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EPIGRAPH

Home is behind, the world ahead,

and there are many paths to tread.

Through shadows to the edge of night,

until the stars are all alight.

Then world behind and home ahead,

we’ll wander back and home to bed.

Mist and twilight, cloud and shade,

Away shall fade! Away shall fade!

— J. R. R. Tolkien
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ABSTRACT OF THE DISSERTATION

Providing Easy to Use and Fast Programming Support for Non-Volatile Memories

by

Amirsaman Memaripour

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2019

Professor Steven Swanson, Chair

Non-Volatile Memory (NVM) technologies, such as 3D XPoint, offer DRAM-like per-

formance and byte-addressable access to persistent data. NVMs promise an opportunity for fast,

persistent data structures, and a wide range of applications stand to benefit from the performance

potential of these technologies. These potential benefits are greatest when applications access

NVM directly via load/store instructions rather than conventional file-based interfaces. Directly

accessing NVM presents several challenges. In particular, applications need guaranteed con-

sistency and safety semantics to protect their data structures in the face of system failures and

programming errors.

Implementing data structures that meet these requirements is challenging and error-prone.

xvi



Existing methods for building persistent data structures require either in-depth code changes to an

existing data structure or rewriting the data structure from scratch. Unfortunately, both of these

methods are labor-intensive and error-prone.

Failure-atomicity libraries and programming language extensions can simplify this task.

However, all the proposed solutions either require pervasive changes to existing software or

incur unacceptable overheads to runtime performance. As a result, porting legacy applications to

leverage NVM is likely to be prohibitively difficult and time-consuming.

This dissertation first presents Breeze, an NVM toolchain that minimizes the changes

necessary to enable legacy code to reap the benefits of directly accessing NVM. In contrast to

PMDK and NVM-Direct, Breeze reduces the programming effort of porting Memcached and

MongoDB by up to 2.8×, while providing equal or superior performance.

Second, it introduces NVHooks, a compiler that automatically annotates NVM accesses

and avoids disruptive and error-prone changes to programs. NVHooks reduces the cost of these

annotations by applying novel, NVM-specific optimizations to their placement. For our tested

benchmarks, NVHooks matches the performance of hand-annotated code while minimizing

programmer effort.

Finally, it presents Pronto, a new NVM library that reduces the programming effort

required to add persistence to volatile data structures. Pronto uses asynchronous semantic logging

(ASL) to allow adding persistence to the existing volatile data structure (e.g., C++ Standard

Template Library containers) with minor programming effort. ASL moves most durability code

off the critical path. Our evaluation shows Pronto data structures outperform highly-optimized

NVM data structures by a large margin.
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Chapter 1

Introduction

For decades, computer architects have been in the pursuit of a fast, persistent, cost-effective

storage technology that would fill the gap between the volatile memory hierarchy (e.g., CPU

caches and memory) and the persistent storage, mainly comprising of hard-disk and solid-state

drives. Non-Volatile Memory (NVM) technologies provide the means to fill this gap by offering

comparable latency and bandwidth to volatile memory (e.g., DRAM) while delivering persistence,

higher density, and lower cost per gigabyte.

NVMs expose user applications to low-cost persistence, essentially invalidating many

assumptions concerning the storage hierarchy. In particular, NVMs are byte-addressable and can

sit beside DRAM on the memory bus, allowing applications to avoid expensive system calls and

directly access persistent data. As a result, programmers are no longer required to serialize data

before sending it for persistence or deserialize it after reading the data back. Furthermore, writing

to NVMs is orders of magnitude faster than solid-state drives and only takes a few microseconds

to complete, while the performance of reading is almost equivalent to that of DRAM. The

performance boost that NVMs offer obviates many buffering and grouping techniques (e.g., group

commit) vastly used in many popular storage and database applications.

By directly accessing NVMs and bypassing the storage stack, programmers can take

1



the most advantage of the performance potential of these memories. Direct access allows

applications to issue load and store instructions to access persistent data; however, it introduces

other challenges. In particular, programmers must carefully construct persistent data structures to

ensure the durability and consistency of persistent data in the face of programming errors and

system failures (e.g., power outages).

Due to the volatility of CPU caches, writes to persistent memory are not immediately

durable unless flushed from the volatile caches (e.g., using cache-flush instructions). As discussed

in [9] and [16], flushing cache-lines is an expensive operation, and applications often postpone

such flushes to mitigate the performance penalties. Delaying flushes, however, could result in un-

fortunate outcomes; a power outage, for instance, could tear writes to persistent memory, resulting

in partially updated data structures. Computer scientists have proposed several approaches to ei-

ther reduce the cost of these cache-flushes or make them unnecessary [16, 84]. To date, persistent

caches are yet to be adopted by the processor manufacturers, while NVM-optimized cache-flush

and memory-fence instructions are the only tools available to programmers to construct persistent

data structures for NVMs [47].

Providing programmers with direct access to NVM also hardens ensuring the consistency

of persistent data in the wake of a restart. Existing hardware only offers support for atomi-

cally updating 64 bit NVM regions. Although the high-end Intel processors have well-defined

constraints on the order in which they flush words of a cache-line, no commercial processor

today provides support for arbitrary sized atomic writes to NVM. To ensure writes to persistent

memory are atomic with respect to restarts (i.e., failure-atomic), programmers must adopt these

hardware primitives to build failure recovery mechanisms (e.g., undo-logging or copy-on-write),

a delicate and error-prone task. Furthermore, programmers must take special care in allocating

and referencing persistent memory to avoid prevalent programming errors such as memory leaks

and dangling pointers. These challenges stifle NVM programming and impede the adoption of

these emerging technologies.

2



Failure-atomicity libraries (e.g., PMDK [44]) aim to reduce the challenges of building

programs for NVMs by hiding the complexity and limitations of the hardware primitives under

a set of flexible programming interfaces. To avoid the pitfalls of direct access, these libraries

provide support for arbitrary sized failure-atomic updates to persistent data and an efficient

transactional NVM allocator that prevents permanent memory leaks in the face of system failures.

They also offer persistent naming to allow access to persistent data across programs’ restarts and

support for remapping persistent pools after recovery.

These libraries, unfortunately, introduce new issues that impede the adoption of persistent

programming. In particular, they often require programmers to annotate accesses to NVM, specify

the boundaries of failure-atomic operations, and use library-specific APIs to manage persistent

memory and write recovery code. These annotations require disruptive changes to existing

programs, especially those with no persistence semantics, and are often misplaced or overused.

Failure-atomicity libraries require programmers to annotate accesses to persistent memory,

and these annotations are cumbersome, introduce new programming errors, and disrupt code

reusability. Libraries use these annotations to intercept NVM accesses, identify boundaries of

failure-atomic operations, and manage persistent memory using NVM allocators. Annotating

NVM accesses, in particular, require altering significant portions of the source code, a laborious

and error-prone task.

Furthermore, programmers often misuse these annotations, by either missing to anno-

tate some of the NVM accesses or unnecessarily annotating others. The challenges of us-

ing annotations are prevalent enough that has motivated researchers to build NVM debugging

tools [65, 53, 41]; however, these tools often fail to identify all instances of unnecessary or missed

annotations. Note that missing to annotate a single write to NVM could result in recovering to an

inconsistent state after a failure.

These libraries offer library-specific annotations and vary in their support for concurrent,

failure-atomic writes to NVM. The differences in the syntax and semantics of these libraries
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impede retargeting programs to different NVM libraries and inhibit constructing benchmarks that

can evaluate multiple libraries. Chapter 2 provides more background on non-volatile memory

technologies and studies the challenges of building programs for byte-addressable NVMs in

more detail. It also motivates our research on reducing the programming effort of constructing

applications for emerging NVM technologies.

This dissertation focuses on addressing the challenges of programming with NVMs and

provides a collection of tools and techniques to facilitate building programs that access persistent

memory via load/store instructions. These tools enable programmers to transactionally update

persistent data while avoiding memory leaks and dangling pointers. Furthermore, they reduce the

programming effort of constructing persistent applications with no or minor performance penalty

through a series of NVM-specific compilation and optimization passes. Finally, the dissertation

introduces a set of techniques that allow adding persistence to volatile, concurrent data structures

with only a few lines of code.

In Chapter 3, we introduce Breeze that includes a user-level library as well as a compiler;

it offers programmers with transactional access to NVM and reduces the changes to the source

code required to enable failure-atomic, direct-access to NVM. Breeze ensures consistency of

persistent data in the wake of a restart and reduces changes to the source code by automatically

generating code for failure recovery, referential integrity, and garbage collection. Our experiments

with both microbenchmarks and real-world applications (e.g., MongoDB [77]) show that Breeze

reduces the programming cost of transforming existing programs to NVM-enabled versions.

Furthermore, Breeze meets or exceeds the performance of other failure-atomicity libraries when

adopted with our benchmark applications.

Next, we present NVHooks in Chapter 4. NVHooks minimizes the need for manual

annotation of NVM programs. It automates the annotation of NVM accesses, allows failure-

atomicity libraries to intercept those accesses without involving the programmer, and reduces the

cost of retargeting NVM programs to new failure-atomicity libraries. Furthermore, NVHooks
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offers a set of NVM-specific optimization passes that leverage the semantics of NVM annotations

to minimize their performance overhead.

We introduce Pronto in Chapter 5, an NVM library that uses asynchronous semantic

logging to transform operations on volatile data structures into failure-atomic operations. Instead

of recording the details of how updates change persistent data structures, a semantic log records

the arguments and completion order of the operations. Pronto plays back semantic logs after a

restart to reconstructs the latest consistent state of persistent data structures. It also creates periodic

snapshots to limit the overhead of replaying semantic logs during recovery. Our evaluations

show that Pronto is easily adoptable by many popular, volatile data structure implementations

(e.g., STL containers). Moreover, the resulting persistent data structures provide comparable

performance to their volatile counterparts, while outperforming other failure-atomic variants.

Finally, we conclude this dissertation in Chapter 6 by summarizing its contributions,

including a user-level library to facilitate adding failure-atomicity to legacy software, a series

of NVM-specific compilation and optimization passes to reduce the programming effort of

constructing persistent programs, and a new NVM library to transform concurrent, volatile data

structures into failure-atomic ones.
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Chapter 2

Background and Motivation

NVMs have introduced a new possibility for designing storage systems: Programs can

have byte-addressable access to terabytes of persistent data at DRAM-like performance. In

contrast to hybrid solutions such as battery-backed DRAM, NVMs (e.g., Intel DC Persistent

Memory) offer higher capacity, lower cost per gigabyte, and marginally lower performance

relative to DRAM. A recent study shows NVMs can deliver 76% of DRAM performance when

running WHISPER, a benchmark suite comprising a series of persistent micro-benchmarks and

applications [78, 51].

Several NVM technologies are available today or are expected to appear in the market

in the next few years. These technologies present significant challenges to programmers, and

researchers have proposed several systems to simplify programming for NVMs.

The rest of this chapter provides the background of this thesis. Section 2.1 reviews the

basics of non-volatile memory technologies. Section 2.2 and Section 2.3 introduce the challenges

of non-volatile memory programming and summarize the contributions of failure-atomicity

libraries in facilitating NVM programming, respectively. Section 2.4 highlights the limitations of

failure-atomicity libraries. Finally, Section 2.5 presents the motivation for NVM-specific compiler

support and optimizations.
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2.1 Non-Volatile Memories

NVMs promise to fill the gap between volatile memory and disks (both hard and solid-

state) by offering byte-addressability, DRAM-like latency and bandwidth, and persistence [6, 89].

NVMs based on battery- or flash-backed DRAM [74] have been available for many years, and

cheaper main memory modules based on 3D XPoint [73, 43] have entered the market recently [75,

48]. These emerging NVMs offer higher density, higher latency, and lower bandwidth [68, 13]

than DRAM-based devices. Thus, we anticipate hybrid memory systems with both DRAM and

NVM.

NVMs are fast enough to sit on the processor’s memory bus [4], providing software with

direct access to NVM via load/store instructions. Programmers must bypass the storage stack

(e.g., file systems) and directly access these devices to avoid the software overhead and fully

exploit the performance benefits these devices offer [89]. Using the load/store interface exposes

the full performance of NVMs, but it introduces a different set of challenges.

Since CPU caches are volatile, stores to non-volatile memory do not become durable until

the cache writes back the affected data. Cache evictions are usually transparent to software, so

programmers must use cache flush instructions to trigger write-backs and memory barriers to wait

for the write-backs to complete [89, 3, 46]. Cache-flushes and memory barriers are necessary

building blocks, but they do not suffice for providing the failure-atomicity that applications need

to make use of NVM.

In general, for a user application to access NVM, it maps a corresponding NVM-resident

file, also known as the persistent pool, to a contiguous region in the program’s virtual address

space (e.g., via mmap()). In order to avoid collisions, ideally the persistent pool can be mapped at

an arbitrary virtual address. As the virtual address of this mapping may change across program

restarts, the virtual addresses of objects inside the mapped region are susceptible to change and

not immutable. Thus, pointers within the pool could become invalid after a restart — relative
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pointers are a common solution [86].

Programs can use store instructions to persistently write to NVMs, but the store is not

persistent so long as it resides in the volatile cache. Moreover, stores need not reach NVMs in

program execution order due to the reordering by the cache write-back policy. So, programmers

must use special instructions to enforce the correct persist ordering for NVM writes.

Cache-flush and memory-barrier instructions allow programmers to control persistence

and ordering of NVM writes. For example, on Intel CPUs, a clflush and sfence must follow

an NVM store to ensure its persistence, and stores are failure-atomic at the 8-byte granularity.

Programmers and failure-atomicity library developers can use these hardware primitives to write

software that provides more complex and custom persistence semantics.

Ordering writes into NVM is important. In a persistent stack, for example, the newly

inserted element through push() must become persistent before the head pointer, which represents

the top of the stack, points to it. If this order is violated, an inopportune crash could result in the

head pointer pointing to uninitiated memory or partially written data.

2.2 Programming with Non-Volatile Memories

While atomic writes and cache control instructions are sufficient, in principle, to unlock

NVM’s benefits, building complex, fault-tolerant, and highly concurrent data structures using

those primitives is very challenging. In particular, programmers must address all the challenges

that volatile data structures present, such as memory management and locking. Both of these

areas are well-known sources of bugs and the resulting inconsistencies in the data structures

will be permanent with NVM. Programmers must also reason carefully about the order in which

updates occur and which updates may or may not be visible to other threads and after a failure.

In this respect, building persistent data structures resembles building lock-free data structures, a

notoriously tricky, subtle, and error-prone discipline.
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NVM also introduces new classes of bugs that are at least as pernicious as memory

management and locking errors. For instance, pointers from a non-volatile data structure to

volatile memory are inherently unsafe, as are pointers between two independent NVM regions

(e.g., two mmap’d files) [18]. Finally, NVM complicates locking, since the programmer or the

system must ensure that all locks are released after a system failure.

The rest of this section reviews the challenges of NVM programming and highlights the

performance and programming cost of constructing persistent applications.

2.2.1 Programming Cost

Bypassing the filesystem to directly access NVM via load/store instructions lets program-

mers fully exploit the performance benefits of NVMs, but it introduces a series of challenges.

Programs could lose part of an update to a persistent data structure during a system failure (e.g.,

power loss) because existing hardware does not support flushing multiple cache lines atomically:

an ill-timed failure could cause permanent data inconsistency.

To avoid this issue, persistent data structures must be able to recover to a consistent state

after a crash. NVM transaction libraries [69, 18, 95] embody the most common approach to

ensure failure-atomicity of updates to a persistent data structure: fine-grain logging of how the

data structure changes. Unfortunately, annotating existing data structures with these libraries is

labor-intensive and error-prone as programmers are required both to annotate every persistent

data update and reason about failure-atomic update boundaries. As an example, we had to rewrite

almost all of a volatile B+Tree to make it persistent using Intel’s popular Persistent Memory

Development Kit (PMDK) library [44]. For more complicated data structures in use today (e.g.,

those in the C++ Standard Template Library), adding all these annotations without error would be

an extremely invasive change to the code base that is already very complex and highly-optimized

for volatile operation. Indeed, the difficulty of correctly adding annotations has spawned research

into new debugging tools for finding these errors [65, 53, 41, 100].
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Figure 2.1: Latency breakdown of inserts to PMEMKV

2.2.2 Performance Cost

The cost of enforcing failure-atomic updates for NVM data structures is large. Logging for

failure-atomicity libraries adds overhead in the form of stores to transaction metadata, additional

cache-flushes, and memory barriers [102, 15]. Moreover, the cost of fine-grain logging scales

with the complexity of persistent data structures. Logging also limits the processor’s ability to

reorder instructions [84], further hurting performance.

To explore this cost, we measured it in PMEMKV [45], a persistent key-value store that

uses a B-Tree and stores its last level in NVM [99]. PMEMKV uses the transaction facility in

PMDK [44] to transactionally update the B-Tree.

We instrumented PMDK and PMEMKV to gather detailed latency numbers for inserting

one million key-value pairs to PMEMKV using traces from YCSB [21]. Figure 2.1 reports the

relative latency of managing the B-Tree data structure and ensuring its failure-atomicity (e.g.,

logging, persistent allocation, and transaction management) for value sizes ranging from 64 to

8192 bytes. Failure-atomicity increases the latency of insert operations by 26% to 106%.

Conventional NVM transaction libraries put all the overhead of ensuring failure-atomicity
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Table 2.1: Concurrency constraints of NVM libraries: These libraries vary in their support
for concurrent NVM access. Programs must comply with the concurrency constraints of a
failure-atomicity library to use it.

NVM Library Locking
Scheme

Allows Persistent
Writes outside Txs

Atomics
Allowed

PMDK [86] 2PL No No
Pangolin [100] 2PL No No

Kamino-Tx [69] 2PL No No
Atlas [14] FASE Yes No

JUSTDO [49] FASE No Yes
iDO [63] FASE No Yes

NVthreads [39] FASE No No

(e.g., logging, cache-flushes, and barriers) on the critical path, so applications bear the full cost.

