T1 → T2 gives rise to
a functor F ∗ : Mod(T2)→ Mod(T1).

These functors F ∗ : Mod(T2) → Mod(T1) that are induced by translations
F : T1 → T2 are the special kind of well-behaved functors that we will consider.
The translation F : T1 → T2 can be thought of as the ‘recipe’ that gives rise to
the functor. Now that we have described these well-behaved functors, we can
pose the following ‘special case’ of Question 2 that we want to consider.

Question 2 (well-behaved functors). Does the existence of a functor F ∗ :
Mod(T2) → Mod(T1) that forgets structure indicate that T2 defines all of the
structures of T1, but T2 posits some piece of structure that T1 does not define?

In order to answer this question in the affirmative, we need to isolate what
the fullness of F ∗ is telling us about the underlying translation F . We say that
a translation F : T1 → T2 is essentially surjective if for every Σ2-formula ψ
there is a Σ1-formula φ such that

T2 � ∀x1 . . . ∀xn(ψ(x1, . . . , xn)↔ Fφ(x1, . . . , xn))

The existence of an essentially surjective translation F : T1 → T2 captures
a sense in which T1 can define all the structures of T2, since any formula ψ
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in the language of T2 is expressible using the language of T1. The essential
surjectivity of F guarantees that there is some formula φ in the language of T1

that translates to (a logical equivalent of) ψ. Intuitively, this means that the
theory T1 can construct all of the concepts that are expressible in the language
of T2. If one thinks of the ‘ideology’ of a theory as the range of concepts that
are expressible in the language in which the theory is formulated (Quine, 1951),
then the existence of an essentially surjective translation F : T1 → T2 captures
a sense in which T1 and T2 are as ideologically rich as one another.19

For simplicity we assume that the signatures Σ1 and Σ2 contain only pred-
icate symbols and are disjoint. We have the following main result linking the
fullness of F ∗ to the essential surjectivity of the translation F .

Proposition 2. Let T1 be a Σ1-theory and T2 a Σ2-theory with F : T1 → T2 a
translation. The following are equivalent:

1. F is essentially surjective.

2. F ∗ : Mod(T2)→ Mod(T1) is full.

It is straightforward to show that 1 implies 2. The opposite direction is
more involved and follows from a version of Beth’s theorem. Both directions
are proven in the appendix.

With Proposition 2 in hand, we can turn back to Question 2 and answer it
in the affirmative. The idea is the following. Suppose that F ∗ is not full and
therefore forgets structure according to the Baez method. Since F ∗ is induced
by the translation F : T1 → T2 there is a sense in which T2 can define all of
the structures of T1. For each piece of structure p that T1 posits, T2 posits the
corresponding piece of structure Fp, and can therefore use this piece of structure
to define p.20 So T2 defines all of the structures of T1. And furthermore, since
F ∗ is not full, Proposition 2 guarantees that F is not essentially surjective, and
so there is a formula ψ in the language of T2 — or, in other words, a piece of
structure that T2 posits — for which there is no corresponding piece of structure
φ posited by T1 that F translates to ψ. This means that T1 does not define all
of the structures of T2. On the other hand, when F ∗ is full and does not forget
structure, Proposition 2 guarantees that F is essentially surjective, capturing a
sense in which T1 does define the structures of T2. So we have a strong sense
in which the answer to Question 2 is yes. This captures the sense in which the
Baez method satisfies our desideratum.

19Quine (1951, p. 15) remarks that one can investigate the ideology of a theory by examining
what kinds of translations exist between theories: “Much that belongs to ideology can be
handled in terms merely of the translatability of notations from one language into another;
witness the mathematical work on definability by Tarski and others.” Halvorson (2019, p. 120)
expresses the same thought.

