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Power supply represents a critical challenge in the development
of body-integrated electronic technologies. Although recent research
establishes an impressive variety of options in energy storage (batteries
and supercapacitors) and generation (triboelectric, piezoelectric,
thermoelectric, and photovoltaic devices), the modest electrical
performance and/or the absence of soft, biocompatible mechanical
properties limit their practical use. The results presented here form
the basis of soft, skin-compatible means for efficient photovoltaic
generation and high-capacity storage of electrical power using
dual-junction, compound semiconductor solar cells and chip-scale,
rechargeable lithium-ion batteries, respectively. Miniaturized com-
ponents, deformable interconnects, optimized array layouts, and
dual-composition elastomer substrates, superstrates, and encap-
sulation layers represent key features. Systematic studies of the
materials and mechanics identify optimized designs, including
unusual configurations that exploit a folded, multilayer construct
to improve the functional density without adversely affecting the
soft, stretchable characteristics. System-level examples exploit such
technologies in fully wireless sensors for precision skin thermography,
with capabilities in continuous data logging and local processing,
validated through demonstrations on volunteer subjects in various
realistic scenarios.

solid-state lithium-ion battery | multijunction solar cell | stretchable
electronics | energy management | wearable technology

Recent ideas in materials science and mechanical engineering
establish strategies for integrating functionality enabled by

hard forms of electronics with compliant interconnects and soft
packages to yield hybrid systems that offer low-modulus, elastic
responses to large strain deformations (1–4). Such stretchable
characteristics are qualitatively different from those afforded by
simple mechanical bendability; the consequences are important
because such properties allow for intimate, long-lived interfaces
with the human body, such as the skin (5, 6), heart (7), and the
brain (8), and for development of unusual device designs that
derive inspiration from biology (9, 10). Many impressive examples
of the utility of these concepts have emerged over the last several
years, particularly in the area of biomedical devices, where work in
skin-mounted technologies is now moving from laboratory dem-
onstrations to devices with proven utility in human clinical studies
(11, 12) and even to recently launched commercial products (13).
Although schemes in high-frequency or ultrahigh-frequency
wireless power transfer satisfy requirements in many important
contexts (14, 15), opportunities remain for approaches in local
generation and/or storage of power in ways that retain overall
stretchable characteristics at the system level. Reported ap-
proaches to the former involve harvesting based on piezoelectric
(16, 17), triboelectric (18), and thermoelectric (19) effects; the

latter includes batteries (20–22) and supercapacitors (23, 24) en-
abled by various unusual materials. Complete power management
systems that offer both types of functionality, in an actively co-
ordinated fashion and with robust, high-performance operation,
represent an important goal. This paper presents results that en-
able such operation in platforms that combine dual-junction
compound semiconductor, millimeter-scale solar cells with bare
die, chip-scale rechargeable lithium-ion batteries, and integrated
circuits for power management. The integration schemes represent
improvements on the types of liquid and ultrasoft elastomer
strategies reported previously (1, 25), but in optimized, advanced
architectures, including a folded, multilayer geometry that effectively
combines the solar cells and batteries in a compact fashion without
compromising the stretchable mechanics. System-level demonstra-
tors involve thin, soft, compliant wireless systems configured
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for autonomous skin thermography, with capabilities in data log-
ging and local processing. These results, along with fundamental
studies of the underlying issues in materials choices and me-
chanical designs, have the potential for widespread relevance in
stretchable electronic technologies.