Next, we modified PMEMKV to disable transaction management and logging. The

modified version of PMEMKV does not ensure the durability and consistency of updates to the

NVM-resident data, but still adopts PMDK’s persistent memory allocator for managing the last

level of the B-Tree. Comparing the throughput of the modified and original versions of PMEMKV

lets us estimate the performance boost that we can achieve by moving logging and transaction

management off the critical path. We observe that the modified version (with no logging and

transaction management) runs twice as fast.

2.3 Failure-Atomicity Libraries

NVM libraries aim to mitigate the challenges of direct access, but they introduce new

issues that stifle persistent programming. They facilitate NVM programming by providing

an interface to name and allocate persistent memory, run failure-atomic operations, and avoid

dangling pointers (e.g., via swizzling persistent pointers).

It is common among NVM libraries to provide custom, library-specific APIs and annota-

tions. For example, PMDK [86] requires programmers to annotate writes to NVM with callbacks

to the library, NVthreads [39] relies on the page table to detect writes, and vNVML [17] requires
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using its nv write() API for all NVM writes. Despite the differences in the interface, they must

address the challenges of direct access and provide the following:

• Support for arbitrary sized, failure-atomic updates to persistent data.

• An efficient, transactional memory allocator that avoids permanent memory leaks during

system failures.

• Access to persistent data across programs restarts (e.g., by offering persistent naming).

• Support for remapping a persistent pool after restarts, preferably at an arbitrary virtual

address to allow persistent heap relocation.

NV-Heaps [18], Mnemosyne [95], and NVM-Direct [12], are examples of these libraries

that provide a similar set of core facilities.

First, they provide memory allocation and garbage collection mechanisms that are robust

in the face of system failures. These eliminate memory leaks and dangling pointers. Second,

NV-Heaps and NVM-Direct provide protections against creating unsafe pointers from non-volatile

memory to volatile memory and between independent regions of non-volatile memory. Third,

they provide atomic sections that let the programmer specify which operations move a persistent

data structure from one consistent state to another, providing a more flexible atomicity primitive

than the 64-bit stores that hardware provides natively. The atomic sections also provide a natural

replacement for conventional locks and avoid a wide range of locking-based bugs.

All these systems also place strong constraints on how programmers write code. For

instance, NV-heaps is a C++ library and requires that all objects inherit from a persistent object

base class, and NVM-Direct adds syntax to C in order to distinguish between volatile and non-

volatile pointers. These constraints are tolerable for developers writing new code, but it makes

adapting existing code to use NVM very labor intensive. This is unfortunate, because there are

many legacy applications that could benefit from NVM. These include applications like MongoDB
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that use memory-mapped files as their persistent data store and applications like Memcached that

use volatile data structures but could benefit from making those structures persistent.

These libraries also vary in their support for concurrent, failure-atomic writes to NVM and

constrain the synchronization semantics of multithreaded programs. These constraints include the

adopted locking scheme, application of atomic instructions on NVM, and updates to persistent

data outside transaction boundaries. Table 2.1 summarizes these constraints. “2PL” stands for

two-phase locking: the program cannot acquire a new lock after releasing any lock unless all locks

are released [11]. A “FASE” (Failure-Atomic SEction) requires the program to never modify

NVM without acquiring a lock, but the order of acquiring and releasing locks is not important. A

data-structure, for instance, that writes to NVM outside critical sections (i.e., without holding any

locks) could adopt Atlas, but it does not qualify to use PMDK.

The library-specific annotations and the difference in persistence semantics prevent

programmers from retargeting programs to different NVM libraries. Furthermore, it inhibits

constructing benchmarks that work with the majority of these libraries to allow programmers to

compare their performance.

2.4 Challenges of Annotations

NVM libraries rely on programmers to annotate programs. These annotations are cumber-

some, make programs error-prone, and can suppress code reusability. They enable the libraries to

intercept NVM accesses, identify failure-atomic operations, and use persistent allocators to man-

age NVM. In contrast to the application of library-specific APIs (e.g., to specify the boundaries

of failure-atomic operations) that only requires changing small parts of programs, annotating

NVM accesses requires rewriting significant portions of the code. For instance, we had to write

or modify 720 lines of code to annotate a 629-line volatile B+Tree for PMDK.
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1 struct Node {
2 int version;
3 char key[32];
4 TOID(struct Node) next;
5 };
6 void update(char ∗oldKey, char ∗newKey) {
7 TOID(struct Node) node = get_list_head();
8 while (strcmp( D RO(node) ->key, oldKey)){
9 node = D RO(node) ->next;

10 }
11 if ( D RO(node) == NULL) return;
12 TX ADD FIELD(node, key);

13 memset( D RW(node) ->key, 0, 32);
14 D RW(node) ->version++;
15 TX ADD FIELD(node, key);

16 strcpy( D RW(node) ->key, newKey);
17 }

Figure 2.2: An example of annotating a volatile linked-list for PMDK: TOID creates a
relative pointer of the specified type. D RO and D RW swizzle a pointer and return read-only and
read-write pointers of the same type, respectively. TX ADD FIELD creates an undo-log of the
specified field.

2.4.1 Programming Effort

Annotating NVM accesses, in particular, imposes significant changes to programs. These

annotations enable libraries to augment NVM accesses with additional logic, such as swizzling

pointers and logging.

Figure 2.2 shows an example of these annotations for PMDK. The code is a portion of the

update method for a persistent linked-list. PMDK uses the annotations, which are highlighted, to

swizzle pointers and create undo-logs for NVM writes.

2.4.2 Correctness

It is easy to misuse these annotations. Programmers could either miss annotating some

of the NVM accesses or unnecessarily annotate others. Figure 2.2 shows an example of both

scenarios. Line 14 is an example of a missed annotation, which could result in data corruption.
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Line 15 shows an instance of over-annotation, where the programmer annotates an NVM write

that they already annotated at line 12.

The difficulty of using annotations has motivated research on NVM debugging tools [65,

53, 41]; however, these tools often fall short in identifying all unnecessary or missed annotations.

2.4.3 Code Reusability

Annotations also impede using pre-compiled, third-party libraries. Programmers must

ensure every call into a third-party function accompanies the necessary annotations that describe

how the function interacts with NVM.

Line 12 of Figure 2.2 provides an example of such annotations for memset(), where

TX ADD FIELD() instructs PMDK to create an undo-log of the key attribute. So long as these

annotations provide an accurate description of how functions of the third-party library access per-

sistent memory, it is safe for programmers to use them. Annotations can satisfy this requirement

for many library functions commonly used by programmers (e.g., strcpy() and memset()).

Existing work offers an alternative to annotating calls into third-party libraries by using

hardware support (e.g., page faults to detect NVM writes [39, 83]). However, these solutions

impose considerable performance cost.

2.5 Absence of Compiler Support

Existing compilers treat NVM annotations the same as other callbacks into third-party

libraries. Not exposing the semantics of these annotations to the compiler limits its ability to

optimize them. Figure 2.3 shows how the compiler can use the semantics of NVM annotations to

optimize the code. Once the compiler understands the semantics of the pointer swizzling function

(i.e., D RO()), it can reuse the swizzled pointer so long as its corresponding relative pointer does

not change. In contrast to the original code, the optimized version requires up to 400% fewer
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calls to the swizzling function.
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1 bool list_contains_duplicate_keys() {
2 TOID(struct Node) n = get_list_head();
3 // We can reuse D_RO(x) so long as the value of x does not change.
4 while ( D RO(n) ) {
5 TOID(struct Node) m = D RO(n) ->next;
6 while ( D RO(m) ) {
7 if (strcmp( D RO(n) ->key, D RO(m) ->key) == 0) {
8 return true;
9 }

10 m = D RO(m) ->next;
11 }
12 n = D RO(n) ->next;
13 }
14 return false;
15 }

1 bool list_contains_duplicate_keys() {
2 TOID(struct Node) n = get_list_head();
3 const struct Node ∗np = D RO(n) ;
4 while (np) {
5 TOID(struct Node) m = np->next;
6 const struct Node ∗mp = D RO(m) ;
7 while (mp) {
8 if (strcmp(np->key, mp->key) == 0) {
9 return true;

10 }
11 mp = D RO(mp->next) ;
12 }
13 np = D RO(np->next) ;
14 }
15 return false;
16 }

Figure 2.3: Compilers can significantly reduce the overhead of NVM libraries by optimiz-
ing the annotations (highlighted). This example extends the code from Figure 2.2 with a new
function. The code on the top and the bottom are the original and the optimized, respectively.
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Chapter 3

User-Level Access to Non-Volatile

Memories for Legacy Software

Emerging non-volatile main memory (NVM) technologies, such as Intel and Micron’s 3D

XPoint [73, 43], offer DRAM-like performance but with higher density and lower cost-per-bit.

Applicaitons such as databases and key-value stores could avoid serialization costs and improve

response times by leveraging the performance, fine-grain access, and persistence that these

memories offer.

Although NVMs promise orders of magnitude better performance compared to conven-

tional hard and solid state disks, unleashing their potential is challenging. To maximize the

performance benefits of NVM, applications should access them directly via load/store instructions

rather than through conventional file-based interfaces. This requires programmers to construct

persistent data structures that are resiliant in the face of system failures, avoid (persistent) memory

leaks, prevent the creation of dangling pointers, and support multi-threaded operations.

Building these data structures is hard because it requires careful reasoning about the

order in which updates to NVMs will become persistent. Since caches will remain volatile and

processors can reorder stores, programmers must issue barriers and/or flush cache lines to enforce
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the order in which updates become persistent to ensure data consistency. Applying these barriers

correctly is challenging: excessive use leads to degraded performance [9, 99], but missing barriers

can lead to data corruption.

Researchers have proposed several programming systems [18, 95, 12, 44] to hide this

complexity from the programmer by providing library- or language-based mechanisms to manage

and allocate NVM, define persistent data structures, and specify the atomic operations that

transform those structures from one consistent state to another.

While these systems provide comprehensive solutions to many of the challenges that

NVM programming presents, they offer limited support for porting existing programs and data

structures to make use of NVM. Applying them to existing codes require pervasive changes and

enormous programmer effort.

External libraries pose a particular problem, since, in the near term, they are unlikely

to have been built with persistent memory in mind. Given these challenges, and without an

alternative solution, it is likely that most legacy code will not fully benefit from the performance

that NVM offers. This will, in turn, reduce the rate of adoption of NVM.

To address this problem, we propose Breeze, a toolchain that provides programs with

transactional access to NVM and minimizes disruptive changes to the source code. The toolchain

includes a user-level NVM library and a C compiler. Breeze minimizes changes to the source

code by transparently providing failure recovery, referential integrity (i.e., ensuring that references

point to valid data) and garbage collection. In contrast to existing systems for low-level languages

(e.g., C), Breeze does not require programmers to explicitly create log entries before touching

persistent objects or use specific pointer types to reference persistent memory. Also, it can

recover leaked memory regions without help from the programmer. The toolchain offers a set

of primitives to manage and update persistent memory regions and guarantees consistency of

persistent data in the event of failures.

Breeze makes the following contributions:
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• The Breeze compiler automatically generates log entries for non-volatile data updates.

• It lets programs use normal pointers to refer to perisstent data rather than “fat” or “swizzled”

pointers.

• It supports automatic garbage collection for persistent memory in C.

• It can generate log entries for changes that many third-party functions make to persistent

memory.

We evaluate Breeze in terms of how extensively a programmer must modify a code base

to make use of NVM and the performance it offers. To quantify this, we port two applications,

MongoDB [77] and Memcached [31], as well as a B+Tree and a hash table to use Breeze. We

find that Breeze requires fewer, simpler changes to the source code and meets or exceeds the

performance of competing systems like NVM-Direct and PMDK.

The remainder of this chapter is organized as follows. Section 3.1 presents the architecture

of Breeze while Section 3.2 describes its implementation in detail. Next, we evaluate ease of

use and performance of Breeze in Section 3.3. Finally, Section 3.4 discusses related work and

Section 3.5 provides a summary of this chapter.

3.1 Design Overview

Breeze provides existing programs with direct access to NVM and maintains consistency

of persistent data while minimizing changes to the source code. The toolchain exposes a small

set of interfaces to manage and update persistent memory regions transactionally. Programmers

employ these interfaces to create/open memory-mapped files, define persistent data structures,

specify persistent pointers, and transactionally create and modify instances of those structures.

Breeze exploits the definition of persistent structures and pointers to generate a set of C

functions that will maintain reference counts and the referential integrity of persistent objects at
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Figure 3.1: The organization of Breeze allows programs to bypass the operating system
and directly read/write persistent data. Breeze, the green area, is responsible for transaction
management, garbage collection, allocation and recovery management.

Table 3.1: Breeze provides a set of macros to declare persistent data types and pointers.

NVM_TYPE_ID(type) Returns type identifier for type, a positive integer that is used for allocation
purposes.

NVM_STRUCT This is an alternative to struct keyword in order to declare persistent struc-
tures.

NVM_PTR(type) Declares a persistent pointer of type type in a persistent structure.

runtime. In order to provide failure consistency, the Breeze compiler creates undo-log entries for

each write before performing it. The toolchain also lets programmers initiate, commit, and abort

transactions. Finally, Breeze maintains consistency of persistent data throughout recoverable

failures (e.g., power outages) and provides garbage collection.

In contrast to existing NVM programming systems, Breeze automates logging and garbage

collection without requiring use of managed pointers or special support from the hardware [44,

12, 95, 18]. Figure 3.1 depicts how programs interact with Breeze during execution. Below, we

illustrate Breeze’s interface by using it to convert a volatile linked-list (shown in Figure 3.2) into

a persistent linked-list.
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1 typedef struct Node {
2 struct Node ∗next;
3 char[32] data;
4 } Node;
5

6 void main() {
7 Node ∗head = NULL;
8 for (int i = 0; i < 10; i++) {
9 Node ∗t = malloc(sizeof(Node));

10 if (t == NULL) {
11 break;
12 }
13 t->next = head;
14 strcpy(t->data, "Hello world");
15 head = t;
16 }
17 }

Figure 3.2: This code creates a simple, volatile linked-list with 10 elements by adding new
elements to the head of the list.

Applying Breeze to existing code comprises four steps (Figure 3.3). Programmers use

the C macros from Table 3.1 to label persistent structures and pointers. Next, programmers

define transaction boundaries and replace volatile memory management function calls with

persistent counterparts. Then, Breeze’s compiler uses this information to log updates to NVM

and generate code to recover from failures. Finally, programmers link the object files to Breeze’s

user-level NVM library. Section 3.1.1, Section 3.1.2 and Section 3.1.3 provide examples of adding

annotations, defining transaction boundraies and allocating NVM for the linked-list example.

Section 3.1.4 presents the design of Breeze’s compiler.

3.1.1 Declaring Persistent Types and Pointers

The first step in adapting legacy code to use Breeze is annotating the data structures

that will be persistent using the primitives in Table 3.1. Breeze feeds these annotations to its

compiler in order to generate C functions that maintain reference count and referential integrity at
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allocating NVM using Breeze APIs
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Compiling the code 
using Breeze 

compiler

Figure 3.3: Four steps of applying Breeze to legacy software.

runtime and support failure recovery. It also exploits this information to prevent the creation of

unsafe pointers from non-volatile to volatile memory and between non-volatile memory pools

(i.e., contiguous regions of NVM that reside within memory-mapped files).

Figure 3.4 shows how we use these primitives for the linked-list example. The highlights

show which lines needed to be changed to provide persistence.

The changes required to the code are modest. Breeze only requires annotating data

structure declarations that only comprise a small portion of the source code, in order to provide

pointer safety. In contrast to existing systems, Breeze does not require programmers to use special

pointer types, inherit from a particular base class, or extend existing structures with new fields.
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1 // declare persistent structure

2 typedef NVM STRUCT Node {
3 // declare persistent pointer
4 NVM PTR(struct Node) next;
5 char[32] data;
6 } Node;

Figure 3.4: Declaring persistent types and pointers using Breeze primitives.

3.1.2 Atomic Sections

Specifying actions that take a persistent data structure from one consistent state to another

is a central requirement for a NVM programming system. This information, allows the system to

restore the data structure to a consistent state in case of a failure. Breeze facilitates implementing

ACID [36] transactions by providing atomicity, consistency and durability for all transactional

updates to NVM. The toolchain automates logging and allows performing updates on the main

version of persistent objects. Programmers are responsible for isolation, but, in most cases,

legacy software already includes concurrency control. Breeze allows it to keep using the same

mechanism.

Breeze allows programmers to declare transaction boundaries, and then it automatically

generates undo-log entries for resulting atomic sections. Breeze’s transactional interfaces (Fig-

ure 3.5) include nvm tx begin(), nvm tx commit() and nvm tx abort(). In contrast to other

systems (e.g., Intel’s PMDK [44]), Breeze does not require the creation of log entries prior to

updating NVM. Instead, the compiler generates necessary code to create undo-logs before every

write to NVM. The design of Breeze’s compiler is presented in Section 3.1.4.

