
Chunking of Large Multidimensional Arrays

Doron Rotem and Ekow Otoo
LBNL, University of California

1 Cyclotron Road

Berkeley, CA 94720

Sridhar Seshadri
Leonard N. Stern School of Business

New York University

44 W. 4th St., 7-60, New York, 10012-1126

sseshadr@stern.nyu.edu

Abstract

Very large multidimensional arrays are commonly used in data intensive scientific com-
putations as well as on-line analytical processing applications referred to as MOLAP. The
storage organization of such arrays on disks is done by partitioning the large global array into
fixed size sub-arrays called chunks or tiles that form the units of data transfer between disk
and memory. Typical queries involve the retrieval of sub-arrays in a manner that accesses
all chunks that overlap the query results. An important metric of the storage efficiency is
the expected number of chunks retrieved over all such queries. The question that immedi-
ately arises is “what shapes of array chunks give the minimum expected number of chunks
over a query workload?” The problem of optimal chunking was first introduced by Sarawagi
and Stonebraker [14] who gave an approximate solution. In this paper we develop exact
mathematical models of the problem and provide exact solutions using steepest descent and
geometric programming methods. Experimental results, using synthetic and real life work-
loads, show that our solutions are consistently less than 2.0% of the true number of chunks
retrieved for any number of dimensions. In contrast, the approximate solution of [14] can
deviate considerably from the true result with increasing number of dimensions.

Categories and Subject Descriptors
H.2[Information Systems, Database Management]; H.2.2 [Physical Design]; H.2.8[Database
Applications, Scientific databases,Statistical databases]

General Terms
Multidimensional Arrays, Algorithms, Array Chunking.

i

1 Introduction

The computations, analysis and visualization of large scale scientific data involves manipulation
of data abstracted as multi-dimensional arrays. The multi-dimensional rectangular arrays, both
dense and sparse depending on the context, form the fundamental abstract data structure used in
scientific computing. Consequently scientific applications generally center around manipulation
of large arrays and array files. Numerous applications in scientific domains such as Physics,
Astronomy, Geology, Earth Sciences, Statistics, etc., map their problems space onto matrices
and multi-dimensional arrays on which mathematical tools such as linear, non-linear equations
solvers and differential equation solvers can be applied. Starting with numeric data arrays from
observations, instruments and simulation experiments, these arrays are required to be persistent
on disks and subsequently accessed efficiently for scientific analysis.

Another area where multidimensional arrays are commonly used is data warehousing and
on-line analytical processing (OLAP) which often require extraction of statistical information
for decision support. One gets a better intuitive meaning of the statistical summaries of the data
if the data is abstracted as a multi-dimensional dataset. More specifically, usage of optimized
multi-dimensional array storage is prevalent in MOLAP (Multidimensional Online Analytical
Processing) and HOLAP (Hybrid Online Analytical Process) type products such as Essbase
(now officially called Hyperion System 9 BI+ Analytic Services) and Microsoft Analysis Ser-
vices. A canonical example of a multidimensional array is that of sales data on products, stores,
time [6, 18], this can be represented as a relation R(Product, Store, Time, Sales) on 4 attributes:
products, stores, time and Sales. This information can also be perceived as a 3-dimensional ar-
ray with 3 independent axes: Product, Store, Time, with the values of Sales, also termed the
measure, as the entries in the array. In general a MOLAP model of k + 1-dimensional attribute
relation, R ⊆ D1 × D2 × . . . × Dk,Z, consists of k-dimensional array, with axes D1,D2, . . . ,Dk

whose entries are drawn from values of a measure Z, and a representative null value φ.

Time

Product

Store

1

2

3

4

5

6

7

8

A
B

C
D

E
F

G
H

T0
T1

T2 T3
T4

T5
T6

T7

14

20

10

18

21
15

9

18

17

11

15

30

15

12

4

6

11

22

112

13

6

18

(a) A 3-dimensional MOLAP R(Product, Store,
Time, Sales)

Time

Lat. N

Long. East

8

7

6

5

4

3

2

17
16

15
14

13
12

11
10

T0
T1

T2 T3
T4

T5
T6

T7

14

20

10

18

21
15

9

18

17

11

15

30

15

12

4

6

11

22

112

13

6

18

1

(b) A 3-Dimensional Array of temperature readings
over lat, long, time, bold grid lines represent chunk
boundaries

Figure 1: Multi-dimensional Models of Scientific and MOLAP Datasets

Figure 1a is a simple illustrative 3-dimensional MOLAP view of R. Figure 1b is another
simple illustrative view of a 3-dimensional climate data depicting the temperature values of
locations indexed by latitude (lat), longitude (long) and time. Except for the semantic interpre-
tation of the axes, and the entries in the arrays of the two figures, the structural representation
are equivalent. Shoshani [16], first showed the similarities and differences between OLAP and
statistical databases. The differences however are minor and were primarily attributed to the

1

issues of concern by implementors of statistical and OLAP databases at that time. In the
broader sense of comparing the requirements of scientific database management and MOLAP
systems today, they are the same in nearly every aspect of storage and access requirements. The
problem is that there is currently no adequately defined data model that can be used for their
efficient implementations. In general, both scientific and MOLAP datasets can be considered
as a collection of multi-dimensional arrays that reside on secondary storage and queries on an
array involve an orderly access of either the entire array or a hyper-rectangular sub-array.

