
UCLA
UCLA Electronic Theses and Dissertations

Title
Applications of Generative Modeling for Recommender Systems

Permalink
https://escholarship.org/uc/item/1j86d1rg

Author
Cheong, Ryan H

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j86d1rg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Applications of Generative Modeling

for Recommender Systems

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Ryan H Cheong

2022

© Copyright by

Ryan H Cheong

2022

ABSTRACT OF THE THESIS

Applications of Generative Modeling

for Recommender Systems

by

Ryan H Cheong

Master of Science in Statistics

University of California, Los Angeles, 2022

Professor Yingnian Wu, Chair

Recommender systems have the difficult task of not only filtering out an overwhelming

amount of information, but also learning user preferences across a large set of items. Beyond

that, the order of the items recommended can be just as important as what is suggested.

The practice of recommender systems has largely been grounded in latent variable models

founded on linear algebra methods. However, their assumed linearity and normality limit

the models’ full potential. Despite their earliest inception in computer vision, we share two

popular frameworks of generative modeling in the context of recommender systems and argue

how they are well-suited to tackle the cold-start problem. We do so by first introducing a

single implementation of each model, highlighting its key differences to its vanilla version,

and then elaborating on another implementation designed to solve the cold-start problem.

We find that, especially in the cold-start tasks, these approaches record impressive results.

ii

The thesis of Ryan H Cheong is approved.

Chad J. Hazlett

Mark S. Handcock

Yingnian Wu, Committee Chair

University of California, Los Angeles

2022

iii

To my family . . .

for their love and support

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Overview . 3

2.1 Recommender Systems . 3

2.1.1 Metrics . 5

2.2 Generative Modeling . 6

2.2.1 Variational Autoencoders (VAEs) . 7

2.2.2 Generative Adversarial Networks (GANs) 10

3 Methods . 13

3.1 VAE-CF . 13

3.2 CVAE . 15

3.3 CFGAN . 18

3.4 LARA . 21

4 Evaluation . 24

4.1 Data . 24

4.2 Implementation . 24

4.3 Results . 25

5 Conclusion . 27

5.1 Discussion . 27

5.2 Concluding Remarks . 29

v

References . 30

vi

LIST OF FIGURES

2.1 Architecture for vanilla VAE in context for image generation [1] 9

2.2 Architecture for vanilla GAN in context for image generation [2] 12

3.1 Architecture for CVAE where the top, contained portion represents the inference

and generation networks [3] . 18

3.2 Architecture for CFGAN using zero regularization and partial masking [4] . . . 20

3.3 Architecture for LARA including the multi-generator design for the creation of

multiple user profiles from the item attributes [5] 23

vii

LIST OF TABLES

4.1 Summary of Performance for Proposed Models 26

viii

CHAPTER 1

Introduction

Whether one is aware or not, recommender systems surround each and every one of us across

more mediums than one can think of. While most commonly associated with video stream-

ing platforms and e-commerce sites led by industry pioneers such as Netflix and Amazon for

movie and product recommendations respectively, less obvious applications of recommender

systems can be found in nearly every day-to-day instrument that people interact with. Not

unlike serving up movie recommendations, music streaming service Spotify compiles person-

alized playlists that combine tracks that a user has liked recently with others that he/she

might not have discovered yet. Similarly, just as how news publishers customize their sug-

gested “next reads” to a subscriber, social media giant TikTok determines a user’s interests

towards curating a specialized “For You” feed tailored specifically to his/her tastes. As

such, it is not difficult to imagine the importance of strong, robust recommender systems for

engaging the right users with the right items. Beyond that, its importance in downstream

processes such as inventory management [6] and upsell opportunities [7] can also can also

drive significant growth across organizations.

For the most part, recommender systems have traditionally practiced approaches grounded

in collaborated- or content-based principles. For each situation, the task remains the same,

that is: given a set of m users and n items and some information in the form of either item

details and/or ratings, what are the top-K item to recommend to each user? Traditionally,

latent variable models, specifically matrix factorization techniques [8, 9, 10], have long been

considered reliable methods that have continued to produce strong results for decades – all

1

while retaining the underlying interpretability in many cases by drawing on their foundations

and interpretations from linear algebra.