20More precisely, what this means is that there is a reconstrual G from a ‘sub-signature’ of
Σ2 to Σ1. Moreover, G is an essentially surjective translation from T2 (thought of as a theory
in this sub-signature) to the extension of T1 obtained by adding to the axioms of T1 all of
those Σ1-sentences φ such that T2 � Fφ. This essentially surjective translation G is therefore
capturing a sense in which T2, using only some of its structures, can define a special case of
T1’s structures.
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5 Problems with the category approach

We have seen that all of the arguments in favor of SYM∗ can be converted
into arguments in favor of the Baez method. The Baez method makes intuitive
verdicts in many simple cases of structural comparison (the argument from
examples), and it is motivated by the simple idea that more symmetries should
indicate less structure (the argument from size). And lastly, we have a result
showing that, at least when we restrict our attention to well-behaved functors,
the Baez method captures a definability relation between the theories under
consideration (the argument from definability). It is worth now considering
some of the problems that the Baez method faces.

Sensitivity and triviality

We first note that the problems of sensitivity and triviality do not pose as much
of a threat to the Baez method as they did to SYM∗. The problem of sensitivity
simply disappears. Unlike SYM∗, the Baez method is not concerned with the
underlying sets of the objects under consideration.

The problem of triviality is more interesting. Recall how Example 7 gener-
ated a problem for SYM∗. The objects A and B from that example have the
same automorphism group, so according to SYM∗, it is not the case that B has
more structure than A. But B does come equipped with a piece of structure
pB that A cannot define. There is a sense in which this example generates a
problem for the Baez method and a sense in which it does not. The sense in
which is does is the following. An automorphism group of an object is trivially
a category with a single object; the automorphisms are arrows from that object
to itself. And since both of these categories have only one arrow (the identity
map on the one object in the category) the functor between Aut(B)→ Aut(A)
does not forget structure. So according to the Baez method, there is a sense
in which B does not have more structure than A. By the letter of the law,
therefore, the Baez method makes an undesirable verdict in this case.

The spirit of the law, however, is another matter. There is a sense in which
the Baez method is perfectly capable of making the correct verdict. Recall that
when we moved from the automorphism approach to the category approach
we changed our focus from individual models to theories. It is most natural
to think of the Baez method as attempting to tell us when one theory posits
more structure than another theory. And when we consider the theories that
are lurking behind the scenes in Example 7, the Baez method makes a more
intuitive verdict.

Example 7 (continued). Let Th(B) be the Σ1∪{p}-theory that has as axioms
every Σ1 ∪ {p}-sentence φ such that B � φ, and let Th(A) be the Σ1-theory
that has as axioms every Σ1-sentence ψ such that A � ψ. Now consider the
translation F : Th(A)→ Th(B) defined by

F : ci 7−→ ci
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for every constant symbol ci ∈ Σ1.21 It is easy to see that F is a translation
since for any Σ1-sentence φ, if A � φ, then B � φ. But it is similarly easy to
see that F is not essentially surjective. The construction of the predicate pB

guarantees that there is no Σ1-formula φ such that Th(B) � ∀x(φ(x) ↔ p(x)),
which immediately implies that F is not essentially surjective. So Proposition
2 implies that the functor F ∗ : Mod(Th(B)) → Mod(Th(A)) — which takes a
model of Th(B) and ‘forgets’ about the extension of the predicate p — forgets
structure, capturing a sense in which models of Th(B) like B do have more
structure than models of Th(A) like A. y

The Baez method is therefore capable of making the intuitive verdict in this
case, so long as one takes care to apply it to entire theories like Th(A) and
Th(B) rather than individual models like A and B. The triviality problem still
lingers, but it is less worrying for the Baez method than it was for SYM∗.

Relativization to the functor

The Baez method avoids the sensitivity and triviality problems by being more
‘flexible’ than SYM∗ was. The Baez method is not forced to use the subset
relation to judge when one collection of symmetries is larger or smaller than
another, and the sensitivity problem is thereby avoided. Similarly, the Baez
method is flexible enough to consider the theories corresponding to the objects
A and B from Example 7, rather than simply focusing on the objects themselves,
and thereby sidesteps the triviality problem.

