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Abstract of the Dissertation

Population Genetics in a Single Organism:

Models of Neurospora crassa Nuclear Dynamics

by

Teng Wang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Marcus Leigh Roper, Chair

In this thesis I will analyze the dynamics of two-populations of nuclei within a filamentous

fungus. The models developed here are designed to directly represent recent experiments

studying Neurospora crassa chimera created from two genetically different nuclear popula-

tions.

The focus will be on analyzing how dynamics within the network are affected by the

geometry of the fungus network by building and validating spatial population genetic models.

We start from simulating some intuitive models for nuclear population dynamics during

fungal growth, then provide asymptotic and analytic insights on the dynamics involved, and

the relationship between population dynamics and the branching structure of the network.

Comparisons among the simulation, the simplified model, and existing experiment data will

also be discussed.
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CHAPTER 1

Introduction

The evolution of new lineages, species and groups is strongly affected by the spatial distri-

butions of organisms. Organisms can only compete or cooperate with each other if they are

close enough to interact.

Accordingly geographic isolation is known to be a motor for the evolution of new species

(“callopalmy”) [Gou02]. This is isolation, need not be absolute; organisms that fund them-

selves at the periphery of a population during a range expansion are more likely to move into

the new territory and to populate it with offspring than organisms far from the periphery.

This effect, which leads to newly founded territories not reflecting the diversity of the orig-

inal population has been observed in model microbial systems [HN08] [KAH10] and forms

the basis of efforts to reconstruct historical patterns of dispersal and emigration. [HKR98]

[GFV00]

Realistic representation of spatial structure in population genetic models for evolution

remains an unmet challenge. Although these models have had some success, most of them

do not represent the spatial structure of the populations that they are intended to model.

Indeed for most wild populations there is both inadequate resolution of the current spa-

cial distribution of its members (that is where the organisms are currently) and too much

uncertainty about historical distributions (where organisms, or the lineages they are derived

from) were in the past. Thus although toy models that incorporate spatial structure have

been shown to exhibit surprising dynamics [OHL06], it is not known whether these dynamics

occur in any real system. Recent efforts have focused on creating model microbial systems in

which both the dispersal of organisms, which controls their spatial distributions, and the set
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of neighbors that they interact with can be mapped and controlled. For example Gore et al.

[GGR13] cultured yeast ecosystems in microwells, and simulated dispersal by transferring

fixed numbers of cells between micro-wells. Hallatschek et al. grew E Coli bacteria on solid

agar mapped cell lineages colonies to grow [KAH10].

However both sets of experiments are at several removes from dispersal in nature; since

the natural abilities of organisms to disperse are supposed (in the experiments by growing

cells in physically sperate micro-wells). In the Hallatschek experiments by removing the

machinery such as flagella [BB91] [DTM05] [Ber08] or surfactant expression [ARK09] that

would allow wild type cells to explore new environments.

Remarkably much of the recent work on model microbial systems was anticipated around

60 years ago by the pioneering microbiologist Guido Pontecorvo [PG44] [Pon59] [Pon75]

who proposed studying these dynamics using chimeric fungi for an experimental model.

Pontecorvo’s experiments used two-component Penicillium notatum fungi, that harbored

two different nuclear genotypes. He investigated how these genotypes tended to segregate(or

sector) as the chimeric cells grew. Although he could measure differences in fitness(that

is, rates of division) from the geometry of the sectors, he did not introduce models for

these processes, likely because his method for distinguishing the two genotypes(based on the

pigmentation of the spores that they produced) could not give a quantitative read on their

relative abundances, and because at the time little was known about the motions of nuclei

within living fungal cells.

More recently nuclear labeling using fluorescent proteins has made it possible to map

nuclear movements within living cells.

Nevertheless this nuclear dynamics within chimera are an attractive system for building

and validating spatial population genetic models, partly because no special treatments is

needed to control dispersal of nuclei across cells(this is similar of nuclear movement occur

in the lab as in nature). Nuclear dispersal patterns can also be manipulated genetically -

for example in Neurospora crassa, which is the main model system for which models will be

built here, hundreds of wild-type variants with different cell morphologies have been isolated
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[Gla04] [GD06], while several single gene mutations are also known to alter morphology

[FSJ05] [GJS00] [SRY10].

Moreover, single fungal cells often harbor genetically diverse nuclei. Internal genetic

diversity created by mutation when nuclei divide [MR63] or more rarely when two different

cells may fuse and exchange nuclei. [Bus14] [RET11]

Filamentous fungi are able to harbor genetically diverse nuclei within large multinucleate

compartments. The ability to support multiple genomes within a single cell is thought to a

key part of fungal life histories, since it provides a pathway to adapt to new hosts, changing

environments and substrates, as well as to cope with mutations introduced during division

of individual nuclei. However very little is known about whether or how this internal genetic

diversity is maintained during fungal growth.

In particular it is explained in Chapter 2 that in any finite, initially diverse population,

genetic drift(the random fluctuations in the proportions of different lineages) will eventually

fix a single lineage, i.e, one subpopulation will take over even if the two populations have

matched fitness, and do not interact competitively.

Different parts of the fungal cell can fix to different genotypes to produce the sectors

observed by Pontecorvo and Gemmell in Penicillium notatum and more recently in other

model microbial systems [HN08]. However this sectoring was not seen in the filamentous

fungus Neurospora crassa, which is the main model for this thesis [RSH13]. It has previously

been argued that the lack of sectoring in Neurospora crassa is a result of its relatively fast

nuclear dispersal [RSH13] [Lew05].

In this thesis I will analyze the dynamics of two-populations of nuclei within a filamentous

fungus. The models developed here are designed to directly represent recent experiments

studying Neurospora crassa chimera created from two genetically different nuclear popula-

tions in which the two types of nuclei can be distinguished because they expose differently

fluorescently labeled versions of the the same histone.[MSC15] Since the nuclei are geneti-

cally identical except for the differently colored version of the same protein they divide at the

3



same rate. Additionally although genetically different nuclei have previously been shown to

have complex ecological-like dynamics(see [Mah05] for a review of experiments), the nuclei

in these synthetic chimera are too similar for interactions between different nuclei to differ

from interactions between genetically identical nuclei.

Instead the focus of this thesis will be on how dynamics within the network are affected

by the geometry of the fungus network. Filamentous fungal cells form a branched and often

loopy network. Previous work has shown that nuclei usually follow complex paths through

this network as they move from the sites of production(typically in the middle of the fungus)

to sites of growth that are typically distributed along the edges of the fungus. Roper et

al. [RSH13] argued that these complex paths were an adaptive feature of the network,

creating physical mixing of the genetically diverse nuclei present within the fungus, just as

multi-directional flows can be used to mix two different fluids.[SOW06] This idea remains

controversial because it is generally assumed that biological transport networks such as fungal

cells are optimized to minimize the cost of transporting matter.

This is typically assumed for all biological networks including plant, vasculature, cellular

tubes of slime molds, and animal blood networks [HC13]. Yet there are thought to be 1.5

million species of filamentous fungus [Bla11], and among the known species all networks are

visibly wired differently. Understanding the physical principles according to which different

biological networks are wired will help to explain the morphological diversity of biological

networks. At the same time understand how biological networks mix effectively may aid in

the design of human transport networks, e.g, for cars or data, which must accomplish similar

objectives and have similar tradeoffs in terms of the cost of building the network.

We start from simulating some intuitive models for nuclear population dynamics during

fungal growth, then provide asymptotic and analytic insights on the dynamics involved, and

the relationship between population dynamics and the branching structure of the network.

Comparisons among the simulation, the simplified model, and the physical experiment data

will also be discussed.
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Figure 1.1: Chimeric Nurospora crassa mycelium containing hH1::gfp and hH1::DsRed la-

beled nuclei. [RSH13]
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CHAPTER 2

Review of Previous Work

Throughout this thesis we will refer to two canonical models for genetic dynamics within

asexual population - Moran model[Mor58] for a fixed-size, well-mixed population, and the

stepping stone model[KAH10] that describes a linked chain of such populations in which

there is migration between neighboring populations. Both of these models are renewed in

[CK70]. In particular these models highlight the role of genetic drift - that is fluctuations

in population make up due to randomness of division - in controlling the dynamics of these

populations over time.