Results and Discussion
Fig. 1A presents a schematic, exploded view illustration of an en-
ergy harvesting/storage/management system that exploits arrays of
hard, miniaturized active components electrically interconnected
and sealed within a two-component elastomer matrix. Here, opti-
mized geometries in the serpentine wiring afford system-level, elastic
stretchability with a low effective modulus; the elastomers provide

strain isolation and environmental protection, in which an ultralow
modulus core (modulus of ∼3 kPa, thickness of 300 μm; Silbione RT
Gel 4717 A/B, Bluestar Silicones) allows freedom of motion of the
serpentines and a shell (modulus of ∼60 kPa, thickness of 300 μm;
Ecoflex 00–30, Smooth-on) encloses the entire system. The inter-
connects incorporate a trilayer stack of polyimide (PI) and copper, in
the form PI(4.8 μm)/Cu (0.5 μm)/PI (4.8 μm) (SI Appendix, note S1).
For the examples presented here, the components consist of either
dual-junction (2J) compound semiconductor solar cells (∼32-μm total
thickness, GaAs/InGaP, Microlink), chip-scale batteries (200 μm,
lithium-ion Enerchip CBC005 and Enerchip CBC050, Cymbet) or
some combination. A conductive alloy (In97Ag3, Indalloy 290, Indium
Corporation) bonds these components to exposed pads in the in-
terconnect network (SI Appendix, Fig. S1).
An energy storage system that includes a 10 × 10 array of chip-

scale batteries appears in Fig. 1 B–D. Optical images show this
module in a flat state (34 × 35 mm2, Fig. 1B), bent around a cy-
lindrical tube (radius of curvature 2.5 mm, Fig. 1B) and sharply
wrapped around an index finger while providing power for the
operation of a red light-emitting diode (636 nm, AlInGaP, Vf =
2.0 V, LUMEX, Fig. 1C). In Fig. 1D, force applied by the tip of the
finger (radius of curvature ∼4 mm) and the edge of the fingernail
(radius of curvature ∼0.5 mm) induces large, local bending and
stretching deformations. Even in such cases, the device exhibits an
elastic response with little change in performance, consistent with
3D finite-element analysis (3D-FEA) that reveals maximum prin-
cipal strains in the Cu that remain below the limit for plastic yielding
(∼0.3%). These characteristics follow from the two-component
elastomer configuration and optimized serpentine geometries, as
described in detail in the following.
Comparative 3D-FEA study of systems with (Fig. 1E and SI

Appendix, Figs. S2A and S3) and without (SI Appendix, Figs. S2B
and S4B) the ultralow modulus core reveals its critical importance.
Qualitatively, the core allows substantial out-of-plane bending and
twisting of the serpentine interconnects, as they deform in response
to externally applied load. This mechanism suppresses the occur-
rence of sharp bends and local wrinkling deformations, thereby
reducing strain localization in the metal. Replacing the soft core
with a more typical elastomer (i.e., modulus comparable to the
shell) leads to stiffening of the surroundings in a manner that
constrains freedom of deformation of the serpentines, resulting in
the appearance of wrinkles with radii of curvature that are suffi-
ciently small to induce strains (>∼0.3%) that lead to yielding of the
metal. The strain/stress responses of the overall system also reflect
these effects (SI Appendix, Fig. S5). Dynamic mechanical tensile
testing and corresponding 3D-FEA modeling on the simplest unit
(two solar cells joined by a serpentine interconnect) show quanti-
tative agreement. For the core/shell system, the effective Young’s
modulus is only slightly (by ∼15%) higher than the value of an
equivalent system without the active components or interconnects.
Without the core, the corresponding moduli are different by a
factor of 3, due to the strong coupling between the mechanics of
the components and interconnects and the encapsulating elasto-
mer. Such effects also influence the stretchability (SI Appendix, Fig.
S6). A representative unit cell with core–shell design has elastic
stretchability ∼39.2%, whereas that of an otherwise identical sys-
tem without the core is only 9.7%. As additional characterization,
SI Appendix, Fig. 5 D and E shows the strain/stress responses as a
function of rate, from 5% strain per minute to 100% strain per
minute. The results confirm some slight viscoelastic behavior, with
an increase in modulus with frequency.
These favorable properties require, of course, a core region with