3.1.3 Allocation

Breeze provides programmers with primitives to create non-volatile pools and allocate

persistent objects. Programmers use nvm pool create() and nvm pool open() to create and

map a file containing a newly-initialized pool or map an existing pool into applications’ address
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1 void main() {
2 size t pool size = (off t)1 << 20;

3 NVM POOL *pop = nvm pool create("/nvm/pool", pool size);
4 Node ∗head = NULL;
5 for (int i = 0; i < 10; i++) {
6 nvm tx begin(pop); // begin transaction
7 // allocate a new persistent object
8 Node *t = nvm alloc(pop, NVM TYPE ID(Node), sizeof(Node));
9 if (t == NULL) {

10 nvm tx abort(pop); // abort transaction
11 break;
12 }
13 t->next = head;
14 strcpy(t->data, "Hello world");
15 head = t;
16 // update the root pointer
17 nvm pool set root(pop, head);

18 nvm tx commit(pop); // commit transaction
19 }
20 nvm pool close(pop);
21 }

Figure 3.5: Leveraging Breeze to perform transactional list operations.
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1 POBJ LAYOUT BEGIN(LinkList);
2 POBJ LAYOUT ROOT(LinkList, struct Node);
3 POBJ LAYOUT TOID(LinkList, struct Root);
4 POBJ LAYOUT END(LinkList);
5

6 typedef struct Node {
7 TOID(struct Node) next;
8 char[32] data;
9 } Node;

10

11 typedef struct Root {
12 TOID(struct Node) head;

13 } Root;

14

15 void main() {
16 size t pool size = (off t)1 << 20;

17
PMEMobjpool *pop = pmemobj create("/nvm/pool", POBJ LAYOUT NAME(LinkList),
pool size, 0666);

18 TOID(Root) r = POBJ ROOT(pop, Root);
19 for (int i = 0; i < 10; i++) {

20 TX BEGIN(pop) { // begin transaction

21 // allocate a new persistent object
22 TOID(Node) t = TX ZALLOC(Node, sizeof(Node));

23 if (TOID IS NULL(t)) {
24 pmemobj tx abort(1); // abort transaction

25 }
26 D RW(t)->next = head;
27 strcpy(D RW(t)->data, "Hello world");

28 pmemobj persist(pop, D RW(t), sizeof(Node));
29 TX ADD(r); // create undo-log for root

30 D RW(r)->head = t;

31 pmemobj persist(pop, D RW(r), sizeof(Root));
32 }

33 TX END { } // commit transaction

34 }
35 pmemobj close(pop);
36 }

Figure 3.6: Making the linked-list persistent using PMDK.
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space, respectively. In case of failures, nvm pool open() also performs necessary recovery

operations on the pool to ensure its consistency. Pools are self-contained and include all the

information necessary for failure recovery.

Each pool has a root pointer that provides access to all the live objects in the pool. Persis-

tent objects that are not reachable from the root pointer are considered dead and are candidates for

garbage collection. Programmers can modify the root pointer by calling nvm pool set root().

Programmers allocate space for persistent objects within a pool using nvm alloc().

Breeze provides transactional allocation and ensures allocated objects are reclaimed if the corre-

sponding transaction aborts or the object is not referenced by any other persistent pointer.

The programmer can explicitly free a dead object with nvm free() (the call returns an

error if the object is live). Calling nvm free() is not necessary, but it reduces the burden on the

garbage collector.

Highlighted statements of Figure 3.5 shows how to use Breeze for the linked-list example

from Figure 3.2 to create persistent pools, define atomic sections and transactionally allocate

persistent objects.

When a program is finished with a pool, it can close the pool with nvm pool close().

This leaves the pool in a consistent state, so no recovery is necessary the next time an application

opens it. Breeze closes all pools when the program exits.

3.1.4 Breeze’s Compiler

The Breeze compiler automatically inserts logging code and generates recovery code for

data structures. Breeze’s compiler inserts logging code before each write to NVM. The compiler

inserts a function call before each NVM write to invoke the undo-logging function implemented

in Breeze’s user-level library.

NVM writes could also happen inside library functions. Breeze allows programmers to

link the code to any pre-compiled library. The compiler inserts logging code before calling library
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functions to create undo-log entries for NVM regions that the library function modifies. We

describe the semantics and implementation details of Breeze’s compiler in Section 3.2.3.

In addition to automating the process of creating undo-logs, the compiler uses program-

mers annotations introduced in Section 3.1.1 to generate code in order to maintain referential

integrity of persistent objects, garbage collect unreachable regions and recover from failures.

Section 3.2.6 and Section 3.2.7 discuss the role of Breeze’s compiler in maintaining referential

integrity and performing garbage collection in more depth.

3.2 Implementation

We implemented Breeze as a C library and a C compiler under Linux. We have built

Breeze’s compiler by extending the LLVM compiler infrastructure [59]. Breeze does not require

special hardware support. Below we describe how Breeze lays out data in persistent pools, handles

atomicity and data allocation, maintains referential integrity, and recovers from failures.

3.2.1 Storage Layout

Breeze organizes persistent objects into continuous regions of NVM called memory pools.

We utilize filesystem’s naming mechanism to find memory pools after program restarts and

mmap() them to the program’s address space. Breeze requires the filesystem to provide direct

access to NVM pages (i.e., DAX or page cache bypass) of memory-mapped files [61].

Memory pools are divided into six segments. The header segment, depicted in Figure 3.7,

is the first page of a persistent memory pool and contains metadata about the pool as well as the

offset of the root object.

Breeze stores programs’ data in the data segment located after the header segment.

Breeze’s allocator is responsible for managing the data segment. The user-level library utilizes the

next segments to store garbage collection data and the transaction log, discussed in Section 3.2.7
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Figure 3.7: Storage layout of the pool header (top) and the object header (bottom).

and Section 3.2.3 respectively. In contrast to existing NVM programming systems such as

PMDK and NVM-Direct, Breeze requires less space to store its metadata since it neither persists

allocation tables nor stores additional information for persistent pointers [44, 12].

3.2.2 Memory Allocation and Management

Breeze provides transactional allocation semantics and avoids memory leaks through

reference counting. Breeze’s user-level library implements a two phase protocol for allocat-

ing/deallocating space for persistent objects:

• The library creates an undo-log entry in the pool’s transaction log area for allocation/free

requests.

• If a transaction aborts, the library uses the undo-log entries to undo allocation/deallocation

requests that correspond to the aborted transaction. The library discards the undo-log

entries on transaction commit.

Breeze’s allocator uses per-thread allocation lists to minimize false sharing and cache

contention [18]. It also organizes free persistent regions based on their sizes into different sub-lists

in order to reduce allocation overhead and fragmentation [56].

Breeze does not store allocation state in persistent memory. Instead, it scans the pool

during startup to find free regions and rebuild per-thread allocation lists. This enables faster

allocation, and Breeze performs the recovery scan using multiple threads to minimize the cost.

We also use the recovery scan to provide pointer safety and making sure persistent pointers remain

valid throughout program restarts.
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...

memcpy(dst, src, size);

...

A[i] = B[i];

...

...

if (isNVMM(dst)) log(dst, size);

memcpy(dst, src, size);

...

if (isNVMM(&A[i]))

log(&A[i], sizeof(A[i]));

A[i] = B[i];

...

Breeze’s Compiler

Figure 3.8: Breeze’s compiler injects boundary check instructions before those memory writes
the address of which is decided at runtime. The compiler does not add boundary checks before
writes to heap-resident and stack-resident regions. During runtime, if the write operation aims
to update a NVM region, Breeze’s undo-log function is invoked with the target address and size
of the write operation.

3.2.3 Atomicity

Breeze’s compiler creates undo-log entries before allowing programs to modify persistent

memory regions. In contrast to existing NVM systems that aim to provide easy to use atomicity,

Breeze’s approach is applicable to all types of applications and does not require any hardware

support, frequent switches between the user and kernel mode, or coarse-grain logging [39, 49,

102].

First, the compiler toolchain uses LLVM’s front-end (i.e., clang) to generate LLVM IR

code. Then, it identifies every instruction that could update a region of byte-addressable memory,

either directly (e.g., store) or indirectly (e.g., function call). If the compiler has enough

information about the memory region that the instruction updates to decide whether it resides in

volatile or persistent memory, Breeze’s compiler ignores the instruction or generates undo-logging
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code before the instruction, respectively. The undo-logging code calls to Breeze’s user-level

library and provides its undo-log function with the address and size of the memory region. This

function allocates space for the log entry, copies data from the memory region to the allocated

space, ensures its persistence and updates the transaction metadata.

If the volatility or persistence of a memory region is unknown at compile time (e.g., func-

tion arguments), the compiler inserts a call to Breeze’s user-level undo-logging function before the

instruction, however, a boundary check instruction precedes the function call to avoid unnecessar-

ily invoking the undo-log function for volatile memory regions (see Figure 3.8). Breeze’s current

implementation reserves a contiguous region of virtual address space for persistent memory pools

at program startup and uses the lower-bound and upper-bound of this region to perform boundary

checking. Figure 3.8 provides a brief explanation of how Breeze’s compiler works.

As long as programmers use Breeze’s compiler to compile the code, it can provide

atomicity by inserting undo-logging code before the instructions that modify NVM. However,

pre-compiled libraries can also modify persistent data and Breeze must log these changes as

well. Section 3.2.4 explains how Breeze addresses this issue. We have also implemented a few

optimization techniques to reduce the runtime cost of our atomicity technique. Section 3.2.5

briefly explains these techniques and offers insights for further optimizations.

3.2.4 Pre-Compiled Libraries

Breeze allows pre-compiled libraries to safely modify NVM, since recompiling third-party

libraries is not always possible or desirable, especially for those libraries the source code of which

is not publicly available. As the most majority of such library functions only modify memory

regions referenced by pointers passed through their arguments, the compiler can insert logging

code in user’s code and before the function call instruction. This technique enables Breeze to

provide atomicity without requiring the programmer to recompile every piece of the program.

Breeze’s current implementation logs changes to persistent data passed as arguments, which is all
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we needed for our benchmark applications, but we can extend this to handle changes to global

persistent variables by enabling programmers to pass information about such variables (address

and size) to Breeze’s compiler as well.

We classify functions into two groups: atomic-safe and atomic-unsafe functions. Atomic-

safe functions are compiled by Breeze’s compiler and contain undo-logging code for instructions

in the body of the function that modify NVM. Therefore, the compiler does not need to insert any

undo-logging code before calling these functions. On the other hand, atomic-unsafe functions

reside in pre-compiled libraries and the Breeze’s compiler has no information about presence or

absence of undo-logging code inside these functions. As a result, providing these functions with

pointers to NVM regions might be unsafe and the compiler needs to insert undo-logging code

before calling these functions.

The programmer must create a file with annotations for unsafe functions that describes

how they modify memory. This file (e.g., foo.unsafe) includes the list of unsafe functions and

their metadata, and should be placed in a location known to the compiler. The metadata for

unsafe functions provides compiler with the address and size of NVM regions that the unsafe

function modifies. Figure 3.9 shows an example of foo.unsafe. Function names in foo.unsafe

are followed by the list of memory regions the function modifies. These lists describe how

unsafe functions modify memory based on their arguments. For example, strcpy(2) writes the

string referenced by its second argument to a memory region referenced by its first argument.

Therefore, it writes strlen(arg1) bytes to a memory region referenced by arg0. Similarly,

memcpy(3) writes a total of arg2 bytes (third argument) to a memory region referenced by arg0

(first argument).

Breeze’s compiler uses the information in this files to generate object files from LLVM

IR codes. During this process, every function call is checked against the list of safe and unsafe

functions. No extra work is required for safe functions (green bullets), however, the compiler

inserts undo-logging code before unsafe function calls (orange bullets) using the metadata
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🀫 myFunction1(a,b,c);
🀫 memcpy(a,b,d);
🀫 myFunction2(a,b);
🀫 strcpy(a,b);
🀫 myFunction3();
🀫 setCacheLine(c,0);

myFunction1(a,b,c);
if (isNVMM(a)) log(a, c); // Log argument #0
memcpy(a,b,d);
myFunction2(a,b);
if (isNVMM(a)) log(a, strlen(b));
strcpy(a,b);
myFunction3();
if (isNVMM(c)) log(c, 64); // Size = 64
setCacheLine(c,0);

memcpy(3)={[arg0, arg2]}
strcpy(2)={[arg0, strlen(arg1)]}
setCacheLine(2)={[arg0, 64]}

foo.unsafe

Figure 3.9: Breeze’s compiler uses the information in foo.unsafe (top) to provide atomicity
for library function calls (middle). Numbers in parenthesis for foo.unsafe are the number of
arguments for each function. In addition to function names, foo.unsafe contains metadata for
each function that allows the compiler to identify the address and size of memory regions that
the function modifies. The programmer provides Breeze with this information.

provided by the programmer. An example of the undo-log code that Breeze’s compiler generates

is shown in the bottom of Figure 3.9.

The programmer should also replace function pointers to unsafe (pre-compiled) functions

with pointers to safe (user-defined) wrapper functions. This enables Breeze’s compiler to insert

proper undo-logging code before calls to unsafe functions without requiring disruptive changes to

the source code.

3.2.5 Optimizations

The goal here is to minimize the performance overhead of using Breeze’s compiler to

create undo-log records. A perfect optimization technique could enable the compiler to remove
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...

for (int i = 0; i < 64; i++) {

A[i] = B[i];

}

...

...

for (int i = 0; i < 64; i++) {

if (isNVMM(A[i]))

log(&A[i], sizeof(A[i]));

A[i] = B[i];

}

...

Breeze’s Compiler

...

if (isNVMM(A))

log(A, sizeof(A[0]) * 64);

for (int i = 0; i < 64; i++) {

A[i] = B[i];

}

...

Breeze’s Optimizer

Figure 3.10: An example of using the optimizer to reduce the frequency of boundary checks
and calls to the log function.

all boundary checks and keep the frequency of calls to the undo-log function at the minimum.

Our first step in this direction is to avoid boundary check and undo-log creation for pointers that

reference stack and volatile heap resident data. Considering that most of the memory accesses

for a wide range of applications are for heap and stack data [78], this significantly reduces the

performance overhead of Breeze by reducing the frequency of boundary checks.

We have also implemented a simple optimization for loops to reduce the frequency of

function calls and boundary checks (Figure 3.10). The aim of this technique is to replace multiple

fine-grain undo-log entries with a single coarse-grain undo-log. As a result, this technique can
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reduce the frequency of function calls and boundary checks by n−1, where n is the total iterations

of the loop (64 in our example).

We are working on a few other ways to reduce the performance overhead of Breeze on

NVM applications. An example is to avoid repeating boundary checks and calls to the undo-

log function for the same memory region. The compiler utilizes use-define chains to decide

if inserting undo-logging code before an instruction is necessary. This is done by tracking all

reachable definitions for a use (a pointer referencing a memory region that is being updated by

the corresponding instruction) and making sure undo-logging code is present for every single

reachable definition.

3.2.6 Pointer Safety

Breeze allows programmers to directly update persistent pointers. This approach has

no effect on validity of persistent pointers as long as the physical to virtual mapping of non-

volatile pages does not change. In contrast to Mnemosyne [95] which maintains this mapping

through kernel-level support, Breeze allows this mapping to change while maintaining validity of

persistent pointers. If the operating system cannot maintain the same base address for a persistent

memory pool after a restart (e.g., because another pool is already mapped to that address), Breeze

adjusts persistent pointers to account for the change by running Algorithm 1. This algorithm

adjusts every pointer inside the persistent pool by adding the offset between the old and new base

addresses.

For example, assume the operating system is mapped a persistent pool at address 0xA000

when a failure occurs. After the failure, the application calls nvm pool open() in order to run

recovery and map the persistent pool to its address space. However, the operating system finds

that 0xA000 is already in use, so it has to map the pool to address 0xB000. In order to maintain

referential integrity, Breeze transactionally adds 0x1000 to all persistent pointers in the pool.

Since failures might occur during the execution of Algorithm 1, Breeze keeps track of
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Figure 3.11: Storage layout of the reference count activation records.

the persistent pool’s base address for each recovery attempt as well as generation numbers for

persistent objects and the persistent pool in order to tolerate such failures. Generation numbers are

integer values assigned to persistent pools and objects. Breeze increments the pool’s generation

number for every recovery attempt. The library updates an object’s generation number with the

pool’s generation number once it finishes recovering the object.

Consider the previous example. A failure occurs before Algorithm 1 finishes updating

the pointers when the pool resides at 0xB000. When the application opens the pool next time,

the kernel happens to map it to 0xC000. The generation numbers and history of base addresses

enables Breeze to add 0x1000 to pointers that were updated during the last recovery session

while adding 0x2000 to pointers that were not. Breeze can run the recovery algorithm in parallel

to reduce recovery time, or it could perform recovery lazily when the application accesses an

object for the first time after recovery. Breeze only requires a small persistent area to run the

recovery algorithm. The maximum size of NVM required to run the recovery algorithm is

|recovery− threads|×max(ob ject− size). For example, Breeze only requires 4 KB to run the

recovery code for 1 KB objects using 4 threads.

3.2.7 Garbage Collection

Breeze’s garbage collection algorithm leverages the persistent pointer information to track

reference count of persistent data structures. Breeze implements a two-phase garbage collection

algorithm similar to the scheme introduced by NV-Heaps [18] and uses weak pointers to avoid

memory leaks due to cycles.

The first phase of Breeze’s GC algorithm runs during transaction commit and identifies

37



the pointers that have changed by comparing the objects in the transaction’s log with the original

version of those objects. It records the new value of the pointers along with their original values

in a data structure called activation record (Figure 3.11). Breeze ensures persistence of these

activation records before marking the transaction as committed. Algorithm 2 describes the first

phase of Breeze’s garbage collecting algorithm: creating activation records on transaction commit.

We use a circular buffer of size log size to maintain these activation records for each transaction.

The circular buffer accommodates 65,538 activation records, therefore, no transaction is expected

to wait for another transaction to complete. If there is no available activation records, the oldest

transaction in the circular buffer is considered as permanently blocked and restarted to open up

space for new transactions.

The second phase of the algorithm consumes the activation records inside the circular

buffer. For each entry, it increments the reference count on the object the pointer now points to

and decrements the count on the object it used to point to. A background thread iterates over

the activation records and translates them into necessary changes to the reference counts. Since

updating reference counts is not an idempotent operation, the background thread converts each

activation record into a set of redo-log entries prior to updating reference counts.
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Algorithm 1 Fixing persistent pointers on recovery
1: procedure POINTER REWRITE(pool,region)
2: region base← pool.base addr
3: if region.gen num 6= pool.gen num then
4: i← region.gen num− pool.gen num−1;
5: region base← pool.ptr recovery log[i]
6: end if
7: disp← pool− region base
8: if disp = 0 then
9: return

10: end if
11: tx begin
12: for all ptr ∈ region.pointers do
13: ptr← ptr+disp
14: end for
15: t← pool.gen num+ pool.recovery attempts
16: region.gen num← t
17: tx end
18: end procedure

Algorithm 2 Creating a list of pointer changes
1: procedure LOG POINTER CHANGES(tx)
2: log← rc log[tx.id mod log size]
3: log.tx id← tx.id
4: n← 0
5: for all ob j ∈ page do
6: for all ptr ∈ ob j do
7: if ptr.old val 6= ptr.new val then
8: log[n].old val← ptr.old val
9: log[n].new val← ptr.new val

10: n← n+1
11: end if
12: end for
13: end for
14: log.size← n
15: Update log.checksum
16: Persist log
17: end procedure
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3.3 Evaluation

This section evaluates Breeze and compares its performance and ease-of-use against

NVM-Direct [12] and PMDK [44] (version 1.0). We describe our evaluation platform and then

explain our experiments for measuring ease of use, performance overhead and recovery time of

Breeze.