This flexibility leads, however, to a new issue that is particular to the Baez
method. The issue is the following: The choice of functor plays a crucial role
in the verdicts that the Baez method makes. Indeed, the Baez method only
makes a verdict about which theory posits more structure after one has chosen
a functor to use to compare the theories. And in general, there are many functors
between two categories. The question is then the following: Which (if any) are
the ‘right’ functors to consider when we compare the structure of objects in
category C to objects in category D?

We already stumbled upon a version of this problem when giving the argu-
ment from definability. In the case of first-order theories, we can restrict the
class of functors that we consider to just the F ∗ functors — those that arise
from syntactic translations between the theories in question — and thereby
guarantee that we are only dealing with well-behaved functors. But when two
theories are not presented to us in a formal language, like first-order theories
are, it is substantially more difficult to say which are the well-behaved functors
between their categories of models. Given that these category theoretic tools
have recently been used to compare the structures of many physical theories,

21We did not define above how translations work when the signatures contain constant
symbols. The reader is invited to consult Barrett and Halvorson (2016a) for details. Alterna-
tively, one could simply reformulate the two theories here using predicate symbols instead of
constant symbols.
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none of which are formulated using a formal language, one might therefore want
to give an account of which functors in general are of the well-behaved variety.22

The problem actually becomes more pressing. Even if we restrict our atten-
tion to well-behaved functors, we can see that different choices of well-behaved
functor will lead to different verdicts about which theory posits more structure.
The following example illustrates this strange consequence of the Baez method.

Example 9. Consider the two signatures Σ1 = {p, q} and Σ2 = {r, s}, where all
of these symbols are unary predicates, and let the Σ1-theory T1 and Σ2-theory
T2 be the empty theories — that is, those with no axioms — in each of these
signatures. Now consider the following three translations between these two
theories.

F : p 7−→ r F : q 7−→ s

G : p 7−→ r G : q 7−→ r

H : r 7−→ p H : s 7−→ p

One can easily verify that each of F : T1 → T2, G : T1 → T2, and H : T2 →
T1 are translations. Since they are translations, we can consider the functors
F ∗ : Mod(T2) → Mod(T1), G∗ : Mod(T2) → Mod(T1), and H∗ : Mod(T1) →
Mod(T2). Now it is easy to verify the following. F is an essentially surjective
translation, so Proposition 2 implies that F ∗ is full and does not forget structure.
But neither G nor H is an essentially surjective translation, so Proposition 4
implies that G∗ and H∗ are not full, and therefore they both forget structure. y

Suppose that we ask which of the theories T1 and T2 from this example posits
more structure. If we use the Baez method to answer this question, the answer
we get depends on the functor being considered. The functor F ∗ does not forget
structure; it captures a sense in which the two theories posit the same amount of
structure. But the functor G∗ does forget structure, capturing a sense in which
T1 posits more structure than T2; and H∗ also forgets structure, capturing a
sense in which T2 posits more structure than T1. The best way to put this
feature of the Baez method is as follows: It only makes a verdict relative to a
choice of functor between the two categories. There are many other examples
that illustrate this same point.

Addressing this problem with the care it deserves is unfortunately beyond the
scope of this paper. It will suffice to gesture at the most natural kind of solution.
When presented with two theories we would like a way to identify one particular
functor from the one category of models to the other that captures the ‘correct’
standard of comparison — or translation — between the two theories. This is
tantamount to supplementing the Baez method with a procedure for choosing
the ‘correct’ functors to use to compare structure between two theories. One
can think of our restriction above to the case of well-behaved functors F ∗ as a
move in this direction. In the case of physical theories, a similar restriction is
adopted. It is standard to require that the functors between categories of models

22See Weatherall (2019a) and Hudetz (2017) for further discussion.
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for physical theories ‘preserve empirical content’ — otherwise they would clearly
not be suitable translations between the theories (Weatherall, 2016a; Barrett,
2017). This requirement also pares down the options of functors that we might
consider.

