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Abstract: Fetal electrocardiogram (fECG) assessment is essential throughout pregnancy to monitor
the wellbeing and development of the fetus, and to possibly diagnose potential congenital heart
defects. Due to the high noise incorporated in the abdominal ECG (aECG) signals, the extraction of
fECG has been challenging. And it is even a lot more difficult for fECG extraction if only one channel
of aECG is provided, i.e., in a compact patch device. In this paper, we propose a novel algorithm
based on the Ensemble Kalman filter (EnKF) for non-invasive fECG extraction from a single-channel
aECG signal. To assess the performance of the proposed algorithm, we used our own clinical data,
obtained from a pilot study with 10 subjects each of 20 min recording, and data from the PhysioNet
2013 Challenge bank with labeled QRS complex annotations. The proposed methodology shows the
average positive predictive value (PPV) of 97.59%, sensitivity (SE) of 96.91%, and F1-score of 97.25%
from the PhysioNet 2013 Challenge bank. Our results also indicate that the proposed algorithm
is reliable and effective, and it outperforms the recently proposed extended Kalman filter (EKF)
based algorithm.

Keywords: fetal ecg extraction; fetal monitoring; ensemble kalman filter (EnKF); signal processing

1. Introduction

A national study reported by the Centers for Disease Control (CDC) showed that the
U.S. fetal mortality rate remained unchanged from 2006 through 2013 from the rate of
6.05 to 5.96 per 1000 births [1]. Thus, fetal monitoring is essential throughout pregnancy
for recognition of elements that might imperil the life of the fetus and mother. However,
the 2015 Cochrane review of gold standard antenatal cardiotocography (CTG) for fetal
assessment showed no clear evidence that it improves perinatal outcome [2].

The current global COVID-19 pandemic has led to critical demand for person-centered
healthcare instead of hospital-centered healthcare system. Expectant moms usually come to
the obstetric clinics many times during pregnancy for checkups. According to the CDC, a
study on 461,825 women with COVID-19 showed that pregnant women with COVID-19 are
more likely admitted to an intensive care unit, receiving invasive ventilation, extracorporeal
membrane oxygenation, or die compared with non-pregnant women [3]. This would stop
pregnant women from having physiological measurements, ultrasound examination, or
non-stress test, which are critical for both the mom and the unborn baby. This calls for an
urgent need for novel home-based tools and systems for reliable prenatal monitoring.

There are already existing ultrasound-based consumer products for fHR assessment
in the home setting. Those require active scanning over the abdomen coupling with ultra-
sound gel to locate the fetal heart to obtain the fHR, which is highly technique dependent,
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easily make difficult by maternal of fetal movement and larger body size. Thus, it is es-
pecially challenging for non-medical persons to administer it. Further, the U.S. Food and
Drug Administration (FDA) issued a warning in 2014 against the use such ultrasound fHR
home monitors [4], citing safety concerns over their repeated use.

The fetal electrocardiogram (fECG) can also be used to assess fetal wellbeing and even
enable further diagnoses. Precisely-extracted fECG will provide vital information about
fHR, fetal development, fetal maturity, and the existence of abnormalities or distress during
pregnancy [5]. However, continuous and noninvasive fECG monitoring has remained
challenging in the research community in terms of both signal acquisition and processing.
There are several methods proposed for extracting fECG from aECG. These methods
can be generally classified into three groups: blind source separation (BSS), template
subtraction, and filtering techniques. The BSS methods include methods such as parallel
linear predictor (PLP) filter, principal component analysis (PCA), independent component
analysis (ICA), and periodic component analysis (πCA) [6–9]. The BSS methods consider
that the abdominal signal is a combination of fECG, mECG, and noises [10]. Although
these methods perform greatly for fECG extraction, they need multiple-channel aECG
signals, which makes them unsuitable for continuous non-invasive fECG monitoring.
In addition, after extraction, the order of the separated independent component could
not be determined. Thus, it is challenging to identify the fECG component for further
processing [11]. Therefore, the BSS methods usually require the determination of other
parameters (e.g., t-test, correlation coefficient, heart rate) to automatically identify the
extracted components [12–14]. Template subtraction (TS) is another widely used approach.
The method involves subtracting a synthetic mECG generated by estimating the QRS
complex waveform (mQRS) of mECG from the abdomen signal [15–20]. The main challenge
of this method involves mQRS detection [21], which becomes more challenging if the fetal R
waves overlap with the maternal R waves. This drawback degrades the effectiveness of the
template subtraction method for fECG extraction. The popular filtering techniques include
adaptive filtering [22–25], Kalman filtering [26–28], and wavelet transform [29,30]. These
filtering techniques are mostly and effectively applied for denoising of single-channel ECG
signals. Adaptive filtering-based algorithms have been proposed for fECG extraction [31].
Such methods, however, require additional reference signals for separating the different
components of the aECG.