sufficient thickness. Systematic study shows that for the particular
materials and systems examined here (SI Appendix, Fig. S4A)
thicknesses less than ∼200 μm begin gradually to compromise the
mechanics. However, the effect of core thickness saturates such
that, above a certain value (hollow figures; Fig. 1E), t_crit, the
elastic stretchability is no longer sensitive to thickness. t_crit
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Fig. 1. Schematic illustration, 3D-FEA results, and images of thin, soft power
supply systems that incorporate arrays of miniaturized device components
joined by stretchable interconnect networks and contained in two-component
elastomeric matrices. (A) Exploded-view illustration of the overall architecture
of a system that includes a 6 × 6 square array of components. (B) Optical image
of a device that includes a 10 × 10 array of chip-scale batteries bent around a
cylindrical tube with a radius of 2.5 mm. (Inset) Image of the device in planar
geometry. (Scale bars, 5 mm.) (C) A photo of the device shown in B wrapped
around an index finger. (Inset) Activation of a red LED while in this deformed
state. (D) Enlarged view of the components and interconnects at the tip of the
finger (Left), and corresponding 3D-FEA results (Right), in exploded-view format
for the top shell elastomer (10 μm) coated on the bottom with the core elas-
tomer (0.3 mm) (Top), the device components and interconnect network
(Middle), and the bottom shell elastomer (0.3 mm) coated with the core elas-
tomer (0.3 mm) (Bottom). (E) Graph of the elastic stretchability as a function of
thickness of the core elastomer for three different thicknesses of the polyimide
layer in the interconnect network (tPI) for the case of equal-biaxial tensile strain
(Left). The hollow figures represent data points that exceed the computed limit
of stretchability (Right) 3D-FEA result for the device components and in-
terconnect network (Top), the soft core layer (Middle), and shell layer (Bottom)
for the configuration illustrated by the dashed box in the graph (Left).
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depends most strongly on the materials and geometric parameters,
particularly the cross-sectional dimensions, of the interconnects.
Three-dimensional FEA indicates that as the interconnect thick-
ness increases (and consequently their stiffness), t_crit decreases. A
likely explanation is that deformations of stiff interconnects are
dominated by their intrinsic structure, with reduced dependence on
the properties of the surrounding material. Computational analysis
aids in selection of optimized serpentine geometries and PI thick-
nesses. A key finding is that longer serpentines in patterns with in-
creased complexity (e.g., geometrically self-similar, or fractal designs)
do not necessarily provide improved elastic stretchability, as evi-
denced by the comparisons in SI Appendix, Figs. S6 and S7. Here,
complex shapes tend to involve strain concentrations that counter-
balance the benefits expected from their increased contour lengths,
thereby preventing them from reaching their full capacity in
stretchability. This observation is qualitatively different from those
in systems that use microfluidic core regions.
Results in Fig. 1E and SI Appendix, Fig. S8 indicate that

moderately thick PI layers can promote elastic stretchability
whereas excessively thick PI layers have the opposite effect. The
PI thickness in the former regime diminishes the occurrence of
local wrinkling deformations, thereby preventing strain locali-
zation in the metal. Instead, a global buckling mode results (26),
such that the interconnects can achieve nearly their full exten-
sion without failure. For the latter case, the large thickness in the
PI leads to a large bending stiffness that prevents out-of-plane
buckling. Here, in-plane bending dominates, with reduced stretch-
ability. In other words, this nonmonotonic dependence on PI

thickness arises from a gradual transition of the deformation mode
from one defined by local wrinkling (in the limit of small thickness) to
global buckling (moderate thickness) to in-plane bending (large
thickness) with increasing thickness.
These systematic investigations of material configurations and