Although this problem is certainly pressing, it is somewhat assuaged by
noticing that the choice of which functors to use to compare two theories is often
quite easy. In the case of physical theories there are often particularly ‘natural’
candidates of functors to choose from (Weatherall, 2019a,b). For example, the
Legendre transformation gives rise to the most natural functor between Hamil-
tonian and Lagrangian mechanics, the famous ‘function-space’ duality gives rise
to the most natural functor between general relativity and the theory of Ein-
stein algebras, and as we saw in Example 8 ‘flipping the sign’ of the metric
gives rise to the most natural functor between the (1,3) and (3,1) formulations
of general relativity. But of course, merely mentioning that it is often easy to
choose a functor to use to compare the structure of two theories is not the same
as providing a general method that we can use to make that choice. Further
work on the Baez method is therefore necessary.

6 Structural parsimony and equivalence

In the meantime, however, we can draw some conclusions from what we have
seen so far. In particular, our discussion yields two payoffs concerning what it
is for a theory to ‘posit’ or ‘employ’ a particular structure. One has to do with
the structural parsimony principle, and the other has to do with equivalence of
theories. Both are centered on the idea that a theory might posit or employ
some structure that is not explicitly appealed to in its formulation. We will take
the two payoffs in turn.

Structural parsimony

We begin with the structural parsimony principle. One of the reasons we were
initially motivated to find a method of comparing amounts of structure was
that we wanted to clearly understand the conditions under which the following
principle is applicable.

Structural parsimony. All other things equal, we should prefer theories that
posit less structure.

In order to justify the principle, one needs to say exactly why theories that
posit less structure should be preferred. One reason that is often given is that
excising surplus structure from a theory provides us with a more accurate de-
scription of reality. The basic idea is that once we excise all of the surplus
structures from our theory, we end up with a kind of ‘ideal theory’ — one that
has no arbitrary conventions or surplus structure, and therefore provides us
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with a window into the ‘real structure’ of the world. North (2009, p. 78) pro-
vides a justification along these lines when she suggests the following method
of interpreting our physical theories:

Take the mathematical formulation of a given theory. Figure out
what structure is required by that formulation. [. . . ] Infer that this
is the fundamental structure of the theory. Go on to infer that this
is the fundamental structure of the world, according to the theory.

Even if we do not think that less structured theories provide us with a more ac-
curate description of the world, there are practical reasons to prefer them. If we
use theories whose formulations do not appeal to arbitrary choices of scale, co-
ordinate system, rest frame, etc., then we can avoid mistakenly attributing some
representational significance to these conventional aspects of the formulation.
More ‘intrinsic’ theories like this may also offer more illuminating explanations
of the phenomena (Field, 2016).

Insofar as one endorses the structural parsimony principle, it is important
to know the conditions under which one theory ‘does away with’ or ‘excises’
some piece of surplus structure from another theory.23 Otherwise we would not
even know which theories the principle is directing us to prefer. This is where
the tools that we have discussed for comparing amounts of structure come into
play. The example that is often cited as a ‘paradigm case’ of successful structure
excision is the move from Newtonian to Galilean spacetime.

Example 10. Newtonian spacetime is the tuple (R4, tab, h
ab,∇, λa), where R4

is a smooth manifold, tab and hab are the temporal and spatial metrics, ∇
is a derivative operator, and λa is a vector field representing the standard of
absolute rest. We decided that absolute rest was surplus to the theory, and we
were then able to excise it by moving to Galilean spacetime. Galilean spacetime
is represented by the tuple (R4, tab, h

ab,∇). As one can see by examining the
notation, the piece of structure λa is no longer explicitly referred to or appealed
to in our new theory of spacetime. We have successfully excised it from our
theory.24 y

Along with many other simple cases of excising structure, this example of
classical spacetime theories suggests that all it takes to excise a piece of structure
from a theory is to move to a new theory that no longer explicitly appeals to
that piece of structure. Galilean spacetime (R4, tab, h

ab,∇) does not explicitly
appeal to the Newtonian standard of rest λa in its notation. And one might
conclude that it is in virtue of this that Galilean spacetime has excised that
structure.