3.3.1 Applications

We use two groups of applications to benchmark Breeze. The first group includes

persistent implementations of a B+Tree and a hash table using Breeze, NVM-Direct [12] and

PMDK [44]. The implementation of the B+Tree is similar to that of NV-Tree [99]. We use

Cuckoo hashing [82] as the mapping algorithm for our hash table implementation. We use DJB2

and Jenkins hash functions for the Cuckoo hashing implementation [97].

The second group are legacy applications that can benefit from NVM. We have incorpo-

rated Breeze and PMDK with Memcached [31] and MongoDB [77] for this purpose. Memcached

is a general purpose memory caching system with no durability semantics. MongoDB is a

persistent document store with support for atomic updates. For these experiments, MongoDB is

configured to ensure persistence of each insert/update operation before acknowledging the client.

We exercise these applications with the YCSB [21] workloads described in Table 3.2.

YCSB provides a common ground to evaluate the performance of different key-value storage

systems. For our experiments, we populate the storage system with 10 million key-value pairs

of size 1 kB. Then, we run each of the workloads from Table 3.2 to measure the performance

of our target system. The outcome of this process is the average latency and throughput of the

storage system. The latency/throughput numbers for workload C are not presented here since it

only contains read operations which results in identical performance for Breeze and PMDK.
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Table 3.2: The percentage of different operations in each YCSB workload.

Workload Read Update Insert Read & Update

YCSB-A 50 50 - -

YCSB-B 95 5 - -

YCSB-D 95 - 5 -

YCSB-F 50 - - 50

Table 3.3: Configuration of the NVM emulation platform

Size Read latency Write bandwidth clwb latency

32 GB 100 ns 1/8 DRAM 40 ns

3.3.2 Test System

We utilize Intel’s Persistent Memory Emulation Platform (PMEP) [27] to emulate the

latency and bandwidth of NVM for our experiments. PMEP is a dual socket platform equipped

with Intel Xeon processors with 8 cores running at 2.6 GHz. The platform has a total of 4 DDR3

channels, where channels 2 and 3 are marked by the BIOS for emulating NVM. Table 3.3 shows

how we configured the platform for the experiments.

3.3.3 Ease of Use

To compare Breeze’s ease of use with other systems’ we use the number of lines of code

that must be changed in order to enable an existing application to use NVM. The B+Tree and

hash table implementations serve as a baseline to compare Breeze against NVM-Direct [12] and

PMDK [44]. Table 3.4 shows that Breeze requires between 55% and 82% fewer modified lines

than NVM-Direct or PMDK.

We have also incorporated Breeze and PMDK into MongoDB [77] and Memcached [31].
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Table 3.4: Comparing Breeze against NVM-Direct [12] and PMDK [44] in terms of ease of use.
The numbers measure the lines of code that needs to be changed.

NVM-Direct PMDK Breeze

B+Tree 96 101 18

Hash Table 77 45 20

Table 3.5: Measuring the programming effort of incorporating Breeze and PMDK [44] with
MongoDB [77] (Mongo) and Memcached [31] (Mcache) as an indicator of ease of use.

Lines changed Percent changed

Breeze PMDK Breeze PMDK

Mongo 882 1273 0.05 0.07

Mcache 541 1547 0.05 0.14
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Figure 3.12: Measuring the average allocation latency for objects of size 1, 2 and 4 kilobytes.

Table 3.5 shows the ratio of the source code for each application that must be modified as a result

of incorporating Breeze and PMDK. In contrast to PMDK, Breeze requires between 1.2× to 2.8×

fewer changes to the source code. We did not replicate these experiments for NVM-Direct, but

we expect similar numbers for PMDK and NVM-Direct.
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Figure 3.13: Average latency of unmodified and NVM-enabled versions of MongoDB and
Memcached using YCSB workloads.

3.3.4 Performance

Figure 3.12 compares the allocation overhead of Breeze against NVM-Direct [12] and

PMDK [44]. For these experiments, we report the average latency of allocating one million

objects of size 1, 2, and 4 kB. In contrast to PMDK and NVM-Direct, Breeze requires 1.35× and

7.2× less time for allocation, respectively.

We also report performance measurements of Breeze using our benchmark applica-

tions and YCSB workloads. We compare latency and throughput of Memcached [31] and

MongoDB [77] against the Breeze-enabled (Memcache-Breeze and Mongo-Breeze) and PMDK-

enabled (Memcache-PMDK and Mongo-PMDK) versions. We only use Breeze to compile

MongoDB’s storage engine to avoid unnecessary overhead of boundary checks. Figure 3.13

and Figure 3.14 summarize the results. Both NVM-enabled versions of MongoDB outperform

its original version by avoiding system calls (e.g., msync()) to persist data. NVM-enabled

versions of Memcached show higher latency and lower throughput compared to the unmodified

version due to the cost of providing persistence. Breeze provides superior performance for such

applications compared to the PMDK version because of its optimized undo-logging scheme and
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Figure 3.14: Average throughput of unmodified and NVM-enabled versions of MongoDB and
Memcached using YCSB workloads.

not persisting allocation metadata. The only exception is running YCSB-B and YCSB-D against

Memcache-Breeze where the overhead of boundary checks cancels out the performance benefits

of Breeze’s optimized transaction implementation.

Finally, we have incorporated Breeze, PMDK and NVM-Direct with the B+Tree and hash

table implementations to compare the performance of Breeze with NVM-Direct and PMDK.

According to the results from Figure 3.15 and Figure 3.16, NVM-Direct shows higher latency and

lower throughput compared to Breeze and PMDK due to its inefficient implementation of logging

and allocation. Breeze outperforms PMDK for YCSB-A and YCSB-F (write-heavy) because

of its optimized undo-logging scheme. Since only the last level of the B+Tree is persistent,

the performance difference between Breeze and PMDK is minimal for the B+Tree benchmarks.

Furthermore, Breeze and PMDK show similar performance for read-heavy workloads.
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Figure 3.15: Average latency of Breeze, NVM-Direct and PMDK using YCSB workloads.
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Figure 3.16: Average throughput of Breeze, NVM-Direct and PMDK using YCSB workloads.

3.3.5 Recovery Time

This section measures the overhead of reconstructing allocation lists and rewriting persis-

tent pointers during startup. For these experiments, we use objects of size 1 kB and persistent

pools with a total capacity of 4, 8 and 16 gigabytes. Also, we varied the number of recovery

threads to measure the scalability of our scheme.
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Figure 3.17: Measuring the recovery time of Breeze when the persistent pool can be mapped to
the same virtual address space after recovering from failures.
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Figure 3.18: Measuring the overhead of rewriting persistent pointers when the persistent pool
is mapped to a different virtual address space.

Figure 3.17 shows the average recovery time of Breeze when the virtual address of

persistent pools does not change. The numbers directly show the overhead of recreating allocation

lists.

We also measured the overhead of rewriting persistent pointers by mapping pools into

different virtual addresses during startup. Figure 3.18 shows the average recovery time for these

experiments that indicate utilizing more threads can significantly reduce the recovery time.
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3.4 Related Work

Designing NVM-optimized systems is one way to address the consistency and safety

challenges. Since logging is a major bottleneck in transactional systems, many have proposed

logging schemes that offer better performance by considering NVM characteristics [40, 96,

55]. These schemes also serve as building blocks for larger systems like TANGO [7] that

uses shared logs to build distributed data structures. Moreover, there are versions of popular

data structures such as B-Trees that are redesigned with respect to NVM properties, such as

byte-addressability [99]. Database researchers are also actively looking for ways to optimize

transactional protocols, e.g. OLTP, in order to exploit NVM potentials and improve transaction

latency and throughput [85, 55, 93]. In contrast to our solution, these systems do not provide a

general approach for optimizing existing software and assume NVM-optimized applications are

created from scratch.

Another direction to approach failure consistency is adding persistence to the memory

controller and processor caches. Whole system persistence [79] and JUSTDO Logging [49]

are examples of exploiting persistent caches to recover from failures by retaining the programs’

execution state throughout failures. Additional support from the software is still necessary to

prevent potential unrecoverable conditions such as deadlocks [6]. Klin [102], WrAP [26], NVM

Duet [64] and ThyNVM [88] combine hardware and software techniques to offer atomic writes

to NVM. In contrast, Breeze only relies on existing hardware support in commodity processors.

Other efforts in this area are either focused on providing transactional semantics and

safety features through programming interfaces and language support [18, 95, 12, 44, 62, 14, 39]

or improving the performance of such transactional systems [57, 69]. NV-Heaps [18] and

Mnemosyne [95] are among the first systems to offer such semantics at user-level. In contrast to

Breeze, Mnemosyne does not offer garbage collection and sacrifices flexibility to provide pointer

safety by not allowing persistent memory regions to be mapped into a different virtual address
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space after creation. NV-Heaps provides atomicity and safety guarantees through C++ classes.

However, applying NV-Heaps to existing code requires disruptive changes.

NVM-Direct [12] provides similar semantics as NV-Heaps by leveraging compiler support

and introducing new programming keywords. In contrast to Breeze, NVM-Direct introduces

new syntax and requires programmers to use specific keywords to define persistent pointers and

perform atomic updates. Thus, applying NVM-Direct to legacy code leads to far more changes to

the source code.

Intel has published the PMDK [44] library that provides a framework for building NVM-

optimized applications and data structures. The library provides a set of primitives to create

transactions and manage persistent regions. However, it does not guarantee referential integrity

of persistent data. Also, it requires disruptive changes to existing programs as programmers are

required to use special pointer types and create log entries.

DUDETM [62] provides direct NVM access through a crash-consistent transactional

system and aims to reduce the overhead of redo and undo logging by maintaining a shadow,

volatile copy of persistent data in DRAM. By reducing the number of memory fences and cache

flushes in the critical path, DUDETM improves transaction latency and throughput. However,

it requires programmers to replace all memory accesses (loads and stores) in a transaction with

DUDETM APIs (dtmRead and dtmWrite).

In addition to the recent proposals, there are others such as Rio Vista [67] and RVM [91]

that offer transactional semantics and failure recovery for byte-addressable storage. However,

their support is limited to durability semantics and they do not offer features such as referential

integrity and garbage collection.

There are other proposals that adopt existing programming constructs to help support

NVM programming. Atlas [14] and NVthreads [39] use lock-based critical sections to infer which

operations on a data structure should be atomic. Atomic msync() [83] extends conventional

msync() to provide stronger atomicity guarantees. Both methods have limitations since the
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former is only applicable to a particular class of applications and the latter requires frequent

system calls. NVthreads, in particular, is not applicable to lock-free data structures and limits

the performance benefits of NVMs due to the frequent context switches caused by using the

page-table protection mechanism to detect writes to NVM pages.

3.5 Summary

Breeze provides direct access to non-volatile memories without requiring disruptive

changes to legacy software. Breeze works with commodity hardware and offers transactional

semantics, referential integrity and garbage collection. The toolchain lifts the burden of logging

from programmers, automatically generates recovery code, allows programmers to use normal

pointers and legacy libraries to manipulate persistent data, and provides garbage collection. Our

measurements show that Breeze significantly simplifies the task of modifying existing code to

use NVM while still providing better performance than other proposed systems.
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Chapter 4

A Flexible, Optimizing Compiler for

Non-Volatile Memory Programming

Non-volatile memories (NVMs) reside on the memory bus and allow the processor to

access persistent data via load and store instructions. They promise to fill the gap between volatile

memory and persistent storage while offering higher density and lower cost per GB relative to

DRAM. The recent announcement of Intel DC Persistent Memory shows that existing NVMs can

deliver 76% of DRAM performance for micro-benchmarks and storage applications [48, 51].

NVMs allow applications to bypass the filesystem and directly access persistent data

using load and store instructions, thus exploiting the maximum performance these devices have

to offer. However, direct access to NVM creates new challenges. Existing hardware does

not support multipart and arbitrary sized atomic writes to NVM — a failure, for instance, a

power outage, can tear large writes and leave persistent data corrupted (large writes are not

failure-atomic). Programmers must implement logging algorithms (e.g., undo-logging) using the

low-level, cache-line-based primitives the ISA provides to ensure large or multipart writes are

failure-atomic [3].

Failure-atomicity libraries for NVM aim to facilitate NVM programming by giving
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programmers the ability to designate failure-atomic code regions whose writes all become

persistent at once [86, 18, 95, 14]. These libraries represent a path to incremental adoption of

NVM programming. However, they introduce new programming requirements that make NVM

programming more complex and error-prone.

Failure-atomicity libraries generally require annotating every access to persistent data [62,

37, 57]. These annotations allow the libraries to augment NVM accesses with additional instruc-

tions and ensure failure-atomicity. For example, annotating a write to an NVM object lets the

library create a copy of its current value before performing the update, and use the log to roll-back

changes if a crash occurs. Programmers must also mark the beginning and end of failure-atomic

regions.

These annotations are error-prone and require extensive (e.g., line-by-line) changes to

existing programs. Furthermore, the annotations vary between failure-atomicity libraries, since

each library provides its own APIs for defining failure-atomic operations, managing persistent

memory (e.g., allocate a new persistent object), annotating NVM accesses, and restoring access

to persistent objects after failures. These library-specific APIs require programmers to essentially

rewrite the program if they ever decide to use an alternative library. They make it impractical (or

at least very time consuming) to retarget code from one library to another.

Prior work uses compiler and hardware support to mitigate the complexities of these

annotations. However, these solutions introduce significant performance overhead. Atlas [14]

uses a compiler pass to automate these annotations, but it naively annotates all heap accesses

and imposes significant cost at runtime. NVthreads [39] and Failure-Atomic Msync [83] avoid

annotations by using page table protection bits and relying on page faults to intercept writes to

NVM. The required page faults hurt performance and only allow tracking NVM accesses at 4 kB

granularity.

These annotations, whether inserted manually by the programmer or automatically by

a compiler pass, are opaque to the compiler. By hiding the meaning of these annotations from
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the compiler, failure-atomicity libraries effectively disable compiler optimizations across the

annotations [49].

In this chapter, we propose NVHooks to reduce or eliminate the need for manual annotation

of NVM programs. NVHooks automatically annotates NVM accesses and enables libraries to

intercept those accesses without involving the programmer and facilitates retargeting NVM

programs to new failure-atomicity libraries. NVHooks also provides a series of NVM-specific

optimizations that leverage the semantics of NVM annotations to reduce their performance cost.

NVHooks makes the following contributions:

• It automates annotating NVM accesses and avoids disruptive changes to programs.

• It provides the first NVM-specific optimization passes that reduce the performance overhead

of automatically annotating programs.

• It reduces the programming cost of retargeting programs towards using a new failure-

atomicity library.

• It introduces NVHooks-aware micro-benchmarks to allow comparing the performance of

different failure-atomicity libraries.

The rest of this chapter is organized as follows. We discuss the design and implementation

of NVHooks in Section 4.1 and Section 4.2, respectively. Section 4.3 showcases the performance

of NVHooks annotations and evaluates the effectiveness of its optimization passes. We discuss

related work in Section 4.4 and summarize the chapter in Section 4.5.

4.1 System Overview

NVHooks is a compiler extension that facilitates the adoption of failure-atomicity runtimes

for NVM by reducing the cost of annotating code. NVHooks uses the compiler to make the
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#include <nvrt-hooks.h>
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Figure 4.1: NVHooks system overview: the adaptation layer uses NVHooks to hide the
complexity of runtimes from applications.

instrumentation automatic and transparent to programs. It allows programmers to avoid adopting

a new syntax or annotation scheme. NVHooks minimizes the programming effort of using

persistent programming libraries that require annotating NVM accesses and prevents common

mistakes that manual annotation introduces. Furthermore, it adds new compile-time optimizations

that are aware of the semantics of persistent programming primitives and reduce the performance

overhead of persistence.

NVHooks provides a set of hooks (i.e., callbacks) to the failure-atomicity library (or

runtime) that intercept accesses to persistent memory. NVHooks applies these callbacks without

requiring programmers’ intervention. These hooks enable the runtime to add additional code

at every access, allowing the runtime to, for example, log writes for failure-atomic updates,

dereference a relative pointer, or force writes from caches into persistent memory. Developers of

a failure-atomicity runtime can provide NVHooks compiler support by writing a small adaptation

layer that links the NVHooks callbacks to the runtime’s API and specifies what optimizations are

valid for the runtime’s semantic model.

Figure 4.1 shows the relationship between the NVHooks compiler, a failure-atomicity

runtime (i.e., nvrt) and its adaptation layer for NVHooks, as well as persistent applications. The

rest of this section describes each component in more depth, and finishes by describing the process

of using NVHooks to build executables. We leave the specification and implementation details of
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Table 4.1: NVHooks callback functions. The runtimes provide the implementation for each
function (e.g., logging for pre nvm write() and relative to absolute pointer translation for
to absolute ptr()).

bool is_nvm(void *ptr);

Returns true if ptr references persistent memory and false otherwise. NVHooks places the rest
of the callbacks as the body of an if statement, controlled by the output of is nvm().

void *to_absolute_ptr(uintptr_t ptr);

Accepts a relative pointer (ptr) to an NVM region as input and returns its corresponding virtual
(absolute) address at execution.

void pre_nvm_read(void *ptr, size_t size);

void pre_nvm_write(void *ptr, size_t size);

Based on the kind of NVM access (read or write), NVHooks precedes the NVM operation with a
callback to either of these functions and provides the callback with the virtual address and the
number of bytes the operation would access.

void post_nvm_read(void *ptr, size_t size);

void post_nvm_write(void *ptr, size_t size);

Similar to pre nvm read() and pre nvm write(), NVHooks injects these callbacks to track
read/write accesses to NVM, however, they are invoked after completion of the NVM access.

the NVHooks optimizations for Section 4.2.