2.1 Moran Process: Genetic Drift in Finite Populations

Consider a well mixed population of fixed size n composed of two nuclear species. Denote k

as the size of the first species. The dynamics of the Moran process is described as follows:

During each step, one nucleus chosen randomly from the population divides, then to main-

tain this fixed size of the population, another nucleus chosen randomly from the original

population is removed from the system. Previously, this model was used by [RSH13] as a

model for the population of nuclei behind the growing apex of a fungal hypha.

If we denote P (j|k) as the conditional probability(with respect to the current state) of

the size of the first species changes from k to j in one time step, then we can write the
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transition as follows:

P (k − 1|k) = (1− k/n)(k/n) = H(k, n)/2

P (k + 1|k) = (k/n)(1− k/n) = H(k, n)/2

P (k|k) = 1− 2(k/n)(1− k/n) = 1−H(k, n)

(2.1)

where the heterozygosity is defined as H(k, n) = 2(k/n)(1 − k/n). This quantity is the

probability that two randomly selected individuals are from different species. (In ecology

this quantity is called the Gini-Simpson diversity index. [Jos06] [Hur71] [GM62])

It can be shown that:

H(k − 1, n) = H(k, n) + 2k/n2 − (2/n)(1− (k − 1)/n) (2.2)

H(k + 1, n) = H(k, n)− 2k/n2 + (2/n)(1− (k + 1)/n) (2.3)

Now we can define a Markovian sequence of random variables {ki, i = 0, 1, · · · }, repre-

senting the sequence of the sizes of the first population during each division step. From 2.1,

we see that ki performs a symmetric random walk on the set {0, 1, · · · , n}. Accordingly

E(ki+1|ki) = (ki − 1)P (ki − 1|ki) + (ki + 1)P (ki + 1|ki) + kiP (ki|ki) = ki (2.4)

and hence

E(ki+1) = E(ki) = · · · = E(k0) (2.5)

However, the boundary conditions at k = 0 and k = n are absorbing, meaning if ki = 0 or

ki = n at some time point, then kj = ki,∀j > i. We say then that one of the species has

taken over, or the population has fixed to one of species.

From 2.5 we see the dynamics of fixation are not reflected in the first moment of ki, but

they do show up when we compute the evolution of the heterozygosity. Specifically, if we

then denote H(ki, n) = Hi, we have a conditional expectation for Hi+1 given Hi, that is:

E(Hi+1|Hi) =H(ki − 1, n)P (ki − 1|ki) +H(ki, n)P (ki|ki) +H(ki + 1)P (ki + 1|ki)

=(Hi + 2ki/n
2 − (2/n)(1− (ki − 1)/n))(Hi/2)

+Hi(1−Hi) + (Hi − 2ki/n
2 + (2/n)(1− (k + 1)/n))(Hi/2)

=(1− 2/n2)Hi

(2.6)

7



Using law of total expectation, we then have

E(Hi+1) = EHi
(E(Hi+i|Hi)) = (1− 2/n2)E(Hi) (2.7)

and hence

E(Hi+1) = (1− 2/n2)iH0 (2.8)

i.e, limi→∞ E(Hi) = 0, so a finite population loses diversity with time.

Assuming that τ(= dt) be the mean time between one nuclear division in the population

and the next, and hence τg = nτ = ndt be the generation time(taken for each nucleus in the

generation to divide), a continuous version of this dynamics is:

d(ft) =
√

(2/n2)ft(1− ft)dW =
√
(2/(nτg))ft(1− ft)dW (2.9)

where f(t) is the proportion of first species at time t. For E(f(t)), the expectation of f(t) we

have
dE(f(t))

dt
= 0 (2.10)

For H(t) = E(f(t)(1− f(t))) , the expectation of heterozygosity we have

d(H(t)) = (−2/n2)H(t) = (−2/(nτg))H(t)dt (2.11)

which also leads to an exponential decay: H(t) = H(0) exp (−2t/(nτg)).

2.2 The Stepping Stone Model

The Moran process model assumes a discrete well-mixed population; although nuclei do not

directly interact, any nucleus may divide and any other nucleus may be ejected from the

population. To understand sectoring and founder effects, some form of spatial structure

must be incorporated. A standard model for space and time dynamics of a population is the

stepping stone model.

Here we imagine that the population is partitioned into semi-isolated “islands” or demes.

Within each deme, the population performs a version of the Moran process. But each deme
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is connected to a subset of the other demes, with which it may exchange a certain number of

nuclei at each time step. Because of this nuclear exchange the dynamics of adjacent demes

are coupled - that is they can not fix to one species independently at each other.

We will focus on the one dimensional version presented in [KAH10] [KN11]. Korolev et

al. used the stepping stone model to study the dynamics of sectoring; they solved the model

on the cylinder S1× [0,∞); treating each new time point as a new ring of demes being added

at the growing edge of a diverse colony of cells.

To make things easier, we will not consider mutation and selection. That is, red nuclei

divide at the same rate as green nuclei, and each division produces two identical copies of

the parent nucleus.

After these assumptions, the dynamics of the stepping stone model is as follows: There

are an infinite set of demes arranged on a line. Each deme has N fixed size populations and

denote the proportion of species one in deme l by fl(t).

At each step, a deme exchanges m̃N/2 individuals with its right neighbor and m̃N/2

individuals with its left neighbor. Assume m̃ ≪ 1. Also assume the genetic drift within

the l-th deme itself outweighs the drift caused by migration. Effectively this assumption

is equivalent to assuming that if a fraction fl of the nuclei in deme l are of species one

then during the neighbor exchange step exactly m̃N
2
fl species one nuclei are transferred to

each neighbor. The neglect of fluctuations here a justified if m̃N ≫ 1 so that the binomial

variance of the selection step is negligible.

Therefore, the diffusion due to the migration between the neighbors are neglected. Then

in one time step:

dfl =
m

2
(fl−1 + fl+1 − 2fl) +

√
Dgf(1− f)dW (2.12)

where m = m̃τ−1
g , τg is the generation time. Taking the continuous space limit with x = la

df = Ds
∂2f

∂x2
+
√

Dgf(1− f)dW (2.13)

where Ds = ma2/2 and Dg = a = 2a/(τgN) Let F (t, x) = E(f(t, x)) and H(t, x1, x2) =

E(f(t, x1)(1− f(t, x2)) + f(t, x2)(1− f(t, x1))). H represents a pairwise heterozygosity, i.e,
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the likelihood that two individuals randomly chosen from sites x1 and x2 are genetically

different. Using Ito’s Lemma, one can show

∂H(t, x1, x2)

∂t
= Ds

(
∂2

∂x2
1

+
∂2

∂x2
1

)
H(t, x1, x2)−DgH(t, x1, x2)δ(x1 − x2) (2.14)

By further assuming well-mixed, spatially homogeneous initial conditions, so the solution is

translationally invariant, and define x = x1 − x2, we have

∂H(t, x)

∂t
= 2Ds

∂2

∂x2
H(t, x)−DgH(t, 0)δ(x) (2.15)

Equation 2.15 can be solved using Laplace transform. Specifically at x = 0, one have

H(t, 0) = H0erfc

(
D2

gt

8Ds

)
e

D2
gt

8Ds (2.16)

where erfc(·) is the complementary error function. And when t is sufficiently large, H has

asymptotic behavior:

H(t, 0) = H0

(
πD2

gt

8Ds

)−1/2

+O(t−3/2) (2.17)

2.3 Experimental Observations of Population Dynamics in Living

Fungal Cells

Ma et al. 2015 [MSC15] studied experimentally the diversity dynamics of the nuclear pop-

ulations present with single Neurospora crass cells, in which nuclear “species” could be

distinguished by their different fluorescent labels. They analyzed diversity experimentally

using two metrics:

• Sample diversity is given by the heterozygosity of any pair of nuclei isolated from within

a 5mm diameter region of the fungal network, independently of whether or not they

come from the same hyphal compartment.

• Spore diversity is given by the heterozygosity of individual spores, containing exactly

two nuclei. It measures the diversity of individual hyphal compartments.
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Here heterozygosity, which will be referred at many points in this thesis, is again defined to

be the likelihood that two randomly chosen nuclei have different genotypes.

