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The discovery of drug-like molecules that bind pockets in proteins
that are not present in crystallographic structures yet exert allosteric
control over activity has generated great interest in designing
pharmaceuticals that exploit allosteric effects. However, there
have only been a small number of successes, so the therapeutic
potential of these pockets—called hidden allosteric sites—remains
unclear. One challenge for assessing their utility is that rational
drug design approaches require foreknowledge of the target site,
but most hidden allosteric sites are only discovered when a small
molecule is found to stabilize them. We present a means of decou-
pling the identification of hidden allosteric sites from the discov-
ery of drugs that bind them by drawing on new developments
in Markov state modeling that provide unprecedented access to
microsecond- to millisecond-timescale fluctuations of a protein’s
structure. Visualizing these fluctuations allows us to identify po-
tential hidden allosteric sites, which we then test via thiol labeling
experiments. Application of these methods reveals multiple hid-
den allosteric sites in an important antibiotic target—TEM-1 β-lac-
tamase. This result supports the hypothesis that there are many as
yet undiscovered hidden allosteric sites and suggests our method-
ology can identify such sites, providing a starting point for future
drug design efforts. More generally, our results demonstrate the
power of using Markov state models to guide experiments.

thiol labeling | antibiotic resistance | molecular dynamics

Ahidden allosteric site is a binding pocket that is not present
in the crystal structure of a protein, but becomes available as

the protein fluctuates and is capable of controlling the protein’s
function by communicating with the active site (Fig. 1) (1).
Ligands that bind these sites exert control over the protein’s
function by perturbing the ensemble of structures the protein
adopts (2, 3). Such sites could have unknown biological functions
and serve as valuable targets for drug design, particularly for
proteins that are currently considered undruggable because
known structures lack pockets that are suitable for drug design.
Unfortunately, it has been difficult to explore either of these
possibilities because identifying hidden allosteric sites and mole-
cules that bind them remains a profound challenge. For example,
most structure-function studies focus on a single representative
structure of a protein and give little hint as to where hidden allo-
steric sites might occur or what sort of molecules might bind them.
Detecting hidden allosteric sites experimentally is difficult

because most of the available methods couple the identification
of such sites with the drug discovery process. Given the diffi-
culties inherent to drug design, this coupling likely produces
many false negatives, leaving hidden allosteric sites undiscovered.
For example, high-throughput screening can reveal hidden allosteric
sites (4, 5) but failure to identify allosteric modulators does not
disprove the existence of allosteric sites. Tethering provides a site-
directed screen that is useful for specifically searching for allosteric
sites but will still suffer from false negatives if the library being
screened does not include small molecules that will bind an allo-
steric site tightly enough (6, 7). Understanding the full ensemble of
structures a protein can adopt would overcome these limitations
(8), but such an understanding remains elusive. For instance,

room temperature crystallography and NMR have the potential
to reveal alternative structures containing hidden allosteric sites,
but further developments are required to make such measure-
ments routine for any given protein target (9–14).
A number of computational techniques have been developed

to aid in the discovery of hidden allosteric sites. For example,
there are a variety of methods for understanding how informa-
tion flows from one region of a protein to another (15–19), as
well as for identifying potential binding pockets (20–24). More
recent work has accounted for both of these ingredients (25, 26).
Although these methods are important developments, many are
only applicable to small proteins operating on fast timescales.
Therefore, new approaches are needed for addressing many bi-
ologically relevant systems. Furthermore, these methods only
partially decouple the discovery of hidden allosteric sites from
the identification of allosteric ligands because identifying a
compound that binds to a predicted site is still the primary means
of testing computationally predicted allosteric sites.
Here, we use a combination of computation and experiment to

identify hidden allosteric sites without requiring the simultaneous
discovery of ligands that bind and modulate them. Decoupling the
discovery of allosteric sites from the identification of allosteric
ligands should facilitate drug discovery by providing more in-
formation to base design decisions on. For example, rather than
performing blind screens, computationally generated structures
of potential allosteric sites can be used as a starting point for
rational design. The locations of potential hidden allosteric sites
can also be used to direct tethering screens, potentially providing
a less resource-intensive means of discovering hidden allosteric
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sites than applying tethering to every possible location in a pro-
tein. Our approach can be applied to most soluble proteins, but
could be of particular value for the large number of proteins that
are currently considered undruggable because their active sites
or binding interfaces are not considered viable drug targets (27).
The first step in our approach is to build a Markov state model