4.1.1 NVHooks Compiler

The NVHooks compiler instruments every instruction that could either read from or write

to persistent memory with callbacks. The runtime can use these callbacks to intercept all accesses

to NVM. Intercepting persistent memory accesses is a core requirement for NVM runtimes, and

runtimes use these callbacks for a variety of purposes (e.g., to log persistent updates, dereference

a relative pointer, or read a copy of the location in DRAM).

NVHooks instruments the NVM accesses and exposes a set of generic callbacks to the

runtimes. We have built these callbacks to be general enough to handle a wide range of runtimes.

Table 4.1 provides the list of these callbacks and specifies where NVHooks places each callback
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1 void store_32bit(uint32_t ∗ptr, uint32_t value) {

2 if (is nvm(ptr)) {
3 uint32 t *absPtr = to absolute ptr(ptr);

4 pre nvm write(absPtr, 4);

5 *absPtr = value;
6 post nvm write(absPtr, 4);

7 } else ∗ptr = value;

8 }

Figure 4.2: An example of how NVHooks instruments code to enable tracking persistent writes.
The highlighted code shows the compiler insertions.

relative to its corresponding memory access. Note that depending on the runtime, its associated

adaptation layer can specify which specific callbacks are required, thereby obviating extraneous

annotations.

In its initial pass, NVHooks instruments every instruction that could reference NVM

at execution. We refer to this pass of instrumentation as the initial pass, where the compiler

instruments all memory accesses that could potentially access NVM. The initial pass introduces

non-trivial performance overheads. Section 4.2 introduces new optimizations to reduce the

overheads.

At each memory access, NVHooks inserts the same series of callbacks. For instance,

Figure 4.2 illustrates how NVHooks attaches callbacks to a simple 32-bit write. The compiler first

inserts a branch that uses the is nvm() callback to avoid the additional overhead for non-NVM

accesses.

For every NVM access, the inserted code uses to absolute ptr() to translate the

access’s address into a native pointer. Finally, NVHooks wraps the actual memory access with

two callbacks: one preceding and the other succeeding the access (e.g., pre nvm write() and

post nvm write() for a write to NVM).

Annotations, either automatically inserted by the compiler or manually added by pro-

grammers, cannot intercept NVM accesses in pre-compiled functions, which impedes using
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1 void ∗memset(void ∗ptr, int value, size_t num)
2 attribute ((annotate("nvm write(ptr,num)")));
3 void ∗memcpy(void ∗dst, const void ∗src, size_t num)
4 attribute ((annotate("nvm write(dst, num);
5 nvm read(src, num)")));

Figure 4.3: The highlighted code informs NVHooks that memset() writes num bytes to ptr,
and memcpy() reads and writes num bytes from src and to dst, respectively.

pre-compiled code (e.g., library functions). Since NVHooks does not have the source for pre-

compiled code and library functions, it cannot automatically annotate these functions. It can,

however, let the programmer describe how the method accesses NVM with respect to its argu-

ments using C/C++ function attributes. Function attributes are a language feature that allows

programmers to pass information about a function to the compiler (e.g., always inline). If the

programmer can describe the addresses of all persistent accesses in a function using its arguments,

NVHooks can add the appropriate annotations at the call site. Programmers can use nvm read()

and nvm write() to annotate pre-compiled functions, as we show for memset() and memcpy()

in Figure 4.3. Otherwise, NVHooks does not annotate calls to the function, which could result

in permanent data corruption or runtime errors if the function accesses NVM. This property is

common to all runtimes that require annotations.

4.1.2 Failure-Atomicity Runtime

As discussed in Section 2.3, a failure-atomicity runtime provides a number of systems

to make programming for NVM easier. These runtimes all support failure-atomic updates to

NVM, and generally also provide several other capabilities. In general, they provide a method for

allocating and freeing persistent memory in a persistent pool, a means of naming objects in the

pool, and support for relocating the pool to a different virtual address. Adapting a runtime to use

NVHooks requires the runtime developer to write three (relatively simple) files, which we call

the adaptation layer.
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void *to_absolute_ptr(void *p) {
  PMEMoid oid = getPMEMoid(p);
  return pmemobj_direct(oid);
}

void pre_nvm_write(void *p, size_t sz) {
  if (pmemobj_tx_stage() != TX_STAGE_NONE)
  {
    pmemobj_tx_add_range_direct(p, sz);
  }
}

Shim <pmdk-shim.c>

#include <libpmemobj.h>
void pmemobj_tx_commit(void);
void pmemobj_tx_abort(int err);
int pmemobj_tx_begin(PMEMobjpool *pop, 

...);

Wrapper Header <pmdk-hooks.h>

swizzle-pointers: yes
track-nvm-writes: yes
track-nvm-reads: no

Compiler Config <pmdk.yaml>

Figure 4.4: Sample adaptation layer for PMDK. The shim calls into the runtime to implement
NVHooks callbacks (e.g., pmemobj tx add range direct() to undo-log).

The first piece of runtime integration with NVHooks is the compiler configuration file.

This file describes to the NVHooks compiler which method annotations and optimizations are

valid for the particular runtime. The programmer passes the configuration file to the NVHooks

compiler via a command-line option (e.g., -nvm-runtime=pmdk.yaml).

The shim is a C file that provides an NVHooks-compliant interface to the runtime by

implementing NVHooks callbacks. The runtime developer writes the shim to attach the automated

NVHooks callbacks to the runtime API. The shim, for instance, implements is nvm() to enable

NVHooks to identify NVM accesses at execution time.

The shim connects part of the runtime’s API to the NVHooks compiler, but runtimes

have other methods that NVHooks does not automate. For instance, runtimes generally require

programmers to use specific API calls to manage persistent memory pools, allocate persistent

memory, and annotate transaction boundaries. NVHooks does not automate the use of these

API calls as they are runtime or application specific, and generally, require small amounts of

boiler-plate code. These runtime specific API calls are passed through to the application by an

NVHooks-specific wrapper header file that hides API calls implemented by the shim, but exposes

the remainder needed by NVHooks-aware applications.

Figure 4.4 shows a portion of the adaptation layer for PMDK. The shim implements

57



1 #include <pmdk-hooks.h>
2 typedef struct Node {
3 char key[32];
4 struct Node ∗next;
5 } Node;
6 PMEMobjpool ∗pop; // PMDK persistent pool
7 void insert(Node ∗prev, Node ∗node) {
8 pmemobj_tx_begin(pop); // start a transaction

9 if (is nvm(prev)) {
10 Node *pp = to absolute ptr(prev);

11 pre nvm write(&pp−>next, 8);

12 pp−>next = node;

13 post nvm write(&pp−>next, 8);

14 } else prev->next = node;

15 pmemobj_tx_commit(); // commit the transaction
16 }

Figure 4.5: NVHooks obviates annotations for access tracking and pointer manipulation.
The compiler automates annotations by inserting the highlighted lines.

pre nvm write() and to absolute ptr() to call into PMDK’s undo-logging and pointer ma-

nipulation functions, respectively. The wrapper header file exposes transaction management APIs

such as pmemobj tx begin() to NVHooks-aware applications, and the configuration file notifies

NVHooks to instrument writes and to translate NVM pointers.

4.1.3 NVHooks-Aware Application

NVHooks compiler automates annotating NVM accesses and applications only need to

communicate with the runtime (via the API header file) to open persistent pools, allocate NVM

regions, and specify the boundaries of failure-atomic operations (if required by the runtime).

Figure 4.5 shows how an application interacts with NVHooks and the adaptation layer. It also

highlights the annotations the runtime would have needed without NVHooks. In this example, we

use PMDK as the runtime and study a snippet from the transactional insert function of a persistent

linked-list.
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If an application meets the concurrency requirements of two runtimes (see Table 2.1 as

a reference), NVHooks reduces the programming effort to switch between the two runtimes.

For example, consider a B+Tree that works with Atlas, uses two-phase locking, and does not

modify persistent data outside critical sections. NVHooks allows switching from Atlas to PMDK

by replacing the adapter and minor changes to the recovery code to use PMDK (e.g., replacing

pool management, allocation, and transaction management APIs of Atlas with those of PMDK).

This feature is especially useful in comparing the performance of runtimes, as we showcase in

Section 4.3.

4.1.4 Building Programs

Once the adaptation layer is implemented, programmers can add persistence to an ap-

plication using the target runtime. Programmers include the NVHooks-specific wrapper header

file, and use it to access the runtime. Next, programmers use NVHooks to compile the code. To

benefit from the NVM-specific optimization passes that work for the target runtime, programmers

use a new compile option (-nvm-runtime) to let NVHooks know about the target runtime (e.g.,

-nvm-runtime=pmdk.yaml). Finally, programmers link the compiled binaries with the shim and

the runtime to make the executable.

4.2 Compilation Passes

NVHooks introduces five passes to the LLVM compiler toolchain [59, 35]. Its first pass,

the initial pass, instruments all non-stack accesses with the NVHooks callbacks (Table 4.1). The

other four passes are NVM-specific optimization passes.

The initial pass operates on the compiled code before any other optimization pass (includ-

ing LLVM optimization passes). The runtime’s configuration file provides the initial pass with

the list of callbacks it should add to the code (e.g., pre nvm write() and to absolute ptr()
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in Figure 4.4).

The NVM-specific optimization passes reduce the overhead of NVHooks callbacks. They

operate on the instrumented code (output of the initial pass) and run after any other conven-

tional optimizations the compiler performs (e.g., loop unrolling). Runtimes use the compiler

configuration file to specify which NVHooks optimization passes to run. For example, adding

static-check:yes to the configuration file instructs NVHooks to apply the static boundary

check optimization.

All passes operate on LLVM assembly [33], a language-independent representation that

is used throughout all LLVM compilation passes. We use clang [32] as the frontend compiler that

translates C/C++ code to LLVM assembly code.

NVHooks goes through the optimization passes in the same order as we introduce them

in this section. The rest of this section provides the specification and implementation details of

these optimization passes.

4.2.1 Static Boundary Checks

Our simplest optimization reduces the cost of is nvm() callbacks by effectively inlining

them. To implement it, we take advantage of the fact that the virtual memory system only uses

the lower 48 bits of virtual addresses to access memory. It discards the upper 16 bits and allows

addressing 256 TB of both volatile and persistent memory [66]. So long as the application does

not utilize the upper 16 bits of pointers (e.g., to store metadata for a multi-version data-structure),

NVHooks can use these bits to reduce the overhead of is nvm() callbacks.

The static boundary check (i.e., static-check) optimization uses the 48th bit of pointers to

distinguish between NVM and volatile memory (setting it to 1 and 0, respectively). This property

enables NVHooks to identify NVM pointers without calling back to the runtime and only execute

swizzling and tracking callbacks for pointers with a value higher than 248, effectively inlining the

is nvm() callback.
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The static-check has no impact on the total addressable memory and applications can still

address 256 TB of memory. NVHooks uses only 1 bit and leaves the remainder 15 bits to the

application and the runtime and its shim. Our shim for PMDK, for instance, uses these bits to

allow applications to access up to 215 different persistent pools.

4.2.2 Merging Callbacks for Field Accesses

Our next optimization pass increases the granularity of tracking NVM accesses. Tracking

accesses at fine granularities is expensive as every access incurs the cost of several callbacks to

the runtime. Fine granularity accesses are also inefficient due to the nature of NVM devices. For

example, the access granularity of Intel DC Persistent Memory is 256 bytes — the programmer

effectively uses the same bandwidth to write 64 or 256 bytes to persistent memory [51].

The coalesce-fields optimization pass focuses on accesses to fields of NVM data structures.

Instead of tracking individual field accesses, this pass merges all callbacks into one that covers

them all. Figure 4.6 illustrates the application of the coalesce-fields pass to a function that

initiates the Node structure from Figure 4.5. The figure represents the output of the initial and

coalesce-fields pass with Initial and Optimized prefixes, respectively. The optimized version

calls into the runtime before the first and after the last access, thereby eliding callbacks for

individual fields and allowing the NVM device to merge the accesses.

This pass expands on the LLVM’s MemcpyOptimizer that merges consecutive memory

accesses into single memset() or memcpy() calls [34]. It assumes programs are data-race free

and relies on LLVM’s alias-analysis and control flow graph infrastructure to identify accesses to

data structure fields.
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1 void initNewNode_Initial(Node ∗node) {

2 if (is nvm(node)) {
3 Node *p = to absolute ptr(node);

4 pre nvm write(p->key, 32);

5 memset(p->key, 0, 32);

6 post nvm write(p->key, 32);

7 } else memset(node->key, 0, 32);

8 if (is nvm(node)) {
9 Node *p = to absolute ptr(node);

10 pre nvm write(&p->next, 8);
11 p->next = NULL;

12 post nvm write(&p->next, 8);

13 } else node->next = NULL;

14 }
15 void initNewNode_Optimized(Node ∗node) {

16 if (is nvm(node)) {
17 Node *p = to absolute ptr(node);

18 pre nvm write(p, 40);

19 memset(p->key, 0, 32);
20 p->next = NULL;

21 post nvm write(p, 40);

22 } else {

23 memset(node->key, 0, 32);
24 node->next = NULL;
25 }
26 }

Figure 4.6: Coalescing access tracking callbacks for writes to various fields of a data structure
enables reducing the overhead of tracking accesses to NVM.
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1 void updateKey_Initial(Node ∗node, char ∗key) {
2 size_t sz = strlen(key);
3 for (size_t i = 0; i <= sz; i++) {

4 if (is nvm(node)) {
5 Node *p = to absolute ptr(node);

6 pre nvm write(&p->key[i], 1);

7 p->key[i] = key[i];

8 post nvm write(&p->key[i], 1);

9 } else node->key[i] = key[i];

10 }
11 }
12 void updateKey_Optimized(Node ∗node, char ∗key) {
13 size_t sz = strlen(key);
14 Node *p = node;

15 if (is nvm(node)) {
16 p = to absolute ptr(node);

17 pre nvm write(p->key, sz + 1);

18 }
19 for (size_t i = 0; i <= sz; i++) {
20 p->key[i] = key[i];
21 }
22 if (is nvm(node))
23 post nvm write(p->key, sz + 1);
24 }

Figure 4.7: The coalesce-loops optimization pass reduces the overhead of NVHooks annota-
tions for loops.
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4.2.3 Merging Callbacks for Loops

Our next optimization reduces the cost of callbacks for loop-based accesses to arrays.

Loops that traverse arrays are a useful target for optimization — they are a common code structure

and result in callbacks at many indices. We show an example of this situation in Figure 4.7, in the

top method (updateKey Initial()), where we highlight the annotations added by the initial

pass; there are four callbacks per iteration.

Our coalesce-loops optimization makes the assumption that arrays are located in contigu-

ous regions of either NVM or volatile memory — a single array cannot span the two memory

types. Furthermore, it assumes that the virtual address of the array does not change during the

execution of the loop. This optimization uses these assumptions to eliminate annotations inside

loops by merging them into pre and post loop callbacks. The coalesce-loops pass reduces the

number of callbacks from four callbacks per iteration to four callbacks per loop.

The coalesce-loops pass identifies array accesses inside loops where the reference to

the array as well as the lower and upper bounds of the loop are loop-invariant. Since the

pointer to the array is loop-invariant, the pass can use loop-invariant-code-motion [5, 1] to move

to absolute ptr() and is nvm() outside the loop. Next, the pass uses loop-distribution [58]

to break the loop into three loops: one containing only pre-access callbacks (LP), another with

post-access callbacks (LS), and the third loop with the rest of the instructions in the original

loop (LM). LP and LS come before and after LM, respectively. The semantics of the tracking

callbacks allow the pass to apply loop-unrolling [25] to LP and LS; it then reduces each loop into

a single callback that covers all the NVM accesses inside LM. The bottom function in Figure 4.7

(updateKey Optimized()) shows the result of the coalesce-loops pass. The optimized loop only

calls into the runtime from outside the loop.
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1 void safeUpdate_Initial(Node ∗node, char ∗key) {

2 if (is nvm(node)) {
3 Node *p = to absolute ptr(node);

4 pre nvm write(p->key, 32);

5 memset(p->key, 0, 32);

6 post nvm write(p->key, 32);

7 } else memset(node->key, 0, 32);

8 size_t sz = strlen(key);

9 if (is nvm(node)) {
10 Node *p = to absolute ptr(node);

11 pre nvm write(p->key, sz);

12 memcpy(p->key, key, sz);

13 post nvm write(p->key, sz);

14 } else memcpy(node->key, key, sz);

15 }
16 void safeUpdate_Optimized(Node ∗node, char ∗key) {
17 Node *p;

18 if (is nvm(node)) {
19 p = to absolute ptr(node);

20 pre nvm write(p->key, 32);

21 memset(p->key, 0, 32);

22 } else memset(node->key, 0, 32);

23 size_t sz = strlen(key);

24 if (is nvm(node)) {
25 memcpy(p->key, key, sz);

26 post nvm write(p->key, 0, 32);

27 } else memcpy(node->key, key, sz);

28 }

Figure 4.8: Removing redundant access tracking callbacks allows reducing the cost of
annotations without altering the persistence semantics of runtimes.
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4.2.4 Removing Redundant Access Tracking

This optimization pass identifies and removes unnecessary access tracking callbacks. The

initial pass can generate redundant annotations for functions that access the same NVM address

multiple times. We show an example of these annotations in the top function in Figure 4.8

(safeUpdate Initial()) where we zero a buffer then copy a string into it. This code results

in redundant pre nvm write() and post nvm write() on lines 11 and 6, respectively. If the

runtime uses UNDO logging to enforce failure-atomicity, this duplication is unnecessary. In an

UNDO logging runtime, the runtime logs the original value of the modified address and, in the

event of a failure, the runtime will undo any modifications made in the failure-atomic code region.

Thus, after the first modification to an address in a failure-atomic region, the runtime does not

need to log subsequent modifications to that address.