To store array elements on disk, one can naively utilize the mapping of multi-dimensional
array indices onto linear storage. Two such conventional mapping are the row-major (or C-
Language) order, and the column-major (or Fortran Language) order. A layout of the elements
in say row-major order only guarantees good performance if the elements are subsequently
accessed in the same order. Accessing the elements in a different order, e.g. column-major
order, gives very poor performance [15]. Secondly, such a layout is only worth considering if the
array is generally dense, i.e., almost every array entry exists. Thirdly, such an array layout on
secondary storage is not extensible without storage reorganization. Some major characteristics
for consideration in the storage and access of these arrays onto disk then are that:

• the array can be extremely large, requiring gigabytes of disk storage and sometimes tertiary
storage.

• the arrays are sparse in that there are fewer valid entries than indexed locations.

• in both scientific data storage and MOLAP storage, the data incrementally grows over
time and as such the array storage mapping must be extensible.

Persistent storage organization of multi-dimensional arrays is typically done by partitioning
them into coarse-grained hyper-rectangular blocks called chunks or tiles which form the units
of array transfers between disk and memory [14, 15, 5, 9]. A chunk is defined by the index
range of values along each dimension. A query over the dataset for analysis retrieves either the
entire array or a sub-array in which case all the array chunks that overlap the query result are
retrieved. Even though the elements contained in each chunk, are stored either in row-major
order, or column major order, the layout of the chunks on disk can be done using some other
linear mapping function such as the Morton sequence, Hilbert scan, or Peano scan order [8].
Chunking alleviates some of the concerns in multidimensional array storage since:

• array chunks with all zero entries are not stored and chunks with fewer entries below a
specified threshold can be compressed. This results in an improved storage utilization.

• Allocating chunks through an index scheme, e.g., B+-tree, allows for arbitrary array ex-
pansions without storage reorganization.

A question that arises in the use of chunking is that of specifying an optimal chunk shape
and chunk size. A chunk is characterized by two parameters: the chunk size and the chunk
shape. The size is defined as the number of elements that can be contained in a chunk. Suppose
a k-dimensional array M[N1, N2, . . . , Nk] is partitioned such that dimension Nj is split into mj

intervals, for 1 ≤ j ≤ k. The chunk shape is given by 〈c1, c2, . . . , ck〉, where cj = ⌈Nj/mj⌉, is
the number of indices of dimension j addressable in a chunk. A chunk shape implicitly defines
a chunk size C =

∏k
j=1 cj . Note that large chunk sizes may cause unnecessary data to be read

for queries with small result set. On the other hand, small chunk sizes, may require more disk
accesses to retrieve all chunks required to answer a query. More importantly, the chunk shape
influences the number of chunks retrieved in answering a query.

2

An important metric of the storage efficiency is the expected number of chunks retrieved by
queries under the access workload. The problem of optimal chunking was first introduced by
Sarawagi and Stonebraker [14], who gave an approximate solution to this problem. We show
that the optimal shape derivation given by Sarawagi and Stonebraker is only approximate and
under certain circumstances can deviate significantly from the true answer. We propose two
different models of the problem and show how the chunking parameters should be determined
based on the probabilistic access patterns of sub-array queries. The main contributions of this
paper are:

• The development of two accurate mathematical models of the chunking problem;

• Derivation of exact solutions, one using steepest descent and another using geometrical
programming method;

• Experimental comparison of the estimation errors induced by the models using synthetic
workloads on real life datasets.

In the rest of the paper, Section 2 presents some related work on array chunking where we also
discuss how chunks are organized and accessed for both dense and sparse multi-dimensional
arrays. Section 3 presents the two mathematical models for defining an optimal chunking shape.
The derivations of the optimal chunk shapes and sizes, under both models given some probabilis-
tic access patterns of sub-array queries are presented in Section 4. In section 5, we present the
results of our experimental comparisons for a synthetic workload. We conclude with Section 6,
giving some direction for future work.

2 Related Work

In nearly all applications that use disk resident large scale multi-dimensional arrays, the physical
organization of the array is by chunking. The global array is tessellated into sub-arrays or tiles
of size C and shape 〈c1, c2, . . . , ck〉. Rather than mapping the elements of the array directly
onto consecutive linear storage, the chunks are mapped onto storage and, within each chunk,
the array elements are laid out using a conventional row-major or column-major ordering.

The rational for chunking large arrays, whether dense or sparse, is justified in general when
efficient I/O performance is desired in applications that access data with a high degree of local-
ity [17]. In [17], Vitter elaborated on the fact that an algorithm that does not exploit locality
can be reasonably efficient when the data sets fit entirely in internal memory, but performs
miserably when deployed naively on an External Memory (EM), setting and virtual memory is
used to handle page management. The linear mapping function for allocating chunks onto disk
storage can be done by the row-major or column-major ordering, any one of the mapping func-
tions for space filling curves [8] or done with the use of B+−tree indexing as in HDF5 [7]. We
discuss some methods for chunk addressing in subsection 2.1. The problem of chunk addressing
is orthogonal to optimizing the chunk shape that requires taking into account the information
on sub-array access patterns. This is the problem first raised by Sarawagi and Stonebraker [14].

In [15], the problem of the storage of multidimensional arrays on disks for subsequent efficient
access in computational fluid dynamic applications that run on parallel processors is addressed.
The approach taken is to distribute all the array chunks among processors during program
executions. A similar approach is described in the design and implementation of disk resident
array storage (DRA) [11], used in Computational Chemistry applications. DRA extends the use
of a memory resident distributed array library, called Global Array (GA), to external memory

3

by a controlled I/O of the sub-arrays onto disks. As in [15], the method employs chunking of
persistent dense arrays on disk.

The other domain where array chunking has been predominantly used is in multidimensional
on-line analytical processing algorithm (MOLAP) [18, 5, 9, 13, 12]. In [18], the method of
computing the CUBE over a multi-dimensional data model was introduced. The authors gave a
detailed analysis for the associated on-line analytical processing algorithms. The MOLAP model
proposed storing the data as a sparse arrays where the elements of the array are the measures.
The encoding of the attribute values, along each dimension, defined the position of the value in
the multi-dimensional space. The array is split into chunks of size the same as the block size of
the disk storage system. Chunk compression is further used to improve storage utilization.