Unfortunately, this is incorrect. It takes more than avoiding explicit appeal
to a piece of structure in order to excise it. The following two examples show
this. The first is a simple ‘toy’ case, the second an actual case from physics.

23We will not discuss here the difficult question of what makes a piece of structure surplus
or superfluous, and thus a candidate for excision. That question naturally leads one into the
literature on symmetries. See Dasgupta (2015) and the reference therein.

24See Barrett (2015b) for further details on this case.
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Example 11. Let Σ = {p, r} be a signature containing the binary predicate
p and the unary predicate r. Consider the Σ-theory T with the one axiom
∀x(r(x) ↔ p(x, x)). This theory is simply saying that r is the diagonal of p.
Suppose that we want to excise the piece of structure r from the theory T .

Consider the {p}-theory T− with no axioms. This theory clearly avoids ex-
plicit appeal to the structure r; that symbol appears nowhere in its formulation,
nor in any of the sentences that it entails. So if we think that is sufficient to
excise a piece of structure, then T− successfully excises the structure r. y

Example 12. General relativity is standardly formulated in terms of a manifold
with various geometric structures on it. Geroch (1972) proposed an alternative
algebraic formulation of general relativity that has come to be called the theory
of Einstein algebras. This theory is formulated using an algebra of smooth scalar
fields, instead of the standard geometric apparatus of general relativity.

Since the theory of Einstein algebras no longer explicitly appeals to the
structure of ‘spacetime points’ — indeed, its formulation is purely algebraic and
does not mention manifolds — Earman (1986, 1989) put forward this theory as
a ‘relationalist’ formulation of general relativity. He suggested that the theory
of Einstein algebras excised the structure of spacetime points from general rela-
tivity. The basic idea was that the theory of Einstein algebras does to spacetime
points what Galilean spacetime does to the Newtonian standard of absolute rest.
The structure of spacetime points — and smooth manifold structure in general
— is longer explicitly appealed to in the algebraic reformulation of the theory,
which only appeals to algebras of smooth scalar fields.25 y

Examples 11 and 12 are analogous to one another. In each case, we attempt
to excise a piece of structure by reformulating the theory in such a way that the
structure we want to excise is no longer explicitly appealed to. But in neither
case is the excision successful. This is because the remaining structures suffice
to construct or define the piece of structure that we were trying to excise. We
return to both of the examples in turn.

Example 11 (continued). Despite the fact that T− does not explicitly appeal
to the structure r, there is nonetheless a strong sense in which nothing has been
excised from T . Indeed, according to all of our methods of comparing amounts
of structure, T− does not have less structure than T . It is easy to verify that a
model M of T has precisely the same automorphism group as the corresponding
model M |{p} of T−, so according to SYM∗ no structure has been excised from
models of T when we move to T−. The Baez method makes this same verdict.
Consider the functor F ∗ : Mod(T )→ Mod(T−) associated with the translation
F : T− → T that maps the predicate symbol p to itself. It is easy to check that
F is essentially surjective. Proposition 2 therefore implies that F ∗ is full and
does not forget structure. y

The idea behind these results is clear: Even though T− does not explicitly
appeal to the structure r, it is nonetheless definable out of the structures that

25See Rosenstock et al. (2015) and the references therein for further discussion of this
example.
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T− does explicitly appeal to. So we are justified in saying that T− does not
posit less structure than T , and therefore nothing is excised when we move from
T to T−.

The same holds in the case of general relativity and the theory of Einstein
algebras.