The no-extra-tracking pass uses a modified version of common-subexpression-elimination

[19] to remove these duplicated callbacks. Consider the instruction sequence (A) in Figure 4.9

(the left box), where pre callback and post callback are pre and post access callbacks,

respectively, and nvm access represents an NVM read or write. The optimization pass can reduce

(A) to (B) so long as at least one of the accesses (nvm accessS) is the superset of all other accesses

in the instruction sequence. The bottom function in Figure 4.8 (safeUpdate Optimized())

shows the result of applying no-extra-tracking to the output of the initial pass.

This optimization also has a special case surrounding allocation for UNDO logging

runtimes. Some runtimes (e.g., PMDK and Atlas) do not require tracking writes to newly

allocated NVM blocks — the writes will be ignored if the failure-atomic code region is interrupted

by failure. As such, these writes need no call to the pre nvm write() callback, and we can

coalesce the post nvm write() callback to cover the entire allocated block. Runtimes can

support this optimization by adding track-newly-allocated:no and the name of their NVM

allocation functions (e.g., pmalloc:pmemobj alloc for PMDK) to their compiler configuration

files (Figure 4.4).
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Figure 4.9: The no-extra-tracking pass reduces the cost of access tracking callbacks by
removing redundant callbacks.

The no-extra-tracking pass then reduces (A) to (C) in Figure 4.9 so long as all accesses

are to the newly allocated block, where post callbackA provides the address and the size of the

entire allocated NVM block to the runtime.

4.3 Evaluation

In this section, we measure the performance overhead of NVHooks instrumentation and

the effectiveness of its optimization passes to answer the following questions:

• Can we match the performance of handcrafted, failure-atomic applications by applying

NVHooks optimizations on the initial instrumentation?

• What are the performance implications of NVHooks optimizations on various NVM

runtimes?

• Which NVM runtime provides the best performance?

• What is the programming cost of retargeting benchmark applications to various runtimes?
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4.3.1 Evaluation Setup

We use a HashMap and a B+Tree to measure the performance implications of NVHooks

annotations and its optimization passes. For each data structure, there are two versions of the code:

a volatile and a handcrafted, failure-atomic version. The volatile version is not failure-atomic; we

use NVHooks (the initial pass) and each of the runtimes from Table 4.2 to add failure-atomicity to

the volatile versions. The handcrafted versions contain hand-optimized annotations, use PMDK as

the runtime, and provide the reference for measuring the effectiveness of NVHooks optimizations.

We use the transactional (handcrafted) HashMap from the PMDK repository [42] and

make it thread-safe by creating 64 instances of the HashMap and protecting each one with a reader-

writer lock. We create the volatile version of the HashMap by removing the failure-atomicity

code and PMDK annotations from its original version.

The B+Tree is an in-house implementation of a thread-safe, volatile tree. It uses reader-

writer locks at the granularity of individual nodes, stores keys in the internal nodes, and adds both

the key and the value to the leaf nodes. We created the handcrafted, failure-atomic version of the

tree by carefully annotating it with PMDK API.

Benchmark

The benchmark uses eight threads to run YCSB [21] workloads against different versions

of the data structures and reports average throughput for ten runs. It first populates each structure

with 1 million entries (YCSB-Load) and then runs two workloads with a combination of read

and update operations: a write-dominant (YCSB-A with 50% read and 50% update) and a read-

dominant (YCSB-B with 95% read and 5% update) workload. We use 8 and 32-byte keys for the

HashMap and the B+Tree, respectively. The value size is 1024 bytes for both structures.
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Table 4.2: The list of failure-atomicity runtimes used to evaluate NVHooks.

Runtime Summary

PMDK Intel’s persistent memory development kit that provides a collection of tools and
libraries for constructing persistent programs. PMDK uses both redo- and undo-
logging internally.

Kamino-Tx It provides lightweight transaction support for persistent memory programming.
Kamino-Tx offers atomic in-place updates and reduces the overhead of creating
copies of persistent objects in the critical path while ensuring crash consistency.

Atlas It provides failure-atomicity for lock-based programs and adopts compiler support
to reduce the cost of annotating NVM accesses. Atlas uses the semantics of critical
sections to create globally consistent snapshots.

Runtimes

We integrated three runtimes (see Table 4.2) with NVHooks: PMDK [86], Kamino-

Tx [69], and Atlas [14]. Their corresponding adaptation layers provide the implementation of

NVHooks callbacks and expose the runtime-specific persistent pool management, allocation, and

transaction management APIs to the application.

We use these APIs to write a few lines of code to add the runtimes to each data structure.

For instance, we wrote 32, 15, and 36 lines of code to integrate PMDK, Atlas, and Kamino-Tx

with the volatile HashMap, respectively. By integrating with NVHooks, all adapted runtimes

support the relocation of persistent pools, which the vanilla Atlas does not provide.

Testbed

We run the benchmarks on a platform with two 24-core Intel Cascade Lake SP processors,

running at 2.2 GHz. The platform has a total of 192 GB of DRAM and 1.5 TB (6×256 GB) of Intel

Optane DC Persistent Memory directly attached to each processor [48]. We pin all benchmarks

to one of the processors to avoid accesses to remote DRAM and NVM. All experiments use ext4

to manage persistent pools and directly access NVM pages via DAX [61]. The benchmarks run
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in a Docker [71, 10] container on Fedora 27 (Linux kernel version 4.19) and use PMDK 1.6,

LLVM 7.0, and Clang 7.0.

4.3.2 Overhead of Automating Annotations

We used hand-annotated (handcrafted) versions of the B+Tree and HashMap for com-

parison against their NVHooks-aware counterparts. We wrote and modified 720 lines of code

to manually adapt the 629-line volatile B+Tree implementation for PMDK. For the handcrafted

HashMap, we used the original PMDK HashMap, which 42% of its code is logging and swizzling

annotations that NVHooks can automate.

NVHooks optimizations reduce the cost of initial instrumentation by up to 27% and pro-

vide 104% and 97% of the throughput of the handcrafted B+Tree and HashMap data structures,

respectively. Figure 4.10 shows the evaluation results. Initial and Optimized refer to the configu-

rations with all NVHooks optimizations disabled and enabled, respectively. All benchmarks use

PMDK as the runtime.

4.3.3 Benefits of the Optimization Passes

We use the volatile data structures from Section 4.3.1 to evaluate the effect of NVHooks

optimizations on the cost of automatic instrumentation. These benchmarks also allow comparing

the performance of various runtimes in the presence of write-only, write-dominant, and read-

dominant workloads. We incrementally apply NVHooks passes to the data structures in the

following order and report the performance in Figure 4.11.

The Initial Pass

NVHooks initial pass instruments all NVM writes for PMDK, Kamino-Tx, and Atlas.

Both PMDK and Kamino-Tx use undo-logging and persist updates to NVM (i.e., flush the
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cache-lines and issue memory fences) at the commit point. Thus, they only require NVHooks

to track writes and do not need the post-access callbacks. NVHooks follows NVM writes with

post nvm write() for Atlas as it immediately persists every NVM write after it is issued. For

all benchmarks, NVHooks instruments reads and writes with is nvm() and to absolute ptr()

callbacks.

Both benchmarks provide better performance when using PMDK as the runtime, especially

in the presence of write-only and write-dominant workloads. Atlas requires more instrumentation

and persists individual writes to NVM, which significantly impact the performance of write

operations. Kamino-Tx aims to reduce the cost of undo-logging on the critical path by using

a background thread to complete logging. This approach is not effective for write-dominant

workloads and data structures with coarse-grain locks. The background thread falls behind the

foreground threads for such workloads, which exposes the cost of logging and the overhead of

synchronizing the background and foreground threads to the critical path.

PMDK outperforms Atlas by 2× and Kamino-Tx by 3× for the B+Tree benchmark and

across all workloads. Benefits of using PMDK are most significant for the HashMap benchmark,

as it uses coarse-grain locks and performs small, random NVM writes. In comparison to Atlas

and Kamino-Tx, PMDK provides 2× and 8× higher throughput for the HashMap benchmark

(across all workloads).

Static-Check

The first optimization that NVHooks applies is static-check, which replaces is nvm()

callbacks with comparisons. Static-check is more effective for read-dominant workloads and

reduces the cost of the initial pass by up to 5%.
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Coalesce-Fields

The second optimization is coalesce-fields that merges callbacks for consecutive accesses

to the fields of NVM structures. The HashMap writes to fields of each entry while serving insert

and update operations, and coalesce-fields can improve the performance of these operations by

up to 17%. As for the B+Tree, the proportion of writes to the fields of structures is insignificant

in comparison to total writes to NVM. Thus, coalesce-fields only marginally improves the

performance of the B+Tree benchmarks.

Coalesce-Loops

Next, NVHooks applies the coalesce-loops optimization to merge the callbacks for loops.

Both data structures only write to NVM from inside a loop to serve insert operations (YCSB-Load)

– the B+Tree and the HashMap use loops to grow in response to the growing number of key-value

pairs. The coalesce-loops pass increases the throughput of insert operations for PMDK, Atlas,

and Kamino-Tx by up to 8%, 32%, and 39%, respectively.

No-Extra-Tracking

This optimization avoids unnecessary pre nvm write() callbacks (i.e., undo-logging)

and is the last optimization that we enable. It provides the highest performance improvement for

the write-only workload, as both data structures only allocate NVM while running YCSB-Load.

The no-extra-tracking optimization improves the throughput of insert operations by up to 119%

across all benchmarks.
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Figure 4.10: Measuring the overhead of automating annotations: we compare the per-
formance of NVHooks-aware data structures (initial and optimized) against their optimally
annotated versions (handcrafted).
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Figure 4.11: Evaluating NVHooks optimizations: we incrementally enable optimizations –
the horizontal axes show the order in which we apply the optimizations. No-extra-tracking
shows the performance after applying all optimizations.
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4.4 Related Work

Previous work has provided compiler support to facilitate NVM programming, but

NVHooks, to our knowledge, is the first system that provides a generic mechanism to instru-

ment programs for various runtimes and NVM-specific optimizations to reduce the cost of those

runtimes.

NVM-Direct [12] and NVM-C [24] introduce new constructs to the C programming

language (e.g., non-volatile type qualifiers) to differentiate between volatile and non-volatile

memory accesses. NVHooks relies on the standard C/C++ and does not impose changes to the

language. As a result, it avoids radical changes to existing programs and frees programmers from

the burden of learning a new syntax.

Atlas [14] and Breeze [70] rely on the compiler to instrument memory accesses and enable

the runtime to intercept persistent reads/writes or other instructions of interest (e.g., lock() and

unlock() for Atlas). NVHooks improves on this approach by providing a series of optimizations

to reduce the performance impact of the runtime interception as well as generic APIs that allows

switching between different runtimes (e.g., PMDK and Atlas) with minor changes to the program.

iDo [63] uses compiler-support to identify idempotent instruction sequences – it instru-

ments idempotent regions instead of individual stores to persistent data. NVHooks provides

generic instrumentation and does not extract runtime-specific semantics (e.g., idempotent regions).

NVM runtimes facilitate persistent programming by providing the means to add failure-

atomicity to programs [86, 18, 69, 100, 23]. They stifle persistent programming by introducing

new syntax or requiring runtime-specific annotations. NVHooks provides generic instrumentation

and optimizations that reduce the programming overhead of C runtimes without impacting their

performance. Its optimizations are also applicable to other languages (e.g., C++).
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4.5 Summary

This chapter describes NVHooks, a system that uses the compiler to automate annotating

NVM accesses and avoid disruptive changes to programs. NVHooks introduces a series of

NVM-specific optimization passes that allow automatically instrumented programs to match

the performance of their handcrafted, optimally annotated counterparts. It provides support for

runtime-specific adaptation layers to mitigate the programming effort of retargeting applications

towards using a different NVM runtime. The chapter also offers micro-benchmarks to evaluate

and compare the performance of different NVM runtimes. Our evaluation shows that applying

NVHooks to popular data structures creates failure-atomic structures that match the performance

of their optimally annotated versions.
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Chapter 5

Easy and Fast Persistence for Volatile Data

Structures

Emerging non-volatile main memory (NVM) technologies such as 3D XPoint [22, 48]

offer higher density than DRAM with comparable latency and bandwidth, allowing computer

architects to attach them to processors via the memory bus. Programs can then use load and store

instructions to access persistent data directly. Bypassing the storage stack and directly accessing

NVM is essential for unleashing the performance benefits that NVMs offer [90]. However, this

strategy requires careful reasoning to ensure a consistent-state in NVM in the wake of a crash —

data in the caches will not survive [69, 50].

NVMs appear to be an exceptional opportunity for building fast, persistent, data structures,

and researchers have approached this problem in two ways. NVM failure-atomicity libraries

(e.g., [18, 95]) allow programmers to delineate failure-atomic updates to persistent data - writes

within the update become persistent all at once. By identifying failure-atomic code regions

and persistent writes, programmers can adapt an existing data structure to NVM using these

libraries [9, 20]. Alternatively, researchers have built custom data structures from scratch for

NVM (e.g., [94, 80]). Unfortunately, both of these design options are labor-intensive, require
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detailed program knowledge, and are a fertile source of subtle errors [100]. Furthermore, these

options effectively ignore the wide range of useful, volatile data structures currently available

(e.g., the C++ Standard Template Library or the Java Collection data structures).

In this chapter, we introduce Pronto, a library that reduces the programming effort required

to add persistence to off-the-shelf, volatile data structures, preserving the original operation of the

data structure and, for concurrent data structures, their concurrency scheme. Furthermore, Pronto

minimizes the performance overhead of this transformation by moving almost all durability-

related code off the critical path.

Pronto transforms the volatile data structure by changing every operation on the original

data structure into a failure-atomic operation. Adding Pronto to an existing volatile data structure

is simple. For sequential data structures, adding Pronto requires only adding a thin wrapper class

around the data structure’s API and using the Pronto allocator. For concurrent data structures,

adding Pronto also requires one additional line of code per API method.

Pronto uses a novel mechanism called Asynchronous Semantic Logging (ASL) to convert

each operation on a volatile data structure into a failure-atomic operation. ASL records the

arguments and execution order of each update operation performed on the data structure rather

than recording the details (e.g., pointer updates) of how the data structure changed. For instance,

ASL would record the insertion of an item into a binary tree rather than recording how the tree’s

internal structure changed. ASL is analogous to operation logging in database systems [76], but

addresses the specific needs of logging for persistent, in-memory data structures. To recover from

program or system failures, Pronto plays back semantic logs for a structure to reconstruct its most

recent consistent state (read-only operations need not be logged at all in Pronto). To limit the cost

of replaying semantic logs, Pronto creates periodic snapshots.

In this chapter, we describe the Pronto system and demonstrate that many common, non-

persistent data structure implementations (e.g., RocksDB’s MemTable and containers from the

GNU C++ Standard Template Library) are readily amenable to a Pronto adaptation with minimal
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programming effort, and, furthermore, these new Pronto adaptations perform better than other

failure-atomic variants.

This chapter of the dissertation makes the following contributions:

• It introduces ASL, a new software mechanism that reduces the programming effort and

performance overhead of adding failure-atomicity to volatile data structures.

• It explores the design decisions and correctness constraints of ASL in the context of NVMs.

• It provides an implementation for Pronto and evaluates its performance.

• It demonstrates how to use Pronto to convert both sequential and concurrent volatile data

structures into persistent data structures with only a few lines of code.

The rest of this chapter is organized as follows. We discuss the design and implementation

of Pronto in Section 5.1 and Section 5.2, respectively. Section 5.3 presents the evaluation results

and puts Pronto’s performance in perspective. We discuss related work in Section 5.4 and

summarize in Section 5.5.

5.1 Design Overview

Pronto adds persistence to volatile data structures with minimal code changes and moves

the cost of durability off the critical execution path. It accomplishes this by creating asynchronous

semantic logs (ASLs) that allow for the reconstruction of the latest consistent state of the data

structures during recovery from a failure. The semantic logs record every operation invoked on

the object, and its arguments, and this logging is done asynchronously, that is, in parallel, with

the actual operation.

In terms of the programming cost, our ASLs are useful in that they avoid the need to

log (and, consequently, annotate) fine-grained changes to the underlying data structure. With
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semantic logging, we need only log the method call and its arguments — replaying operations

after a failure is sufficient to recover the data structure’s state. Code changes, as a consequence,

are minimal — for sequential data structures we need only intercept the public methods of the

data structure and its allocator, and concurrent data structures also require one more line of code.

Our ASLs also reduce the performance cost of persistence by logging asynchronously,

especially for slower NVMs. By decoupling log creation from operation execution and performing

logging in parallel, ASL can drastically reduce the performance cost of persistence. In fact, if the

logging is quick enough, Pronto can almost completely hide the overhead of logging. By moving

such operations off the critical path, programmers can hide the cost of such operations.

Pronto is broadly applicable to most data structures, so long as they meet certain criteria

(all criteria are generally common to standard data structures). First, the data structure and

its interface must be properly encapsulated and deterministic so that modifications only occur

through public methods and the effect of those methods is only a function of the current state

of the data structure and the arguments to the method. In effect, this means that the methods

cannot read or write global variables. Second, if the data structure is thread-safe (i.e., supports

concurrent accesses), it must be linearizable [38, 72].

An update to the data structure is linearizable if the data structure’s synchronization

mechanisms (e.g., locks) ensure that the effect of multiple (potentially parallel) updates is the

same as those updates being applied one at a time in some order [38]. Linearizability is the

common correctness condition for concurrent data structures, and most practical data structures

meet this condition (e.g. [92, 30, 60]). For any linearizable data structure that uses locks to order

updates that do not commute, Pronto provides failure-atomicity with no loss of concurrency.

These requirements are not onerous in practice, since they closely correspond to common

data structure design practices. Most container libraries (e.g., the C++ STL) and many custom

data structures (e.g., the core data structures of RocksDB [29] and Memcached [31]) meet them.

This section describes the design of Pronto. We begin with a description of the Pronto
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system and runtime. Next, we describe Pronto’s programming interface and elaborate on the

durability and concurrency semantics that Pronto offers. Finally, we give examples for using

Pronto for both sequential and concurrent data structures.

5.1.1 Pronto System Overview

The Pronto runtime maintains three entities for each persistent data structure it manages.