Still, through the process of filtering the vast amount of information for what is most

relevant to defining each user’s individual tastes, traditional methods are limited by the

linearity and normality assumptions underlying these latent variable models. Hence, deep

neural networks empower practitioners to explore the non-linear relationships embedded in

the user-item interactions. In particular, generative modeling approaches which first emerged

in the domain of computer vision and whose earliest inception pertains to generating realistic

images represent an intriguing area of study for use-cases in the recommendation arena.

In the sections to follow, we explore implementations of generative modeling, specifically

variational autoencoders (VAEs) [11] and generative adversarial networks (GANs) [12], in the

context of recommender systems after brief overviews of the existing recommender systems in

practice and the vanilla architectures for VAEs and GANs. We then proceed to expanding

this discussion to implementations of each of the two methods that are able to overcome

the so-called “cold-start” problem. At last, we evaluate how the models perform against

domain-specific metrics that borrow from the space of information theory. Finally, we offer

commentary on the future of generative modeling in recommender systems.

2

CHAPTER 2

Overview

This chapter is intended to provide the contextual groundwork for defining the recommender

system problem and describing two popular generative modeling architectures. The concepts

presented in this chapter, including its definitions and notations, will carry through the

remainder of the paper.

2.1 Recommender Systems

To begin, let us first open the discussion on the topic of recommender systems. As mentioned

before, the implementation of recommender systems and its wide adoption across almost all

domains has made it ubiquitous in more ways than not. In its most raw form, recommender

systems are used by many for their ability to extract the relevant information from an ever-

expanding and often-overwhelming cache of data in order to present users with the right

items that most closely align with their interests. From a relaxed statistical perspective,

recommender systems optimize for a proxy measure for successful or ideal alignment between

users and items through such metrics like click-through-rate (CTR) or mean squared error

(MSE) of the ratings, to name a few.

In most cases, the information at hand takes the form of either explicit feedback, such as

ratings, or more commonly and easier to collect, implicit feedback, such as clicks. Moreover,

said information is often given in the form of a user-item matrix X ∈ R
m×n describing m

users and n items and where an element xij represents user i’s interaction with item j. For

3

convenience and interoperability, we fix this and the following notation for the remainder of

this paper.

Oftentimes, when referring to the overwhelming amount of data, we are implying in part

that the vast number of items in the complete item set, I = {i1, . . . , in}, completely out-

numbers the number of items that even the most “active” users have interacted. Hence,

the recommendation system problem can often be formulated as how to use the limited

observations in X to detect each of the users’ from the user set, U = {u1, . . . , um}, prefer-

ences and predicting not only whether item j is relevant, but also where in the sequence of

recommended items it should be placed.

Unsurprisingly, personalization is a core component of this process and so is filtering

through the information to be able to uncover the underlying insights between users and

items. This action alone lends itself to two of the most widely applied techniques in the

practice, holding the names: collaborative and content-based filtering [13, 14].

Loosely said, collaborative filtering methods leverage other users’ historical data to iden-

tify items that others with comparable taste also liked whereas content-based filtering meth-

ods utilize the items’ attributes, like genre or synopsis information, to select other similar

items. In other words, collaborative-based methods suggest that similarity should be de-

rived from what other users with comparable taste have liked while content-based methods

follow the definition that similarity should be based on items that share qualities with the

other items the user has enjoyed during previous sessions. Common appearances of these

approaches in practice may be found in the form of, respectively, “others also liked” or “you

might also like” sections.

Despite strong performance from both content- and collaborative-based methods, the

insufficient resolutions to such obstacles as sparsity and cold start lead many towards hybrid-

based methods that combine both sources of information [15]. Hybrid methods incorporate

both aspects of the aforementioned approaches either as a combination of the two systems

ran separately, called loosely coupled, or as a single, unified model, called tightly coupled.

4

Nevertheless, in practice, even hybrid models still face headwinds when either a new

user or item is introduce for which there is no prior information (cold start) or when the

observed user-item interactions are limited (sparsity) [16]. This is simply due to the nature

of the problems and while the above techniques attempt to navigate around these issues,

they still remain difficult to model on and provide sound recommendations for. Thus, in

such a situation, generative modeling presents themselves as an intriguing candidate for its

ability to seemingly “create something out of nothing.”