Ma et al. found that spore heterozygosity was less than sample heterozygosity, at all

points within a growing fungal cell - that is, although both genotypes are typically present

in identical proportions in a small area of the fungal network, they are not necessarily found

in the same hyphal compartments. However, the data showed two surprising and unexplained

features:

• Spore heterozygosities did not show detectable decrease in diversity with distance

grown. Thus although hyphal compartments are genetically less rich than the en-

tire mycelium, their diversity is stable with cell age (at least up to the time point

where spores are formed).

• The spore diversity was sensitive to the geometry of cell growth - if cells were grown in

race-tubes, and therefore grew only in one direction, then the spore diversity was indis-

tinguishable from the sample diversity - that is, genotypes were mutually mixed even

at the scale of individual hyphal compartments. By contrast, when cells were grown

in petri dishes, and expanded in all directions as they grew, then spore heterozygosity

was always significantly smaller than sample heterozygosity, suggesting that individual

compartments had different genetic composition.

Ma et al’s experiments were performed in wild type cells in Neurospora crassa, the cells

form a densely connected network, in which nuclei can move on complex, multi-directional.

However, Yang et al.(unpublished data, 2015, see Figure 2.1) has since shown that these same

dynamics(in particular a reduced by stable spore heterozygosity) is also seen in soft cells.

These mutant cells are genetically altered so that they can not form interconnected networks,

they may branch but they can not fuse with each other. soft networks therefore have a tree

like topology, with a single root(the spore that produced the network) feeding many different

leaves(growing hyphal tips). It follows that branching alone suffices to produce the complex

population dynamics seen in real fungal cells, and thus motivates us to consider networks
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that have only branching in the rest of this thesis.

Figure 2.1: Heterozygosity in soft colony measured from experiments.
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CHAPTER 3

Numerical Simulations

3.1 The Pinball Model of Nuclear Dynamics within a Filamentous

Fungus

We introduce a model for the dynamics of division and migration of nuclei within a simply

connected tree-like fungal network.

Consider a fungal network that contains two types of nuclei (with genotypes hH1::gfp and

hH1::DsRed ; in this thesis we will refer to them as red nuclei and green nuclei). We build up

this network as a linked tree of demes(nuclear sub-populations) that branch outward from a

single root deme to multiple leaf demes. Each deme represents a hyphal sub-compartment

and the leaf demes are hyphal tips. The fungal growth occurs at the tips, so the capacity

of tip demes increases with time. The space thereby created is kept filled with nuclei which

are produced by divisions occurring through the network.

Besides the specific rules of our proposed simulations and models, we will make the

following general assumptions:

• Hyphae grow at a constant rate(supported by experimental observation [MRB06]);

• When the number of nuclei of each leaf deme reaches to a certain amount N , a new

leaf deme is generated below it in the network;

• The underlying graph of the network will have a tree structure (that is, there is a

unique path between any pair of demes in the fungus). In general the networks built

by Neurospora crassa are multi-connected because of the ability of hyphae to fuse with

13



each other. But unpublished experiment work shows that soft, a mutant strain of the

fungus that is unable to undergo hyphal fusion[FSG08] still maintains genetic diversity

at levels that are comparable to the wild type strain of the fungus.

• Within each deme(or hyphal compartment) the nuclei are well mixed. That is when a

nucleus exits the compartment it can be chosen at random from the N nuclei within the

deme. In real hypha nuclei are mixed up within each compartment by a combination of

velocity gradients in the flow and by their collisions with other organelles, e.g, vesicles,

and random motor - driven motions that often oppose the direction of bulk cyto-plasmic

flow.[RLH15]

We call this model the pinball model because each division sets off a cascade of nu-

clear transfers at lower and lower nodes until a left node is reached. See figure 3.1 for an

illustration.

For notation, let nk be the number of red nuclei in deme k, fk = nk/N be the proportion

of the red nuclei, and the heterozygosity, which turns out to be a more useful statistics for

diversity, be Hk = 2fk(1−fk). For most of the numerical experiments in this thesis, N = 30.

3.1.1 Direct Tree Simulation

For sufficiently small networks we can directly simulate both network growth and nuclear

division on the network, and calculate the distributions for the random variables fk, etc, by

combining ensembles of these networks. The rules for these direct simulations are as follows:

• Binary tree growth: when one deme branches, it always has two descendent demes.

Note: because of this structure, our demes can be ordered into generations, starting

with the root(generation 0), the deme adjacent to it(generation 1), and so on.

• Each step occurs with exactly one nucleus dividing. Each nucleus is equally likely to

divide.
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p=1/2

p=1/2p=1/2

p=1/2

Division
occurs here

Figure 3.1: Diagram sketch of the pinball model. One particular realization is shown when

there are four generations and N = 3. In this realization, the new division occurs at the

root. And then it sets off a cascade of nuclear transfers throughout the network.

• There is also another nucleus get transferred out of the deme where the division occurs.

This nucleus is equally likely to be any nucleus from choice of the original population

(i.e, is chosen independently from the population of that deme).

• When a nucleus transfers through a branching point, it will go to either deme in the

next generation with equal probability. The deme that is being “fed” then transfers

out another nucleus from its original population. And the process goes on.

The simulation is illustrated in 3.2 and 3.3.

3.1.2 Single Lineage in a Full Branching Network

Note that in the previous simulation, because the number of demes grow exponentially

with the number of generations, one can only directly simulate a very limited number of
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Figure 3.2: Diagram sketch of the direct simulation. One particular realization is shown

when there are four generations. Each node represents a deme in the network. The number

on each node represents fk, the proportion of the red nuclei, of that deme at a particular

time.

Figure 3.3: The direct simulation. Heterozygosity is averaged over each generations and over

100 independent realizations.

generations. Instead, one can simulate one chain that links the root of the tree to a growing

tip. Although nuclei can leave this chain of demes, demes not on this path cannot affect the

composition of any deme on the path. Hence the rule is: the probability of transferring from

deme i to deme j(i ≤ j ≤ m+ 1) is 1/2j−i, where i is the deme that divides a nucleus.
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Figure 3.4: Initial condition for all the numerical simulations of single lineages in this chapter.

We start with m0 = 10 generations(or demes). N = 30. The initial number of species in

each deme is n
(0)
j = 15,∀j. Top figure: Number of species 1 in each generation. Bottom

figure: The heterozygosity for each generation, corresponding to this realization.

Figure 3.5: One realization of a single lineage with full branching. Here H0 = 0.5, N = 30.

We start with 10 demes. Top figure: Number of species 1 in each generation. Bottom figure:

The heterozygosity for each generation, corresponding to this realization.

3.1.3 Single Lineage in a Full Branching Network with Local Transfers

One can further simplify the growth model by allowing only local nuclear transfers. Under

this model the nuclei can be transferred no further than one deme within the chain. That
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Figure 3.6: Simulation of a single lineage with full branching. In each case, heterozygosity

is averaged over 100 independent realizations.

is, in a symmetric branching tree with probability

The rule is: when one nucleus is divided, the transfer is ended in the next one generation.

Figure 3.7: One realization of a single lineage with full branching and local transfers. Here

H0 = 0.5, N = 30. We start with 10 demes. Top figure: Number of species 1 in each

generation. Bottom figure: The heterozygosity for each generation, corresponding to this

realization.

The result is shown in 3.8.
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Figure 3.8: Simulation of a single lineage with full branching and local transfers. In each

case, heterozygosity is averaged over 100 independent realizations.

3.1.4 No Branching Case

As the opposite case of full branching, we also consider the case where the network has no

branching. In this case the pinball effect always proceeds along all linked demes until a

nucleus is moved into the last deme. The result is shown in 3.10.

Figure 3.9: One realization of a single lineage with full branching and local transfers. Here

H0 = 0.5, N = 30. We start with 10 demes. Top figure: Number of species 1 in each

generation. Bottom figure: The heterozygosity for each generation, corresponding to this

realization.
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Figure 3.10: Simulation of a single lineage with no branching. In each case, heterozygosity

is averaged over 100 independent realizations.

3.2 Observations of the Numerical Results

Here are a few things that one can observe from the numerical simulations:

• For both full branching networks, the expected heterozygosity profile seems to be a

traveling “bump”.

• For full branching networks, no matter how the specifics on nuclear transferring is, the

peak of the heterozygosity in general decays with time. However, this decay is not as

significant as the exponential decay in the Moran process.