of a protein of interest, which is essentially an atomically detailed
map of the ensemble of conformations the protein can adopt.
Such models are of great value because they can capture rela-
tively slow conformational changes that are typically beyond
other computational methods and they allow the user to learn
what degrees of freedom are important rather than requiring the
user to select them a priori (28, 29). Potential allosteric sites are
then identified by querying the Markov model for local fluctu-
ations that form pockets that are surrounded by residues whose
rotameric orientations are correlated with those of the active
site. These correlations are a property of the ensemble of structures
the protein can adopt and give insight into where perturbations,
such as ligand binding, are likely to exert allosteric control over
distant sites, such as the active site (26).
Predicted pockets are tested experimentally with thiol label-

ing. In thiol labeling, a cysteine is introduced at a site buried
within a pocket and a chemical reagent is introduced, such as
5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB, also called Ellman’s
reagent). This reagent will react covalently with the cysteine thiol
if the thiol is sufficiently exposed and available to solvent. DTNB
is also attractive for our purposes because it is a drug-sized
molecule, so its ability to bind within a pocket suggests there may
be enough room for a typical drug to bind. Thiol labeling is
analogous to hydrogen-deuterium exchange but is sensitive to
changes in the exposure of side-chains rather than the backbone.
Therefore, it is better suited to detecting pockets that form when
elements of secondary structure separate from one another, as is
observed in many pocket-opening fluctuations, without requiring
unfolding and exposure of the backbone amides. This approach
closely parallels thiol-exchange techniques for studying protein
folding/unfolding and can provide opening rates for the various
pockets as well as the fraction of time the pocket is open (30–32).
Communication between a pocket and the active site is tested by
assaying whether covalently linking a small molecule within a
pocket has any detectable effect on the protein’s activity, as in
tethering (6). A number of controls are also performed to ensure
that the labeling we observe is due to local fluctuations captured
by our computational models rather than global unfolding.

To test this approach, we apply it to TEM-1 β-lactamase with
the M182T substitution, a change commonly found in antibiotic-
resistant variants that is known to stabilize the native state. This
protein is an important drug target because of its role in anti-
biotic resistance (33). It already has one known hidden allosteric
site (34), so it is an excellent system for testing whether our
approach can discriminate allosteric sites from nonallosteric sites.
Finally, β-lactamase is a large enough protein that it is reasonable
to ask if there are other hidden allosteric sites, especially given our
recent computational prediction that such sites exist (26). Newly
predicted allosteric sites that are similar in nature to the known
site could be attractive drug targets given that we already know
ligands that bind the known hidden allosteric site are capable of
modulating β-lactamase’s activity.

Results and Discussion
Computation and Experiment Successfully Detect the Known Hidden
Allosteric Site. Our previous work demonstrated that our com-
putational approach successfully identifies the known hidden
allosteric site in TEM-1 β-lactamase (26). The known site is the
largest of the unexpected pockets formed in this protein and is
also in the open state more than any other pocket. The con-
formations of residues surrounding this pocket are also corre-
lated with the conformations of active site residues, providing
a means for communication between these sites. Therefore, we
expect perturbations at this site can modulate the ensemble of
structures β-lactamase adopts in a manner that alters the pro-
tein’s activity. These results suggest an important role for con-
formational selection in the function of this hidden allosteric site.
That is, the pocket is present even in the absence of a small
molecule to bind it rather than being created by interactions
between the protein and small molecule, which is often called
induced fit. Therefore, the known hidden allosteric site should be
detectable in our thiol labeling experiments because the pocket will
be present even in the absence of a specific allosteric modulator.
If the known hidden allosteric site opens as a result of the