2.1.1 Metrics

Among recommender systems in literature and in practice, precision, recall, and normalized

discounted cumulative gain are among the most frequently used and are detailed below. Pre-

cision (P@K) and recall (R@K) evaluate the number of correct items in the recommendation

set, ŷ, as a measure for relevancy of the recommendation. Precision is calculated as a fraction

of the number of items recommended, K, while recall is computed as a fraction of the user i’s

entire relevant item set, Iui
. Broadly speaking, precision measures the relevancy of a set of

recommendations while recall evaluates the model’s ability to retrieve users’ positively rated

items. In practice, precision and recall are calculated for each user’s top K items and then

averaged across all m users.

Precision@K and Recall@K for a single user ui is expressed as:

Precision@K(ui, ŷ) =

∑K
k=1 1 [ŷ(k) ∈ Iui

]

K
,

Recall@K(ui, ŷ) =

∑K
k=1 1 [ŷ(k) ∈ Iui

]

min(m, |Iui
|)

,

where we define ŷ(k) to be the k-th item from the recommendation set.

Normalized discounted cumulative gain (NDCG@K) considers the position of the recom-

mendations. Whereas recall treats each ranked item with equal weight, discounted cumula-

tive gain accounts for higher ranked items with a larger weight by means of a monotonically

5

increasing discount.

To calculate NDCG@K, DCG@K is first computed to be for a single user ui:

DCG@K(ui, ŷ) =
K∑
k=1

21[ŷ(k)∈Iui]

log(k + 1)

and then normalized to arrive at NDCG@K after normalized by the highest DCG@K when

recommending the most relevant items first.

By nature of the problem construction, to measure the success of a recommendation

system is partially synonymous to assessing the accuracy of (1) whether the model is able to

distinguish said items of interest (classification) and (2) how well the model is able to order

the relevant items (rank) [17].

Other performance metrics, such as mean reciprocal rank, were considered, but it is de-

cided that precision, recall and normalized discounted cumulative gain are sufficient measures

for the classification and rank problems in our design.

2.2 Generative Modeling

We delay the introduction of the key models until the succeeding chapter for the information

covered here pertaining to distinction between these two classes of statistical models serves

as a necessary prerequisite first.

In short, generative models learn either the joint probability P (x, y) or marginal prob-

ability P (x) towards uncovering the likelihood of the instance x, thus enabling the genera-

tion new data instances, x̃; whereas discriminative models learn the conditional probability

P (y|x) so as to inform the likelihood of a label y belonging to a certain instance x, thereby

providing a means to discriminate different kinds of data with its predicted labels ŷ. In

general, generative models are considered to be more difficult in that it must learn the un-

derlying structure of the data x and where the instances fall in the subspace. This contrasts

with discriminative models that have the comparatively “simpler” task of learning only the

6

boundaries separating x according to y within the subspace [18].

We will namely focus on the class of generative modeling, specifically of deep generative

models [19] which lie at the intersection of deep neural networks and generative models. This

set of models again follow the general goal of learning the underlying data distribution of the

training set so as to be able to generate new instances with slight variations or perturbations;

however, the deep neural network backbone leverages the power of the universal approxi-

mation theorem to learn essentially any kind of complex, high-dimensional data distribution

with little or no supervision. In practice, it is common for the hidden layers to nonlinearly

transform a sample, z, from a known distribution, such as the standard normal, to get as

close to a true, multimodal data distribution as possible. Therefore, this approach naturally

evokes the use of the Kullback-Leibler (KL-) and Jensen-Shannon (JS-) divergence in its

formulation as a measure of the differences between the posterior and prior distributions.

These models have proven to achieve high performance and successful results, especially

given a large number of training examples, and have become some of the hottest areas of

study in artificial intelligence research as of late. In particular, we will explore two of the most

popular methods in this family of models: variational autoencoders (VAEs) and generative

adversarial networks (GANs).

2.2.1 Variational Autoencoders (VAEs)

We begin by explaining the core architecture for a variational autoencoder (VAE) [11, 20].

