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RFRP3 influences basal lamina
degradation, cellular death, and
progesterone secretion in cultured
preantral ovarian follicles from the
domestic cat
Kathryn Wilsterman1, George E. Bentley1,2 and Pierre Comizzoli3

1 Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
2Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA,
United States of America

3 Smithsonian Conservation Biology Institute, Washington, DC, United States of America

ABSTRACT
The hypothalamic neuropeptide RFRP3 can suppress hypothalamic GnRH neuron
activation and inhibit gonadotropin release from the anterior pituitary. RFRP3 is also
produced locally in the ovary and can inhibit steroidogenesis and follicle development in
many vertebrates. However, almost nothing is known about the presence and regulatory
action of RFRP3 in gonads of any carnivore species. Such knowledge is important for
developing captive breeding programs for endangered carnivores and for inhibiting
reproduction in feral species. Using the domestic cat as a model, our objectives were
to (1) demonstrate the expression of feline RFRP3 (fRFRP3) and its receptor in the cat
ovary and (2) assess the influence of fRFRP3 on ovarian follicle integrity, survival, and
steroidogenesis in vitro. We first confirmed that fRFRP3 and its receptors (NPFFR1
and NPFFR2) were expressed in cat ovaries by sequencing PCR products from ovarian
RNA. We then isolated and cultured preantral ovarian follicles in the presence of 10
or 1 µM fRFRP3 + FSH (1 µg/mL). We recorded the percentage of morphologically
viable follicles (basal lamina integrity) over 8 days and calculated percentage survival
of follicles on Day 8 (using fluorescent markers for cell survival and death). Last, we
quantified progesterone accumulation in media. 10 µM fRFRP3 had no observable
effect on viability, survival, or steroid production compared to follicles exposed to
only FSH. However, 1 µM fRFRP3 decreased the percentage of morphologically viable
follicles and the percentage of surviving follicles on Day 8. At the same time, 1 µM
fRFRP3 increased the accumulation of progesterone in media. Our study shows, for
the first time, direct action of RFRP3 on the follicle as a functional unit, and it is the
first in a carnivore species. More broadly, our results support a conserved, inhibitory
action of RFRP3 on ovarian follicle development and underscore the importance of
comparative functional studies.

Subjects Molecular Biology, Veterinary Medicine, Gynecology and Obstetrics
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INTRODUCTION
In spite of their name, neuropeptides are synthesized in and act on many peripheral tissues
in addition to their classical actions in the nervous system (McGuire & Bentley, 2010). In
part due to persistent biases in how these peptides are studied, we still have a rudimentary
understanding of how these neuropeptides evolved to play disparate central and peripheral
roles. In many cases we do not even have a comprehensive understanding of their function
or importance outside of the brain (Bentley et al., 2017).

While some neuropeptides have peripheral effects that serve distinct functions from
their role in the central nervous system (e.g., the neuropeptide gonadotropin-releasing
hormone (GnRH); Iwakoshi-Ukena et al., 2004; Bentley et al., 2017), other neuropeptides
exhibit putatively concordant function in the central nervous system and periphery.
One such example is the nonapeptide RF-amide related peptide 3 (RFRP3). Originally
discovered in birds (Tsutsui et al., 2000), orthologs of RFRP3 (variously known as GnIH
and LPXRFa) perform similar functions in other vertebrates. For clarity, we use RFRP3
to refer to this family of genes throughout the manuscript. RFRP3 inhibits activity of
the vertebrate reproductive axis via direct action in the hypothalamus, on the anterior
pituitary, and in the gonads (Bentley et al., 2017). In the hypothalamus, RFRP3 can inhibit
the activity of GnRH cells (Murakami et al., 2008; Clarke et al., 2008; Anderson et al., 2009;
Kadokawa et al., 2009; Ducret, Anderson & Herbison, 2009; Bentley, Tsutsui & Kriegsfeld,
2010; Son et al., 2016). Hypothalamic RFRP3 can also directly influence pituitary release of
gonadotropins (Osugi et al., 2004; Tsutsui, Bentley & Ciccone, 2015; Kriegsfeld et al., 2006;
Tsutsui et al., 2006; Anderson et al., 2009; Bentley, Tsutsui & Kriegsfeld, 2010). Furthermore,
RFRP3 is found in ovarian tissues across nearly all vertebrate taxa studied to-date; of 18
species examined from lampreys to humans, only the grass puffer lacks ovarian RFRP3
(Table 1). However, there are far fewer studies that have assessed function of RFRP3 in the
ovary; of the 17 species in which ovarian RFRP3 has been identified, only seven have had
any function evaluated (Table 1).

We and others have suggested that the widespread presence of RFRP3 and its receptor
in the ovary is indicative of a conserved regulatory action (Tsutsui et al., 2012; Bentley et
al., 2017; Kriegsfeld et al., 2018). To date, RFRP3 is known to decrease cell viability and
steroidogenic gene expression or steroidogenesis in the ovary of the chicken (Maddineni
et al., 2008) and four mammal species (domestic pigs, Li et al., 2013; Parkes mice, Singh,
Krishna & Tsutsui, 2011; Sprague-Dawley rats, Squicciarini et al., 2018; and humans, Oishi
et al., 2012). Other work in avian systems also indirectly suggests that RFRP3 expression in
the ovary is associated with inhibition of the reproductive axis (McGuire, Koh & Bentley,
2013; Ernst, Lynn & Bentley, 2016). However, in the one fish species in which function
has been examined, ovarian RFRP3 promoted the transcription of steroidogenic genes
(LHR, StAR, 3β-HSD;Wang et al., 2017). Because only seven studies have interrogated any
function of the RFRP3 system in the ovaries (Table 1), the discordant actions of RFRP3
among taxa could reflect species-specific variation or broader taxonomic patterns. Further
comparative experiments that assess function are needed to evaluate whether ovarian
RFRP3 exerts conserved function across species.
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Table 1 Observational and functional studies of RFRP3 and orthologs in vertebrate ovaries.