• The no branching network seems to have a very different dynamics. While the het-

erozygosity of root deme decays with time, the tips maintain the diversity pretty well.

In fact, the heterozygosity of the tip demes stays almost flat as the time increases.

All of these make it necessary and interesting to analyze the spatial distribution of heterozy-

gosity.
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CHAPTER 4

Dynamics of Heterozygosity

Although fixed size populations are homogenized eventually by genetic drift, a growing size

population may maintain its diversity indefinitely.

Moreover in a linked chain of demes the expected diversity may be transiently increased

by nuclear dynamics. In this chapter we first discuss two previously unreported models that

expose the time scales of these effects.

The traveling bump solution observed in simulations of a full branching network is con-

sistent with these two ideas; since at each point in the linked chain of demes, there is long

time decay of heterozygosity, but as the bump travels along the chain, heterozygosity may

locally increase. In this chapter we also analyze bump dynamics asymptotically, yielding a

theory that can quantitatively explain the height, width and velocity of the bump.

4.1 Bucket Model

We will start with a non-spatial model that has a simple dynamics: During each step, one

nucleus chosen randomly from the population divides. The system also starts with a well

mixed population of fixed size n with two nuclear species. The key difference compared with

a Moran process is that no nucleus is removed at any time, resulting a growing population

size.

Variants of these models(i.e, a population having exponential growth) have been previ-

ously discussed by [SH91] [Hah66] - in the context of modeling a population that undergoes

periodic cycles of exponential growth and then collapse(genetic bottlenecks). However these
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works do not provide analytic formulas for the heterozygosity dynamics.

We call this model “the bucket model” since it corresponds to taking all of the nuclei

from the fungus and putting them in a single bucket, with no tracking of where nuclei are

distributed throughout the fungal network.

Denote fk = rk/nk, where rk is the size of the population of species one nuclei at the k-th

step and nk = n0 + k is the size of the population at the k-th step. Let the heterozygosity

Hk = 2fk(1− fk) same as before. During the k-th to the k + 1-th step, we have

E(fk+1|k-th step) =
1 + rk
1 + nk

fk +
rk

1 + nk

(1− fk)

= fk

(4.1)

E((fk+1)
2|k-th step) =

(
1 + rk
1 + nk

)2

fk +

(
rk

1 + nk

)2

(1− fk)

= f 2
k +

1

2(1 + nk)2
Hk

(4.2)

Use the total law of expectation, we have

E(fk+1) = E(fk) (4.3)

E(Hk+1) =

(
1− 1

(1 + nk)2

)
E(Hk) (4.4)

Therefore, we have

E(fk) = E(f0), ∀k (4.5)

and

E(Hk) =

(
k + 1 + n0

k + n0

n0

1 + n0

)
E(H0), ∀k (4.6)

So we have

lim
k→∞

E(Hk) →
n0

1 + n0

E(H0) (4.7)

that is, the heterozygosity, instead of decaying to 0, has a non-zero asymptote n0

1+n0
E(H0). It

follows that the population is not expected to fix to one specie. In other words, by allowing

a growing population size, the diversity of the system is preserved.
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4.2 Building Block: One division step for two demes

According to the bucket model the “global heterozygosity” of a population of nuclei that is

not limited in size will not decay to 0 as the population grows. However, a fungal mycelium,

though it may grow without bound, is made up of demes whose size is fixed. Moreover the

relevant quantity to the diversity of the network and of the spores that it produces, is the

diversity of individual demes.

To understand how diversity may change with time at the scale of individual demes, we

first consider two linked demes. For the sake of simplicity we assume that the dynamics is

as follows: The nuclear division occurs in Deme 1, and the randomly chosen nucleus from

the original population of Deme 1 is transferred into Deme 2, and then one nucleus from

the original population of Deme 2, chosen randomly, is dropped out. Denote n1, n2 as the

number of red nuclei in each Deme 1 and Deme 2 and f1 = n1/N , f2 = n2/N as the density

of red nucleus for each deme.

Table 4.1 shows how the state variables (n1, n2) change during in one step.

State Variables Description Probability

(n1 + 1, n2) red divides, green transferred, green dropped out f1(1− f1)(1− f2)

(n1 + 1, n2 + 1) 0

(n1, n2 + 1) red divides, red transferred, green dropped out f 2
1 (1− f2)

(n1 − 1, n2 + 1) green divides, red transferred, green dropped out (1− f1)f1(1− f2)

(n1 − 1, n2) green divides, red transferred, red dropped out (1− f1)f1f2

(n1 − 1, n2 − 1) 0

(n1, n2 − 1) green divides, green transferred, red dropped out (1− f1)
2f2

(n1 + 1, n2 − 1) red divides, green transferred, red dropped out f1(1− f1)f2

(n1, n2) red or green divides, transferred, dropped out f 2
1 f2 + (1− f1)

2(1− f2)

Table 4.1: Description of the one step dynamics.

We can also marginalize the joint distribution to track only the changes in deme 1 or in
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deme 2, as needed. The marginal transition probabilities are then

n1 → n1 − 1 : (1− f1)f1

n1 → n1 : f 2
1 + (1− f1)

2

n1 → n1 + 1 : f1(1− f1)

n2 → n2 − 1 : (1− f1)f2

n2 → n2 : f1f2 + (1− f1)(1− f2)

n2 → n2 + 1 : f1(1− f2)

Now let f+
1 and f+

2 be the density after one step, then conditioning on f1, f2(state

variables at the current step), the expected properties obey:

< f+
1 > = (f1 − 1/N)(1− f1)f1 + f1(f

2
1 + (1− f1)

2) + (f1 + 1/N)f1(1− f1)

= f1

< (f+
1 − < f+

1 >)2 > = (1/N)2(1− f1)f1 + 0 + (1/N)2f1(1− f1)

= (2/N2)f1(1− f1)

< f+
2 > = (f2 − 1/N)(1− f1)f2 + f2(f1f2 + (1− f1)(1− f2)) + (f2 + 1/N)f1(1− f2)

= f2 + (1/N)(f1 − f2)

< (f+
2 − < f+

2 >)2 > = (1/N2)[(−1− f1 + f2)
2(1− f1)f2 + (−f1 + f2)

2(f1f2 + (1− f1)(1− f2))

+ (1− f1 + f2)
2f1(1− f2)]

= (1/N2)[(f2 − f1)
2 + (1− f1)f2 + f1(1− f2) + 2(f2 − f1)(f1 − f2)]

= (1/N2)[−(f2 − f1)
2 + f1 + f2 − 2f1f2]

= (1/N2)(f1(1− f1) + f2(1− f2))

(4.8)
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And also

< (f 2
1 )

+ > = (f1 − 1/N)2(1− f1)f1 + f 2
1 (f

2
1 + (1− f1)

2) + (f1 + 1/N)2f1(1− f1)

= (1− 2/N2)f 2
1 + (2/N2)f1

< (f 2
2 )

+ > = (f2 − 1/N)2(1− f1)f2 + f 2
2 (f1f2 + (1− f1)(1− f2)) + (f2 + 1/N)2f1(1− f2)

= f 2
2 + (1/N2)(f1(1− f2) + f2(1− f1)) + (2f2/N)(f1 − f2)

< (f1f2)
+ > = f1f2 + (1/N)f1(f1 − f2)− (1/N2)f1(1− f1)

(4.9)

where < · > is conditional expectation taken with resect to f1, f2. To get unconditional

expectation and high moment information, we need to apply the law of total expectation i.e,

E(·) = Ef1,f2(< · >). We then have

E(f+
1 ) = E(f1)

E(f+
2 ) = (1/N)E(f1) + (1− 1/N)E(f2)

E((f 2
1 )

+) = (1− 2/N2)E(f 2
1 ) + (2/N2)E(f1)

E((f 2
2 )

+) = (1− 2/N)E(f 2
2 ) + 2(1/N − 1/N2)E(f1f2) + (1/N2)(E(f1) + E(f2))

E((f1f2)
+) = (1− 1/N)E(f1f2) + (1/N + 1/N2)E(f 2

1 )− (1/N2)E(f1)

(4.10)

where + denotes the quantity in the next step. This will serve as a building block for the

analysis of our proposed model.