In order to do so, it is appropriate to preface our discussion with a brief explanation of

the vanilla autoencoder. In short, autoencoders are cherished in the unsupervised learning

community for their ability to learn embeddings of high-dimension, complex input data from

a transformed sample in a lower-dimension, simpler latent space. Broadly speaking, it does

so in two manners:

1. Exploiting the underlying structure of the input data, and

7

2. Recreating the original object in a more efficient manner.

Following this design, it can be useful to define its two main parts: the encoder and

decoder. The former, the encoder, receives the original object, x, as an input, and is trained

to learn a mapping onto a meaningful, yet smaller representation, z ∈ R
k, in a lower k-

dimension coordinate system. To simplify notation, we define the encoding function to be

qϕ(z|x). This compression from a high to low dimension space is commonly referred to as a

bottleneck effect. The latent vector representation, z, is then fed into the latter, the decoder,

where the hidden representation is used to reconstruct the original input from pθ(x|z).

Naturally, during this process, there will be some measure of information lost as a con-

sequence of the bottleneck effect. In totality, the autoencoder is evaluated on the difference

between the original data and the reconstructed output, as measured by the classical recon-

struction loss functions. A regularization term is commonly added to discourage the model

from simply memorizing the input and overfitting.

Our focus is on the application of autoencoders in the context of generative modeling for

which variational inference is used to redefine the loss function, giving way for an alternative

framework called variational autoencoder (VAE). Specifically, VAEs replace the fixed latent

representation with an entire probability distribution z ∼ pθ(z) instead that can be used for

interpolation and sampling. In other words, doing so imposes that the encoded representation

onto the new latent coordinate space be organized and structured. In effect, the distribution

can be used to perform generative tasks for new instances.

In this approach, the conformity to the standard normal distribution can be thought of

as a regularization term measured by the addition of the KL-divergence term in the loss

function, thereby forcing the learned latent distribution to conform to a standard normal

distribution.

And so, if we suppose the true unknown distribution of x ∼ pdata(x), then in the encoder,

we can define [z|x] ∼ qϕ(z|x). Most commonly, a standard normal distribution is used

8

for z ∼ N (0, Ik). In turn, we would have that the encoder model learns the mean and

covariance parameters from N (µϕ(z), σϕ(z)Ik) and then sampled from to create the sampled

latent vector that is used to recreate the higher dimension object. Continuing with the above

notation, we have that in the decoder model, [x|z] ∼ pθ(x|z).

Hence, at the root, the VAE would like to maximize the probability of each data in x, or

pθ(x) whose log-likelihood is given as:

log pθ(x) = Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] +DKL(qϕ(z|x)|pθ(z|x)),

where the first term is the ELBO and the second term is the KL-divergence. However, since

the posterior pθ(z|x) is intractable, we must use ELBO to maximize the log-likelihood by

proxy, using the fact that the first term serves as the variational lower bound to log pθ(xi).

Therefore, to maximize the likelihood of the data is to also maximize the following objective:

Lθ,ϕ(x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)|pθ(z)).

Figure 2.1: Architecture for vanilla VAE in context for image generation [1]

9

2.2.2 Generative Adversarial Networks (GANs)

We now proceed with a general overview of our second generative model, the generative

adversarial network (GAN) [2, 12]. Much like autoencoders, a GAN is also an unsupervised

learning technique using actually a combination of two models, but what makes it unique is

its use of adversarial training. Similar to our discussion of VAEs, we continue by detailing

both parts to the architecture as follows:

1. The generator, G, which learns a mapping to represent the underlying data x given a

noise vector z, and

2. The discriminator, D, which aims to distinguish between the samples drawn from

the distribution of the training data x ∼ pdata(x) against samples drawn from the

reconstructed distribution x̃ ∼ pθ(x).

Oftentimes, we sample z from the standard normal so that z ∼ N (0, Ik) which is easy to

sample from. The generator maps the sampled z onto a new coordinate system that shares

the same domain as x, or with notation, G(z) ∼ pθ(x). In theory, the instance G(z) = gθ(z)

should be a replicate of the original data x and so by extension, pθ(x) should resemble

pdata(x).