Goil and Choudhary [5] presented a storage scheme for MOLAP similar to that in [18]
but applied a bit-encoded scheme for the position index of the occurring array elements. The
method introduced was referred to as the bit-encoded sparse structure(BESS). Not only is BESS
applicable to MOLAP data sets, but can be applied to scientific multi-dimensional sparse array
data. Variations of the chunking concepts for the storage schemes MOLAP data sets are also
proposed in the SISYPHUS storage manager [9].

In all of the above related works, non of the chunking schemes are driven by the query
access pattern. Further, given the fact that multi-dimensional databases for data warehousing
have the propensity to grow, very little is discussed on how extensibility is managed in these
schemes. The problem on handling extensibility in chunked arrays is the research focus reported
in [13, 12].

2.1 Addressing Array Chunks

The idea of chunking multi-dimensional arrays has its origins from techniques used in scientific
computing for managing memory resident sparse matrices [2] and large sparse and dense matrices
in paged and parallel environments [10, 11]. We illustrate an addressing method for array chunks
with a technique for sparse multi-dimensional arrays. Consider first an example of a 6× 6 array
M = (mij), of doubles shown below. The Block Compressed Row storage BCRS [4], for spares
matrices forms the basis of a typical chunk addressing method.

M =

















7.0 0.0 0.0 0.0 12.0 0.0
0.0 3.0 0.0 0.0 0.0 −4.0
0.0 −7.0 0.0 0.0 0.0 0.0
2.0 0.0 0.0 0.0 0.0 0.0
5.0 8.0 0.0 10.0 −1.0 9.0
0.0 4.0 1.0 0.0 2.0 −9.0

















2.1.1 Block Compressed Row Storage

The block compressed row-storage partitions the matrix, along each dimension into intervals,
to form small blocks. Each blocks is then treated as a dense matrix. Figure 2 illustrates the
storage scheme.

The block addressing is done in two levels. The first level concerns locating the block that an
element falls in and the second level concerns the location of the element within the block. The
first level block organization is treated as a sparse array in which all blocks containing only zero
elements are discarded. Each block has a coordinate index 〈i, j〉. The offset-values computed
from a linear mapping function are organized in an offset-value vector. Only the offset-values
of block with non-zero entries are retained. One only needs to define a linear mapping function

4

7.0 0.0
0.0 3.0

0.0 -7.0
2.0 0.0

5.0 8.0
0.0 4.0

0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0

0.0 10.0
1.0 0.0

12.0 0.0
0.0 -4.0

0.0 0.0
0.0 0.0

-1.0 9.0
2.0 -9.0

0 1 2

0

1

2

(a) Blocked Matrix

<0,2><0,0> <2,0><1,0> <2,1> <2,2>
0 2 3 6 7 8

7.0 0.0
0.0 3.0

12.0 0.0
0.0 -4.0

0.0 -7.0
2.0 0.0

5.0 8.0
0.0 4.0

0.0 10.0
1.0 0.0

-1.0 9.0
2.0 -9.0

Vector of Offset-Indices

(b) Block Addressing

Figure 2: Block Compressed Row Storage

Iij = g(〈i, j〉) that takes the coordinate index 〈i, j〉 and returns an offset value Iij , relative to
the position of I0,0 and also the inverse function 〈i, j〉 = g−1(Iij) that takes an offset value
and returns the coordinate index. Figure 2b illustrates the offset-indices of the blocks when
the mapping function is the row-major linearizing function. Given the coordinates 〈i, j〉, one
determines if the element aij exists by first computing the offset index of the block Iij using
the mapping function g() and then determining whether Iij occurs in the offset index vector or
not. Searching the offset index vector can be done with an interpolation search or alternatively,
organizing the pairs of offset index and block pointers as a balanced binary search tree.

The BCRS method generalizes naturally to multi-dimensional arrays. The chunking process
is equivalent to the block partitioning method used for matrices. For extremely large multi-
dimensional arrays the first level chunk organization can be done with B+−tree. In HDF5 [7], a
popular multi-dimensional array file format used extensively in scientific computing, the chunk
accessing is done through a B+−tree storage scheme.

3 Access Models of Arrays

A k dimensional array, M [N1, N2, . . . , Nk], consists of
∏k

i=1 Ni elements. Each of its elements,
m〈i1, i2, . . . , ik〉, is indexed by k indices where 0 ≤ ij < Nj is its index with respect to the jth

dimension. We wish to store M on disk subject to the constraint that each disk block can hold
at most C elements of M . This is done by partitioning M into equal shape rectangular chunks
such that each chunk fits on a disk block, i.e., if each chunk has dimensions 〈c1, c2, ..., ck〉 then
∏k

i=1 ci ≤ C.
The system supports queries that retrieve rectangular sub-arrays of M .

A query q = 〈[l1 : u1), [l2 : u2), . . . , [lk : uk)〉 specifies a lower bound li and an upper bound ui

on each of the k dimensions. The query retrieves all elements m〈i1, i2, ..., ik〉 of M such that
lj ≤ ij < uj for 1 ≤ j ≤ k. The cost of answering this query is directly related to the number
of chunks (disk blocks) that overlap the sub-array defined by the query. In [14], it was shown
that knowledge of the predicted query access patterns can be efficiently used to select chunk
dimensions that result in a significant reduction in the cost of answering queries. Prediction of
query access patterns is usually based on query statistics that are collected using query history
logs, sampling, or other statistical methods. Next we present two models commonly used for
query access pattern prediction: The Independent Attribute Range model and The Query Shape
model.