Our group has been developing abdominal patch devices and systems for the ac-
quisition and extraction of fECG [12,31,32]. As we aim to make the device compact and
unobtrusive, a single recording channel is desired for saving space; consequently, fECG
extraction is almost impossible, especially with the presence of motion noise [33]. In this
case, there are multiple signals buried in the single-channel aECG including maternal ECG
(mECG), fECG, maternal muscle activity, fetal movement activity, and noise. Here, we pro-
pose a novel algorithm based on the Ensemble Kalman filter (EnKF) to extract fECG from
a single-channel aECG signal. The EnKF is an approximate filtering method that is used
for state estimation of large-scale nonlinear systems. Specifically, the EnKF is a Sequential
Monte Carlo (SMC) method, and it shows a better performance, especially in systems with
strong nonlinearity, than the popular Extended Kalman filter (EKF) that applies analytic
linearization. We studied and compared the performance of EKF and EnKF using our
aECG data obtained from 10 pregnant subjects, and data from the PhysioNet database.
The results demonstrated that our EnKF algorithm is more effective and outperforms the
regular EKF in accurately extracting fetal ECG.

2. Theory and Methods
2.1. Ensemble Kalman Filter (EnKF)

EnKF is a variant of the celebrated Kalman filter used to estimate time-varying param-
eters in problems that arise in various disciplines [34]. It is applicable for problems that can
be represented as dynamic systems and formulated in a state-space model with unknown
time-varying state parameters. When the state-space model of the system is linear and
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Gaussian, the optimal estimate of the state parameters can be obtained using the Kalman
filter [35]. However, when the problem is nonlinear or non-Gaussian, other variants of the
Kalman filter, such as the EnKF, are used to obtain close-to-optimal solutions [36]. Our
EnKF algorithm is developed by considering a Bayesian filtering framework and formu-
lating the fECG extraction problem as a dynamic system whose state and measurement
equations are represented in a state-space form. The dynamic model is adopted from the
models proposed by McSharry et al. [37] and later discretized by Sameni [38].

Suppose the unknown time-varying state vector of a dynamic state-space model is
denoted by xn ∈ RDx where n = 1, 2, . . . , N represents time instants and Dx represents the
dimension of xn. We assume that xn has a Markovian property, and its evolution is given by:

xn = fn(xn−1) + un, (1)

where f (.) represents a state function which, in general, is nonlinear, and un denotes the
state noise vector with a known probability density function (pdf). Furthermore, the
observation equation of the state-space model is given by:

yn = hn(xn) + wn, (2)

where yn ∈ RDy denotes the measurement vector obtained at time n, Dy represents the
dimension of the vector yn, and wn denotes the measurement noise vector whose pdf is
assumed known.

Given the state-space model (1) and (2), our objective is to make a sequential estimate
of the evolution of the state vector x1:n = {x1, . . . , xn } in real-time as the measurement
vector denoted by y1:n = {y1, . . . , yn } becomes available.

The Ensemble Kalman filter is a variant of the Kalman filter where the state error statis-
tics are approximated using the Monte Carlo method. Recall that if the state Equation (1)
and the measurement Equation (2) are linear, and the state noise un and measurement noise
wn are Gaussian, the optimal estimate of the state vector can be analytically obtained using
Kalman filter. To understand the EnKF, let us review the Kalman filter algorithm’s two
steps: the time update and the measurement update. For convenience, we rewrite the state
and measurement equations for a linear and Gaussian systems as follows:{

yn = Hxn + wn
xn = Fxn−1 + un

, (3)

where F is a Dx×Dx matrix, H is a Dy×Dx matrix, and un and wn are zero-mean Gaussian
probability densities with covariances Qu and Qw, respectively.