Example 12 (continued). Indeed, it has recently been shown by Rosenstock
et al. (2015) that the most natural functors between the categories of models for
general relativity and the theory of Einstein algebras do not forget structure.
One can ‘translate’ back and forth between the two theories without ‘forgetting’
anything. So they posit precisely the same amount of structure according to the
Baez method.26 The idea behind this result is once again clear: Even though
the theory of Einstein algebras does not appeal to spacetime points explicitly,
they are definable out of the structures — namely, the scalar fields — that the
theory of Einstein algebras does explicitly appeal to. So in moving from general
relativity to the theory of Einstein algebras, there is a sense in which we have
excised nothing from our theory. y

This example is particularly interesting, since Earman (1986, 1989) famously
argued that the theory of Einstein algebras did away with some structure from
the standard geometric formulation of general relativity. His idea was the fol-
lowing. It is standard to think that the hole argument indicates that general
relativity has some excess structure — though, as Weatherall (2017b) has ar-
gued, some of the tools discussed here suggest the contrary. Earman proposed
the theory of Einstein algebras as an attempt to excise this structure; he hoped
that this new theory would then provide a mathematical setting for a suitably
“relationist” formulation of general relativity. The results here — in combina-
tion with those of Rosenstock et al. (2015) — illustrate why this does not work.
There is a strong sense in which nothing has been excised in the move from
general relativity to the theory of Einstein algebras.27

These two examples yield a simple payoff that is important to keep in mind,
especially insofar as one endorses the structural parsimony principle and aims
to excise surplus structure from our theories.

Payoff 1. Excising a piece of structure from a theory is not as simple as just
reformulating the theory in such a way that the piece of structure is no longer
explicitly appealed to.

It can be the case that the structures that are explicitly appealed suffice to
define the structure that we were trying to excise. And when that happens,
there is a strong sense in which we have actually excised nothing.

The tools that we have discussed in this paper provide us with a guard
against making this kind of mistake. We simply have to make sure that when
we move to a new theory, we actually have excised something. For example,

26SYM∗ is not equipped to make a verdict in this case since an Einstein algebra and a
relativistic spacetime have different underlying sets. Recall the problem of sensitivity.

27Roughly this same point was made earlier by Rynasiewicz (1992).
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in the case of Newtonian and Galilean spacetime both SYM∗ and the Baez
method agree that the latter posits has less structure than the former (Barrett,
2015b). So something has been excised when we move from Newtonian to
Galilean spacetime. And in general, we have shown that SYM∗ and the Baez
method bear a close relationship to definability. So if these methods judge that
one theory posits less structure than another, then we have a guarantee that
in moving from the former theory to the latter we will not be making the kind
of mistake that we made in Examples 11 and 12. In order to have excised
something it must be the case that the resulting theory actually posits less
structure than the theory that we began with. If the resulting theory does not
posit less structure, then we simply have not excised anything despite the fact
that the resulting theory may not explicitly appeal to the structure that we were
trying to excise.28

Equivalence

Our second payoff has to do with equivalence of theories. It has recently been
suggested — by North (2009) and Barrett (2019), among others — that we
can use tools for comparing amounts of structure to help us judge whether two
theories are equivalent. In particular, if two theories posit different amounts of
structure, it must be that they are inequivalent. The Newtonian and Galilean
theories of spacetime, for example, are manifestly inequivalent theories. Since
they disagree about the amount of structure the spacetime has — the one as-
cribes the structure of a privileged rest frame to spacetime, the other does not
— they are clearly not saying the same thing about the world.

Although this kind of reasoning should work in general — see Barrett (2019)
for more detailed discussion — the tools we have discussed here suggest that
we must take significant care when applying this reasoning to particular cases.
Consider once again the case of general relativity and the theory of Einstein alge-
bras. If we take these two theories at face value, they posit completely different
structures. General relativity explicitly appeals only to geometric structures —
a smooth manifold with metric. The theory of Einstein algebras, on the other
hand, explicitly appeals only to algebraic structures. In virtue of the fact that
the two theories appeal to completely different kinds of structure, one might be
tempted to conclude that they ascribe incomparable amounts of structure to
the world. It is not that one of them posits more structure than the other. But
rather, each posits some structures that the other does not. If this is so, then
we would have good reason to conclude that the two theories are inequivalent.