5

3.1 Independent Attribute Range (IAR)

For a query q = 〈[l1 : u1), [l2 : u2), . . . , [lk : uk)〉, we define its shape to be 〈A1, A2, . . . , Ak〉 where
Ai is the size of its range on the ith dimension, i.e., assuming the ranges are closed on the left
and open on the right, Ai = ui − li. In both models a query shape can fall randomly anywhere
within the array. In the IAR model, a probabilistic distribution of the possible range values
is calculated separately for each of the k dimensions. It is assumed that the specifications of
ranges of attributes in queries are independent of each other [1]. This assumption means that the
estimated probability of a query shape is calculated as a product of the estimated probabilities
of its components, i.e., the probability of a shape 〈a1, a2, ..., ak〉 is estimated as

∏k
i=1 p(ai) where

p(ai) is the estimated probability that the value of the range for the ith dimension is ai. More
detailed treatment of this case is provided in Section 4.2.

3.2 Query Shape (QS)

This model is attributed to Sarawagi and Stonebraker [14], As in the IAR model, each query
is associated with a shape 〈A1, A2, . . . , Ak〉. The difference is that in the QS model the query
access pattern is estimated in terms of probability distribution of complete query shapes rather
than distributions of ranges of individual dimensions.

The QS model, groups the queries into a collection of classes L1, L2, L3, . . . , Lq such that
the class Li contains all queries of shape 〈Ai1, Ai2, . . . Aik〉. Each class Li is associated with a
probability Pi, such that

∑

i Pi = 1.0. The access pattern is defined then by the set of pairs
{〈Ai1, Ai2, . . . Aik〉 : Pi}, 1 ≤ i ≤ q. Our exact analysis of this model is presented in Section 4.3.

3.3 Illustrative Example

Under both models (IAR) and (QS), the actual location of a query shape relative to the array
is assumed to be uniformly distributed. The following small example illustrates the difference
between the two models.

Table 1: Queries
Query number Query shape

1 < 1 : 3, 2 : 5 > < 2, 3 >

2 < 4 : 7, 6 : 10 > < 3, 4 >

3 < 5 : 9; 3 : 6 > < 4, 3 >

4 < 6 : 8, 4 : 7 > < 2, 3 >

Example: For a 2-dimensional array, we assume access pattern estimation is based on a
sample of 4 queries given in Table 1. Range distribution for each dimension is given in Table 2
and shape distributions according to the two models are shown in Table 3. Note that under
model (IAR), some shapes that were not observed in the sample are assumed to have non-zero
probability whereas under model (QS) only observed shapes have non- zero probability.

4 Optimizing Array Chunk Shapes

4.1 Analysis of Expected Chunk Overlaps

We will first estimate the number of chunks overlapping a fixed shape and then compute the
expected number of chunks under the probabilistic assumptions for each of the two models.

6

Given a shape A = 〈A1, A2, . . . , Ak〉, assuming the array M is split into chunks of dimensions
c = 〈c1, c2, ..., ck〉, we will denote by E(A, c) the expected number of chunks overlapping the
shape A assuming it can be located randomly anywhere in the array M .

Lemma 4.1. E(A, c) =
∏k

i=1(
Ai−1

ci
+ 1)

Proof. It is easy to see that

E(A, c) =

k
∏

i=1

E(Ai, ci)

where Ai = 〈Ai〉 is a one dimensional shape and ci = 〈ci〉 is a one dimensional chunk. It is
therefore sufficient to calculate the number of chunks overlapping a shape on a one dimensional
array M . For simplicity we will omit the angular brackets whenever it is clear from the context
whether we are discussing a shape vector or its dimensions.

We will now proceed to show that given a one dimensional shape of size Ai and assuming
a one dimensional array M is partitioned into chunks of size c, the expected number of chunks
overlapping this shape is

E(Ai, c) =
Ai − 1

c
+ 1.

Let us number the points within each chunk from 0 to c − 1 (see Figure 3). We can express Ai

as Ai = mc + r where m (quotient) and r (remainder) are integers with 0 ≤ m and 0 ≤ r < c.
Under the assumption that a shape can fall uniformly anywhere in the array, the left end-

point of a shape can fall on any of the c points within a chunk with equal probability 1/c. This
assumes Ai is relatively small compared to the total size of M and ignores small “edge” effects
due to the constraint that the right endpoint of a range must also fit in the array. Let us denote
by R1 and R2 the sub-intervals within each chunk consisting of the leftmost c − (r − 1) and
rightmost r − 1 points respectively. In the event that the left endpoint of the shape falls in
R1 it will overlap m + 1 chunks and if it falls in region R2 it will overlap m + 2 chunks. For
example, in Figure 3 this is illustrated for the case Ai = 8 and c = 5, i.e., m = 1 and r = 3. The
possible positions within a chunk where the query shape may fall are labeled as ri. We see that
the positions r0,r1 and r2 overlap m + 1 = 2 chunks whereas the positions r3 and r4 overlap
m + 2 = 3 chunks. In this case the expected number of chunks is 3/5 × 2 + 2/5 × 3 = 12/5. In
general, the expected number of chunks that are overlapped by the shape is therefore

E(A, c) =
c − (r − 1)

c
(m + 1) +

r − 1

c
(m + 2).