serpentine designs allow optimized construction at the module
level. Choices in serial and parallel connection schemes in the ar-
rays of solar cells and batteries afford significant versatility in the
selection of output currents and voltages (SI Appendix, Figs. S9 and
S10). In addition, the serpentine interconnects and core/shell de-
signs allow low effective modulus and high stretchability even at
large areal coverages of active components. SI Appendix, Figs. S11
and S12 summarize studies of reversible mechanical deformation
of solar and battery modules for 30% equal-biaxial stretching.
Here, local regions of the elastomers reach strains >100%, while
the maximum principal strains in the metal interconnects remain
below the yield point (0.3%). This strain isolation and the full re-
covery of serpentine geometries upon release of the load leads to
completely reversible, elastic deformation across all components of
the systems. Three-dimensional FEA modeling indicates that both
the solar and battery modules can undergo total biaxial elongation
up to ∼55% and ∼45%, respectively, before fracture in the inter-
connects, almost twice as stretchable as human skin (SI Appendix,
Fig. S13) (5). In all cases, deformations of devices with the core/
shell design show minimized constraints in motion of the compo-
nents or the interconnect network compared with designs without
the core, as demonstrated by the uniform distributions of overall
strain in a supporting substrate (SI Appendix, Fig. S14). Addition of
an encapsulating layer reduces the elastic stretchability only slightly
(from 39.7% to 39.2%) as shown in SI Appendix, Figs. S3, S15,
and S16.
Both areal coverage and stretchability can be further enhanced

by use of a strategy that involves application of prestrain to the
elastomer base immediately before integration with the compo-
nents and interconnects (27). SI Appendix, Fig. S17A presents
images from experiments and 3D-FEA modeling with a test
structure that consists of four unit cells at the center of a larger
module, corresponding to configurations immediately after release
of the prestrain and at the limit of elastic stretchability under bi-
axial tensile loading. For the solar cell array, prestrains of up to
∼10% are possible; beyond this value, the interconnects begin to
come into close physical proximity, approaching contact, although
even higher levels of prestrain are possible without electrical fail-
ure. At 10% prestrain, the areal coverage of functional compo-
nents increases from ∼60% to ∼73%, and the elastic stretchability
from ∼39% to ∼53%, and the total stretchability from ∼55%
to ∼71%.
These mechanical characteristics are important not only in

uniaxial or biaxial stretching, but also in bending, twisting, and
other more complex deformations (Fig. 2 A–C and SI Appendix, Fig.
S17B). The elastic limits are not the same for these different modes.
For example, the device described above (without prestrain) ex-
hibits elastic stretchability of 26% and 36% along the x- and y di-
rections, respectively. These values are somewhat lower than those
for the case of biaxial stretching, simply due to Poisson compression
of the interconnects along the direction normal to the loading di-
rection, ultimately into self-contact at the limits. Experiments show
that a 4 × 4 solar module can wrap the human wrist (Fig. 2D), twist
with ∼60° (Fig. 2E), and locally stretch or compress around fingers
(SI Appendix, Fig. S17C). In all cases, the maximum strains in the 2J
cells and the metal of the interconnects reach only ∼0.1%, much
below the semiconductor fracture strains (∼1%) and metal yield
strains (∼0.3%), and more than 2 orders smaller than the strains in
the surrounding elastomers (∼20–40%).
The electrical properties of the interconnect networks remain

invariant under such types of deformation, as supported by a lack
of measurable change in the resistance for equal biaxial stretching
up to 50% (SI Appendix, Fig. S18). Measurements of the
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electroluminescence from solar modules and the output voltages of
battery modules reveal stable operation at 30% biaxial strain as in
SI Appendix, Figs. S19 and S20, respectively. The results in Fig. 2F
indicate that a module consisting of a 2 × 2 array of 2J solar cells in
half series/parallel connection (SI Appendix, Fig. S8) produces an
open-circuit voltage and a short-circuit current of 4.4 V and 3.4 mA,
respectively, under AM 1.5 illumination (91192, Oriel). The maxi-
mum power and fill factor are 12.5 mW and 0.84, respectively. The
performance is unaffected by equal biaxial stretching to 30%. Cyclic
deformation tests under uniaxial stretching to strains of 15% reveal
no changes for 1,000 cycles (SI Appendix, Fig. S21A). Corresponding
battery modules also show expected behaviors, as in Fig. 2G for an
example that involves a 2 × 2 array of chip-scale batteries connected
in parallel (SI Appendix, Fig. S9). The module produces ∼3.8 V at a
discharge current of 100 μA (Gamry Reference 600, Gamry In-
struments) over a period of 2 h in both undeformed and biaxially
stretched (30%) states. The characteristics (measured at 500 μA)
are invariant during 1,000 cycles of uniaxial stretching to 15% strain
(SI Appendix, Fig. S21B).
The design approaches reported here offer considerable ver-