We may track the expectations using a matrix recursion relation of the form:

[ E(f+
1 ) E(f+

2 ) E((f 2
1 )

+) E((f 2
2 )

+) E((f1f2)
+) ]T

= T [ E(f1) E(f2) E(f 2
1 ) E(f 2

2 ) E(f1f2) ]T
(4.11)

where

T =



1 0 0 0 0

1/N 1− 1/N 0 0 0

2/N2 0 1− 2/N2 0 0

1/N2 1/N2 0 1− 2/N 2/N − 2/N2

−1/N2 0 1/N + 1/N2 0 1− 1/N


(4.12)
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T is a constant matrix, so its eigenvalues determine the behavior of the expected moments.

The eigenvalues of T are the diagonals, i.e,

λ1,2,3,4,5 = 1, 1− 2/N2, 1− 1/N, 1− 1/N, 1− 2/N.

Note if we consider other statistics(e.g, heterozygosity H(2) = E(2(f2 − f 2
2 ), H(1, 2) =

E(f1 + f2 − 2f1f2), up to second moment, we could change to another set of basis. The

eigenvalues stay the same under change of basis.

We could see the eigenvalues 1 and 1−2/N2 corresponds to the dynamics of Deme 1 (i.e,

the Moran process; that is E(f1) being constant and E(H1) decaying exponentially in time).

Although the other eigenvalues give a decay rate of the two-deme system, it is not so

clear how spatial dynamics(quantities like H(2) and H(1, 2)) evolve. We will proceed with

more careful analysis below.

So the diversity of these two demes decreases exponentially with time. Although we

introduce the two deme model to get a sense of the time scales and rate of diversity loss, it

is quantitatively correct as a model for the nuclear populations in the first two demes of the

fungal network. These results are suggestive that any linked chain of demes loses diversity

exponentially.

However, according to the bucket model the entire chain of demes does not. Taken

together these results suggest that diversity has spatial structure on the linked demes, with

exponential loss on any single deme at large times, but also with transient growth.

4.3 Full Branching Local Transfer Case

To explore spatial dynamics we consider a simplified case based on the full branching model

and the restriction that nuclei can be transferred no further than to the next deme within

the lineage chain. Let < · > be the conditional expectation (conditioned with respect to the

current state and that the newly divided nucleus is from deme i) of the quantity of the state
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after one step division, we have

< f+
j >=


fj i ̸= j − 1

1

2
fj +

1

2

[
fj +

1

N
(fj−1 − fj)

]
i = j − 1

(4.13)

< (f 2
j )

+ >=


f 2
j i ̸= j − 1, j

1

2
f 2
j +

1

2

[
f 2
j +

1

N2
(fj−1(1− fj) + fj(1− fj−1)) +

2

N
fj(fj−1 − fj)

]
i = j − 1

f 2
j +

2

N2
fj(1− fj) i = j

(4.14)

< (fj−1fj)
+ >=



fjfj−1 i ̸= j − 1, j − 2

1

2
fjfj−1 +

1

2

[
fjfj−1 +

1

N
fj−1(fj−1 − fj))−

1

N2
fj−1(1− fj−1)

]
i = j − 1

fj

[
1

2
fj−1 +

1

2
(fj−1 +

1

N
(fj−2 − fj−1))

]
i = j − 2

(4.15)

< (fj−dfj)
+ >=



fjfj−d i ̸= j − 1, j − d− 1

fj−d

[
1

2
fj +

1

2
(fj +

1

N
(fj−1 − fj))

]
i = j − 1

fj

[
1

2
fj−d +

1

2
(fj−d +

1

N
(fj−d−1 − fj−d))

]
i = j − d− 1

(4.16)

where d ≥ 2.

Now let E(·) be the unconditional expectation and h(i, j) = fi(1 − fj) + fj(1 − fi) =

fi+ fj −2fifj =
1
2
(h(i)+h(j))+ (fi− fj)

2, h(j) = h(j, j) = 2fj(1− fj), H(i, j) = E(h(i, j)),

H(j) = E(h(j)), with the law of total expectation (e.g, Ef(< h(j)+ >) = Ef(E(h(j)+|f)) =

H(j)+, etc) and denote c = 1
2(mN+k)

, we have the following

H(1)+ = (1− 4c/N)H(1) (4.17)
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which is the Moran process. For j ≥ 2, we have

H(j)+ = (1− 2c− 4c/N)H(j) + 2c(1− 1/N)H(j − 1, j) (4.18)

Similarly, we have

H(1, 2)+ = (1− c)H(1, 2) + c(1 + 1/N)H(1) (4.19)

and for j ≥ 3

H(j − 1, j)+ = cH(j − 2, j) + (1− 2c)H(j − 1, j) + c(1 + 1/N)H(j − 1) (4.20)

For d ≥ 2, we have

H(j − d, j)+ = cH(j − d− 1, j) + (1− 2c)H(j − d, j) + cH(j − d, j − 1) (4.21)

and for j ≥ 3

H(1, j)+ = (1− c)H(1, j) + cH(1, j − 1) (4.22)

4.4 Approximations of the Dynamics

4.4.1 Closure Approximations of fj−2fj

The big challenge of the above model, even with local transfer, is that although we are

typically only interested in H(j), i.e, the diversity at a single point, to evolve this quantity

we need also to know E(fj−1fj), the correlation information between neighboring demes.

But to evolve E(fj−1fj), we also need to have E(fj−2fj) and so on. Therefore, our evolution

of H(j) requires keeping track of all m2 cross-correlations.

Instead of tracking all those terms, one might be tempted to find a reasonable approxi-

mation of the terms fj−2fj by using only a combination of fj, f
2
j and fj−1fj. The aim is to:

(i) have fewer variables(i.e, reducing from O(m2) to O(m)) to track; (ii) focus on the local

behavior while still preserving the dynamics to some accuracy. Below are some ad-hoc ideas

to do this.
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• Use the approximation: h(j − 2, j) ≈ h(j − 2, j − 1) + h(j − 1, j)

The idea here is that nuclear populations form homogeneous islands within the cell

[HK09] [KAH10]. h(j − 1, j) therefore represents the probability that an interface

between two island occurs between j − 1 and j. Since islands seem to span multiple

demes, so h(j − 2, j) = 0 if j − 2, j lie in the same island; and h(j − 2, j) = 1 only if

there is a boundary between j − 2 and j − 1 or between j − 1 and j, and if we treat

these as exclusive events, we could end up using the sums of (j−2, j−1) and (j−1, j)

correlations as a proxy to (j − 2, j) correlation, i.e,

fj−2fj ≈ −fj−1 + fj−1fj + fj−2fj−1

• Use the approximation: fj(fj−2 − fj−1) ≈ fj(fj−1 − fj)

fj−2fj ≈ 2fj−1fj − f 2
j

• fj−2fj ≈ fj−1fj

• fj−2fj ≈ 1
2
(fj−1fj + fj−2fj−1)

All of these approximations except the first are analogous to making a continuum approx-

imation in which all pairwise correlation are obtained by Taylor series expansions involving

the correlation between immediately neighboring demes. The plurality of different approxi-

mations reflects different ways of upwinding these series expansions. The first approximation

on the other hand assumes that in realizations of the dynamics fj ∈ {0, 1}. (Naturally this

requires that all correlations vary only on a length scale much larger than the deme spacing.)

However, even these conditions are met, it turns out that the approximations introduce insta-

bility artifacts. In particular each of the correlations must be derived from a real probability,

which imposes the following inequality constraints:

0 ≤ H(j) ≤ 0.5 (4.23)

0 ≤ H(j − d, j) ≤ 1 (4.24)
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Equivalently, the following constraints on E(fj)
2 and E(fj−dfj) must be satisfied:

0 ≤ max{E(fj)
2, E(fj)− 0.25} ≤ E(fj)

2 ≤ E(fj) ≤ 1 (4.25)

0 ≤ max{0, 1
2
(E(fj−d)+E(fj))− 1} ≤ E(fj−dfj) ≤

1

2
(E(fj−d)+E(fj)) ≤ 1,∀d ≥ 1 (4.26)

Figure 4.1 4.2 show those approximations fail to meet the constraints after a few itera-

tions, when presented with initial data that violates long wavelength variation condition.