By using m = (Ai − r)/c and rearranging, we get the required result of

E(Ai, c) =
Ai − 1

c
+ 1 (4.1)

Table 2: Individual range probabilities under model (IAR)

Dimension Range Appears Range
value in query# probability

1 2 1,4 1/2

1 3 2 1/4

1 4 3 1/4

2 3 1,3,4 3/4

2 4 2 1/4

7

Table 3: Shape probabilities under the two models
Query Prob. In Prob.
Shape Model (IAR) Query # (QS)

< 2, 3 > 1/2 × 3/4 = 3/8 1,4 1/2

< 2, 4 > 1/2 × 1/4 = 1/8 - 0

< 3, 3 > 1/4 × 3/4 = 3/16 - 0

< 3, 4 > 1/4 × 1/4 = 1/16 2 1/4

< 4, 3 > 1/4 × 3/4 = 3/16 3 1/4

< 4, 4 > 1/4 × 1/4 = 1/16 - 0

3
2
1
0
4
3
2
1
0
 0
4
 2
1

r
3

r
0

r
1

r
4

r
2

R
1
 R
2

Figure 3: Example of range position effects on number of chunks retrieved.

from which the the lemma follows.

As we can see, the expression in Lemma 4.1 involves subtracting 1 from each range size. For
convenience we will refer to these reduced ranges as ”adjusted range sizes”.

4.2 Analysis of the Independent Attribute Range Model

We recall that this model assumes that the probability of a random query shape is calculated from
the individual probability distributions for range values in each dimension. More specifically,
we assume there are mi possible range values Aij for the ith dimension where each such value
appears in a random query shape with probability pij and

∑mi

j=1 pij = 1 for 1 ≤ i ≤ k.

Lemma 4.2. The expected number of chunks that overlap a random query shape is

k
∏

i=1

(

Āi

ci
+ 1

)

where Āi is the expected value of the adjusted range size for the ith dimension, i.e., Āi =
∑mi

j=1 pij(Aij − 1)

Proof. (Outline): Using Lemma 4.1 and the fact that the probability of a query shape is equal
to the product of the probabilities of its components, we can show that the expected overlap is

k
∏

i=1





mi
∑

j=1

pij

(

Aij − 1

ci
+ 1

)



.

This by definition is equal to
k

∏

i=1

(

Āi

ci
+ 1

)

.

8

The chunk overlap minimization problem we wish to solve can be stated as follows:

min

k
∏

i=1

(

Āi

ci
+ 1

)

(4.2)

Subject to
k

∏

i=1

ci ≤ C (4.3)

where the ci’s are integers.
We will first show how to solve this problem by relaxing this latter integrality constraint and

then discuss the integral solution. Optimization problems where the objective function and/or
constraints contain products rather than sums are known as geometrical programming(see [3]).
Our case is more involved than typical geometrical programming problems as the solution rep-
resents chunk sizes which must be integers.

Theorem 4.1. The solution of the system represented by Equations (4.2),(4.3) for real ci’s is

ci = Āi
k

√

√

√

√

√

C
k
∏

i=1
Āi

Proof. We first represent the above optimization problem using base 2 logarithms. We define
new variables yi where yi = log2 ci and C ′ = log2 C and solve the system for the new variables
yi. Equation (4.2) can be rewritten as

k
∏

i=1

(

Āi

2yi
+ 1

)

(4.4)

and (4.3) becomes
k

∑

i=1

yi = C ′ (4.5)

Let E =
∏k

i=1

(

Āi

2yi
+ 1

)

− λ(
∑k

i=1 yi − C ′). Using Lagrange multipliers, E is minimized when

∂E

∂yi

= 0 for all 1 ≤ i ≤ k

This is

−Āi(ln 2)2−yi

k
∏

j 6=i

(

Āj

2yj
+ 1

)

− λ = 0 for 1 ≤ i ≤ k. (4.6)

or

Āi2
−yi

k
∏

j 6=i

(

Āj

2yj
+ 1

)

=
λ

ln 2
for 1 ≤ i ≤ k (4.7)

9

From (4.7) we get for any pair of variables yr, ys

Ār2
−yr

k
∏

j 6=r

(

Āj

2yj
+ 1

)

= Ās2
−ys

k
∏

j 6=s

(

Āj

2yj
+ 1

)

for 1 ≤ r, s ≤ k (4.8)

Re-arranging
Ār

Ās

2−yr

2−ys

(

Ās

2ys
+ 1

)

=

(

Ār

2yr
+ 1

)

(4.9)

using ci = 2yi for 1 ≤ i ≤ k

Ārcs

(

Ās

cs
+ 1

)

= Āscr

(

Ār

cr
+ 1

)

(4.10)

ĀrĀs + Ārcs = ĀsĀr + Āscr

and finally we get
cr

cs

=
Ār

Ās

. (4.11)

This means that the ratio between each pair of ci’s is equal to the ratio between their respec-
tive Āi’s or in other words Āi

ci
is a constant. The result of the theorem follows directly from

Equation (4.11).

4.2.1 Integral solution

In most practical cases, the disk block size C is an integral power of 2. In that case, C ′ = log2 C
and the yi’s in the above equations must be all integers. In this section we will show how to solve
the above problem optimally for this case by rounding up or down the non-integral solutions
obtained in Theorem 4.1. Our approach uses some techniques developed in Aho and Ullman [1]
for solving a different problem related to bucketing multidimensional data for partial match
retrieval.