fluctuations predicted by our computational model, then we expect
to see labeling of residues whose side-chains line this pocket. To test
this prediction, we applied our thiol labeling technique to L286.
This residue was chosen because it has negligible solvent accessible
surface area in the apo structure of β-lactamase, but our compu-
tational model predicts that it becomes exposed when the known
hidden allosteric site opens (Fig. 2 A and B). The L286C mutation
required for thiol labeling is also one of the more conservative
mutations we could have chosen in the known hidden allosteric site,
so this mutation minimizes potential perturbation to the protein.
Indeed, our labeling studies indicate that the known hidden

allosteric site opens as β-lactamase fluctuates. The L286C variant
labels at a rate of ∼5.9 × 10−4 ± 5.7 × 10−5 s−1 in 1 mM DTNB
(Fig. 2C and Fig. S1). The expected rate of labeling for a fully
exposed residue is about 1 s−1 (31, 35), so the observed labeling
cannot be attributed to a reorganization of the protein’s struc-
ture that exposes this residue in the ground state.
As in hydrogen exchange, we interpret the observed labeling

rate with the Linderstrom–Lang model (36). This model assumes
the protein is in equilibrium between conformations where a
pocket is either closed or is open and available to react with
DTNB (Scheme 1). Given an opening rate (kop), closing rate (kcl),
and rate of labeling from the open state (kint), the observed rate of
labeling is kobs = ðkopkintÞ=ðkop + kcl + kintÞ. In the limit where
kop � kcl and kcl � kint, this reduces to kobs = kop. This scenario is
called the EX1 regime and can be identified because the observed
rate of labeling will be independent of the concentration of la-
beling reagent. In the limit where kop � kcl and kcl � kint, then
kobs =Kopkint, where Kop = kop=kcl is the equilibrium constant for
the pocket being open. This scenario is called the EX2 regime and
can be identified because the observed rate of labeling will be
linearly dependent on the concentration of labeling reagent (kint).

Fig. 1. Crystal structures of TEM-1 β-lactamase in the absence of any ligand
(blue) (49) and with an inhibitor (cyan) bound in a hidden allosteric site
(yellow) (34). A key catalytic serine (S70) is in green spheres.
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To determine whether the observed rate of labeling is pro-
viding information about the opening rate or the fraction of time
a pocket is open or exposed, we measured the rate of labeling
with varying concentrations of DTNB. Fig. 2D shows that the
labeling rate is independent of [DTNB], which is consistent with
the EX1 regime. Therefore, we conclude that the observed rate
of labeling captures the opening rate of this pocket.

Pockets Are Clearly Distinguishable from Nonpockets. Our experi-
mental approach might give false positives if the cysteine muta-
tions cause significant destabilization of the protein. For example,
introducing a cysteine could globally destabilize the protein such
that labeling occurs directly from global unfolding rather than
transient exposure of the pocket within the native state ensemble.
If this was true for the L286C variant, we would expect the la-
beling rate to approximate the rate of global unfolding because
labeling is in the EX1 regime.
To test whether labeling is due to global unfolding, we de-

termined the unfolding rate of our cysteine variant and com-
pared it with the measured labeling rate (Table S1). Following
previous work on the unfolding of β-lactamase (37, 38), we
measured the unfolding rate of the L286C variant by monitoring
the change in the circular dichroism (CD) signal as a function of
the final urea concentration (Fig. 3). Extrapolating back to 0 M
urea (the labeling conditions), we find that the rate of unfolding
is about 20-fold smaller than the observed rate of labeling. There-
fore, labeling must be due to a fluctuation across a barrier from
the native state that is lower than the barrier to global unfolding.
As a control, we created cysteine variants at buried sites not

predicted to form a pocket. Residues L190 and I260 are both
buried in the ligand-free structure of β-lactamase, and our model
predicts that there are no pockets that expose these residues
to drug-sized molecules. Consistent with this prediction, we do
not observe any labeling of cysteines at these positions over the

course of a 12-h labeling reaction. Therefore, we conclude that
these residues remain buried in the native-state ensemble and
that introducing a cysteine does not cause a local destabilization
that creates an unpredicted pocket or local unfolding. This re-
sult, in combination with the lack of observed labeling for the
two endogenous cystines in the protein that are oxidized in a
disulfide bond, also confirms that the labeling we observe for
other residues is not due to a reaction with the two cysteines that
naturally form a disulfide in β-lactamase. The fact that our
computational model successfully discriminates where labeling
will and will not occur also adds significant weight to our con-
clusion that labeling is due to the formation of a pocket rather
than a large-scale unfolding event.
Given the proximity of the known hidden allosteric site to two