Cit. Class Order Species/Strain Approach Summary of findings

Observational findings
Osugi et al. (2012) Hyperoartia Petromyzontiformes Petromyzon

marinus
PCR RFRP3 expressed in the ovary

Biran et al. (2014) Osteichthyes Cichliformes Oreochromis
niloticus

PCR RFRP3 and receptor expressed in the ovary

Qi et al. (2013) Osteichthyes Cypriniformes Carassius auratus in situ RFRP3 receptor expression abundant in
early-stage follicles

Zhang et al. (2010) Osteichthyes Cypriniformes Danio rerio PCR RFRP3 and RFRP3-R expressed in the ovary
Corchuelo et al.
(2017)

Osteichthyes Cypriniformes Danio rerio PCR/in situ RFRP3 expression in the ovary highest during
primary growth of follicles, and lower during
later stages of follicle growth (PCR); RFRP3
expressed in the granulosa cells of vitellogenic
follicles (in situ)

Paullada-Salmerón
et al. (2016)

Osteichthyes Perciformes Dicentrarchus
labrax

PCR RFRP3 expressed in the ovary (very low)

Wang et al. (2018) Osteichthyes Pleuronectiformes Cynoglossus
semilaevis

PCR RFRP3 expressed in ovary; RFRP3 expression
ten-times more intense during previtellogene-
sis relative to other stages of ovary maturation

Shahjahan et al.
(2011)

Osteichthyes Tetraodontiformes Takifugu niphobles PCR RFRP3 expression absent in the ovary

Singh et al. (2008) Reptilia Squamata Calotes versicolor IHC/slot blot RFRP3-ir highest in the stroma of resting-
phase ovaries (IHC); RFRP3-ir present in GCs
of the dominant follicle during recrudescence
and the oocyte of the dominant follicle during
folliculogenesis (IHC); RFRP3 protein abun-
dance increases across vitellogenesis, ovula-
tion, and regression, with abundance highest
in resting-phase ovaries (slot blot)

Bentley et al.
(2008)

Aves Galliformes Coturnix japonica PCR RFRP3 and RFRP3-R expressed in the ovary
(PCR);

Maddineni et al.
(2008)

Aves Galliformes Gallus gallus
domesticus/
White Leghorn

PCR RFRP3-R expression in TCs decreases with fol-
licle maturation; RFRP3-R is more abundant
in GCs of all follicles than in TCs

Bentley et al.
(2008)

Aves Passeriformes Zonotrichia
leucophrys
Gambelii

in vivo & in
vitro receptor
fluorography/IHC

Bindings sites for RFRP3 found in the GCs of
ovarian follicles (in vivo & in vitro receptor flu-
orography); RFRP3-ir localized to ovarian GCs
(IHC)

(continued on next page)
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Table 1 (continued)

Cit. Class Order Species/Strain Approach Summary of findings

Bentley et al.
(2008)

Aves Passeriformes Sturnus vulgaris in vivo receptor
fluorogra-
phy/PCR/IHC

Bindings sites for RFRP3 in the GCs of ovar-
ian follicles (in vivo receptor fluorography);
RFRP3 and RFRP3-R expressed in the ovary
(PCR); RFRP3-ir localized to ovarian GCs
(IHC)

Li et al. (2014) Mammalia Artiodactyla Ovis aries/Dorper
×Hu F1

PCR/IHC RFRP3 expression in the ovary (PCR); RFRP3
expressed in oocytes (IHC); RFRP3 expressed
in GCs tertiary follicles only (IHC)

Li et al. (2012) Mammalia Artiodactyla Sus scrofa
domesticus/
Suzhong (PCR)
Large white
cross-bred (IHC)

PCR/IHC RFRP3 expression in ovary most abundant
during proestrous and least abundant dur-
ing estrous (PCR); RFRP3-R expression in
the ovary most abundant at estrous and least
abundant during diestrous (PCR); Most in-
tense RFRP3-ir found in the GCs during es-
trous; RFRP3-ir also found in TCs, and CL
(IHC); RFRP3-R-ir most intense in the TCs
and GCs of mature follicles during estrous;
RFRP3-R-ir also found in the CL (IHC)

Fang et al. (2014) Mammalia Artiodactyla Sus scrofa
domesticus/
Yorkshire

PCR RFRP3 expressed in the pubertal ovary

Singh et al. (2011) Mammalia Rodentia Mus musculus
domesticus/ Parkes

IHC RFRP3-ir greatest in non-luteolytic CLs and
the GCs/TCs of mature follicles

Mammalia
Rodentia

Rattus
norvegicus
domesticus/

IHC RFRP3-ir present
in the interstitial
tissues and GCs of
antral follicles; low
RFRP3-ir in the CL

Squicciarini et al.
(2018)

Mammalia Rodentia Rattus
norvegicus
domesticus/
Sprague-Dawley

IHC RFRP3-ir present in the interstitial tissues and
GCs of antral follicles; low RFRP3-ir in the CL

Oishi et al. (2012) Mammalia Primates Homo erectus IHC RFRP3 and RFRP3-R present in CLs and GC-
s/TCs of pre-ovulatory follicles

McGuire & Bentley
(2010)

Mammalia Primates Macaca mulatta in situ RFRP3 and RFRP3-R expressed in GCs and
oocytes

Functional findings
Wang et al. (2017) Osteichthyes Perciformes Epinephelus

coioides
Ovarian explant RFRP3(I) increases expression of StAR and

3βHSD; RFRP3(II) increases expression of
LHR

Singh et al. (2008) Reptilia Squamata Calotes versicolor Ovarian explant RFRP3 decreases expression of GnRH-R in the
ovary

(continued on next page)
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Table 1 (continued)

Cit. Class Order Species/Strain Approach Summary of findings

Maddineni et al.
(2008)

Aves Galliformes Gallus gallus
domesticus/ White
Leghorn

Isolated granulosa
cells

RFRP3 decreases cell survival at 10 and 1000
nM, but only in the absence of FSH

Li et al. (2013) Mammalia Artiodactyla Sus scrofa
domesticus/
Large White

Isolated granulosa
cells

RFRP3 at 1000 and 0.1 nM groups exerts non-
dose dependent inhibition of E2 production;
RFRP3 has no effect on P4 production; RFRP3
exerts dose-dependent inhibition of ERK and
PCNA expression.