The time update step of the Kalman filter algorithm obtains the predicted value of the
state vector and the covariance of its error. The predicted state vector and the covariance of
its error at time n are computed from propagating their corresponding values at time n− 1
through the state dynamics as follows:

x̂n|n−1 = Fx̂n−1
Pn|n−1 = FPn−1FT + Qu

(4)

where x̂n|n−1 is the predicted value of the state vector, Pn|n−1 is the covariance of the error
of the predicted state vector given by Pn|n−1 = E[(x̂n − x̂n|n−1)(x̂n − x̂n|n−1)

T ], and E[.]
is the expectation operator. Once the measurement vector is received, the measurement
update step is used to compute the estimate of the state vector, x̂n and the covariance of the
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error of the state vector, Pn, by applying corrections to the corresponding predicted values
based on the measurement obtained as follows:

Kn = Pn|n−1HT(HPn|n−1HT + Qw)
−1

x̂n = x̂n|n−1 + Kn(yn −Hx̂n|n−1)

Pn = (I−KnH)Pn|n−1

(5)

where Kn is the Kalman gain, and I is a diagonal matrix. We note that the Kalman gain can
be expressed as

Kn = Pxy,nPyy,n
−1, (6)

where Pxy,n is the cross-covariance of the error of xn|n−1 and yn, and Pyy,n is the covariance
of the error of yn. These covariances are given by:

Pxy,n = E[(x̂n − x̂n|n−1)(yn − yn|n−1)
T ]

Pyy,n = E[(yn − yn|n−1)(yn − yn|n−1)
T ]

(7)

When the state equation and measurement equation are not linear, the above equations
of the covariances of the errors, Pn|n−1 and Pn, as well as the equation of the Kalman
gain, Kn, are not valid, and, therefore, generally, the Kalman gain cannot be analytically
determined. A common approach of circumventing such problems in nonlinear state-space
models is to apply extended Kalman filter (EKF), which is a variant of the Kalman filter, that
approximates the state and measurement equations by linearizing them using the Taylor
series. Consequently, the EKF approximates the posterior probability density of the state
vector by a Gaussian distribution. When the true posterior distribution of the state vector is
not ‘close’ to Guassian, such approximations may not be valid and the EKF may diverge. In
such cases, sequential Monte Carlo methods show superior performance over EKF [39].

EnKF is the Monte Carlo-based Kalman filter which can be used for nonlinear and non-
Gaussian models. The underlying idea of the method is to approximate the Kalman gain
and state vector propagations using Monte Carlo technique. EnKF computes the Kalman
gain by approximating Pxy,n and Pyy,n using their corresponding sample covariances,

P̂xy,n and P̂yy,n. To do so, N number of ensembles, {x(i)n|n−1}
N

i = 1
, are first drawn from

the prior probability density of the state vector, p(xn|n−1), which has the same probability
distribution function as the state noise with a mean of f (x(i)n−1). Once the ensembles are
generated, the sample covariances of the errors are computed as follows:

P̂xy,n = 1
N

N
∑
i
(x(i)n|n−1 − xn)(y(i)

n|n−1 − y
n
)T

P̂yy,n = 1
N

N
∑
i
(y(i)

n|n−1 − y
n
)(y(i)

n|n−1 − y
n
)T

(8)

where y(i)
n|n−1 = h(x(i)n|n−1), xn = 1

N ∑N
i x(i)n|n−1

y
n
=

1
N ∑N

i y(i)
n|n−1, (9)

Then, the Kalman gain is approximated by:

K̂n = P̂xy,n
(
P̂yy,n

)−1, (10)

and the ensembles of the state vector, {x(i)n|n−1}, are computed as

x(i)n = x(i)n|n−1 + K̂n(yn + v(i)
n − y(i)

n|n−1), (11)
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where v(i)
n are samples obtained from Gaussian distribution with mean y

n
and covariance Qw.

Once the ensembles of the state vector are computed, the estimate of the state vector is
obtained by taking the averages of ensembles as follows:

x̂n =
1
N ∑N

i (x(i)n), (12)

2.2. State-Space Model of a Synthetic ECG

In the work reported in, McSharry et al. proposed a dynamic model which consists
of a set of nonlinear state equations to generate synthetic ECG signals in the Cartesian
coordinate system [37]. Further, Sameni et al. transformed the model to a polar coordinate
system and provided a convenient discrete-time mathematical model [38]. The model
represents an ECG signal by a sum of five Gaussian functions, each corresponding to the
five waves of an ECG signal, namely P, Q, R, S, T waves. The state vector of the dynamic
model is defined by xk = [θk, zk]

T , and the state equation is given by: θk = (θk−1 + ω.∆)mod 2π

zk = −∑i∈[P, Q, R, S, T]
αi∆θiω.∆

bi
2 exp

(
−∆θ2

i
2bi

2

)
+ zk−1 + ηk

(13)

where ∆θi = (θk − θi)mod 2π is the phase increment, ∆ is the sampling period, ηk is the
state noise, ω is the angular velocity of the trajectory as it moves around the limit cycle,
and αi, bi and θi represent the amplitude, width, and center of the Gaussian functions of
the five PQRST waves, respectively.