of the four tryptophan residues in β-lactamase, we reasoned that
opening of this pocket may expose these tryptophans to solvent
and lead to a change in the protein’s fluorescence. Indeed,
opening of this pocket in our computational model increases the
solvent accessible surface area of Trp229’s side-chain from 36%
in the ligand-free structure to 69 ± 9% when the pocket is open.
The solvent accessible surface area of Trp290’s side-chain in-
creases from 43% in the ligand-free structure to 85 ± 8% when
the pocket is open. Because pocket opening precedes global
unfolding and might be on the pathway to global unfolding, we
hypothesized that monitoring unfolding by fluorescence should
detect pocket opening and yield a faster rate than monitoring
unfolding by CD. To test this prediction experimentally, we
measured the rate of change in fluorescence of the L286C var-
iant as a function of the final urea concentration and used linear
extrapolation to find the rate of change in the absence of
denaturant. This procedure yielded a rate of 5.5 × 10−4 ± 2.4 ×
10−4 s−1, in reasonable agreement with the rate of labeling with
DTNB of 5.9 × 10−4 ± 5.7 × 10−5 s−1. The fact that these rates
are 20-fold larger than the rate of unfolding demonstrates that
labeling precedes unfolding and, therefore, occurs from a rare
state on the native side of the rate-limiting barrier to unfolding.
Interestingly, this state appears to be distinct from previously
characterized high-energy states on the unfolded side of the rate-
limiting barrier to unfolding that were also detected by fluores-
cence (37, 38).

A

C D

B

Fig. 2. Thiol labeling of the known hidden allosteric site. (A and B) Surface
representations of the closed and open states of the known hidden allosteric
site, respectively. L286 (yellow) is only visible in the open state. A key cata-
lytic serine (S70) is shown in green as a reference point. (C) Labeling of L286C
in 1 mM DTNB. (D) The dependence of the labeling rate of L286C on the
concentration of the labeling reagent (DTNB) with error bars representing
the SD from three replicates.

Fig. 3. Thiol labeling is not due to unfolding. Log of the unfolding rate of
L286C as monitored by CD for different urea concentrations with a linear fit
(black line) used for extrapolating back to the unfolding rate at 0 M urea.
The labeling rate (yellow circle) is considerably faster than unfolding, so it
must correspond to a fluctuation within the native state.
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There Is Communication Between the Known Allosteric Site and Active
Site. We also exploited our thiol labeling to test whether there is
communication between the pockets we detect and the active
site, as indicated by correlations in the ensemble of structures
β-lactamase adopts. We previously predicted that almost any
hidden binding pocket should also serve as an allosteric site due
to coupling of many residues to different portions of the active
site (26). To test whether a given pocket communicates with the
active site, we measured the activity of proteins with and without
TNB (one half of DTNB) covalently bound within the pocket.
A measurable change in activity would demonstrate that there is
communication, although it should not be used as a quantitative
measure of potential inhibition because other molecules that bind
the same site could be more potent inhibitors or even enhance the
protein’s activity (39). Using this approach, we find that the spe-
cific activity of L286C is reduced from 361 ± 29 to 97 ± 6 nmol
product/μg/min. These results suggest that there is communication
between the site of modification and the active site. Although
DTNB is a drug-sized molecule (SI Materials and Methods), TNB is
significantly smaller than typical drugs and has not been optimized
for binding this hidden allosteric site. Therefore, it is entirely pos-
sible that an allosteric modulator specifically designed to bind this
site could be a much stronger β-lactamase inhibitor. Identifying such
noncovalent inhibitors (or activators) would serve as the ultimate
verification of the existence of our hidden allosteric sites and
remains an important future direction. Although we have not yet
discovered new molecules that bind the hidden allosteric sites
revealed by our approach, we note that the allosteric inhibitor dis-
covered by Horn et al. (34) demonstrates that it is possible for small
molecules to bind such hidden allosteric sites strongly enough to
stabilize the open form of a pocket and alter an enzyme’s activity.
As a control, we tested whether thiol labeling of residues that

our computational model predicts should have little communica-
tion with the active site alters β-lactamase’s activity. Specifically,
we chose to perform thiol labeling of A150 because it is a surface
residue that is available for labeling and surrounding residues have
weak correlations with the active site in our computational model.
Complete labeling of the A150C variant has a negligible effect on
the protein’s activity (Table 1), consistent with our prediction that
it does not communicate with the active site.