Figure 4.1: h(j−2, j) ≈ h(j−2, j−1)+h(j−1, j) violates the constraint. Blue lines: E(f 2
j )

and E(fj−1fj) using this approximation in the update. Red dashed lines: lower and upper

bounds of E(f 2
j ) and E(fj−1fj) by equations 4.25 and 4.26. Initial Data: f

(0)
j = 1{j≤10}, 1 ≤

j ≤ 50.

4.4.2 Approximations in the Heterozygosity Update

Another ad-hoc approximation that we shall explore in some detail is to ignore most of the

O(1/N) terms in our heterozygosity update. This idea would lead to the following update:

H(1)+ = (1− 4c/N)H(1)

H(j − d, j)+ = cH(j − d− 1, j) + (1− 2c− δ(d)(4c/N))H(j − d, j) + cH(j − d, j − 1),

0 ≤ d ≤ j − 2

H(1, j)+ = (1− c)H(1, j) + cH(1, j − 1), j ≥ 2

(4.27)
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Figure 4.2: fj(fj−2 − fj−1) ≈ fj(fj−1 − fj) violates the constraint. Blue lines: E(f 2
j ) and

E(fj−1fj) using this approximation in the update. Red dashed lines: lower and upper bounds

of E(f 2
j ) and E(fj−1fj) by equations 4.25 and 4.26. Initial Data: f

(0)
j = 1{j≤10}, 1 ≤ j ≤ 50.

By only keeping the leading order terms(except for δ(d)(4c/N)), one essentially makes

the assumption that genetic drift occurs only within the relevant deme itself, ignoring the

drift due to advection from neighbors. This is the same assumption in the derivation of

the stepping stone model, assuming that nucleus transferred between demes is not chosen

at random, but that deme k contributes a deterministic fk red nuclei to its downstream

neighbor each time a transfer occurs.

4.4.3 PDE Perspective

The discrete update equations can be solved numerically, but to gain analytic insight into

the dynamics of the network we start by seeking a PDE (continuous space and time) ap-

proximation to the update equation.

We would like to consider a continuous version of the update. Assume that for each

nucleus, the time that it divides a new nucleus follows Exp(λ). Note then the time it takes

for mN + k nuclei to divide a new one follows Exp((mN + k)λ). And then if we re-scale one

increment in time as the time to have a new nucleus division, we would take ∆t ≈ 1
mN+k

= 2c.
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Let ∆x be the space scale between two demes. With

H(j − d− 1, j) ≈ H(j − d, j)− ∂H

∂x1

∆x+
1

2

∂2H

∂x2
1

(∆x)2 (4.28)

H(j − d− 1, j − 1) ≈ H(j − d, j)− ∂H

∂x2

∆x+
1

2

∂2H

∂x2
2

(∆x)2 (4.29)

And with ∆x = 1, the “leading order” update becomes

∂H(x1, x2, t)

∂t
= −1

2

(
∂H

∂x1

+
∂H

∂x2

)
+
1

4

(
∂2H

∂x2
1

+
∂2H

∂x2
2

)
−(2/N)δ(x2−x1)H(x1, x2, t) (4.30)

with proper initial and boundary conditions, to be discussed below.

Figure 4.3: Comparison of heterozygosity: Average of realization, fixed-size exact update of

H, fixed-size “leading order” update of H. Here the system grows from 10 demes to 200

demes, T ≈ 210.

The PDE 4.30 is highly similar to the continuous stepping stone model [KAH10]; except

that it includes an additional advection term, and that the boundary conditions(to be dis-

cussed below) are different. These differences will be shown to strongly alter the character of

the PDE, in particular the hyperbolic terms mean that the dynamics must be treated using

characteristics, that will be shown to travel more slowly than the growing edge of the fungus.

The result is that the localized Moran dynamics in the first and last demes dominate the

population genetic dynamics within the chain, as will be discussed below.

32



Figure 4.4: Comparison of heterozygosity: Fixed size “leading order” update of H, Stepping-

Stone solution. Here the system grows from 10 demes to 200 demes, T ≈ 210.

To empirically test what approximations are allowed for the dynamics, we consider sim-

plifying the dynamics by removing the moving boundary. To do this we consider an infinite

chain of demes. Since our update rule only requires that fj−dfj, (1 ≤ d ≤ j − 1) be known

to compute fj f 2
j , etc, we can truncate this chain at a finite point, i.e, consider only the

first m demes of the network. When we compare the discrete time and space dynamics on

this infinite network they quantitatively agree with the observed bump on its left slope. The

absence of characteristics being generated from the moving boundary means that the right

slope of the bump is not reproduced by these infinite domain calculations, which asymptote

to some constant value as j → ∞. But with this asymptotic value agrees very closely with

the height of the bump.

Additionally the shape of the bump is in quantitative accord with the approximation

that considers only leading order terms, i.e, with the PDE solution of 4.30 in the large x

limit, since this solution becomes independent of x, we can neglect the advection terms in

4.30.

The height of the bump in the leading order update is the solution of the stepping stone

model. This is expected because for the update on leading order terms, the only difference

is that stepping stone model assumes homogeneous spatial data and has infinite boundary.
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In fact, there are several ways to interpret the left half of the “bump”.

If in equation 4.30 we assume H depends only on one spatial variable x with x = x2−x1

(note this assumes well-mixed, spatially homogeneous data, same as in [KAH10]), with

∂H

∂x
= −∂H

∂x1

=
∂H

∂x2

(4.31)

∂2H

∂x2
=

∂2H

∂x2
1

=
∂2H

∂x2
2

(4.32)

Denote H̃ as the heterozygosity under this assumption. Then H̃(x, t) would satisfy

∂H̃(x, t)

∂t
=

1

2

∂2H̃

∂x2
− (2/N)δ(x)H̃(x, t) (4.33)

which is exactly the 1-D stepping stone equation with constants Ds = 1/4 and Dg = 2/N .

Solution of this equation is reported in Chapter 2 and is drawn in Figure 4.4.

Another view is also based on trying to find an approximation of H(t, x = x1 = x2). We

start with a system with only advection terms. Also we neglect exponential decay terms

except for the first deme. That is
∂H

∂t
= −1

2

∂H

∂x
(4.34)

with boundary conditions

H|x=0 = H0e
− 2

N
t (4.35)

H|t=0 = H0 (4.36)

Using the method of characteristics(see Figure 4.6), The solution to this is

H(t, x) =

H0e
− 2

N
(t−2x), x < t/2

H0, x ≥ t/2
(4.37)

Note this solution captures the wave speed 1/2, but does not reflect the decaying scale.

In fact, the right thing to do is to take the stepping stone solution into consideration.

Specifically, let

A(t) = erfc

(
D2

gt

8Ds

)
e

D2
gt

8Ds (4.38)
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with Ds = 1/4 and Dg = 2/N . And the right thing to do is to apply this decaying scale

along the characteristics lines, instead of remaining constant. We will then have

H(t, x) =

H0e
− 2

N
(t−2x)A(2x), x < t/2

H0A(t), x ≥ t/2
(4.39)

Up to the diffusion terms, this is a very good approximation of the left half of the bump.

See Figure 4.5.

Figure 4.5: Blue line: Fixed Size Leading Order Update. Black line: Update without

diffusions, i.e, use 4.39. Here m = 50.

The difference between 4.39 and the left half of the “bump” can be attributed to the

diffusion terms. Our discrete update essentially gives a numerical scheme of the PDE de-

scription. In fact, our discrete update with leading order terms gives the upwind scheme

of the advection equation The upwind scheme is known to introduce numerical diffusion.

The effect of the diffusion terms could also be observed by modified equation analysis, as in

[LL92].

4.4.4 Maximal Principles for Heterozygosity

For a spatially extended network of demes, the bucket model indicates that under some

conditions the global diversity of any pair of nuclei isolated from anywhere in the network
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Figure 4.6: Illustration of the characteristics lines when we solve the left half of the “bump”

using advection terms. Here I = {(x, t)|x < t/2}, II = {(x, t)|x > t/2}.

may not decay to 0. But in fact the individual entries of H(i, j) are not clearly bounded by

this constraint. We examine our update rule for evidence of constraints of the heterozygosity

of individual demes.

For the discrete leading order term update 4.27, we have

max
i,j

|H(i, j)|+ ≤ max
i,j

|H(i, j)| (4.40)

i.e, the maximal of |H(i, j)| is non-increasing.