Wang, Li & Hu
(2018)

Mammalia Artiodactyla Sus scrofa
domesticus/
Unknown

Isolated granulosa
cells

RFRP3 dose-dependently inhibits GC prolif-
eration; RFRP3 induces cell cycle arrest in the
G2/M phase

Singh et al. (2011) Mammalia Rodentia Mus musculus
domesticus/ Parkes

Ovarian explant RFRP3 dose-dependently inhibits GnRH-1-R
expression in the ovary

Singh, Krishna &
Tsutsui (2011)

Mammalia Rodentia Mus musculus
domesticus/ Parkes

Ovarian explant RFRP3 inhibits P4 production; RFRP3 de-
creases the expression of StAR and 3βHSD

Squicciarini et al.
(2018)

Mammalia Rodentia Rattus norvegicus
domesticus/
Sprague-Dawley

Ovarian explant RFRP3 decreases P4 & T production only un-
der the presence of LH

Squicciarini et al.
(2018)

Mammalia Rodentia Rattus norvegicus
domesticus/
Sprague-Dawley

Peristaltic pump RFRP3 treatment is associated with larger CLs
in the ovary

Oishi et al. (2012) Mammalia Primates Homo erectus Isolated granulosa
cells

RFRP3 dose-dependently inhibits P4 accu-
mulation in the presence of gonadotropins;
RFRP3 inhibits StAR expression in the pres-
ence of gonadotropins; RFRP3 has no effect on
steroid accumulation or steroidogenic gene ex-
pression when gonadotropins are not present

Notes.
Abbreviations used in table: 3βHSD, 3-beta-hydroxysteroid dehydrogenase; CL, corpora lutea; E2, estradiol; ERK, extracellular regulated kinases; FSH, follicle stimulating hormone; GC, granulosa
cell; RFRP3, RF-amide related peptide3 used throughout table for simplicity for all genes in the LPXRFa, GnIHand RFRP-3 gene family; RFRP3-ir, RFRP3 immunoreactivity; RFRP3-R:, RFRP3 recep-
tor; RFRP3-R-ir, RFRP3 receptor immunoreactivity; GnRH-1-R, receptor for gonadotropin-inhibitory hormone-1; IHC, Immunohistochemistry; LH, luteinizing hormone; LHR, luteinizing hor-
mone receptor; P4, Progesterones; PCNA, proliferating cell nuclear antigen; PCR, polymerase chain reaction; StAR, Steroidogenic acute regulatory protein; T, testosterone; TC, theca cell.
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The potentially-conserved inhibitory function of RFRP3 in the ovary is exciting because
it provides many potential applications spanning reproductive medicine (Squicciarini et
al., 2018) to invasive species management (Rhodes, 2017; McCormick & Romero, 2017)
and endangered species survival programs (Comizzoli & Holt, 2019). By antagonizing the
receptor, we may be able to improve follicle quality or maturation in vitro, and genetic
tools have the potential to use local overexpression of inhibitory peptides like RFRP3 to
provide long-term fertility suppression in feral animals and/or invasive species. Both such
applications are particularly pressing for felines: feral cats are an on-going problem for
native species (Medina et al., 2011), and the preservation of endangered species requires
continued progress in assisted reproductive technologies (Comizzoli & Holt, 2019).

To date, RFRP3 has not yet been examined in any felid or carnivore species. Although
many carnivore species and endangered species are difficult to use for large-scale studies
of reproductive function, there are tractable, established techniques for studying ovarian
function in the domestic cat (Felis catus) as a model. In particular, ovarian follicle isolation
and in vitro culture are amajor focus of reproductive physiology research in the domestic cat
(Herrick, 2019; Songsasen et al., 2012; Comizzoli & Holt, 2019), and thus this system is well-
optimized to serve as a model for studies of effects on follicular function. Although others
have suggested that effects of RFRP3 on granulosa cell function in vitro will ultimately alter
viability of the ovarian follicle and/or oocyte maturation (Maddineni et al., 2008; Wang, Li
& Hu, 2018), no one has directly examined the effect of RFRP3 on follicle viability. These
advantages identify the domestic cat as an important model for both basic and applied
research into RFRP3 function.

We pursued two aims related to understanding function of feline RFRP3 (fRFRP3),
and we designed our experiments based on a priori predictions. First, we asked whether
a functional fRFRP3 signaling system exists in the ovaries of domestic cats. We predicted
that fRFRP3 and its receptors, NPFFR1 and NPFFR2, would be expressed in the ovary.
Second, we asked whether fRFRP3 impacts ovarian follicle integrity, survival, and steroid
production by using an alginate-embedding system to culture isolated follicles (Songsasen
et al., 2012; Thongkittidilok et al., 2018;Chansaenroj, Songsasen & Chatdarong, 2019). Based
on studies in other mammals, we expected fRFRP3 to dose-dependently inhibit follicle
growtth and to result in decreased viability of follicles (Maddineni et al., 2008; Wang, Li &
Hu, 2018). We also predicted that fRFRP3 would dose-dependently inhibit progesterone
production by follicles (Singh, Krishna & Tsutsui, 2011; Oishi et al., 2012; Li et al., 2013;
Squicciarini et al., 2018). To generate an integrated measure of progesterone accumulation,
we quantified progesterone using pooled media samples over the culture period from each
follicle. We evaluated effects of fRFRP3 in the presence of gonadotropins because effects
of RFRP3 have been dependent on gonadotropin presence in primates and rats (Oishi et
al., 2012; Squicciarini et al., 2018).

MATERIALS & METHODS
All tissues used in this study were collected with veterinarian permission during surgeries
performed for trap, neuter/spay and release programs used to manage local feral cat

Wilsterman et al. (2019), PeerJ, DOI 10.7717/peerj.7540 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.7540


Table 2 Primer sequences for PCR amplification.