The measurement vector is defined by yk = [φk, sk]
T , where φk is the observed phase

representing the linear time wrapping of the R-R time interval into [0, 2π], and sk is the
observed amplitude. The measurement equation is given by{

φk = θk + uk
sk = zk + vk

(14)

where uk and vk denote the measurement noises.

2.3. EnKF Based fECG Extraction Algorithm

Given the state-space model (13) and (14), the EnKF algorithm in Figure 1 is applied
to filter out the mECG from aECG, assuming the remaining signal composed of fECG
and noise is Gaussian distributed. The extracted mECG signal is then subtracted from
aECG to obtain a noisy fECG signal. Finally, the EnKF algorithm is applied to the residual
signal to denoise the fECG signal. Before running the extraction algorithm, the acquired
aECG signals are processed to remove the baseline wander, the powerline, and ambient
interferences. The baseline wander is removed using a lowpass filter, and a notch filter is
used to suppress the powerline interference noise. We also applied the wavelet filtering and
thresholding technique and compare [40]. This will be discussed in detail in later sections.
Finally, the fetal QRS complex (fQRS) is detected using the Pan-Tompkin algorithm [32,38].

2.4. Data for Testing

Three different datasets were used to test the performance of the proposed algorithm
and to compare with the EKF. They are the data obtained from the PhysioNet 2013 Challenge
database, the same data with motion noise added, and our own data obtained in a recent
pilot study with pregnant subjects.

2.4.1. Challenge Databank

The PhysioNet 2013 Challenge databank used in this work consists of 75 recordings,
excluding a number of recordings (a33, a38, a47, a52, a71, and a74) that had inaccurate
reference annotations. Each recording comprises four different abdominal signals. All sig-
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nals have been sampled at 1 kHz and recorded for 60 s. In each case, reference annotations
marking the locations of each fetal QRS complex were produced, usually with reference to
a direct fECG signal, acquired from a fetal scalp electrode. The reference annotations are
produced by a team of experts manually [41].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. An overview of EnKF. EnKF maintains an ensemble of sample points for the state vector 
𝑥𝑥𝑛𝑛. It propagates and updates the ensemble to track the distribution of 𝑥𝑥𝑛𝑛. The state estimation is 
conducted by calculating the sample mean (red five-pointed-star) and covariance (red ellipse) of the 
ensemble. 

2.4. Data for Testing 
Three different datasets were used to test the performance of the proposed algorithm 

and to compare with the EKF. They are the data obtained from the PhysioNet 2013 Chal-
lenge database, the same data with motion noise added, and our own data obtained in a 
recent pilot study with pregnant subjects. 

2.4.1. Challenge Databank 
The PhysioNet 2013 Challenge databank used in this work consists of 75 recordings, 

excluding a number of recordings (a33, a38, a47, a52, a71, and a74) that had inaccurate 
reference annotations. Each recording comprises four different abdominal signals. All sig-
nals have been sampled at 1 kHz and recorded for 60 s. In each case, reference annotations 
marking the locations of each fetal QRS complex were produced, usually with reference 
to a direct fECG signal, acquired from a fetal scalp electrode. The reference annotations 
are produced by a team of experts manually [41]. 

2.4.2. Modified Signals with Motional Artifacts Added 
The aECG recordings acquired in real-life settings would possess a variety of inter-

ferences, including motion artifacts. The online databank, however, was obtained in the 
clinical setting, where motion noise was mostly non-existent since the subjects were in a 

Figure 1. An overview of EnKF. EnKF maintains an ensemble of sample points for the state vector
xn. It propagates and updates the ensemble to track the distribution of xn. The state estimation is
conducted by calculating the sample mean (red five-pointed-star) and covariance (red ellipse) of
the ensemble.