satility in layout geometries and electrical output characteristics
(SI Appendix, Fig. S22). As an example, a solar module that in-
volves a 4 × 4 array of 2J solar cells all connected in series
(SI Appendix, Fig. S9) produces open-circuit voltages and short-
circuit currents of 33.1 V and −1.59 mA, respectively, with a
maximum power of 43.0 mW (SI Appendix, Fig. S23A). Similarly,
a 4 × 4 array of chip-scale batteries connected in parallel
(SI Appendix, Figs. S9, S23B, and S24) exhibit an ∼4.5× increase
in storage capacity compared with a 2 × 2 array. The discharge
current is 500 μA (SI Appendix, Fig. S21B) and the maximum
power reaches 77.3 mW for 20-mA output for ∼2 min. These power
levels can satisfy practical requirements in several recently dem-
onstrated types of stretchable skin-mounted electronic devices (1).
The soft mechanics of these systems not only affords options in

mounting on the skin, but also in laminating onto one another, as
an unusual form of electrical integration. As shown in SI Appendix,
Figs. S25 and S26, a solar module can be flipped and laminated on
top of a battery module, thereby establishing electrical contacts.
The battery module can be charged in this way by placing the in-
tegrated pair in a lighted area. After charging, the solar module can
be replaced by a light-emitting diode (LED) module, in a similar
architecture, using the same approach. The output voltage of this
battery module is sufficient to operate a blue LED (463 nm,
InGaN, Vf = 3.3 V, LUMEX) as a demonstration. The adhesive
nature of the core material provides a robust mechanical joint,
suitable even for operation under water (SI Appendix, Fig. S26B
and Movie S1).
In addition to lamination, the extreme deformability of these

systems allows their construction via folding to yield multilayer
designs with reduced overall lateral dimensions (SI Appendix,
Fig. S27 and Table S1A). Fig. 3A shows a photograph of a
device that includes a small array of solar cells, batteries, and
a power management circuit, designed for this purpose. This
latter unit mediates the functions of the solar cells and batteries,
and facilitates efficient power regulation of the overall system.
Here, a set of fabrication steps similar to those described pre-
viously yields an assembled set of interconnected components on
a shell elastomer (300-μm thickness) coated with a layer of the soft
core material (300-μm thickness). Casting another layer of this core
material (200-μm thickness) on top of the devices, partially curing
this material, folding the entire structure, and then completing the
curing process concludes the fabrication. Fig. 3B summarizes the
strain distribution in the metal layer, obtained by FEA, at different
steps in folding. Even the most severely deformed regions have
strains that are considerably smaller than the yield strain of the
copper (∼0.3%), as highlighted in the four subpanels. Fig. 3C shows
a side view. Three-dimensional FEA results and experimental ob-
servation both suggest the cross-section of the folded region takes a

teardrop-, or tennis racket, shape, as is typical of folded elasto-
meric bands, but in a way that spontaneously fills with the soft core
material (28). The core accommodates the most severe deforma-
tions, whereas the circuit layer undergoes almost pure bending, with
minimal strain. This strain isolation effect can be quantitatively
revealed by examining the distribution of strain in each layer. For
instance, the maximum strains in the metal of the interconnects and
the core material are ∼0.1% and ∼80%, respectively. SI Appendix,
Fig. S28A shows images of the folded device collected by X-ray
computed tomography. The solar cells and batteries stack on top of
one another, and the serpentine interconnects overlap with good
alignment. The mechanics of this configuration leads to a com-
puted elastic interconnect stretchability of ∼170% unidirectionally
(Fig. 3D). This value is almost the same as that for systems in a
single-layer design (i.e., without folding), thereby establishing that
the stretchable mechanics is not adversely affected by well-aligned
folding into a bilayer geometry.
The electrical characteristics of the device appear in Fig. 3E, de-