Target Gene NCBI Accession
Number

Forward Reverse Amplicon
length

RFRP3 XM_023242159.1 TGATGTCCGGTTTTCACAG TTTGGACCCCAGTCTTG 118
NPFFR1 XM_023240516.1 CTGTATGCCCACCACTCTCG CGGAACCTTTCCACAGCAATG 144

XM_003985291.5
NPFFR2

XM_023253059.1
CGGGAAGACTGGCCAAATCA GTGGGGCACTGTCATCTTGA 141

colonies. The study did not require the approval of the Animal Care and Use Committees
of the Smithsonian Institution or University of California, Berkeley.

Expression of fRFRP3 and receptors in ovaries of the domestic cat
Whole ovarian tissue was flash-frozen in isopentane on dry ice immediately following
surgery from routine spays on domestic cats. Tissues were stored on dry ice for transport
and then at −80 ◦C until extraction.

Tissues were sliced at 20 µm using a cryostat, collected into an RNAase-free Eppendorf
tube, and stored at −80 ◦C. Sections collected across the entire ovary (N = 2) were
represented in each tube. Samples were homogenized and extracted using the Bioline
Isolate II RNA Mini Kit (Cat. No. BIO-52073) as per manufacturer instructions. RNA was
quality-tested at the University of California, Berkeley Functional Genomics Laboratory
using a bioanalyzer. All samples had RIN scores of 8 or higher.

After extraction, 750 ng of RNA from each extraction was reverse-transcribed using the
iScript gDNA Clear cDNA Synthesis Kit (Cat. No. 1725035) according to manufacturer
instructions. No-RT samples were reverse-transcribed at the same time using 750 ng of
RNA and the kit’s No-RT control supermix.

Gene targets were amplified using 18.75 ng of cDNA in a 30 µL reaction containing
0.4µMforward and reverse primers (Table 2).Other reaction components (TaqPolymerase,
reaction buffer, Mg SO4, and dNTPs) were added as per manufacturer instructions
(Platinum Taq DNA Polymerase, High Fidelity; Cat. No. 11304011, Invitrogen). PCR was
run for 45 cycles with a 60 ◦C annealing temperature and 3 min extension. No-RT and
no-transcript controls were run alongside experimental samples. No-RT samples omitted
the reverse transcriptase during reverse transcription, and no-transcript controls contained
water instead of reverse transcription product. The reaction product was run on a 2%
agarose gel and imaged. Amplification of the target gene was confirmed using length of
the expected product (See Table 2 and Figs. 1 and 2) and sequencing. PCR products were
cleaned and sequenced at the University of California, Berkeley DNA Sequencing facility.
NPFFR1 sequencing attempts failed to return any sequence, and thus we relied on product
length for specificity.

Tissue handling for cell culture
Whole uterine and ovarian tissue were collected into chilled transport media (Table 3)
immediately following routine spays.Within 8 h, ovaries were separated from uterine horns
and halved longitudinally. Only follicular ovaries were used for these experiments. Ovaries
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Figure 1 Representative images showing classification of follicles for integrity (A–F) and viability (G,
H; cell death) outcomemeasures. Preantral follicles with intact and relatively even basal lamina were clas-
sified as intact (maintaining integrity) (A, B). Follicles with gaps in the basal lamina (arrowheads in C, D),
follicles with large sections of the basal lamina missing and the oocyte falling out of the follicle (E, F), or
having an absent basal lamina were classified as degraded. (G, H) Fluorescent dyes indicate cell viability in
follicles (red for dead, green for alive). Follicles exhibiting only green fluorescence were categorized as alive
(filled arrow in G). Follicles with any red fluorescence were categorized as dead or dying (empty arrow-
head in H indicates mixed staining, whereas the filled arrowhead in G indicates a follicle fluorescing only
in red). Scale bars are equal to 250 µm.

Full-size DOI: 10.7717/peerj.7540/fig-1
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70 ovaries

30 ovaries 40 ovaries

242 preantral
follicles

318 preantral
follicles

Live/Dead assay
(N = 318)

day 2 

day 4 

day 6 

day 8 

Photograph

day 2 

day 4 

day 6 

day 8 

Collect and 
replace 

spent media

Extract 
pooled media

& assay for
progesterone
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• Score basal 
lamina
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(N = 242)

Spent media
changes

Figure 2 Flow chart summarizing procedures and sample sizes for experiments.
Full-size DOI: 10.7717/peerj.7540/fig-2

from pregnant or lactating cats were excluded by assessing uterine status, and ovaries from
luteal-phase animals were excluded by presence of corpora lutea in the bisected ovary.

Ovary halves were placed in collection medium (Table 3) and minced using a scalpel
blade to release follicles. Preantral follicles were collected from the debris using a 10
µL pipette and transferred to clean, warmed collection medium. Preantral follicles were
identified by the prescence of more than 2 layers of granulosa cells surrounded by the basal
lamina and absence of an antrum (Comizzoli, Pukazhenthi & Wildt, 2011).

Follicles were embedded in alginate beads for culture (Xu et al., 2006; Nagashima et
al., 2017). First, follicles were washed twice in warmed 0.5% purified alginate (W201502,
Sigma Aldrich) dissolved in Mg2+- and Ca2+-free Dulbecco’s PBS (14,190–144, Gibco).
Individual follicles were embedded in alginate beads by dropping 5 µL of media containing
the follicle into warmed, sterile-filtered solution of 50 mMCaCl2 and140 mMNaCl (Sigma
Aldrich). Alginate beads were crosslinked for 2 min before transferring beads to growth
media for conditioning.

Follicle culture was carried out in 96-well plates (353077, Corning). Plates were held in
an incubator at 38 ◦C and 5% CO2 throughout experiments except during media changes.
Vehicle treatment contained growth medium only (Table 3). FSH-supplemented follicles
received 1 µg/mL porcine FSH from aliquoted stock (F2293, Sigma Aldrich). Follicles were
exposed to RFRP3 peptide (Cat. No., 048–46, Phoenix Pharmaceuticals Inc., Burlingame,
CA) at two doses: 10 µM and 1 µM in sterile PBS. This synthetic version of human RFRP3
is identical in peptide sequence to fRFRP3. Doses were chosen based on treatments used
in previous studies (Maddineni et al., 2008; Oishi et al., 2012).
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Table 3 Medium composition for follicle culture experiments.