Next, both the remapped data gθ(z), again, meant to be a proxy to x and assigned a

label y = 0, and the instance x from the original distribution, assigned a label y = 1, are fed

into the discriminator. Through this process, we are able to largely reframe the unsupervised

learning task to that of a supervised learning problem since at its core, the discriminator

is simply a binary classifier that predicts the authenticity of each instance according to the

probability of an instance belonging to the original distribution.

Hence, the combination of the two models together are designed so that the discriminator

aims to maximize the chances of predicting the correct label whereas the generator seeks to

fool the discriminator by generating an instance gθ(z) that is near indistinguishable from

10

original data and appears to have originated from the pdata(x). Under this architecture, the

two models compete with each other in a minimax game in what is commonly referred to

as a zero-sum game. A common analogy in this setup is a cat-and-mouse or cop-and-thief

scenario under an actor-critic model.

Starting from the binary cross entropy loss function, the classical GAN value function is:

V (G,D) = Epdata [log[D(x)]] + Epz [log[1−D(G(z))]].

In practice, to mitigate the vanishing and exploding gradient issue, we can adjust the

loss function to maximize E [log[D(G(z))]].

During training, it is typical that the generator is first fixed when updating the dis-

criminator; then after the generator’s parameters, θ, have been updated, the discriminator’s

parameters, ϕ, can be updated next. With the JS-divergence, under a fixed D, we can prove

that V (G,D) is minimized when the generated distribution pθ(x) is equal to the target dis-

tribution pdata(x). In this state, the generator is trained to a point where it is able to produce

examples indistinguishable from its original counterpart, which is synonymous to where the

discriminator only being able to classify the data correctly about half the time.

11

Figure 2.2: Architecture for vanilla GAN in context for image generation [2]

12

CHAPTER 3

Methods

In this chapter, we elaborate on four generative models designed for use in the recommender

system domain. For each framework, VAE and GAN, we explain the mechanics of one

implementation each followed immediately by another implementation that specifically takes

into account the cold-start problem. Each section details the objective functions as well as

how predictions are made from the trained models.

3.1 VAE-CF

Fundamentally speaking, VAEs can be viewed as a generalization of a latent variable model,

not unlike those that populate the industry today and were described in the prior chapter,

namely matrix factorization. Simply put, these methods all attempt to reduce the dimension

of the user-item matrix into an expression from a lower dimensional space. In this regard,

matrix factorization methods, such as SVD and SLIM, are not unlike the bottleneck effect

that is seen in VAE architectures. In fact, the vanilla VAE also assumes a Gaussian latent

distribution like in SVD.

Most importantly however, VAEs are not bound by the same limitations of linearity as

their matrix factorization counterparts. Rather, the neural network framework unleashes the

full potential for the model to learn the entire latent distribution. This effect from multi-layer

perception models is frequently sought after and continues to provide significant advantages

over its non-linear counterparts. Added to that, VAEs inherently lend themselves to be more

13

robust due to the option of tapping into a wider range of likelihood functions outside of the

commonly-used Gaussian likelihoods underneath most linear-based techniques.

It is with these key distinctions and advantages in mind that we begin our discussion of

generative modeling approaches to recommender systems with a VAE model whose design

seeks to incorporate collaborative filtering principles. Justly named, Variational Autoen-

coders for Collaborative Filtering (VAE-CF) [21], the model receives implicit data in the

form of binary user-item interactions towards learning an underlying multinomial distribu-

tion that drives the generative model. Additionally, the multinomial likelihood tends to

outperform other likelihood functions in ranking problems since its design makes it conve-

nient to also think of the more relevant items to be ranked higher, and thus have a higher

probability weight.

To start, let us consider the m×n matrix X to be the sparse user-item matrix containing

implicit interactions between user i and item j. xi = [xi1, . . . , xin] can then be thought of

as the row vector of all the items that user i has interacted with. The task of learning

the statistical relationship between users and items is fundamentally characteristic in all

collaborative filtering approaches; here, the VAE-CF model accomplishes this through the

encoder ϕ and decoder θ. In other words, xu is inputted into the inference network to yield a

latent representation zu, assumed to be drawn from a Gaussian prior, N (0, Ik). Then, after

zui
is passed through the encoder, the output fθ is treated with a softmax layer to arrive at

a probability vector π(zui
) of user i interacting across the item set. As we assume xu to have

been drawn from a multinomial distribution, the reconstructed x̃ui
can also be thought of

as a sample from Mult(|Iui
|, π(zu), where |Iui

| =
n∑

j=1

xij is the total number of interactions

from user i.