Let 〈y1, y2, ..., yk〉 be the non-integral solution obtained above and Ŷ = 〈ŷ1, ŷ2, ..., ŷk〉 be an
integral solution which is as good as any other integral solution. As mentioned above, equation
4.11 of Theorem 4.1 shows that Āi

ci
= Āi2

−yi is a constant. We will denote it by e. Let

ei = Āi2
−ŷi , then by the optimality of the solution Ŷ , subtracting 1 from ŷi and adding 1 to ŷj

cannot improve the value of the objective function in Equation 4.2. . Let Ô be the value of the
objective function (see 4.2) resulting from using the solution Ŷ and let Ôij be the value of the
objective function obtained by a solution where we transfer 1 from ŷi to ŷj leaving all other terms
unchanged. The two terms that are different between these two objective functions (see 4.2) are
(Āi2

−ŷi +1) and (Āj2
−ŷj +1) in Ô which are changed to (Āi2

−(ŷi−1) +1) and (Āj2
−(ŷj+1) +1) in

Ôij respectively. Using the notation above and noting that due to the optimality of the solution

Ŷ the ratio between the two objective functions,
Ôij

Ô
≥ 1 , we get

1 + 2êi

1 + êi

1 + êj/2
1 + êj

≥ 1

¿From it follows that 2êi ≥ êj . Dividing both sides of this inequality by the constant e we finally
get

(yi − ŷi) ≤ 1 − (ŷj − yj) (4.12)

10

Using similar arguments to the ones in [1] it follows that the optimal integral solution is obtained
by rounding each yi either up or down. We also note that in the case that yi is rounded up
its fractional part is 1 − (ŷi − yi) and if it is rounded down its fractional part is yi − ŷi. As
equation (4.12) must hold for every pair of indices i and j, it follows that in an optimal solution,
the fractional parts of each of the yi’s that are rounded up must be equal or larger than the
fractional parts of the ones that are rounded down. We can therefore obtain an integral solution
to our problem following the arguments in [1] as follows: Let the sum of the fracional parts of the
non-integral solution be M (clearly M must be an integer). We can obtain an integral solution
from it by rounding up the M components, yi , with the largest fractional parts and rounding
down the rest. The complete process of obtaining a solution is illustrated in the example below.

Row
#

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5

1 Input: Expected adjusted range
size in queries

5.7 9.4 12.5 24.9 30.2

2 ci= Non integral solution for
chunk size (product is 8192)

2.501088 4.124602 5.484843 10.92581 13.25138

3 Solution in logarithms
yi=log2ci (sum is 13)

1.322556 2.044255 2.45545 3.449668 3.728071

4 Fractional part of yi

(sum of fractional parts is 2)
0.322556 0.044255 0.45545 0.449668 0.728071

5 Integral solution (in logarithms)
after rounding up y3 and y5 and
rounding down the rest (sum is
13)

1 2 3 3 4

6 Final integral chunk size 2 4 8 8 16

Table 4: Example of analysis of the IAR model

Example: The table 4 shows an example of a 5-dimensional optimization problem with block
size C=213=8192. In row #1, we show the input to the problem in terms of expected range sizes
on each dimension. Row #2 shows the non-integral optimal solution obtained from Theorem
4.1, the product is 8192 as required by block size constraint. Row #3 shows the solution in
terms of base 2 logarithms, note that their sum is 13 as required by block size constraint. The
last two rows illustrate the conversion of the non-integral solution to an integral one. In row
#4, we show the corresponding fractional parts of the solution. The fractional parts add up
to 2. This means that to obtain an optimal integral solution we need to pick the largest M=2
fractional parts round up their corresponding yi’s (y3 and y5 in this case) and round down the
rest. In row #5 we show the result of performing this rounding. The chunk size obtained as a
final solution is shown in row #6.

4.3 Analysis of the Shape Model

Using the results of lemma 4.1 and the discussion of the QS model in 3.2 we can foormulate the
optimization problem for the query shape model as:

11

min

q
∑

j=1

Pj

k
∏

i=1

(

Aij

2yi
+ 1

)

; s.t.
k

∑

i=1

yi ≤ C ′; y ∈ S (4.13)

where, S is the set of k-tuple strictly positive integers, and y denotes the k-tuple (y1, y2, . . . ,
yk), yi = log2 ci, the ”adjusted” shape of the j-th query is 〈A1j , A2j , · · · , Akj〉 (for simplicity of
notation we assume here that the Aij ’s are obtained by subtracting 1 from each original range as
explained previously), and C ′ = log2 C. The probability of the j-th shape is Pj , j = 1, 2, · · · , q.
.

This problem is more complex than the optimization of the IAR model as no closed form
solution is known. However, we will show that a greedy algorithm can be used to solve this
problem.

We shall denote,

φ(y) =

q
∑

j=1

−Pj

k
∏

i=1

(

Aij

2yi
+ 1

)

Let ei denote the k-dimensional unit vector with unity in the i-th place. We shall use the
following lemma:

Lemma 4.3. If λ ≥ 0 and y
∗ ∈ S maximize the Lagrangian φ(y) − λg(y) over all y∈ S, then

y
∗ maximizes φ(y) over all y ∈ S and g(y) ≤ g(y∗).

Proof. The proof is by contradiction. Assume that there is a y ∈ S such that g(y) < g(y∗) and
for which the value of φ(y) > φ(y∗). Then y∗ cannot maximize the Lagrangian φ(y) − λg(y)
over all y ∈ S.

Consider the following algorithm which we cal QS Algorithm:
1. y0 = (0,0,. . . ,1)T – initialize all yi’s to 0.
2. n = 1.
3. Do while

∑

i yi ≤ C ′

4. yn = yn−1 + ei, where ei

is the i-th unit vector and i is any index for which [φ(y + ei) − φ(y)] is maximum.
5. Set n = n + 1
End.
As the number of iterations in the algorithm is C ′ = log2 C and in each iteration we have to

compute k difference computations the total running time of the algorithm is O(k log2 C).

Definition 4.1. Allocation y belongs to T(λ)
if [φ(y + ei) − φ(y)] ≤ λ and [φ(y − δei) − φ(y − (δ + 1)ei)] > λ, for yi > 1 and δ ≤ yi − 1.