Component Catalogue number Media type

Transport media Collection media Growthmedia
Base media MEMwith Hank’s Salts

[11575-032, Gibco]
MEMwith Hank’s Salts
[11575-032, Gibco]

MEMwith Earle’s Salts
[M5650, Sigma-Aldrich]

HEPES buffer 15630-080, Gibco – 1% –
Penicillin P7794, Sigma-Aldrich 100 IU/mL 100 IU/mL 50 IU/mL
Streptomycin S1277, Sigma-Aldrich 100 µg/mL 100 µg/mL 50 µg/mL
Ascorbic acid A61-100, Fisher 0.25 mM – 0.25 mM
L-glutamine G8540, Sigma Aldrich – 2 mM 2 mM
ITS+ 41400045, Thermofisher – – 1%
Bovine serum albumin A9418, Sigma-Aldrich – 0.3% w/v 0.3% w/v

Follicles were individually photographed every 48 h throughout the duration of the
experiment (days 0, 2, 4, 6, and 8), and half the volume was changed at the same time (75
µL). All media were conditioned in the incubator prior to addition. Media collected during
changes were stored at −80 ◦C in sterile Eppendorf tubes.

Follicle integrity and size measurements
Follicle integrity and size were assessed from brightfield photos using ImageJ. Photos were
taken on a stereoscope at fixed magnification. Follicles were classified as intact only when
their shape was circular and the basal lamina was smooth (representative images shown in
Figs. 1A and 1B). Follicles were classed as degraded based on breaks, irregularity, or large
gaps in the basal lamina (representative images shown in Figs. 1C–1F). Follicle diameter
was measured using two perpendicular line measurements in ImageJ. Follicle size was then
calculated as the area of an ellipse using the two diameter measurements. All measurements
were collected and recorded by viewers blind to treatment. The average follicle diameter
on day 0 was 170.0 ± 40.1 µm (Average ± SD), corresponding to an average area on day
0 of 23.7 × 103 ± 11.2 × 103 µm2 (Average ± SD).

Follicle viability
Follicle viability was assessed in separate cohorts of follicles from those analyzed for
effects on follicle integrity and size. Follicle viability was assessed qualitatively using the
LIVE/DEAD Viability/Cytotoxicity Kit (L3224, Invitrogen). Concentrations of calcein-AM
(Ca-AM) and ethidium homodimer-1(EthD) were optimized prior to use as per the kits
instructions. On day 8, only intact follicles embedded in alginate beads were removed
from wells and placed in warmed Dulbecco’s PBS containing 6 mg/mL of alginate lyase
(A1603, Sigma Aldrich). Alginate was digested for 30 min at 38 ◦C. Follicles were then
washed in warm dPBS and incubated in dPBS contain 4 µM EthD and 1 µM Ca-AM
for 30 min. Follicles were cover-slipped and immediately visualized under a fluorescent
microscope. Follicles exhibiting any red fluorescence were categorized as dead or dying
(inviable), whereas follicles that fluoresced only with green were categorized as alive (viable;
See Figs. 1G, 1H for representative images).
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Progesterone extraction and quantification
Progesterone accumulation was assayed using media collected across the culture period
(days 2, 4, 6 and 8), which were pooled for each follicle. Steroid hormones were extracted
using an ethyl acetate/water wash extraction (N = 95). Pooled media (∼300 µL) were
mixed with one mL of ethyl acetate (Sigma-Aldrich, 270989) by vigorously vortexing for
5 s. The samples were then mixed on an orbital shaker (700 rpm) for 5 min. Following
mixing, layers were separated for 5 min. The organic layer was transferred to one mL
MilliQ water, which was mixed and separated identical to the ethyl acetate steps described
above. The organic layer was then transferred to a borosilicate glass vial. The procedure was
repeated ( one mL ethyl acetate, one mL MilliQ water) and organic layers were combined.
Samples were dried under nitrogen stream and stored at −20 ◦C.

Samples were reconstituted in 150 µL EIA Buffer (Item No. 400060; Cayman Chemical)
immediately prior to assay. Samples were assayed using the CaymanChemical Progesterone
ELISA kit (Item No. 582601) according to manufacturer instructions. Samples that fell
below the detection limit of the kit (N = 4) were assigned the lowest detectable amount
on the standard curve (7.81 pg/mL). Samples above the standard curve were diluted
(1:10 or 1:41) and reassayed –those samples that still remained above the standard curve
after dilution were then assigned the highest detectable value (N = 23; 1000 pg/mL) and
corrected for dilution factor prior to analysis. The median intra-assay variation was 10.1%,
and the inter-assay variation was 22%.

Statistical approach and analysis and rationale
In total, we embedded 560 follicles isolated from 70 ovaries across six days for our
experiments. 242 follicles (30 ovaries) were used for basal lamina degradation and
progesterone production experiments. 318 follicles (40 ovaries) were used in the follicle
survival experiments. For all isolation days, follicles were evenly assigned to treatments on
each day such that all treatments were run for each isolation date. Follicles isolated from
each ovary were assigned evenly across the four treatment groups such that each ovary were
isolated was represented evenly in each treatment group; note that some ovaries yielded up
to 16 follicles used in experiments, whereas others yielded only four. Only isolated follicles
with intact basal lamina were embedded for experiments. Experiments and sample sizes
are outlined in Fig. 2.

Our experimental designwas based on a prioripredictions, as laid out in the introduction.
For this reason, we used planned comparisons for all analyses. We used a vehicle-control
and FSH supplementation to determinewhether FSHprotected follicle viability, as expected
based on previous work in this system (Songsasen et al., 2012; Chansaenroj, Songsasen &
Chatdarong, 2019). We compared FSH-treatment alone to each concentration of fRFRP3
(1 and 10 µM) in combination with FSH to determine whether fRFRP3 has any effect on
proposed outcome measures.