termined using the chronopotentiometry method (Gamry Reference
600, Gamry Instruments). The output voltage (potential difference
between VOUT and VGND) is 0 V before exposure to light (i.e., “light
on”), due to operation of the power regulation unit (CBC910,
Cymbet) in a “sleep” mode. The internal control logic deactivates
the charge pump to minimize current consumption when the battery
current is not needed. Light illumination increases this voltage
to ∼4.4 V, by consequence of contribution from the solar cells
(connected to VDD for positive supply and VGND for negative
supply). Here, an internal field-effect transistor (FET) switch in
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Fig. 3. Images, 3D-FEA results, and operational data for a solar cell and
battery-integrated power control system realized by folding. (A) Image of an
energy harvesting/storage/supply system that includes a 2 × 2 array of 2J
solar cells, a 2 × 2 array of chip-scale batteries, and a power management
chip in planar geometry, before folding. (Inset) A cross-sectional illustration
of the key layers. (Scale bar, 5 mm.) (B) Three-dimensional FEA results of the
system at various stages of the folding process. (C) Image of the folded
device and exploded-view 3D-FEA results of the maximum strain distribu-
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and the interconnect structure (bottom). (D) Image and exploded-view 3D-
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bottom. (E) Graph of the output voltage of the system with/without light
and operation of an LED. The schematic diagrams illustrate each component
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the regulator routes VDD to VOUT during normal operation when
VDD (the output voltage of the solar cell) is above a set voltage
(∼2.5 V). At the same time, the solar cells also activate the charge
pump for the purpose of charging the batteries at ∼4.1 V. Upon
removal of light (i.e., “light off”), VDD falls below the set voltage
and the FET switches such that the output voltage (connected to
VBAT for positive supply and VGND for negative supply) is equal to
the battery voltage (here, ∼4.06 V). When a red LED (SSL-
LX5093IT, 635 nm, max Vf = 2.5 V, LUMEX) connects to the
device (i.e., “LED on”), the voltage drops to ∼1.65 V for the
operation of the LED [i.e., 1.65 V = ∼4.06 (VBATT) − ∼2.41
(voltage associated with the LED)]. Finally, the output voltage
returns to 0 V when the battery level falls below a separate set point
(here, ∼3 V) during external device operation. Here, the power
management circuit shuts off the power supply to protect the bat-
tery (i.e., “system in reset”). All performance characteristics remain
unchanged even during stretching (SI Appendix, Fig. S28B).
Integration of these concepts in stretchable power supply can be

exploited in skin-mounted, wireless sensor systems. Demonstrations

described here involve advanced near-field communication (NFC)
technology for continuous logging of temperature and wireless data
transfer. Fig. 4A presents an optical image of a device that consists
of three different parts: an advanced NFC chip (RF430FRL152H,
Texas Instruments) which includes a temperature sensor, a wireless
(13.56 MHz) communication module, and onboard memory; a
regulator that interfaces to the battery to control operation; and
the battery itself. Integration uses the reversible lamination process
described earlier, thereby allowing the battery to be removed for
recharging and then reapplied for operation (as shown in Fig. 4D
and SI Appendix, Fig. S29A and Table S1B). The system senses
temperature and stores the resulting information in onboard
memory at a rate of one event every 30 s. In between sensing and
storing events, the operation reverts into a low-power sleep mode.
When placed into proximity of an active NFC reader, the system
automatically transmits these data to the reader, as shown in Fig.
4B. Fig. 4C presents a demonstration of data logging during a
stepwise increase of temperature (SI Appendix, Fig. S30). The
observed linear relationship establishes a calibration curve between
the reading from the device and actual temperature (SI Appendix,
Fig. S31). Fig. 4 E and F summarizes the output voltage from the
built-in regulator inside the NFC chip and the corresponding
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Fig. 4. Images, schematic illustration, and operational data of for a
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changes in voltage from the 2 × 2 chip-scale battery module. A
regulator (BD9120, ROHM Semiconductor) switches the output
voltage of the battery to ∼1.5 V, to match the requirement of
operation of the NFC chip, as long as battery voltage is between 2.7
and 4.5 V. With sleep/wake intervals of 30 s, the system can sense
the temperature and store the data into the onboard memory of
the NFC over a time of nearly 3,000 s, as shown in Fig. 4F. The SI
Appendix presents embodiments that offer extended operation
time (SI Appendix, Fig. S32 A and B) and wireless monitoring of
battery voltage (SI Appendix, Fig. S32C).
Fig. 5 summarizes an example of extended use in a realistic