It follows that if y belongs to T(λ) then it is a global maximum of φ(y)−λg(y) over S, where
g(y) = y1 + y2 + . . . + yk. To see this, say in any alternate y’ the value of φ(y′) − λg(y′)is
larger. If for any index i y’i is larger than yi then the gain in the objective function is less than
or equal to zero due to concavity (the gain in φ(y) is offset by the loss due to λg(y). If y’i is
smaller then again the gain is less than zero using a similar reasoning (the loss in φ(y) is greater
than the gain in λg(y)).

Theorem 4.2. The allocations generated by the algorithm belong to T(λn) where λn equals the
largest difference found in step 3 at iteration n.

12

Proof. Notice that the theorem holds for n=1. We shall use induction on n. Also,

∂φ

∂yi

= ln 2

q
∑

j=1

Pj
Aij

2yi

k
∏

l=1,l 6=i

(

Alj

2yl
+ 1

)

.

Thus, the differences found in step 3 are decreasing in n. Therefore, 0 < λn < λn−1.
By construction (that is choice of i in step 3), for any index l

[

φ(yn−1 + el) − φ(yn−1)
]

≤ λn.

Assume that z was the index of the y that was increased at step (n − 1). Then for any index l

φ(yn−1 − δel) − φ(yn−1 − (δ + 1)el) ≥ λn−1; 0 ≤ δ ≤ yn−1
l − 1. (4.14)

φ(yn−1 + ez) − φ(yn−1) = λn−1. (4.15)

Because the differences are decreasing we need to prove that ((4.14)) holds for δ = 0 and n.
Due to global optimality (from induction and Lemma 4.3)

φ(yn−1) − φ(yn−1 − el + ez) ≥ 0. (4.16)

Therefore, using the fact that φ(yn) = φ(yn−1 + ez) and ((4.16))

φ(yn) − φ(yn − el) ≥ φ(yn−1 + ez) − φ(yn−1)

= λn−1 > λn.
(4.17)

Thus, ((4.14)) holds for n.

Theorem 4.3. The algorithm terminates with the optimal solution to the query shape problem
.

Proof. The proof follows from Theorem 4.2 and Lemma 4.3.

4.3.1 An Example of Applying Theorem 4.2

shape 1 shape 2 shape 3 shape 4

probability .4 .2 .3 .1

Dim 1 100 75 80 165

Dim 2 17 14 10 26

Dim 3 23 12 14 9

Dim 4 35 60 45 70

Dim 5 40 30 21 34

Table 5: Example of input shapes to the QS Algorithm

Example: the table 5 shows an example 5-dimensional input problem with 4 shapes. The
block size constraint is 216. In table 6 we show the first 4 iterations and the final two iterations
of the algorithm before it finds the optimal solution.

13

Itr. y1 y2 y3 y4 y5 Obj. funct.

0 0 0 0 0 0 46,560,641.59

1 1 0 0 0 0 23,503,316.20

2 2 0 0 0 0 11,974,653.50

3 2 0 0 1 0 6,122,765.65

4 2 0 0 1 1 3,147,627.72

..

14 4 2 2 3 3 6233.26

15 5 2 2 3 3 3537.00

16 5 2 2 4 3 2041.87

Table 6: Iterations of the QS Algorithm

5 Experimental Results

The first observation in our mathematical models is the difference in the expressions, between
our model and that of Sarawagi and Stonebraker, used in calculating averaged number of blocks
fetched for a specified access pattern. The two principal expressions are:

q
∑

j=1

Pj

k
∏

i=1

(

Aij − 1

2yi
+ 1

)

; (5.1)

and from [14]
k

∑

i=1





q
∏

j=1

⌈

Aij

ci

⌉



 pi (5.2)

Under an assumption of equal probability of shapes, the principal terms in the two expres-
sions for the number of chunks fetched for a given shape become

∏k
i=1((Ai − 1)/ci + 1) and

∏k
i=1⌈(Ai)/ci⌉. For the same c′is and random values of A′

is we tested the accuracy of these ex-
pressions relative to the actual number of chunks that overlap the query region. We conducted
such a simulation in a Linux environment, using randomly generated queries. The results show
a considerable discrepancy in how close the values are to the actual count of chunks retrieved.
In our experiments, we formulated random queries on 2, 3, 4 and 5 dimensions, each dimension
having equal probability of access. Figure 4 shows the result of the errors relative to the actual
true count of the overlapping chunks retrieved. In the legend SS Error is that obtained with the
expression 5.2.

5.1 Real Data

5.1.1 Query Workloads and Data Distribution

The next set of experiments is based on a large real data set from the Sloan Digital Sky Survey
(SDSS), Data Release 1. SDSS is an astronomical survey project that maps one quarter of the
entire sky in order to determine the positions and absolute brightnesses of more than 100 million
celestial objects. The survey also measures the distances to more than a million galaxies and
quasars.

The data set of Data Release 1 consists of 168 million records and some 500 attributes.
We selected a representative subset of 4 attributes for which query workload was available for

14

 0

 5

 10

 15

 20

 25

 1 2 3 4 5

%
 E

rro
r

Dimensions of Array File

6.34

0.23

16.37

1.25

19.76

0.19

24.66

0.77

SS Error
Our Error

Figure 4: Bar Charts of Percentage Errors for Number of Chunks Retrieved

studying the query performance of our optimized chunking algorithms. For this purpose we
did an extensive study of the real query workloads from astronomers of the SDSS collaboration
over a few weeks. We extracted 5,000 queries and identified four attributes that were by far the
most commonly used ones in all observed queries. Namely the variables ra, dec, petromag z, etc.
The variables ra and dec describe the position of celestial objects in the sky in terms of right
ascension and declination, and petromag z defines the Petrosian flux.