Discovery of Previously Unidentified Hidden Allosteric Sites. Now we
can begin testing whether our model successfully predicts novel
hidden allosteric sites. Toward this end, we chose to focus on
pockets that our simulations predict will expose residues that
are completely buried in the static, apo-crystal structure. Such
pockets are the most amenable to our thiol labeling experiments,
although there may be other pockets that are equally potent al-
losteric sites but lack residues with this differential exposure.

Residues appropriate for our thiol labeling experiments were
selected by examining the fraction of each residue’s surface area
that is typically accessible to probes of varying sizes (Fig. 4). Spe-
cifically, we chose probe radii of 0.14, 0.24, 0.34, 0.44, and 0.54 nm.
This range mimics molecules like water at the smallest scale and
more drug-like molecules at the largest scale. We calculated the
accessible surface area for the side-chain of each residue for a given
probe size as follows: (i) computationally roll a sphere with the
given probe radius across the surface of a representative structure
for each state in the Markov model and calculate the accessible
surface area of every residue’s side-chain; (ii) calculate the average
accessible surface area of each side-chain by taking the average
across all states, weighted by their equilibrium populations; and
(iii) divide the result for each residue by the total possible ac-
cessible surface area of its side-chain. One result of this analysis is
that the fluctuations β-lactamase undergoes make basically every
residue’s side-chain accessible to water, as previously observed in
other proteins (40). However, many residues are not accessible
to larger molecules. We selected residues that are accessible to
probes with radii of at least 0.34 nm because this is consistent with
the size of DTNB and residues that we have already shown to
label are accessible at this probe size, whereas residues that we
have shown do not label are not. Of the residues that meet this
criterion, we selected the smallest residues possible to minimize
the perturbation caused by mutating to a cysteine. Based on these
criteria, residues A232 and A249 point into the most promising
pocket. Residue S203 also points into a second pocket.
We performed thiol labeling of A232C to test our first predicted

pocket (Fig. 5). Fig. 5 C and D shows that the A232C variant labels
at a rate of 3.6 × 10−3 ± 1.0 × 10−3 s−1 independent of the con-
centration of labeling reagent, and therefore this is the rate at which
the residue becomes exposed. The rate of unfolding is also 200-fold
slower than the rate of labeling (Table S1), so the observed labeling
is not due to global unfolding. Complete labeling of the protein
reduces the activity of the protein by 1.5-fold (Table 1). In addition
to our labeling experiments, we again reasoned that opening of this
pocket could lead to a change in fluorescence by exposing Trp229 to
solvent. Indeed, opening of this pocket in our computational model
increases the solvent accessible surface area of Trp229’s side-chain
from 36% in the ligand-free structure to 56 ± 12% when the pocket
is open. Experimentally monitoring unfolding by fluorescence, as
described previously, yielded a rate of 1.9 × 10−3 ± 1.2 × 10−3 s−1, in
reasonable agreement with the DTNB labeling rate for this variant.
We also performed separate experiments on an A249C variant. The
side-chain of this residue points into the same pocket but has less
exposure than residue 232 because it is not exposed in the exact
same set of structural states where this pocket is open as residue 232.
Indeed, we observe labeling of the A249C variant at a rate fivefold
less than the A232 variant (Table S1), consistent with the residue at
position 249 being exposed on opening of the pocket. Based on all of

Table 1. Specific activities (nmol product/μg protein/min) of
labeled and unlabeled proteins

Pocket Mutation Unlabeled activity Labeled activity

Background
(M182T)

532 ± 5

1 L286C 361 ± 29 97 ± 6
2 A232C 545 ± 75 255 ± 21
2 A249C 193 ± 13 150 ± 18
3 S203C 520 ± 13 345 ± 17
Surface A150C 235 ± 25 249 ± 28
Buried L190C 213 ± 22
Buried I260C 267 ± 38

The reduction in activity on labeling demonstrates that there is commu-
nication between the proposed allosteric sites and the active site. The
pockets are (1) the known allosteric site, (2) the first predicted site, and (3)
the second predicted site.