All analyses were completed in R (R Core Team, 2018). We used general linear models
(glmer) for most analyses in order to include a random effect of isolation date. We used
QQ plots to assess normality and goodness of fit for all models.
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In order to determine whether follicle area varied among treatments on day 0, we
transformed the dependent variable, follicle size on day 0, using inverse root-square and
applied a model with a gaussian distribution. We included treatment as a fixed effect. All
follicles were included in the analysis.

Because follicle size could only be determined for follicles with intact basal lamina,
follicles that degraded had to be excluded from analyses of the effect of treatment on
change in size over the culture period. To determine whether size of intact follicles varied
with treatment at the end of the culture period, we transformed the dependent variable,
follicle size on day 8, using inverse root-squared and applied a model with a Gaussian
distribution. Treatment was included as a fixed effect. To test for effects of treatment on
change in size over the period of culture, we again transformed the dependent variable,
follicle size, using inverse root-squared and applied a model with a Gaussian distribution.
We included a day by treatment interaction and day and treatment independently as fixed
effects.

We estimated the effect of treatment on likelihood of loss of follicle integrity using a
Cox proportional hazards model, with treatment and starting size as fixed effects.

We estimated the effect of treatment on follicle survival by applying a model with a
binomial distribution and logit link. Treatment was included as a fixed effect.

We examined whether size affected progesterone production using Pearson’s
product-moment correlation. We log-transformed progesterone concentration for
correlation analyses, and we examined change in size using percent of day 0 size([

100× day8−day0
day0

]
+100

)
. We estimated the effect of treatment on progesterone

production by applying a model with a gamma distribution and log link. Treatment
and percent of day 0 size were included as fixed effects. Analyses of the dataset excluding
samples that did not fall within the range of the standard curve (N = 31) or those with CV
> 40% (N = 9) yielded qualitatively similar results (reported effects remain significant at
P < 0.05). For this reason, all samples are included in the results presented here.

RESULTS
Presence of fRFRP3 and receptors in ovarian tissues
fRFRP3 was expressed in ovarian tissue of domestic cats (Fig. 3A). Both primary (NPFFR1)
and secondary (NPFFR2) fRFRP3 receptors also were expressed in domestic cat ovaries
(Figs. 3B, 3C).

Influence of fRFRP3 on follicle size and integrity
There were no differences in follicle size among treatments at the time of isolation
(day 0; Fig. 4A; Table 4). By day 8, intact follicles in the 1 µM fRFRP3 treatment were
significantly smaller than intact follicles in the FSH-only and the 10 µM treatment (Fig. 4A;
Table 4). However, there was no effect of culture period on change in follicle size over
time (t3096= 1.05, P = 0.29) or interaction between time and treatment (P > 0.61 for all
comparisons) for follicles that maintained integrity. The difference in size on day 8 appears
to be a selective effect of 1 µM RFRP3 on larger follicles: when we compared follicle size
on day 0 among only those that retained integrity across the culture period, follicles that
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Figure 3 Representative images showing presence of feline RFRP3 (fRFRP3) and receptor transcripts
in the domestic cat ovary. fRFRP3 transcripts can be found in RNA isolated from whole ovary (A, lanes 1
and 2), but not in No-RT controls (A, Lane 3 and 4) or no-transcript controls (A, lane NT). The primary
RFRP3 receptor (NPFFR1, B) and the secondary receptor (NPFFR2, C) were also found in ovarian tissues
(lane 1 & 3). No-RT controls show no amplification (lanes 2 & 4).

Full-size DOI: 10.7717/peerj.7540/fig-3

persisted in the 1 µM fRFRP3 treatment were smaller compared to those that persisted in
the FSH-only or the 10 µM group (Table 4).

The likelihood of degradation was lower in FSH-treated follicles relative to vehicle-
controls (Fig. 4B; Table 4). The 1 µM fRFRP3 treatment increased the likelihood of basal
lamina degradation relative to FSH-treated follicles (Fig. 4B; Table 4). The likelihood
of basal lamination degradation in 10 µM treatment did not significantly differ from
FSH-only or 1 µM fRFRP3 treated follicles (Fig. 4B; Table 4).

Influence of fRFRP3 on follicle viability
There was no effect of FSH supplementation on cell viability relative to vehicle-controls
(z = 0.141, P = 0.88). However, the 1 µM fRFRP3 treatment decreased follicle viability
(Fig. 4C; Table 4). There was no difference in viability between 10 µM fRFRP3 treatment
and FSH-only or 1 µM fRFRP3 treated follicles (Fig. 4C; Table 4).
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Table 4 Summary of statistical test statistics and p-values from analyses. Significant p-values are bolded and italicized.

Vehicle vs. FSH FSH vs. 1µM FSH vs. 10µM 1µMvs. 10µM

Test statistic DF p-value Test statistic DF p-value Test statistic DF p-value Test statistic DF p-value

Follicle size, day 0 t = 0.24 247.13 0.81 t = 0.11 247.2 0.91 t = 0.74 246.9 0.46 t = 0.58 247.3 0.56

Follicle size, day 8 t = 1.80 74.9 0.07 t =−2.19 75.6 0.03 t =−0.32 75.15 0.75 t =−2.43 75.6 0.02

Follicle size, day 0, only
follicles that maintain
integrity for 8 days

t = 1.57 75.2 0.12 t =−2.07 76 .42 0.041 t =−0.06 75.5 0.95 t =−2.09 76 .41 0.040

Degradation likelihood z = 2.62 – 0.009 z = 2.04 – 0.04 z = 1.33 – 0.18 z = 0.080 – 0.42

Follicle Survival z = 0.14 – 0.88 z =−2.20 – 0.03 z = 1.69 – 0.09 z =−0.46 – 0.65

Progesterone accumulation t = 0.91 91 0.36 t = 3.07 91 0.002 t =−0.76 91 0.44 t =−3.83 91 0.0001

W
ilsterm

an
etal.(2019),PeerJ,D

O
I10.7717/peerj.7540

14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.7540


Lo
g−

fo
llic

le
 a

re
a 

(μ
m

2 )

+ + +
1 μM 10 μM

-
- -

0 8 0 8 0 8 0 8

** **

20

40

60

Vi
ab

le
 fo

llic
le

s 
(%

)