For our exact update, however, |H(j − 1, j)| could have a transient growth despite the

system has a decay. Specifically, if we have H(j − 1) = H(j) = H(j − 1, j) = H0, then in

the next step, H(j − 1, j)+ = (1 + c/N)H0. As an exact upper bound, we have

max
i,j

|H(i, j)|+ ≤ (1 + c/N)max
i,j

|H(i, j)| (4.41)
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4.5 The General Case

We would like to extend the analysis into a more general framework, allowing different types

of branching networks to be modeled. Let kij be the probability that deme j(j > i) is fed by

the previous generation(that is by deme j − 1) given a division occurs in deme i. Let di be

the probability that division occurs in deme i that starts the cascade. Then our transition

probabilities must be modified to:

< f+
j >=


fj i ≥ j

(1− kij
N

)fj +
kij
N

fj−1 i < j
(4.42)

< (f 2
j )

+ >=


f 2
j i > j

f 2
j +

2

N2
fj(1− fj) i = j

(1− kij)f
2
j + kij

[
f 2
j +

1

N2
h(j − 1, j) +

2

N
fj(fj−1 − fj)

]
i < j

(4.43)

< (fj−1fj)
+ >=



fj−1fj i ≥ j

(1− kj−1,j)fj−1fj

+ kj−1,j

[
fj−1fj +

1

N
fj−1(fj−1 − fj))−

1

N2
fj−1(1− fj−1)

]
i = j − 1

(1− ki,j−1)fj−1fj

+ (ki,j−1 − kij)

[
fj−1 +

1

N
(fj−2 − fj−1)

]
fj

+ kij[(1−
1

N
)2fj−1fj + (

1

N
− 1

N2
)fj−2fj

+
1

N2
fj−2fj−1 +

1

N
f 2
j−1 −

1

N2
fj−1] i < j − 1

(4.44)
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< (fj−dfj)
+ >=



fj−dfj i ≥ j

fj−d

[
(1− kij)fj + kij(fj +

1

N
(fj−1 − fj))

]
j − d ≤ i < j

(1− ki,j−d)fj−dfj

+ (ki,j−d − kij)

[
fj−d +

1

N
(fj−d−1 − fj−d)

]
fj

+ kij

[
fj−d +

1

N
(fj−d−1 − fj−d)

] [
fj +

1

N
(fj−1 − fj)

]
i < j − d

(4.45)

Let cj =
1
N

∑
i<j dikij = cj,d + ĉj,d, where cj,d = 1

N

∑
i<j−d dikij, ĉj,d = 1

N

∑
j−d≤i<j dikij,

we have

E(f+
j |current state) = (1− cj)fj + cjfj−1

E((f 2
j )

+|current state) = (1− 2cj)f
2
j +

1

N2
djh(j) + 2cjfj−1fj +

1

N
cjh(j − 1, j)

E((fj−1fj)
+|current state) = (1− cj−1 − cj +

1

N
cj,1)fj−1fj + (cj−1 −

1

N
cj,1)fj−2fj

+ (cj(1 +
1

N
)− 1

N
cj,1)f

2
j−1 −

1

N
cjfj−1 +

1

N
cj,1fj−2fj−1, (d ≥ 2)

E((fj−dfj)
+|current state) = (1− cj−d − cj +

1

N
cj,d)fj−dfj + (cj−d −

1

N
cj,d)fj−d−1fj

+ (cj −
1

N
cj,d)fj−dfj−1 +

1

N
cj,dfj−d−1fj−1, (d ≥ 2)

(4.46)

So for first moments we have

F (j)+ = (1− cj)F (j) + cjF (j − 1) (4.47)

Whereas for heterozygosity we have

H(j)+ = (1− 2cj − 2dj/N
2)H(j) + 2cj(1− 1/N)H(j − 1, j) (4.48)

H(j − 1, j)+ = (1− cj−1 − cj + cj,1/N)H(j − 1, j)

+ (cj−1 − cj,1/N)H(j − 2, j) + (cj(1 + 1/N)− cj,1/N)H(j − 1)

+ (cj,1/N)H(j − 2, j − 1)

(4.49)
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H(j − d, j)+ =(1− cj−d − cj + cj,d/N)H(j − d, j)

+ (cj−d − cj,d/N)H(j − d− 1, j) + (cj − cj,d/N)H(j − d, j − 1)

+ (cj,d/N)H(j − d, j − 1) d ≥ 2

(4.50)

If we assume that each deme is equally likely to divide, i.e, di = N/(mN + k), ∀i, all

previously described branching models can be obtained as special cases of the above. In

particular:

• Full branching local kernel

kij =
1
2
χ{j−i=1}, j > i,

cj =
1
2

1
mN+k

,∀j,

cj,d = 0, d ≥ 1.

• Full branching full kernel

kij =
1

2j−i , j > i,

cj = (1− 2−(j−1)) 1
mN+k

,

cj,d = (2−d − 2−(j−1)) 1
mN+k

.

• No branching

kij = 1, j > i,

cj = (j − 1) 1
mN+k

,

cj,d = (j − d− 1) 1
mN+k

.

4.6 No Branching Case

Note in previous section, we just showed that a lineage without branching is a just special

case following the general update rule of H with:

kij = 1, j > i (4.51)
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cj = (j − 1)
1

mN + k
(4.52)

cj,d = (j − d− 1)
1

mN + k
. (4.53)

Together with the boundary update rule described in the next section, we have an exact

update for the expectation of heterozygosity in this case. The result is in Fig 4.7 Note

the dynamics is quite different from the full branching case. Although the demes near the

root tend to decay with time, the tip demes remain very diverse(heterozygosity≈ 0.45).

Furthermore, if we consider the global diversity of the system, which can be calculated as

(
∑

i,j≤mH(i, j))/m2, strictly follows the bucket model. This should be expected since no

nuclei are lost from the chain of demes in the absence of branching. See Fig 4.8.

Figure 4.7: Exact update on H(i, j) when there is no branching. Here the system grows

from 10 demes to 200 demes.

4.7 Moving Boundary

4.7.1 Boundary Speed

At stage (m,N, k) (i.e, when the system is growing from deme m to deme m + 1 and k,

0 ≤ k ≤ N − 1 nuclei are at the new site), For local kernel, we have the probability of a

newly division adds to the (k + 1)-th nucleus equals to k+N/2
mN+k

, (note for general kernels, we
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Figure 4.8: The exact update on H(i, j) when there is no branching means

(
∑

i,j≤mH(i, j))/m2 follows the bucket model. Here the system grows from 10 demes to

200 demes.

have this probability equals to k
mN+k

+
∑m

i=1 diki,m+1 using the notation before), hence the

expected number of divisions to grow one more nucleus in the considered chain is mN+k
k+N/2

. (i.e,

follows a geometric distribution).

Note also that we assume the time it takes to divide one more nucleus is proportional to

1/(mN+k), i.e, inversely proportional to the total number of nuclei in the system. Therefore,

the expected time it takes to grow one more nucleus is 1
k+N/2

. The expected time it takes

to grow one more deme is
∑N−1

k=0
1

k+N/2
(note this is independent of m). When N is large

enough, this sum is approximately
∫ 1

0
1

x+1/2
dx = ln 3.

Note in the general case, we have the time to grow from m demes to m+1 demes equals

to the following sum

tm→(m+1) =
N−1∑
k=0

1

k +Ncm+1

≈ ln

(
1 + cm+1

cm+1

)
(4.54)

This derivation gives an estimate of the average speed of the moving boundary. Specif-

ically in the case of full branching local transfer, we have the speed of the boundary ap-

proximately equals to 1/ ln 3 ≈ 0.91 ≈ 1. That is, the boundary moves faster than the

heterozygosity “wave”, which travels at speed 1/2.
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4.7.2 Update of H on the Boundary in No Branching Case

When there is no branching, we’ll make another assumption that no divisions occur in the

(m+1)-th deme. This simplifies the calculations involved. Under this set of assumptions the

number of nuclei in the last deme increases monotonically by 1, with each division occurring

anywhere in the first m demes in the linked chain. Under previous notations we have at state

(m,N, k), i.e, with probability fm, f
+
m+1 = (1 + kfm+1)/(1 + k); with probability 1 − fm,

f+
m+1 = (kfm+1)/(1 + k).