A B

Fig. 4. Residues selected for labeling in each pocket. (A) Ribbon diagram of
β-lactamase highlighting residues in the known hidden allosteric site (L286,
yellow), the first predicted site (A232, red), and the second predicted site
(S203, magenta). A key catalytic serine (S70) is shown in green. (B) Average
percent of residues’ surface area that is accessible to a variety of probe sizes.
L190 and I260 are buried, whereas A150 is on the surface.
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the results for these two variants, we conclude that this site is a
hidden allosteric site, consisting of an unexpected pocket with the
ability to communicate with the active site. An allosteric modulator
of this site would need to have a greater effect on activity but, as
explained before, this is entirely possible.
We also tested the second predicted pocket via thiol labeling of

S203C. This residue labels at a rate of 1.5 × 10−2 ± 3.4 × 10−3 s−1,
again independent of the concentration of labeling reagent (Fig.
S2). This rate is 50-fold faster than the rate of global unfolding
(Table S1), so it captures the rate of exposure of the residue.
There is also communication between this site and the active site,
as demonstrated by an ∼1.5-fold reduction in activity on labeling.
Therefore, we conclude that this second predicted site is also a
hidden allosteric site.

Conclusions
We developed an approach that combines computation and
experiment to detect hidden allosteric sites arising from the
ensemble of structures a protein can adopt. Importantly, our
approach does not require the simultaneous discovery of small

molecules that bind and modulate these sites, so our method-
ology can be used to guide subsequent drug design efforts.
Using this approach, we have demonstrated that a single

protein—TEM-1 β-lactamase—accommodates multiple hidden
allosteric sites. This result is surprising because TEM-1 β-lacta-
mase has been studied extensively without observing these sites.
Furthermore, there may even be other hidden allosteric sites in
this single protein that are not amenable to the experimental
methodology we describe here.
Our results suggest there are many as yet undiscovered hidden

allosteric sites and that our techniques should provide a means of
detecting them. Once discovered, these allosteric sites can then
be targeted with rational drug design or followed up on to dis-
cover their biological relevance. In the case of TEM-1, the hid-
den allosteric sites we discovered could be valuable targets for
antibiotic development.
These results lay an important foundation for future work on

hidden allosteric sites. For example, an important next step will
be to discover new allosteric modulators that bind the hidden al-
losteric sites revealed by our methodology. Furthermore, our results
demonstrate the value of our advanced computational methods
and argue for further developments to make an even more quan-
titative comparison between computation and experiment.

Materials and Methods
Simulations were run with Gromacs (41, 42), and the Markov state model was
built with MSMBuilder (43, 44), as described previously (26). This particular
model provides a statistically reliable description of dynamics on tens of mi-
crosecond timescales. Further details are given in SI Materials and Methods.
Accessible surface areas were measured with Gromacs and a Voronoi-based
method (45). Structures were visualized with PyMOL (46).

TEM-1 β-lactamase with the M182T stabilizing mutation and all cysteine
variants of this background sequence were purified from the periplasmic
fraction of BL21(DE3) cells as described in previous work (47) and SI Materials
and Methods. We measured enzyme activities following previous work (48),
as described in SI Materials and Methods. Cysteine mutations were introduced
with Quik-Change mutagenesis. Thiol labeling experiments were run with
30 μM protein and varying concentrations of DTNB (also called Ellman’s re-
agent) in 20 mM Tris, pH 8.0. The time course for labeling was monitored by
following the absorbance at 412 nm in a Cary 100Bio UV-Vis spectropho-
tometer (27 °C) after starting the reaction via manual mixing. Rates were
interpreted using the Linderstrom–Lang model (36). Unfolding rates and equi-
librium melts were monitored by circular dichroism, as described in SI Materials
and Methods. Further details are given in SI Materials and Methods.
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