An asynchronous semantic log, a volatile online image of the data structure in volatile memory,

and a persistent snapshot of the data structure. This subsection describes Pronto’s runtime in

terms of its ASL, memory management and snapshot mechanisms.

Asynchronous Semantic Logging

Pronto’s semantic logs record the high-level updates that the data structure undergoes

rather than the fine-grain changes to the memory that holds it. For example, Pronto only creates a

single log record for inserting a new key-value pair to a B-Tree, unlike undo-logging that requires

recording the fine-grain changes to the B-Tree’s structure that happen as part of the insert. Since

recording the high-level operations is usually fast, ASL is more efficient than normal write-ahead

logging.

For clarity, we describe ASL in terms of method invocations (or “updates,” read-only

operations need not be logged) on container-style objects (e.g., linked lists, hash maps, and

vectors), but ASL will work for any deterministic, linearizable (or sequential) data structure with

a well-defined set of operations that Pronto’s ASL can record.

For every operation that modifies the data structure, Pronto creates a semantic log entry, a

persistent record that records the method invoked (e.g., an insert) and a copy of its arguments.

Besides an ASL and a persistent snapshot, Pronto maintains a volatile online image for

each data structure. The online image reflects the current state of the data structure. In addition to

logging operations, Pronto applies each operation to the volatile version and read-only operations
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Figure 5.1: Communications between the foreground and background execution paths to
guarantee every committed semantic log represents a completed update operation.

run against it.

After a crash and upon restart, Pronto can recreate the volatile online image (i.e., recover

the last consistent state of the data structure) by replaying the ASL. A snapshot mechanism

described below keeps the cost of recovering the volatile online image manageable.

The key optimization that Pronto makes is to perform logging in an ASL thread that runs

in parallel with the foreground update to the online image. If applying an update to the online

image is slower than logging its arguments, Pronto can hide the ASL’s latency.

Under ASL, an operation is not complete until both the update to the volatile online

image is finished, and the semantic log entry is persistent. To enforce this requirement, the

foreground thread must wait for the ASL thread to finish logging before any of the update’s effect

becomes visible to other threads. In practice, this means synchronizing with the ASL thread

before releasing any lock that protects the operation’s effects (changes) from being visible to

other concurrent operations. This guarantees that the commit order of ASLs agrees with the

execution order of updates to the data structure that do not commute (e.g., insert(K1, V1) and

erase(K1)).

Figure 5.1 illustrates the parallel execution of the foreground thread (bottom) and ASL

thread (top). ASL operations are blue, DRAM updates are green, and synchronization is red.

Begin marks the beginning of both logging and update execution. Commit marks completion of
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Figure 5.2: Comparing the execution path of ASL against undo-logging and redo-logging. The
operation represents a deterministic update, such as inserting a new node to a tree.

the operation. The small orange box in the foreground thread is the commit point for the ASL log

entry when the entry becomes persistent.

Figure 5.2 compares ASL with undo-logging and redo-logging [69]. ASL allows executing

the Logging code in parallel with the Operation and decreases the execution complexity of

memory-barriers and cache-line flushes in the critical path, thereby reducing the total overhead of

adding persistence to volatile data structures.

Memory Management and Addressing

Pronto provides a volatile memory allocator that manages a contiguous region of memory

to hold the online, volatile image. Data structures must use the allocator for any internal objects

(e.g., links in a linked list) and applications must use the allocator for objects they pass to data

structure methods via a pointer. This requirement ensures that the data structure and all memory

reachable from it are fully contained within the memory region the allocator manages.

The online image of a data structure uses native pointers for addressing, so it is not

relocatable (i.e., it must always reside at the same virtual address). This is not a fundamental

limitation of Pronto or ASL, but it is necessary to support the easy conversion of volatile data

structures into persistent data structures without compiler support. Previous work has shown

how to ensure relocatability with a compiler [70]. Those techniques would apply to Pronto. We
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describe the allocator in detail in Section 5.2.2.

Pronto also manages NVM space for semantic logs and snapshots. It allocates space

by mapping NVM files into the program’s address space. ASL uses the mapped NVM space

as a circular buffer and writes over old semantic log entries that precede the latest snapshot.

Section 5.2.1 provides additional details.

Snapshots

Pronto provides a snapshot mechanism that works closely with its volatile memory

allocator to take periodic snapshots of online images. Snapshots, which are durably stored on

NVM, reduce the ASL storage requirements and improve recovery time since Pronto only needs

to store ASL entries since the last snapshot and replay those entries after a crash.

Snapshots contain a persistent copy of the (volatile) memory pages used by the the volatile

online images of the data structures along with a description of currently allocated memory

(provided by Pronto’s allocator). Pronto always keeps the latest snapshot on NVM to ensure fast

recovery.

The application can change the frequency of snapshots to trade off between snapshot

overhead and recovery time. We describe the mechanics of taking a snapshot in Section 5.2.3 and

measure its performance impact in Section 5.3.7.

5.1.2 Using Pronto

Pronto offers a simple C++ interface for creating persistent data structures with ASL

support. The interface provides access to Pronto’s volatile memory allocator, a mechanism

to specify the boundaries of operations that the ASL will record, and a directory that allows

accessing persistent data structures across restarts. Table 5.1 summarizes the interface.

Programmers can use Pronto to add persistence to both sequential (single-threaded) and

concurrent (thread-safe) volatile data structures. This section provides an example of using Pronto
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Table 5.1: Pronto’s programming interface

PersistentObject(name) Every persistent object must inherit from this class. Pronto identifies
objects by their unique name (provided to the constructor) and maintains
a persistent directory for mapping names to references to objects.

get object<T>(name) Uses the persistent directory to return a reference to the persistent object
of type <T> identified by name.

op begin(args) Marks the beginning of a failure-atomic operation, which accepts args
as input, and initiates ASL.

op commit() Waits for the operation’s ASL to complete and then marks the semantic
log entry as committed.

palloc(size) Programmers must replace malloc(), realloc() and free() with
palloc(), prealloc() and pfree() for managing memory for their
data structures (e.g., using GCC’s --wrap flag) to allow Pronto create
periodic asynchronous snapshots.

prealloc(ptr, size)

pfree(ptr)

for each case and elaborates on the requirements for using Pronto with concurrent data structures.

Adding Pronto to Sequential Data Structures

Adding Pronto to a volatile single-threaded data structure is straight-forward.

The programmer adds Pronto by creating a wrapper object for the volatile data structure,

and the wrapper object inherits from PersistentObject. Extending the PersistentObject

superclass provides a naming mechanism to enable programmers to access instances of the class

across restarts using a unique name. Any instance of this new class is a persistent object, where

the latest consistent state of its internal data structure survives failures and each public method

executes as a failure-atomic operation.

The wrapper object contains a member copy of the original data structure and wrapper

methods for every function in the data structure’s API. For any method that updates the wrapped

data structure, the programmer inserts a special op begin() at the top of the corresponding

wrapper method and op commit() at the end. The op begin() method triggers semantic log
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1 template <class T>
2 class PVector : PersistentObject {
3 // Alloc conforms with STL allocator
4 // Alloc.allocate() calls palloc()
5 // Alloc.deallocate() calls pfree()
6 vector< T, Alloc<T> > ∗vVector;
7 public:
8 PVector(string name):PersistentObject(name) {
9 // alloc is an instance of Alloc<T>

10 // ∗new∗ uses palloc() for allocation
11 vVector = new vector< T, Alloc<T> >(alloc);
12 }
13 void push_back(T value) {
14 op_begin(value);
15 vVector->push_back(value);
16 op_commit();
17 }
18 void pop_back() {
19 op_begin();
20 vVector->pop_back();
21 op_commit();
22 }
23 size_t size() {
24 // no logging needed for read-only ops
25 return vVector->size();
26 }
27 };

Figure 5.3: Creating a template persistent vector using the STL’s vector container and Pronto.
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entry creation and takes a copy of the input arguments, while the op commit() method commits

the operation. Note that Pronto only requires instrumenting public update methods, while existing

NVM libraries (e.g., PMDK [44]) require tracking all writes to NVM. Pronto uses a simple source

preprocessor to provide every op begin() with a pointer to the public method that calls into it,

which enables mapping semantic logs to their matching public methods during recovery. This

preprocessor also generates code to convert each semantic log entry to a corresponding method

call and automate replaying semantic logs at recovery. Pronto assumes that the implementation of

the data structure does not change before recovery.

Finally, the programmer must use Pronto’s memory allocator to manage memory for the

wrapped data structure.

Figure 5.3 is an example of using Pronto’s APIs from Table 5.1 to create a persistent

version of the vector container from the GNU C++ Standard Template Library (STL). We

create a wrapper class (PVector) for the stl::vector that extends PersistentObject. Since

STL containers support user-specified allocators, we pass a reference to Pronto’s allocator to

the constructor of the stl::vector. Update methods of the STL vector are wrapped and

surrounded by op begin() and op commit(). For the sake of simplicity, we only illustrate the

implementation of the constructor, push back() and pop back() methods.

Adding Pronto to Concurrent Data Structures

Pronto supports a wide class of concurrent data structures that synchronize internally

using locks. So long as they meet the standard correctness condition of linearizability, Pronto can

make them resilient to power outages with simple code changes. In a linearizable (concurrent)

data structure, each method appears to occur at some atomic instant in time between its invocation

and return; putting the operations in this order gives us a linearization order, and the concurrent

data structure must behave exactly like a sequential data structure executing the operations in this

order [38, 72].
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Converting a thread-safe data structure in Pronto follows the exact same requirements as

a sequential data structure, save for the call to op commit(), which, instead of being called in

the wrapper object, is called within the wrapped data structure at a programmer identified point.

For proper integration with Pronto, the order in which operations call op commit() must be a

valid linearization order. Put more simply, if two data structure operations cannot (semantically)

commute (e.g., performing insert(k1,v1) and erase(k1) against a hash-map), then their calls

to op commit() must occur in program order.

In practice, this requirement can be trivially met by ensuring that the lock that protects the

operation’s data structure modifications also protects the call to op commit(). As a consequence,

programmers can preserve their existing isolation for operations and avoid disruptive changes to

the program to use a new synchronization interface.

If Pronto is properly integrated into a linearizable data structure according to the above

requirements, it generates a durably linearizable data structure [50], in which the data structure’s

operations not only appear to atomically occur in between their invocation and response, but

also become persistent at the same instant. For blocking data structures that use locks to enforce

linearizability, Pronto provides failure-atomicity with no loss of concurrency.

Figure 5.4 shows an example of using Pronto with a thread-safe, concurrent hash-map.

Since STL containers are not thread-safe, we use locks to serialize accesses to each bucket of

the hash-map. By committing semantic logs before releasing the per-bucket locks, we force

semantic logs to commit in the order that the program performs non-commutable operations (e.g.,

insert(K1, V1) and insert(K1, V2)), but in either order for operations that commute (e.g.,

insert(K1, V1) and insert(K2, V2) when K1 6= K2).

Requirements for Concurrent Data Structures

The following equation formalizes the requirement for committing ASL entries for

concurrent updates to a linearizable data structure. HS and HP denote sequential and parallel
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1 template <class T>
2 class HashMap : PersistentObject {
3 const unsigned Buckets = 32;
4 unordered_map<T, T, hash<T>, equal_to<T>, Alloc<T>> ∗vMaps[Buckets];
5 mutex locks[Buckets];
6 public:
7 HashMap(string name):PersistentObject(name) {
8 // initialize vMaps and per-bucket locks
9 }

10 void insert(T key, T value) {
11 op_begin(key, value);
12 unsigned b = hash<T>{}(key) % Buckets;
13 locks[b].lock();
14 vMaps[b]->insert(make_pair(key, value));
15 op_commit();
16 locks[b].unlock();
17 }
18 };

Figure 5.4: Creating a persistent, concurrent hash-map using Pronto and C++ STL’s un-
ordered map container.

execution histories, respectively, and HS ≈HP denotes that HS is a valid linearization order of HP.

op1 and op2 represent two atomic operations that occur in both HS and HP. The relations <HS

and <commit refer to the HS order and the Pronto commit order respectively.

i f ∀HS≈HP op1 <HS op2 then op1 <commit op2 (5.1)

This requirement allows Pronto to reconstruct persistent objects after failures by replaying

semantic logs sequentially according to their commit order – as the commit order of semantic logs

represents a valid sequential execution order of their corresponding failure-atomic operations.

5.2 Implementation

This section elaborates on the implementation of Pronto and revisits the most interesting

technical challenges we addressed in building it by answering the following questions:
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• How to minimize the programming effort of building persistent objects from volatile ones?

• How to implement ASL with minimum overhead on the critical execution path?

• How to identify modified memory pages to efficiently create periodic, asynchronous

snapshots?

• How to store asynchronous, consistent snapshots of off-the-shelf volatile data structures

with minor changes to the source code?

• How to use semantic logs and snapshots to reconstruct persistent objects after failures?

Pronto comprises a user-level C++ library and a simple source preprocessor. Below we

describe how the library manages logs, allocates memory, takes snapshots, and recovers from

failures. Then we describe the preprocessor.

5.2.1 Asynchronous Semantic Logging

To reduce the overhead of semantic logging on the critical path, Pronto creates a dedicated

background ASL thread for every foreground thread. Foreground threads notify ASL threads

upon starting a new failure-atomic operation by calling op begin() and sync up with them to

ensure the persistence of semantic logs before committing the log entry.

Pronto uses pthread create() to create an ASL thread for every foreground thread,

evenly distributes foreground threads over available physical cores, and co-locates foreground

threads with their ASL threads. Sharing physical cores (i.e., running as hyperthreads) enable

foreground and ASL threads to share L1 cache-lines and synchronize at low cost. Figure 5.5 shows

the assignment of foreground and ASL threads to CPU cores and demonstrates the synchronization

points between the two threads.

Pronto’s implementation aims to minimize the overhead of ASL on the critical path and

trades CPU and recovery time for faster execution of update operations. However, multiple user
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Figure 5.5: Pronto evenly distributes user threads over physical CPU cores and co-locates each
one with its ASL thread.

threads can share a single ASL thread for programs that are read-dominated or less sensitive to

ASL overhead.

Pronto stores semantic logs in NVM-resident files and creates a separate file for each

persistent object. These files comprise a header and a body. The header includes the commit

number of the last committed semantic log and relative pointers to the head and tail of the file’s

body. Having a separate file for each object reduces the contention on the log’s header. The body

stores semantic logs in a circular buffer.

Semantic log entries contain a pointer to the method they must replay during recovery,

as well as a shallow copy of its input arguments. Making a copy is necessary. Otherwise, the

application might change a value after the log entry is created, leading to a different result during

recovery.

Pronto uses DAX mmap() to directly map the file to the program’s virtual address space,

bypass the storage stack, and access the NVM pages via load/store [61]. ASL threads use

non-temporal store instructions followed by memory-barriers to avoid cache pollution while

appending semantic logs to the mapped pages, which also improves the performance of creating

large semantic logs. Support for DAX mmap() is currently available through ext-4, XFS, and

NOVA [87, 98].
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5.2.2 Memory Allocator

Pronto uses a custom memory allocator for the volatile online image of persistent objects

to facilitate creating asynchronous snapshots. The allocator serves allocations from a contiguous

volatile memory pool, which could reside on NVM if the DRAM capacity is not sufficient, and

maintains a bitmap for the pool to differentiate between used and unused regions. The bitmap

granularity is 4 KB.

Pronto serves allocations by regions from an extensible volatile memory pool, which

can expand by mapping huge-pages into the program’s address space. Pronto uses huge-pages

to reduce the number of page-table entries and thus the overhead of creating asynchronous

snapshots. The allocator always maps the volatile memory pool at the same virtual address to

keep pointers valid throughout restarts and allow recovering objects from snapshots. Pronto

maintains per-object allocators that serve allocation and free operations through per-core free-lists

to reduce contention, allocation latency and synchronization overhead. Free-lists sort memory

regions based on their size and assign them into buckets to reduce lookup time. Each bucket holds

a pointer to a doubly-linked list of unused memory regions [8, 28].

5.2.3 Periodic Snapshots

To create a persistent snapshot, Pronto must freeze the execution at a point of time where

all persistent objects are in a consistent state (i.e., before or after running an update operation),

and then copy the entire online image to NVM. The process of creating snapshots comprises a

synchronous and an asynchronous phase.

During the synchronous phase, Pronto freezes persistent objects in a consistent state by

blocking new update operations and awaiting completion of those that are yet to be committed.

It then streams the state of allocation tables, including the bitmap and free-lists, to NVM and

simultaneously marks the allocated volatile pages as read-only.
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Next, Pronto unblocks new update operations and starts the asynchronous phase, where it

saves the read-only volatile pages to NVM. Pronto uses multiple threads to expedite the copying.

The threads examine the allocated 2 MB volatile pages, identify its used 4 KB regions using the

bitmap, stream the used regions to NVM, and make each page writable as soon as the NVM copy

is durable. An update operation that attempts to write to a read-only volatile page will trigger a

page-fault handler, which takes over copying the target page to NVM before marking it writable

and returning to the operation that caused the page-fault.

Pronto creates full snapshots for the sake of simplicity. To support incremental snapshots,

it can keep volatile pages read-only until modified by an update operation, and only include

writable (i.e., modified) pages in new snapshots.

For every persistent object, Pronto also records the identifier of its last committed operation

and the tail offset of its semantic log at the time of creating the snapshot. It then recycles any log

entry that precedes this tail offset for creating new semantic logs.

5.2.4 Recovery Management

After a crash, Pronto uses a combination of ASL and durable snapshots to restore persistent

objects to their state before the failure. It uses the most recent snapshot to restore the latest

durable state of its memory pool.

Next, it replays semantic logs against their corresponding persistent objects in commit

order. For every persistent object, Pronto only replays semantic log entries recorded after the

latest snapshot. Once it replays all log entries, it passes control to user code.

Pronto uses multiple threads to recover persistent objects and assigns a subset of the

persistent objects to each recovery thread. Pronto uses a valid linearization order, which is

dictated by the commit order of update operations, to replay the semantic logs. Since the

original execution of the program is deadlock-free and Pronto replays update operations in a valid

linearization order, Pronto’s recovery is deadlock-free.
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5.2.5 Preprocessor

Pronto’s preprocessor reduces the programming effort of using Pronto by automatically

generating the code for translating method calls into matching semantic logs during execution

and decoding semantic logs to matching method calls during recovery.