We do not, however, have good reason to draw this conclusion. The tools
that we have discussed here show why. According to the Baez method, these
two theories do not posit incomparable amounts of structure. Despite the fact
that they explicitly appeal to different structures in their formulations, each

28Another way in which one might fail to excise structure is by attempting to excise a piece
of structure that actually was not there to excise in the first place. As mentioned earlier,
it has recently been suggested by Weatherall (2017b), for example, that something like this
happens often in the literature on the famous hole argument in general relativity.
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theory can define the structures of the other. There is a strong sense, therefore,
in which they posit exactly the same amount of structure.

We can put this payoff more generally as follows.

Payoff 2. The fact that two theories explicitly appeal to different collections of
structures in their formulations does not imply that they are inequivalent.

In the case of general relativity and the theory of Einstein algebras, we might
expect the two theories to be inequivalent in virtue of positing different amounts
of structure. But once we have precise tools for comparing amounts of structure,
we can guard against this kind of mistake. The two theories may nonetheless
define one another’s structures, even though they do not explicitly appeal to
the same structures in their formulation.

One might worry about the extent to which these two payoffs depend on
SYM∗ and the Baez method. We have seen that both of these methods of
comparing amounts of structure have their faults, so it will be useful to gauge
whether these payoffs are sensitive to those methods. Fortunately, we have
good reason to think that these two payoffs will still hold even if we move in
another direction and do away with both SYM∗ and the Baez method. If we
think that fewer symmetries indicates more structure, then we must be taking
definable structure seriously. Adding definable structure does not reduce the
symmetry group of an object, so if we like the idea that fewer symmetries is
the indication of less structure, then we are also committing to the idea that
adding a layer of definable structure is not really adding any structure at all.
Rather, it was already there to begin with. Taking definable structure seriously
— and not merely taking seriously the structures that are explicitly appealed
to in a theory’s formulation — is what leads to the two payoffs. Insofar as we
adopt a method of comparing amounts of structure that, like SYM∗ and the
Baez method, appeals to symmetries, our two payoffs will still hold.

The general thrust of these two payoffs might be summed up as follows:
Reading off the amount of structure that a theory posits is more difficult than just
looking to the structures that the theory explicitly appeals to in its formulation.
It is in general not so simple to read off the structure of a theory. The methods
of comparing amounts of structure that we have discussed here are tools that
can, and indeed should, be used to help.
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Appendix

The purpose of this appendix is to prove Proposition 2, which we restate here
for convenience.

Proposition 2. Let T1 be a Σ1-theory and T2 a Σ2-theory with F : T1 → T2 a
translation. The following are equivalent:

1. F is essentially surjective.

2. F ∗ : Mod(T2)→ Mod(T1) is full.

We need a few more definitions before proving this proposition. If Σ ⊂ Σ+

are signatures, we say that a Σ+-theory T+ is an extension of a Σ-theory T if
T � φ implies that T+ � φ for every Σ-sentence φ. An explicit definition of
p in terms of Σ is a Σ+-sentence of the form

∀x1 . . . ∀xn(p(x1, . . . xn)↔ φ(x1, . . . , xn))

where φ(x1, . . . , xn) is a Σ-formula. A definitional extension of a Σ-theory
T to the signature Σ+ is a Σ+-theory

T+ = T ∪ {δs : s ∈ Σ+ − Σ},

such that for each predicate symbol s ∈ Σ+ − Σ, the sentence δs is an explicit
definition of s in terms of Σ. One can easily verify that a definitional extension
is indeed an extension. One can also define new function and constant symbols,
but for our purposes this will not be important.
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When T+ is an extension of a Σ-theory T , we can define the projection
functor Π : Mod(T+)→ Mod(T ) by

Π(M) = M |Σ Π(h) = h

for every model M of T+ and elementary embedding h between models of T+.
Here M |Σ is the Σ-structure obtained from M by forgetting the extensions of
all the predicates not in Σ. In the case where T+ is a definitional extension of
T , the functor Π is full. Indeed, it is an equivalence of categories (Barrett and
Halvorson, 2016b, Propositions 5.1–5.3).