+FSH
RFRP-3

+ +
1 μM 10 μM

-
- -

*

25

50

75

100

Day 0 8 8642 0 8642 0 8642 0 8642

M
or

ph
ol

og
ic

al
ly

in
ta

ct
 fo

llic
le

s 
(%

)

+FSH
RFRP-3

+ +
1 μM 10 μM

-
- -

** *

Day 8 8 8

Day
FSH

RFRP-3

A

B C

Vehicle

FSH-only

FSH +
1 μM RFRP-3 

FSH +
10 μM RFRP-3 9

10

11

12

Figure 4 Follicle size, integrity of the basal lamina, andmorphology were all affected by 1µM feline
RFRP3 (fRFRP3) treatment. A color-based key to treatments is shown the top right of the figure and
along the x-axis in (A–C). Isolated follicles were treated with vehicle (blue), 1 µg/mL FSH (green), or
1 µg/mL FSH combined with 1 µM (orange) or 10 µM (red) fRFRP3 throughout the culture period. (A)
The size of follicles with intact basal lamina in each experiment for days 0 and 8 of culture. Follicle size
(area) was log-transformed for presentation in the boxplot, where each point represents a single follicle’s
size on that day. Grey lines connect size measurements on day 0 and day 8 of follicles that maintained
basal lamina integrity across the culture period. Lines do not indicate a linear progression of growth or
degradation. (B) The percent of ovarian follicles with intact basal lamina every 2 days for the duration of
the culture period. (C) The percent of follicles alive on day 8 of treatment based on live/dead fluorescent
assay. Asterisks indicate significant differences based on planned comparisons. For (A–C), ∗∗P < 0.01,
∗P < 0.05.

Full-size DOI: 10.7717/peerj.7540/fig-4

Influence of fRFRP3 on progesterone production
Size of the follicle at the start of culture had no relationship to progesterone production
over the culture period (t91=−0.18, P = 0.85), however there was a positive relationship
between change in size of the follicle over culture and progesterone production (t61= 3.97,
P < 0.0002, R2

= 0.42; Fig. 5A).
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Figure 5 Cumulative progesterone production by individual follicles across the culture period was
related to change in size and affected by treatment. Isolated follicles were treated with vehicle (blue),
1 µg/mL FSH (green), or 1 µg/mL FSH combined with 1 µM (orange) or 10 µM (red) fRFRP3 through-
out the culture period. (A) Size of follicles on day 8 (as a percent of their size on day 0) was positively cor-
related with progesterone production over the culture period (P < 0.0001). Each point represents a sin-
gle, unique follicle (B) Progesterone concentration varied among treatment groups. Progesterone was log-
transformed for presentation in the boxplot, where each point represents total progesterone from an indi-
vidual follicle. Asterisks indicate significant differences based on planned comparisons. ∗∗P < 0.01, ∗P <
0.05.

Full-size DOI: 10.7717/peerj.7540/fig-5

FSH supplementation did not modify progesterone production relative to vehicle-
controls (Table 4). However, addition of 1 µM fRFRP3 resulted in increased production
of progesterone relative to FSH-only and 10 µM fRFRP3 treatments (Fig. 5B; Table 4).
There was no difference in progesterone production between 10 µM fRFRP3 and FSH-only
treated follicles (Fig. 5B; Table 4).

DISCUSSION
Our study is the first to examine effects of RFRP3 on the isolated follicle as a functional
unit, and it is the first study of RFRP3 expression and function in any carnivore species. We
demonstrate that the domestic cat ovary produces fRFRP3 and its receptors. Furthermore,
we show that fRFRP3 can influence the viability, integrity, and steroid production of
isolated domestic cat follicles in vitro.

We were able to identify transcripts for the fRFRP3 peptide in the domestic cat ovary;
our data are thus consistent with the hypothesis that there is conserved expression of the
fRFRP3 peptides in the vertebrate ovary. We also found expression of both receptors for
fRFRP3, NPFFR1 and NPFFR2, in the ovary of the domestic cat. To our knowledge, no
other study has yet examined presence/absence or distribution of the NPFFR2 receptor in
the ovaries. Although RFRP3 has a greater binding affinity for NPFFR1 (Gouardères et al.,
2007), others have suggested that modulating the relative abundance of these two receptors
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in the same tissue could allow RFRP3 to regulate distinct functions. Both receptors are also
found in the testes of Syrian hamsters (Zhao et al., 2010), so we expect that both receptors
are likely to be present in the ovaries of other species. In Syrian hamster testes, NPFFR1
was localized to spermatids at all stages of spermatogenesis, whereas NPFFR2 expression
was limited to late elongated spermatids (Zhao et al., 2010), leading Zhao et al. (2010) to
suggest that RFRP3 may act on these receptors to regulate related but distinct processes
in spermatogenesis. To determine whether similar hypotheses can be extended to direct
action on oocyte maturation, future studies will need to combine localization and targeted
functional (receptor-specific antagonists/agonists, Kim et al., 2015) studies.

In order to assess functional effects of fRFRP3 on follicle viability, we quantified
morphological integrity, follicle size, and viability over the course of treatment. We found
no effect of FSH or fRFRP3 exposure on follicle change in size during the study period.
However, because we focused on early-stage follicles, longer periods of culture may be
needed to generate measurable changes in follicle size. We did find that exposure to
1 µM, but not 10 µM, of fRFRP3 increased the proportion of morphologically degraded
follicles over time (Fig. 4B) and increased the proportion of follicles exhibiting cellular
death (Fig. 4C). Moreover, the decrease in follicle size in the 1 µM fRFRP3 treatment
group suggests that there is selective loss of larger early-stage follicles or decrease in size
in response to 1 µM fRFRP3. Together, these findings suggest that fRFRP3 could inhibit
maturation and viability of early-stage follicles. Given that the receptor for RFRP3 is often
found to be more abundant in early-stage follicles (Maddineni et al., 2008; Qi et al., 2013),
whereas the RFRP3 peptide is more abundant in tertiary or pre-ovulatory follicles (Singh
et al., 2008; Singh et al., 2011; Oishi et al., 2012; Squicciarini et al., 2018) (see Table 1 for
some exceptions), we speculate that RFRP3 production by tertiary follicles suppresses the
maturation of early-stage by promoting follicle degradation through paracrine signaling.