scenario in which skin-mounted operation allows continuous mon-
itoring of temperature during physical exercise. Here, the device
laminates onto the forearm of a volunteer on a stationary bike; a
separate, wirelessly powered NFC (SL13A, AMS) device (15)
placed on an adjacent region of the arm collected data at a sampling
rate of 1 point/1 min via NFC-equipped smartphone (Galaxy Note
4, Samsung) to provide a set of data as a control (Fig. 5A). The
results appear in Fig. 5B, where the data show variations in tem-
perature during “ready,” “exercise,” and “rest” stages, at a sampling
rate of 1 point/10 s over 10 min. The skin temperature drops shortly
after beginning the exercise, as a result of sweat gland activity and
evaporation from the skin surface. During the rest, the temperature
recovers to the original state, as expected based on homeostasis
(29). The battery and wirelessly powered devices show similar re-
sponses. Data collected by an infrared (IR) camera (FLIR SC650)
(Fig. 5C) represent an additional point of comparison. As an illus-
tration of the waterproof nature of the systems, Fig. 5D presents
results of an experiment in monitoring of skin temperature during
bathing. Here, the volunteer immerses his body, with devices
mounted on the skin, in warm water (∼43 °C) for 8 min. During
this time, the temperature stabilizes to a constant value. As with
observations of homeostasis associated with exercise, the tem-
perature increases to 33 °C shortly after the subject moves out of
the tub and then slowly returns to the initial value.
As additional example, at high sampling rates (10 points/1 s) it

is possible to measure temperature variations associated with
processes such as respiration (Fig. 5E). In a more advanced ex-
ample, incorporating a red LED (625 nm, InGaAlP, Osram Opto
Semiconductor) enables a visual indicator of excessively high
(above 40 °C) or low (below 10 °C) temperatures during bathing,

swimming, or other activities (Fig. 5 F and G and SI Appendix,
Figs. S29B and S33, and Table S1C). Such functionality might be
helpful in the prevention of hypothermia, hyperthermia, burns,
or frostbite. Fig. 5F and Movie S2 show activation of the LED
due to flow of hot air from a hair dryer onto the skin; here, the
temperature of the skin exceeds 40 °C as visualized by the IR
camera images in Fig. 5G. The system can be configured such
that the LED also activates when the temperature decreases
below a certain level by, for example, placing it in cold water or
on ice (SI Appendix, Fig. S33C and Movie S3).

Conclusions
The results presented here offer foundational guidelines associated
with materials choices and designs for the integration of small-scale,
hard device components into arrays that offer soft, biocompatible
mechanics at the system level. The examples in energy harvesting,
storage, and management represent some of the most important
applications in biointegrated technologies. Other opportunities in-
clude chip-scale microelectromechanical technologies, radio devices,
mechanical/thermal energy harvesting, and others. Further minia-
turizing the dimensions of the associated components, deploying
them in larger-scale arrays, and configuring the layouts to match
geometrical and mechanical requirements associated with the
anatomy at the point of biointegration are some interesting fu-
ture directions for research.

Materials and Methods
Details associated with the fabrication steps and the materials all appear in
SI Appendix. The data acquisition system and related hardware for NFC data
logging are shown in SI Appendix. Also, details of theoretical analysis are
described in SI Appendix. The experiment for skin-mountable device was
conducted at the University of Illinois at Urbana-Champaign (Institutional
review board approved protocol: 15112).
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