2.4.2. Modified Signals with Motional Artifacts Added

The aECG recordings acquired in real-life settings would possess a variety of inter-
ferences, including motion artifacts. The online databank, however, was obtained in the
clinical setting, where motion noise was mostly non-existent since the subjects were in a
resting position. We added realistic motion artifacts to the online databank. The realistic
motion noise generation process is described in our previous paper [32], to mimic real-life
scenarios. In this experiment, the ECG data were recorded from a healthy subject during
different types of activities. Then, the normalization had been used to reinsure aECG and
the motion noise have realistic amplitudes. The recorded data were normalized between
−1 and 1. Then, the motion noise was extracted by using the EKF. Before adding the motion
noise to the new aECG, the aECG data should be normalized with the same threshold.
In the last step, the generated motion noises are added to the PhysioNet 2013 Challenge
databank. Figure 2 illustrates the modified data with motion noise process.
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generated motion noises are added to the online aECG data.

2.4.3. Our Human Data

We developed the gen-2 ‘fetal monitoring patch’ containing non-contact electrodes
(NCEs), electronics, and secure communication with a smart device via Bluetooth Low
Energy (BLE) [12]. The compact patch is ~4 inches long and unobtrusive, thus, it can be
integrated on or inside maternity garment. The gen-2 patch has one single NCE channel
to collect the aECG of the pregnant subject. The collected data are sent to an Android app
connected to a cloud server for analytics. The system was validated on 10 pregnant women
between 28 and 34 weeks of gestation in the UCI Medical Center. Each subject was resting
on a chair during recording, and a maternity belt with the fECG patch attached is worn
so that the NCEs are located on the abdominal area below the navel. The data were then
collected in 5 min for each posture. More details are described in our previous paper [42].
All clinical recordings were collected anonymously under Institutional Review Board (IRB)
approval #2020-6342 at the University of California, Irvine (UCI).

2.5. Comparison Criteria

The performance of the extraction methods is assessed by comparing the beat-to-
beat length of the extracted fECG QRS complex and the corresponding annotated data.
According to the American National Standards Institute/Association for the Advancement
of Medical Instrumentation (ANSI/AAMI) guideline, sensitivity (SE), positive predictive
value (PPV), and the accuracy measure (F1 score) which is the harmonic mean of PPV and
SE, were used for assessment. These statistical indices are computed as follows

SE = TP
TP+FN

PPV = TP
TP+FP

F1 = 2.TP
2.TP+FN+FP

(15)

where TP, FP, and FN are the number of true positive, false positive, and false nega-
tive, respectively.

3. Results

The execution time of each algorithm is calculated from the start of the pre-processing
to the end of the fECG R-peak detection. The EnKF with ensemble size of 70 has the same
execution time such as the EKF. Hence, the proposed EnKF-based algorithm was run with
an ensemble size of N = 70 for single-channel signals from the aforementioned datasets. For
comparison purposes, the EKF-based algorithm using the same synthetic ECG parameters
and datasets was also carried out. The three-dimensional trajectory generated from (13)
consists of a unit-radius circular limit cycle that goes up and down when it approaches
one of the P, Q, R, S, or T points (Figure 3). The projection of these trajectory points on the
z-axis gives a synthetic ECG signal. Figure 3 shows plots of the ECG signals versus the
assigned phases in polar coordinates on the unit-radius circle. The figure depicts a typical
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phase-wrapped aECG signal (a), EKF extracted mECG signal (b), and EnKF extracted
mECG signal (c) plotted using a sample signal taken from the PhysioNet database.
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Figure 3. A phase-wrapped ECG signal of records “a01”. (a) Abdominal ECG (raw data); (b) mECG
extracted using EKF; and (c) mECG extracted using our EnKF.