Hence, fixing m and N , for k = 0, 1, 2, ..., N − 1, we have

< (fmfm+1)
+ >=


1

1 + k
fm(kfm+1 + (1 + 1/N)fm − 1/N) i = m

1

1 + k
(kfm+1(fm−1/N + (1− 1/N)fm) + fm(fm−1/N + fm − 1/N)) i < m

(4.55)

< (fjfm+1)
+ >=


1

1 + k
fj(fm + kfm+1) i ≥ j

1

1 + k
(fj−1/N + (1− 1/N)fj)(fm + kfm+1) i < j

(4.56)

E(f+
m+1|current state) =

1

1 + k
(fm + kfm+1)

E((f 2
m+1)

+|current state) =
(

1

1 + k

)2

((kfm+1)
2 + fm(1 + 2kfm+1))

E((fmfm+1)
+|current state) = 1

m

1

1 + k
fm(kfm+1 + (1 + 1/N)fm − 1/N)

+
m− 1

m

1

1 + k
(kfm+1(fm−1/N + (1− 1/N)fm)

+ fm(fm−1/N + fm − 1/N))

E((fjfm+1)
+|current state) = 1

1 + k

(
j − 1

mN
fj−1 +

(
1− j − 1

mN

)
fj

)
(fm + kfm+1)

(4.57)

So for first order moments we have

F (m+ 1)+ =
1

1 + k
F (m) +

k

1 + k
F (m+ 1) (4.58)

42



For heterozygosity we have

H(m+ 1)+ =
k2

(1 + k)2
H(m+ 1) +

2k

(1 + k)2
H(m,m+ 1) (4.59)

H(m,m+ 1)+ =

(
1− m− 1

mN

)
k

1 + k
H(m,m+ 1)

+
m− 1

mN

k

1 + k
H(m− 1,m+ 1) +

(
1 +

1

mN

)
1

1 + k
H(m)

+
m− 1

mN

1

1 + k
H(m− 1,m)

(4.60)

While for j < m,

H(j,m+ 1)+ =

(
1− j − 1

mN

)
k

1 + k
H(j,m+ 1)

+
j − 1

mN

k

1 + k
H(j − 1,m+ 1) +

(
1− j − 1

mN

)
1

1 + k
H(j,m)

+
j − 1

mN

1

1 + k
H(j − 1,m)

(4.61)

4.7.3 Approximations of the Boundary

From the numerical simulations, we observe H(j,m) ≈ H(j,m+1) on the moving boundary.

This corresponds to the boundary condition

∂H

∂x1

=
∂H

∂x2

= 0 (4.62)

for the continuous model. We enforce this condition in our update on the expectation of

heterozygosity, and the result fits very well with the numerical simulations. See Figure 4.12.

4.7.4 “Bump” Revisited

Now that if the boundary condition is valid, we can actually explain the right half of the

bump. We claim that approximately the heterozygosity on the right end of the moving

boundary decays exponentially, but with a decay rate equals to 1/N , i.e, half of the decay

rate at the origin. Too see this, let the heterozygosity on the right boundary be Hbdd(t) =
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H(t, L0 + vt, L0 + vt), where L0 is the initial length of the system, v be the speed of the

boundary. Consider the this quantity with the PDE update without diffusion,

∂H

∂t
= −1

2

(
∂H

∂x1

+
∂H

∂x2

)
− (2/N)δ(x2 − x1)H(x1, x2, t) (4.63)

with
dHbdd

dt
≈ v

∂H

∂x1

≈ v
∂H

∂x2

(4.64)

approximately true on the boundary, we see Hbdd(t) satisfies

dHbdd

dt
= − 2

N

1

1 + 1/v
Hbdd(t) (4.65)

From the previous derivation on the speed of the boundary, we know for full branching local

transfer systems v is a constant and v ≈ 1. Therefore,

dHbdd

dt
= − 1

N
Hbdd(t) (4.66)

and Hbdd(t) = e−(t/N)Hbdd(0). See Figure 4.9 for a justification for this claim.

Figure 4.9: Black dots: Heterozygosity decay at the boundary. Blue line: Exponential decay

e−(t/N)H0.

We can then explain the right half of the bump.

Let us say the initial boundary is [0, L0]. The key is that the moving boundary, which

travels with speed 1, is also generating new characteristic lines(which travels with speed
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Figure 4.10: Illustration of the characteristics lines when we solve the “bump” using ad-

vection terms. Here I = {(x, t)|0 < x < t/2}, II = {(x, t)|t/2 < x < L0 + t/2},

III = {(x, t)|L0 + t/2 < x < L0 + t}.

1/2). We then apply the same idea as the analysis the left half of the bump. See 4.10 for an

illustration of the characteristics.

H(t, x) =


H0e

− 2
N
(t−2x)A(2x), 0 ≤ x ≤ t/2

H0A(t), t/2 < x < L0 + t/2

H0e
− 1

N
t∗A(t− t∗), L0 + t/2 ≤ x ≤ L0 + t

(4.67)

where t∗ = 2t− 2(x− L0).

See Figure 4.11 and 4.12. for a comparison with the exact solution. Again, the difference

is because we ignore the diffusion terms.
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Figure 4.11: Blue line: Leading Order Update. Black line: Update without diffusions. Here

the system grows from 10 demes to 50 demes, T ≈ 44.

Figure 4.12: Comparison: Average of realization, fixed size update, free boundary update,

Stepping Stone solution. Here the system grows from 10 demes to 200 demes, T ≈ 210.
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CHAPTER 5

Coupling Branching and Growth

5.1 Connections with Experiment Data

In Chapter 4, we showed that when there is no branching, the heterozygosity does not decay

either locally or globally; whereas when there is full branching, the heterozygosity travels

with a “bump” profile, with the peak of the bump decays like t−1/2.

Real hyphal networks are somewhere intermediate between these two cases. Interestingly

the amount of branching that occurs is necessarily dependent on whether the mycelial net-

work has an expanding periphery, or grows in one dimension along a racetube, which were

the two experiment geometries used by [MSC15].

If the mycelium grows in one-dimension then no new hyphal tips need to be generated to

maintain uniform density with growth, so in theory no branching is needed. For a mycelium

growing in two-dimensions, for the hp-to-bp separation to stay constant with distance growth,

new tips must be continuously produced via hyphal branching.

Ma et al. [MSC15] found that the spore diversity was sensitive to the geometry of cell

growth. Specifically, for the race-tube growth, which corresponds to the “no branching”

case in our model, the experiment shows the genotypes were well mixed even at the scale of

individual hyphal compartments, this is in general the same prediction of our “no branching”

model. For fungal that grow in petri dishes, where branching is unavoidable, the experiment

shows that individual compartments had different genetic composition, this also is in line

with the prediction of our “full branching” model.

However to populate a linearly growing front with a uniform density of hps branching
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does not need to occur uniformly since this would produce exponential proliferation of hps.

In fact the number of branches needs only increase as the logarithm of the number of demes,

a case that we have not previously considered.

In this chapter we use numerical simulations to determine how finite or logarithmic

branching densities affect population dynamics, with the goal of making a quantitative com-

parison with the experimental data of [MSC15].

5.2 Exploring Different Network Structures

In real fungal systems like Neurospora crassa, we observe that the network structure is

somewhere between the “full branch” case and the “no branching” case. Therefore, we

would like to know how the dynamics of heterozygosity are in those intermediate cases. Here

we show two numerical results regarding two structures that may of interests:

• Only branching around the tips. That is, only the last mt generations are allowed

to branch. Here mt could be a constant or could vary with chain length(e.g, mt ∼

O(logm)).

• Only branching around the root. That is, only the first mr generations are allowed

to branch. Here mr could be a constant or could vary with chain length(e.g, mr ∼

O(logm)).

We simulate these two cases with our discrete exact update of heterozygosity on a single

lineage. The result is shown in Figure 5.2 and 5.2.

We observe that (i) branching around the tips would result a loss of heterozygosity;

(ii) branching around the root seems to preserve the heterozygosity. In fact, this case is

comparable to the “no branching” case, which we showed in the Chapter 4.

To gain insight into the heterozygosity dynamics on these two cases, analysis is needed

using the mechanism developed in Chapter 4 to better understand these observations. This

will be our future work.
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Figure 5.1: Only branching around the tips. mt = 6.

Figure 5.2: Only branching around the root. mr = 6.
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