We now have the resources to prove Proposition 2.

Proof that 1 implies 2. Suppose that F : T1 → T2 is essentially surjective. Let
M and N be models of T2 with h : F ∗(M)→ F ∗(N) an elementary embedding.
We need to show that h : M → N is an elementary embedding. So let ψ
be a Σ2-formula. Since F is essentially surjective, we know that there is a Σ1-
formula φ such that T2 � ∀x1 . . . ∀xn(ψ(x1, . . . , xn)↔ Fφ(x1, . . . , xn)). We then
immediately see that the following string of equivalences hold for any elements
a1, . . . , an ∈M :

M � ψ[a1, . . . , an]⇔M � Fφ[a1, . . . , an]

⇔ F ∗(M) � φ[a1, . . . , an]

⇔ F ∗(N) � φ[h(a1), . . . , h(an)]

⇔ N � Fφ[h(a1), . . . , h(an)]

⇔ N � ψ[h(a1), . . . , h(an)]

The first and fifth equivalences follow from our choice of φ, the second and
fourth from the Lemma, and the third from the fact that h : F ∗(M)→ F ∗(N)
is an elementary embedding. This implies that h : M → N is an elementary
embedding and so F ∗ : Mod(T2)→ Mod(T1) is full.

Proof that 2 implies 1. Suppose that F ∗ : Mod(T2)→ Mod(T1) is full. In order
to demonstrate that F is essentially surjective it will suffice to show that for
every predicate symbol q ∈ Σ2 there is a Σ1-formula φ such that T2 � ∀x(q(x)↔
Fφ(x)). Consider the Σ1 ∪ Σ2-theory T+

2 that is defined as follows:

T2 ∪ {∀x(p(x)↔ Fp(x)) : p ∈ Σ1}

T+
2 is a definitional extension of T2. Using the fact that F is a translation, one

can show that T+
2 is an extension of T1. One can then verify using the Lemma

that the following diagram commutes, where Π1 : Mod(T+
2 ) → Mod(T2) and
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Π2 : Mod(T+
2 )→ Mod(T1) are the projection functors.

Mod(T2) Mod(T+
2 )

Mod(T1)

Π1

F ∗
Π2

Since T+
2 is a definitional extension of T2, Π1 is full. By assumption F ∗ is full,

so since Π2 = F ∗ ◦Π2 this means that Π2 must be full too.
Now using the fact that Π2 is full, Beth’s theorem — in particular a simple

corollary to it (Barrett, 2018, Corollary 1) — implies that for every predicate
symbol q ∈ Σ2 there is a Σ1-formula φ such that T+

2 � ∀x(q(x) ↔ φ(x)). We
now claim that T2 � ∀x(q(x) ↔ Fφ(x)). Let M be a model of T2. We then
have the following string of equivalences.

a ∈ qM ⇐⇒ a ∈ qM
+

⇐⇒ a ∈ φM
+

⇐⇒ a ∈ φΠ2(M+) ⇐⇒ a ∈ φF
∗(M)

⇐⇒ a ∈ FφM

(Here M+ is the unique model of T+
2 that satisfies Π1(M+) = M . It is unique

since T+
2 is a definitional extension of T2.) The first equivalence follows from

the definition of Π1, the second from our choice of φ, the third the definition of
Π2, the fourth from the fact that the above diagram commutes, and the fifth
from the Lemma. This means that T2 � ∀x(q(x) ↔ Fφ(x)), so F is essentially
surjective.
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