Examples of two abdominal ECG signals of records “a01” and “a03”, and fetal signals
extracted using the EKF and EnKF, are shown in Figure 4. Panels a and d are the original
signals, while b–e and c–f are fQRS extracted using the EKF and EnKF approaches, respec-
tively. The fQRS annotation is shown in an orange asterisk (*). The red arrows show the
places that fetal QRS was wrongly detected. The blue arrows show the missing fetal QRS.
It can be seen that the detected fQRS (fetal R-peaks) follow the annotated ones with high
accuracy. It is worth noting that in “a01” (Figure 4d), the fetal QRS complexes are reversed
due to electrode placement, but it did not affect the extraction algorithms. It should be
emphasized that in the case of overlapping of the fetal QRS and maternal QRS, the EnKF
algorithm still gives favorable results. Comparison between Figure 4b,c show that the
EKF failed when maternal and fetal QRS complexes overlap in time (e.g., at t ∼= 21.8 s and
t ∼= 23.7 s) for ‘a03’, while our EnKF method still performed successfully. It can be also seen
that the EnKF functions reasonably well with the presence of noise ((e.g., at t ∼= 19.7 s for
‘a01’, Figure 4d–f).
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Figure 4. fECG extraction using the EKF and EnKF with the PhysioNet data. The fQRS annotation is
shown in orange asterisk (*). The red arrows show the places that fetal QRS was wrongly detected.
The blue arrows show the missing fetal QRS. (a) Abdominal ECG (raw data) of record “a03”; (b) fECG
extracted using EKF of record “a03”; (c) fECG extracted using EnKF of record “a03”; (d) Abdominal
ECG (raw data) of record “a01” with reversed fetal QRS complexes; (e) fECG extracted using EKF of
record “a01”; (f) fECG extracted using EnKF of record “a01”.
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Figure 5 depicts the fECG extraction results from the modified PhysioNet data with
added motion artifacts. As seen, the fECG extracted by the EKF was incorrect and its F1
score was reduced significantly (average F1 = 78, see Table 1). fQRS complexes extracted by
the EnKF, however, are still visible in most time points, yielding a favorable F1 score of 89.
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Figure 5. fECG extraction using the EKF and EnKF with the motion artifacts added PhysioNet data.
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(b) fECG extracted using EKF; and (c) fECG extracted using EnKF.

Table 1. Performance of the EKF and EnKF algorithms.

Average F1 (%) Average SE (%) Average PPE (%)

Online Data without
Motion Noise

EKF 88.90 ± 5 86.73 ± 5.5 91.16 ± 4.6
EnKF 97.25 ± 2.4 96.91 ± 0.5 97.59 ± 3.8

Online Data with
Motion Noise

EKF 78 ± 6.58 75.38 ± 7.4 80.80 ± 5.1
EnKF 89.04 ± 3 88.2 ± 1.7 89.9 ± 4.5

Our Clinical Data
EKF 82.3 ± 5.5 100 ± 0.1 71.4 ± 6.4

EnKF 94.3 ± 1.2 89.2 ± 1.5 100 ± 0.2

Figure 6 shows the performance of the proposed algorithm, the EnKF, and the EKF on
one sample from our clinical data. Panels a–c show the original and extracted signals, while
panels d–f are signals with extensive preprocessing. Specifically, in Figure 6d, a lowpass
filter (with a cut-off frequency of 1 Hz), a notch filter, and a Wavelet filter (a 10 level 1-D
stationary wavelet decomposition with Coiflet mother wavelet) were used to suppress the
background noise and artifacts. The signal extracted from the preprocessed data with the
EKF and EnKF algorithms are shown in Figure 6e,f. In Figure 6f, we also further notice
that fetal characteristic waves, such as P and T waves, may be conserved. This judgment is
also strengthened by the EnKF extraction carried out on the original PhysioNet database
in Figure 4f, where the conserved features are probably fECG waves. Table 1 presents the
average F1, average PPV, and average SE results in our own clinical aECG records. The
average F1, PPV, and SE indices of our proposed EnKF are 94.3%, 100%, and 89.2%; while
those using the EKF method are 82.3%, 71.4%, and 100%, respectively.

Table 1 shows the average F1 scores, the average PPE, and the average SV of the
performance of the EnKF and EKF algorithms. These statistical indices are computed by
determining the accuracy, TP, FP and FN, of the locations of the R-peaks obtained by the
EKF and EnKF algorithms against the reference annotations. The F1 score, PPV, and SE are
computed using 68 one-minute aECG records from PhysioNet 2013 Challenge databank
and our own clinical data. The results shown in Table 1 indicate that the EnKF method is
reliable on its own. In all cases, the EnKF outperforms the EKF.
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Figure 6. fECG extraction using the EKF and EnKF with our own clinical data. The fQRS annotation
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Another parameter that should be taken into account is the computational complexity.
The computational complexity of the EnKF algorithm is proportional to the number of
ensembles used. In our simulations, we have observed that increasing the size of the
ensemble by more than 70 does not improve the performance of the algorithm significantly.
The F1 score obtained when the algorithm was run for ensemble sizes between 5 to 350
always remained in the range between 94.5% and 98.6% for all of the 68 aECG records
obtained from the PhysioNet database.