From the query workload we computed probability distribution of range sizes for attributes
dec, ra shown respectively in the graphs of figures 6 and 7 respectively. We also computed the
average range sizes of queries on four attributes dec, ra, u and z as decribed above. In table 7,
we show the performance of our optimal chunking method for different block sizes. The results
are compared with symmetric chunking, i.e., chuck shapes in which all dimensions have equal
sizes. The results are also shown in the graph 5 Analysis of the SDSS cost for different block
sizes is included in table 7

attrs. dec ra u z Opt.
chunk
cost

Sym.
chunk.
cost

adj.
avg.
range

22.7 54.79 146.04 71.5

blk.
2048

2 8 16 8 9755.44 15862.39

blk.
4096

4 8 16 8 5272.677 5763.278

blk.
8192

4 8 32 8 2896.653 3846.639

blk.
16384

4 8 32 16 1594.07 1961.929

Table 7: Chunk sizes for different block sizes for SDSS data

15

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 4096 8192 12288 16384

N
u

m
b

er
 o

f
B

lo
ck

s

Block Size of Chunks

Cost of retrieval in number of chunks

Optimal Chnuking
Symmetric Chunking

Figure 5: Comparison of Optimal and Symmetric chunking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250

P
ro

b
ab

ili
ty

 S
iz

e
O

cc
u

rr
en

ce
 in

 Q
u

er
ie

s

Interval Size of Column DEC

Probability of Interval Size in Query

ColumnDEC

Figure 6: Probability distribution of ranges in queries for attribute dec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600

P
ro

b
ab

ili
ty

 o
f

O
cc

u
rr

en
ce

 o
f

S
iz

e
in

 Q
u

er
ie

s

Interval size of Column RA

Probability of Interval Size in Queries

Column-RA

Figure 7: Probability distribution of ranges in queries for attribute ra

6 Conclusion

In high performance data intensive scientific computing and also in on-line analytical processing,
multi-dimensional arrays form the principal fundamental data structure for managing the data.
Array chunking constitutes the prevalent method for performing I/O between primary and
secondary storage and is embodied in the prevalent file formats for array data such as HDF5. The
specification of an array chunk shape that optimizes subsequent query processing is a problem
that have not been adequately addressed. We have presented exact mathematical models of
the problem and have presented solutions to both models with two different approaches; one
using geometrical programming and the other using steepest descent optimization method. The
analysis in this paper provides accurate estimations of the number of chunks that overlap hyper-
rectangular query regions. There is currently lack of query workloads for driving our optimizing.

16

However, a synthetic workload on real data validates our analysis. Future work will include
addressing the problem with factors such as array sparseness, compression and possible variable
chunk sizes.

References

[1] A. V. Aho and J. D. Ullman. Optimal partial-match retrieval when fields are independently
specified. ACM Trans. on Database Syst, 4(2):168 – 179, Jun. 1979.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, PA, 2nd edition, 1994.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New
York, 2004.

[4] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Sparse Matrix Storage Formats,
in Templates for the solution of algebraic eigenvalue problems: A practical guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[5] S. Goil and A. N. Choudhary. Sparse data storage schemes for multidimensional data for
olap and data mining. Technical Report CPDC-TR-9801-005, Center for Parallel and Dist.
Comput, Northwestern Univ., Evanston, IL-60208, 1997.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. J. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[7] Hierachical Data Format (HDF) group. HDF5 User’s Guide. National Center for Supercom-
puting Applications (NCSA), University of Illinois, Urbana-Champaign, Illinois, Urbana-
Champaign, release 1.6.3. edition, Nov. 2004.

[8] H. V. Jagadish. Linear clustering of objects with multiple attributes. In SIGMOD ’90:
Proc. Int’l. Conf. on Management of Data, pages 332–342, New York, NY, USA, 1990.
ACM Press.

[9] Nikos Karayannidis and Timos Sellis. Sisyphus: The implementation of a chunk-based
storage manager for olap data cubes. Data snf Knowl. Eng., 45(2):155–180, 2003.

[10] A. C. McKeller and E. G. Coffman. Organizaing matrices and matrix operations for paged
virtual memory. Comm. ACM, 12(3):153 – 165, 1969.

[11] J. Nieplocha and I. Foster. Disk resident arrays: An array-oriented I/O library for out-
of-core computations. In Proc. IEEE Conf. Frontiers of Massively Parallel Computing
Frontiers’96, pages 196 – 204, 1996.

[12] Ekow J. Otoo and Doron Rotem. Efficient storage allocation of large-scale extendible
multi-dimensional scientific datasets. In Proc. 18th Int’l. Conf. Scientific and Statistical
Database Management (SSDBM’06), Vienna, Austria, Jul. 3 - 5 2006. LBNL Tech Report
No LBNL-61119.

17

[13] D. Rotem and J. L. Zhao. Extendible arrays for statistical databases and OLAP appli-
cations. In 8th Int’l. Conf. on Sc. and Stat. Database Management (SSDBM ’96), pages
108–117, Stockholm, Sweden, 1996.

[14] S. Sarawagi and M. Stonebraker. Efficient organization of large multidimenional arrays. In
Proc. 10th Int’l. Conf. Data Eng., pages 328 – 336, Feb 1994.

[15] Kent E. Seamons and Marianne Winslett. Physical schemas for large multidimensional ar-
rays in scientific computing applications. In Proc. 7th Int’l. Conf. on Scientific and Statis-
tical Database Management, pages 218–227, Washington, DC, USA, 1994. IEEE Computer
Society.

[16] A. Shoshani. Olap and statistical databases: Similarities and differences. In Proc. ACM-
PODS Conf., pages 185–196, 1997.

[17] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing Surveys, 33(2):209 – 271, Jun. 2001.

[18] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous
multidimensional aggregates. In Proc. ACM-SIGMOD Conf., pages 159–170, 1997.

18