For every public method that updates the data structure, the preprocessor passes a pointer

to the method as an extra argument to op begin(). It then extends these data structures with a

new function that creates semantic logs. These functions, which ASL uses at runtime, store all

the input arguments provided to op begin() as well as the pointer to the caller public method in

a semantic log entry.

The preprocessor creates a member function for each persistent data structure to enable

replaying semantic logs during recovery. This function translates semantic log entries of its data

structure to the corresponding public method calls.

The preprocessor also overloads the new operator of persistent data structures (i.e., every

class that extends PersistentObject) to allocate all memory the data structure uses with

Pronto’s allocator.

5.3 Evaluation

In this section, we evaluate Pronto’s performance to provide answers to the following

questions:

• What is the performance overhead of using Pronto to add persistence to volatile data

structures?

• Can programmers use Pronto to build persistent data structures that outperform highly-

optimized NVM data structures?
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• What is the performance benefit of using Pronto as the failure-atomicity mechanism for

existing applications?

• How much is the speedup of replacing existing NVM libraries with Pronto for persistent

data structures?

• When does ASL perform best in hiding the persistence cost?

• What is the cost of creating asynchronous snapshots for data structures with either sequential

or random memory access patterns?

• How does the size of data structures, the frequency of snapshots, and the number of threads

impact the recovery time?

5.3.1 Testbed Setup

The evaluation platform has two Intel Cascade Lake-SP (engineering sample) processors

with 12 physical cores and hyper-threading enabled that run at 2.2 GHz. The platform has 192 GB

of DRAM and 1.5 TB (6 ×256 GB) of NVM (Intel Optane DC 2666 MHz QS [48, 51]) on each

socket. All benchmarks run on one processor and do not go over NUMA to access memory or

NVM. We use ext4 to provide direct-access (DAX) to NVM pages [61].

5.3.2 Persistence for Volatile Data Structures

We measure the overhead of using Pronto to add persistence to both sequential (single-

threaded) and concurrent (thread-safe) volatile data structures.

Overhead for Sequential Data Structures

Our first experiment uses four containers from the GNU C++ Standard Template Library

(STL) to evaluate the overhead of integrating Pronto with volatile data structures. These containers
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Figure 5.6: Measuring the overhead of using Pronto to add failure-atomicity to the volatile
benchmarks. The horizontal axis is the data size of insert operations (excluding the key for
Map and Unordered Map benchmarks) in bytes and the vertical axis is the average latency in
microseconds. V and P stand for Volatile and Persistent, respectively. UMap and PQ represent
the Unordered Map and Priority Queue data structures, respectively.

are:

• map: a sorted map that stores key-value pairs in a red-black tree.

• unordered map: an unordered hash-table that stores key-value pairs.

• vector: a resizable array data structure.

• priority queue: an adapter for the vector container that creates a max-heap from the inserted

elements.

Since STL containers provide deterministic update operations and support using user-

defined allocators, we create persistent versions of each container by creating a wrapper class

that extends Pronto and wraps calls to the container’s public methods, similar to the wrapper for

STL’s vector in Figure 5.3. To measure the performance of vector and priority queue, we insert

5 million elements to both versions of each container. We use traces from YCSB [21] to evaluate
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Figure 5.7: Measuring the throughput of the volatile and persistent (Pronto) versions for the
concurrent hash-map. Numbers show throughput in millions of 1 KB inserts per second.

map and unordered map containers. The traces comprise 5 million insert operations with 32-byte

keys.

We measure the average latency of both volatile and persistent versions of the benchmarks

to quantify the performance overhead of Pronto. Figure 5.6 shows how the average latency for the

benchmarks change as we increase the size of data inserted into the STL containers. We create a

snapshot for persistent benchmarks at least once every 15 seconds.

For small operations, such as inserting small values into the vector, Pronto imposes more

overhead (up to 28×) as the synchronization between the user and the ASL thread is relatively

more expensive, and the latency of the operation is significantly smaller than persisting the

semantic log. The synchronization overhead is minimal for programs with more complex logic

like the priority queue and the map. Moreover, ASL threads use non-temporal stores followed by

memory fences to create semantic logs (i.e., copying pointers to operations and their input data

to NVM), which perform poorly for small writes and increase the relative overhead of ASL for

small operations.

Therefore, the overhead of Pronto is significant for small operations (e.g., 28× for inserting

256-byte values into STL’s vector) and lowest for programs with compute-intensive operations

and large memory footprints (e.g., 3.2× for adding key-value pairs with 4 KB values to STL’s

Map).
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Figure 5.8: Comparing the performance of PMEMKV against the persistent versions of STL’s
map (Map + Pronto) and unordered map (HashMap + Pronto) containers.

Concurrent Data Structures

Our next experiment uses the persistent hash-map implementation from Figure 5.4, which

adds locking to 32 instances of STL’s unordered map container to support concurrent operations,

and compare its throughput against the volatile version of the hash-map to measure Pronto’s

scalability. We use jemalloc [28] as the allocator for the volatile hash-map since thread-safe

malloc uses an internal lock and serializes concurrent accesses. For the persistent hash-map, we

create a snapshot at least once every 10 seconds. Figure 5.7 shows the average throughput for

inserting 5 million key-value pairs with 1 KB values to the hash-map implementations – as we

increase the number of threads (from 1 to 8), both volatile and Pronto versions of the concurrent

hash-map show similar scalability.

5.3.3 NVM-Optimized Data Structures

Our next experiment compares the performance of Pronto against NVM-optimized data

structures. We use the YCSB traces from Section 5.3.2 to compare the performance of the

failure-atomic versions of STL’s map and unordered map containers against PMEMKV [45],

which is an NVM-optimized key-value store. We configure PMEMKV v0.3x to use its kvtree2

storage engine, which adopts undo-logging to implement failure-atomic updates. The persistent
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Figure 5.9: Comparing the performance of NVM-optimized version of RocksDB (i.e., Pronto)
against its original version with synchronous and asynchronous writes using read-dominant and
write-dominant workloads from YCSB.

map and unordered map containers outperform PMEMKV and provide up to 3.83× and 3.77×

lower latency, respectively. Figure 5.8 summarizes the results and reports the average latency of

inserting key-value pairs in microseconds.

5.3.4 Optimizing Persistent Data Structures

To demonstrate the performance benefit of using Pronto to optimize existing persistent

data structures, we modify RocksDB 5.17 [29], a persistent key-value store library, and replace its

default failure-atomicity mechanism (redo-logging) with ASL. Using write-dominant (YCSB A

with 50% reads and 50% writes) and read-dominant (YCSB B with 95% reads and 5% writes)

traces from YCSB, we compare the performance of the modified version of RocksDB against

its original version with synchronous and asynchronous writes. A synchronous-write does not

return unless its redo-log is durable, while an asynchronous-write immediately returns once its

redo-log reaches the filesystem’s page-cache. As a consequence, a failure may cause the last few

asynchronous writes to be lost.
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Figure 5.10: Comparing the performance of Pronto against PMDK [44], and KaminoTx using
the B+Tree benchmark from KaminoTx [69]. We report the throughput for (read and write)
operations with 1 KB values.

We warm-up the key-value stores by inserting 5 million key-value pairs (i.e., YCSB

load phase) and then perform 5 million put/get operations based on the workload characteristics

(YCSB A and YCSB B). Figure 5.9 shows that the Pronto version outperforms RocksDB with

synchronous writes with a wide margin and matches the performance of asynchronous writes for

both read-dominant and write-dominant workloads, despite giving stronger guarantees on failure.

5.3.5 Comparing ASL against Undo-Logging

We use the concurrent, persistent B+Tree implementation from Kamino-Tx [69] to com-

pare the performance of Kamino-Tx and PMDK 1.5 [44], existing NVM libraries that accomplish

failure-atomic updates using undo-logging, against Pronto. We create a new version of the B+Tree

by removing its failure-atomicity code and wrapping it by a Pronto object, thereby making it

failure-atomic through Pronto. For the Pronto version of the B+Tree, we create a snapshot after

performing 50% of the insert operations (around once every 5 seconds). The Kamino-Tx and

PMDK versions only persist the last level of the B+Tree and reconstruct the internal nodes after
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Figure 5.11: Comparing the latency of creating asynchronous to synchronous semantic logs on
the critical path. The latency of volatile operations varies from 100 ns to 100 µs, and the size of
semantic log entries is 1 KB.

restarts.

Figure 5.10 shows the average throughput of running the YCSB workloads from Sec-

tion 5.3.4 against the Kamino-Tx, PMDK, and Pronto versions of the B+Tree. In comparison to

PMDK and Kamino-Tx, Pronto provides higher performance for the write-dominant workload

(YCSB A). Kamino-Tx does not scale when running YCSB A as it uses a single persister thread.

Pronto offers slightly higher throughput for the read-dominant workload (YCSB B).

5.3.6 Sensitivity Analysis

We use a microbenchmark to measure the sensitivity of ASL to the latency of the volatile

operations. We vary the operation latency from 100 ns to 100 µs and report the overhead of

creating 1 KB asynchronous semantic logs on the critical path.

Figure 5.11 shows the results and compares the cost of ASL to synchronous semantic

logging, where Pronto creates the 1 KB semantic logs on the critical path and before performing

the volatile operations. We report average latencies of 5 million operations across five runs, and

show the standard deviation atop each bar (the small, horizontal bars in black).

The experiments show that for sub-microsecond operations, ASL falls short in hiding the

persistence overhead as the operation latency is a fraction of the cost of ASL. For other operations,
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Figure 5.12: Measuring the impact of data size (i.e., total memory allocated by persistent
objects) on the overhead of Pronto’s periodic snapshots.

ASL moves the entire cost of creating semantic logs to the background and only exposes a small

fraction of semantic logging (i.e., committing entries and transferring the operation arguments to

the ASL thread) to the critical path.

Note that the cost of persisting semantic logs and committing them decreases as we

increase the latency of the volatile operations (i.e., the gap between consecutive writes to the

same NVM address). This behavior is due to how Intel Optane DC persistent memory handles

back-to-back writes to the same address [51].

5.3.7 Overhead of Snapshots

Snapshot performance is critical for Pronto because it dictates the frequency at which

programmers can create snapshots, and thus the trade-off between execution and recovery time.

Here we use two micro-benchmarks to quantify the impact of Pronto’s snapshot mechanism on

the average latency and the total execution time of programs.
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The first benchmark studies how the latency of the synchronous and asynchronous steps

of creating snapshots change in response to increasing the workload size. Figure 5.12 (a) presents

the outcome of this benchmark that varies the workload size (i.e., size of the persistent objects)

from 2 MB to 16 GB and measures the latency of both synchronous and asynchronous paths of

creating snapshots. The latency of the asynchronous path grows linearly with the workload size,

as the size of memory regions that Pronto must persist on NVM increases. However, the latency

of the synchronous path only changes from 22 to 34 milliseconds. Thus, Pronto only stalls those

update operations that run during the first few milliseconds of creating a new snapshot.

The other benchmark evaluates the impact of snapshots on the total execution time of

programs that perform sequential or random 64-bit memory accesses (50% read and 50% write).

We vary the workload size and run the benchmark with and without creating a snapshot to

calculate normalized execution times. We vary the frequency of creating snapshots between 2 ms

and 16 seconds based on the size of the data structure. Figure 5.12 (b) shows the normalized

execution time for this benchmark. As the workload size increases, the impact of creating

snapshots on the execution time converges to a constant: for programs with random memory

access, the constant overhead is about 10%, while programs with sequential memory access

only suffer from a 0.8% increase of the execution time. The overhead of Pronto’s snapshots is

higher on the random-access benchmark because randomly accessing memory while creating

an asynchronous snapshot escalates the chance of writing to read-only memory pages, which

increases synchronous writes to NVM as well as the impact of Pronto’s snapshots on the total

execution time.

5.3.8 Recovery Time

We use a new benchmark, which uses Pronto to implement failure-atomic quick-sort, to

measure the impact of data-structure size (i.e., size of the online image), number of threads, and

snapshot frequency on the recovery time. The benchmark uses quick-sort to sort a large string
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array, comprising 1 KB strings. We vary the number of elements in the array from 220 (1 GB)

to 225 (32 GB), the number of sort threads from 1 to 8, and the snapshot frequency from 2 to

32 seconds. Pronto uses 16 threads to load the snapshot and a single thread to replay semantic

logs during recovery.

These experiments show that the primary determinant of recovery time for the failure-

atomic quick-sort is the object size, as the snapshot frequency and the number of sort threads has

no significant impact on the recovery time. Pronto recovers the 1 GB and 32 GB objects in less

than 400 milliseconds and 7 seconds, respectively.

5.4 Related Work

A large body of research with a focus on NVM implications on computer architecture [102,

81], system software [98, 101, 54], and programming support [18, 95] exists that address different

challenges of integrating NVMs with existing computer hardware and software. This work, in

particular, focuses on reducing the overhead of adding failure-atomicity to volatile data structures

in systems equipped with both volatile and non-volatile memories.

Researchers have built several persistent object libraries for NVMs. NV-Heaps [18],

Mnemosyne [95], and PMDK [44] provide libraries that allow programs directly and transaction-

ally access NVM. NVM Direct [12] achieves similar goals and adds compiler support. In contrast

to Pronto, these systems require disruptive changes to existing programs and impose the overhead

of transactional persistence on the critical path of execution.

Kamino-Tx removes the overhead of logging from the critical path and provides atomic

in-place updates by maintaining two copies of persistent data [69]. It provides the same set of

programming interfaces as PMDK and supports building highly available and reliable persistent

data structures via replication. Compared to Pronto, it demands significant changes to existing

programs; it also requires persisting transaction and allocation metadata in the critical path.
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Atlas [14] automates enforcing failure-atomicity so long as persistent data is only modified

inside critical sections, which are surrounded by acquisition and release of locks. NVthreads [39]

provides similar failure-atomicity guarantees by using the page table protection bits to auto-

matically track data modifications at the granularity of virtual memory pages and implement

copy-on-write. JUSTDO [49] extends on the idea of failure-atomic critical sections and utilizes

persistent CPU caches to reduce the memory footprint of logs. In contrast, Pronto provides

failure-atomic updates to data structures at the granularity of method calls, uses its allocator

to track modified regions that it must persist on NVM, and moves logging off the critical path

without requiring hardware support.

Other work has focused on automatically creating persistent versions of volatile data

structures. In [50], the authors explore a transform that takes a nonblocking, volatile data structure

and creates a persistent version by transforming memory fences into cache-line flushes into NVM.

In contrast to this work, Pronto supports blocking data structures and also avoids extraneous

cache-line flushes by moving most of the persistence instructions off the critical path.

Periodic checkpoints [2] and persistent virtual memory (pVM [52]) are other means of

providing failure-atomicity to programs. However, they both require rigorous changes to the

source code and enforce persistence synchronously.

5.5 Summary

We have described Pronto, a system that adds persistence to both sequential and concurrent

volatile data structures and reduces the overhead of durability on the critical path of execution

through asynchronous semantic logging. Pronto shrinks the performance gap between volatile

and persistent data structures by trading recovery time for faster execution. It allows programmers

to add failure-atomicity to existing code (e.g., GNU C++ STL containers) without requiring

disruptive changes, while the resulting persistent containers provide comparable performance to
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the volatile versions. Furthermore, our persistent version of the STL’s map container outperforms

PMEMKV, a persistent key-value store highly optimized for NVM, by up to 3.8×.
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Chapter 6

Conclusion

Non-Volatile Memory (NVM) technologies (e.g., 3D XPoint and battery-backed DRAM)

expose persistent storage via a byte-addressable load/store interface. However, because caches

do not retain their data after a power outage, programmers must be careful to ensure that the

state of NVM is useful after a crash. Failure-atomicity libraries provide the means to apply

sets of writes to persistent state atomically and avoid inconsistency in the wake of a failure.

Unfortunately, these libraries require extensive and error-prone annotations in code. Generally

speaking, the programmer needs to annotate all persistent memory accesses, and the annotations

vary between libraries. Prior attempts to remove these annotations or add compiler support has

incurred unacceptable overheads to runtime performance.

Throughout this dissertation, we have presented a collection of libraries and systems

that provide easy to use and fast programming support for persistent memory. This collection

comprises a failure-atomicity library that facilitates changing existing software to use NVM, a

series of NVM-specific compilation and optimization passes that minimize the programming effort

of using failure-atomicity libraries, and a new NVM library that simplifies adding persistence to

volatile data structures.

In Chapter 3, we introduced Breeze, an NVM toolchain that provides direct access to
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persistent memory without requiring disruptive changes to legacy software. Breeze guarantees

data consistency and validity of persistent pointers regardless of failures. Porting Memcached

and MongoDB to use Breeze only requires changes to 5% of the source code compared to 7-14%

for PMDK and NVM-Direct. Breeze also provides equal or superior performance compared to

PMDK and NVM-Direct, outperforming them by up to 10×.

In Chapter 4, we presented NVHooks, a compiler that automatically instruments accesses

to persistent memory with callbacks to failure-atomicity libraries. NVHooks reduces the pro-

gramming effort of adopting failure-atomicity libraries and facilitates retargeting programs to a

new library. It also offers a series of NVM-specific optimization passes to reduce the cost of these

annotations. Our evaluation shows that NVHooks not only minimizes the programming effort of

constructing persistent programs, but it also matches the performance of hand-annotated code.

Finally, we described Pronto in Chapter 5. Pronto uses a combination of asynchronous

semantic logging (ASL) and persistent, asynchronous snapshots to reduce the programming

effort required to make volatile data structures persistent. ASL is generic enough to allow

programmers to add persistence to the existing volatile data structure, such as C++ Standard

Template Library containers, with very little programming effort. Moreover, ASL mitigates the

overhead of durability code (e.g., logging) on the critical path. In contrast to highly-optimized

NVM data structures written with other libraries, Pronto data structures are easier to build and

offer equal or superior performance.
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