4. Discussion and Conclusions

The current fECG extraction methods from a single-channel signal are not robust
when particularly (i) the fECG and mECG waveforms temporally overlap, and (ii) the
amplitude of fECG is low compared to the noise level. Recently, an EKF-based algorithm
was proposed for the extraction fECG from a single-channel aECG signal [43]. Generally,
those EKF-based algorithms are less effective as at every instant of time, they approximate
the posterior probability density of the parameter of interest by a Gaussian distribution.
When the true posterior density is not Gaussian, sequential Monte Carlo (SMC) filtering
methods show superior performance over EKF methods. Therefore, here, our proposed
EnKF is an SMC-based method, for noninvasive extraction of fECG from the single-channel
aECG. As described above, our EnKF-based algorithm exhibited robust performance when
tested using public online data as well as our own clinical data. Ten records, including
20-min aECG from our own clinical database, 68 records, including 1-min aECGs in Phys-
ioNet Challenge 2013, and the online data bank added realistic motion artifacts were used
to assess the performance of the proposed method.

As can be seen in Figure 3, the EnKF-based algorithm follows the dynamics of ECG
and thus suppresses the noise better than EKF. In the EKF method, since some of the fECG
peaks were still incorporated in the estimated mECG (3b), the subtraction between the
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aECG and mECG will not produce the correct fECG. In contrast, the mECG estimated by
EnKF is significantly clearer (3c), which explains the better performance in fECG extraction
(Figures 4–6 and Table 1).

Our experiments proved that the EnKF-based algorithm is a robust method and has
superior performance over the EKF for extracting fECG in various scenarios (Figures 4–6).
Results support the expectations that the EnKF not only extracts the fetal signal when the
fECG and mECG waveforms temporally overlap, but it also potentially extracts accurate
fECG signal with characteristic waves such as P and T waves. Currently, there is no
approach available to extract full-feature fECG, especially with aECG in daily life. Hence,
our solution may hold the potential to revolutionize fetal monitoring as it can be used
to diagnose potential congenital effects. Currently, this is carried out with genetic test
and echocardiogram [44–46]. However, those need to be carried out in the clinics and
they cannot provide continuous information of the fetal heart over a long period of time.
For example, with our fetal ECG patch and this EnKF method, full-feature fECG can be
obtained 24/7 in the home setting in the second and third trimesters of pregnancy, which
provides information about not only fetal wellbeing and development but also any fetal
cardiac anomalies.

Due to the nature of aECG acquisition, the signal is always accompanied by other bio-
electric potentials, such as maternal muscle activity, fetal movement activity, and noise [33].
The results shown in Figures 4–6 suggested that, prior to fECG extraction, preprocessing is
a critical step which needs to be optimized. Specifically, preprocessing may help extraction
significantly as it removes noise components, but it may also eliminate low-amplitude
precious components such as P and T waves. In Figure 6d, we can see that, when the
aECG signal is somewhat over-processed, both EKF and EnKF perform reasonably well;
the signal, however, may have lost its intrinsic peaks. The filtering scheme used here is a
low-pass filter, a digital Notch filter, and the wavelet filtering and thresholding technique
described in [40]. As P and T waves have similar frequency and amplitude with noise
components, it is almost impossible to set up optimal thresholds to eliminate the noise and
keep the desired waves in all cases. Therefore, we usually carry out this manually until the
best performance is obtained. The challenge is the noise level varies from person to person,
setting to setting, and even time to time within one person in one setting. To address this,
we are planning to add an accelerometer to collect the motion noise as carried out in [12],
and explore further algorithms to extract uterine contraction and fetal movement.

The fECG would provide valuable information that could help deliver better prenatal
care as well as assisting clinicians in making appropriate and timely decisions during
labor. In this context, our EnKF presented in this work may bring significant impacts as
a robust and efficient algorithm deployed in compact wearables for fECG assessment in
the home setting. Future work includes assessing the fECG patch and the EnKF algorithm
in out-of-clinic settings. We are planning to first validate the performance with pregnant
subjects during sleep overnight in their home first and then move forward to real-life trials
for several days. We also plan to correlate with other physiological signals using machine
learning and cloud computing to link the mother’s activity with fetal development, such as
the mother’s sleep quality or diet [42,47]. In the future work, the fetal ECG monitoring in
twins and multi-fetal prenatal should also be studied.
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