We also found that the 1 µM fRFRP3 increased progesterone production by domestic
cat follicles, whereas RFRP3 has been shown to decrease steroid production by the ovaries
in all other studies to-date (see Table 1). There are several potential explanations for this
discrepancy which highlight the need for more comparative, functional experimentation.
First, our results may differ from others published to date because we are the first to
examine action of RFRP3 on the follicle as a functional unit, whereas previous work has
focused on isolated granulosa cells or whole ovaries (Table 1). Apparent effects of RFRP3
on the whole follicle may differ from effects measured at the whole ovary or on isolated
granulosa cells because of the extensive role endocrine and paracrine signaling play in
regulating follicle development, degradation, and ovulation. In our study, the increase in
progesterone production could be a function of decreased utilization of pregnenolone by
granulosa cells for synthesis of estradiol and other sex steroids. Quantifying production of
multiple steroids is needed to resolve this question. Pairing such data with gene expression
or enzyme activity would be useful for determining the mechanism underlying the increase
in progesterone production we show. Our results may also be specific to preantral follicles,
whereas previous studies have focused on cells isolated from hierarchical (hierarchical
and pre-ovulatory) follicles. Experiments that explore a broader range of follicle classes
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are therefore needed to determine whether effects of RFRP3 on steroid production is
stage-specific.

Second, the elevated progesterone production by domestic cat follicles treated with 1µM
fRFRP-3 could be a result of the environmental conditions that cats experienced prior to
spaying; the environmental context may determine the capacity for and/or direction of
the ovarian follicles’ responses to fRFRP3. RFRP3 action is context-dependent in other
seasonal breeders, including Siberian hamsters (Ubuka et al., 2012) and European Starlings
(McGuire, Kangas & Bentley, 2011). In Siberian hamsters, RFRP3 inhibits gonadotropin
release under long-day photoperiods (breeding conditions), but it promotes gonadotropin
release under short-day photoperiods (non-breeding, Ubuka et al., 2012). In European
Starlings, the inhibitory action of RFRP3 on testicular testosterone secretion occurs only
prior to the onset of breeding –testicular testosterone production of breeding birds is
insensitive to RFRP3 (McGuire, Kangas & Bentley, 2011). Domestic cats breed seasonally
(Spindler & Wildt, 1999; Blottner & Jewgenow, 2007; Faya et al., 2011), and feral females do
not become pregnant between November and early February, even in mild climates (K
Wilsterman, 2014–2018, per. obs.). Tissues used in this study were collected from feral cats
during the spring –follicles may respond differently to fRFRP3 if experiments were carried
out at other times of the year. Contrasting results from different periods within known
breeding cycles is necessary to determine whether ovarian RFRP3 exerts context-dependent
action.

Third and finally, it is also possible that the apparently unique stimulation of steroid
production reflects species-specific or carnivore-specific function of the fRFRP3 system.
Similar species-specific action of RFRP3 has been demonstrated in the hypothalamus and
ovary in other species. In the Syrian hamster, RFRP3 stimulates hypothalamic GnRH
instead of inhibiting hypothalamic GnRH, as is the case in most vertebrates (Ancel et al.,
2012), and in the grouper ovary, RFRP3 promotes transcription of steroidogenic enzymes
and luteinizing hormone receptor (LHR; Wang et al., 2017). Although RFRP3 does exert
remarkably conserved action in the reproductive system of many vertebrates, it is also
clear that there is species-specific variation in. Because felids display unique diversity in
reproductive function (Pelican et al., 2006), we also might expect to see greater diversity
or idiosyncrasy of peptide function. Understanding the evolutionary drivers (e.g., natural
selection, genetic drift) of variation in reproductive system function among felids is largely
an open but exciting question.

Taken together, our results are broadly consistent with the functional and observational
studies conducted to-date, and they support the potential for RFRP3 to serve as a useful
target for development of tools related to feral and invasive species management and
endangered species survival plans. Ultimately, effects of RFRP3 on follicle viability will be
more important for species management than will the effects on steroid production alone,
and our results support that RFRP3 may decrease follicle viability. Realizing the utility of
RFRP3 for applications in population management will depend on developing a better
understanding the molecular pathways underlying RFRP3-mediated degradation of follicle
integrity and any potential dose-dependency of these effects. We used concentrations of
fRFRP3 at the upper range of those found to be effective in other studies because alginate
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embedding can decrease the rate of protein diffusion to the follicles in culture (Heise
et al., 2005; West, Shea & Woodruff, 2007), however our findings suggest that the higher
concentrations used here might not be biologically or pharmacologically-relevant. More
conservative (lower) concentrations are likely to be more effective for future functional
studies in felines.

More broadly, our finding that RFRP3 decreases follicle integrity and cell viability is
consistent with the inhibitory effect of RFRP3 on reproductive function of the ovary
in other mammals and in birds. These results thus add credence to a conserved effect
of RFRP3 on vertebrate ovary function. The broad concordance in function should
encourage comparative research into the function of RFRP3 across the reproductive axis
in vertebrates. Because the conservation of expression does not guarantee conservation
of function, functional studies are more likely to rapidly advance our understanding of
RFRP3 functional evolution and conservation.

CONCLUSIONS
Though there is interest in the application of RFRP3 to human reproductive diseases
(Squicciarini et al., 2018), animal control (Rhodes, 2017; McCormick & Romero, 2017),
and endangered species survival programs (Comizzoli & Holt, 2019), its potential in these
arenas depends on functional studies that will determine species-specific dose-dependency,
gonadotropin-sensitivity, and efficacy of action at the level of the whole ovary. In addition
to focusing on RFRP3, the regulation and function of the two receptors for the RFRP3
peptide (NPFFR1 and NPFF2) needs to be elucidated to complete our understanding of
this system. RFRP3 provides a unique opportunity to study the basic evolution of hormone
systems in central and peripheral reproductive systems while simultaneously advancing
development of applied technologies.
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