As before, the posterior is intractable and so variational inference with ELBO is required

in order to arrive at following objective function for a single user i:

Lθ,ϕ(xui
) = Eqϕ(zui |xui)

[log pθ(xui
|zui

)]–KL(qϕ(zui
|xui

)|p(zui
)),

14

where the reparametrization trick has been performed on zui
= µϕ(xui

) + ϵ ⊙ σϕ(xui
) and

ϵ ∼ N (0, Ik).

From the information theoretic perspective, the objective function, specifically the KL-

divergence measure, can be treated as a tradeoff between the observed data and the assumed

prior. This can further be contextualized to how closely the approximate posterior follows

either the observed data, qϕ(zui
|xui

), or the assumed prior, p(zui
). It is following this rhetoric

that the authors found it beneficial to add a regularization coefficient β to the second term

that specifies how freely the model can use the inferred signals of the user preferences from

past interactions.

The decoded latent representation vector, fθ(zui
), is all that is needed to sort the items

into a ranked list for predictions.

3.2 CVAE

Now, we extend our discussion to another implementation of VAEs, but this time with

a heavier emphasis on solving the cold-start problem, called the collaborative variational

autoencoder (CVAE) model [3]. Contrary to the VAE-CF model, this approach combines

both collaborative- and content-based principles to better tackle the cold-start problem. By

design, the CVAE model is a Bayesian generative model whose inference and generation

network is used to learn a latent content variable that is passed along into a latent item

variable that also receives input from a latent collaborative variable, thereby qualifying the

approach as a tightly coupled hybrid model. Most importantly, this hybrid model combines

the embedded information in both ratings and content information by means of a twofold

approach:

1. Learning latent representations of the content data, and

2. Identifying implicit relationships between items and users from both the content and

15

rating data.

In particular, the former portion is accomplished through a Bayesian generative model fol-

lowing the classical VAE design.

Because our task involves learning the implicit relationships between items and between

users, traditional deep learning models that require i.i.d. inputs must be enhanced by

Bayesian modeling, thus enabling the learning of the content data as a probabilistic la-

tent variable. And thus, by using Bayesian inference to capture the stochastic nature of the

latent space, this architecture is able to obtain an accurate representation of the content

information that is agnostic to modality. Components of the baseline model, namely the

generation and inference networks, can be implemented by other architecture not limited

to convolution and deconvolution networks for image data (like movie posters) or recurrent

neural networks for sequential data (ie. textual data like movie synopses).

Not unlike the vanilla VAE, each of the latent variables is also drawn from a k-dimensional

standard normal distribution so that:

The latent user variable = ui ∼ N(0, λ−1
u Ik),

the latent collaborative variable = v∗j ∼ N(0, λ−1
v Ik), and

the prior of the content variable = zj ∼ N(0, Ik),

where λu, λv are hyperparameters.

The hybrid framework of this model is highlighted by its inclusion of not only the in-

formation contained in the latent collaborative variable during rating prediction, but also

the data embedded in the latent content variable generated from the Bayesian deep neural

network.

Therefore, formally speaking, we have that the rating for item j and user i, or Rij, is

comprised of the inner product of the latent user variable and latent item variable; where the

latter is further constituted from a latent collaborative variable and learned latent content

16

variable. In particular, where we have specified the latent collaborative and latent content

variables to follow prior normal distributions, the latent item variable can then be thought

of as a product of the two Gaussian distributions and Rij ∼ N (u⊤
i vij , C

−1
ij) and Cij is the

precision parameter representing the confidence for Rij.

Speaking in greater detail of the generative Bayesian model, we have that the original

content data experiences the aforementioned bottleneck effect during the inference network

so that the model can learn the parameters for the latent content variable which can be used

in the generative network to reconstruct the content variable.

As with its vanilla version, the model’s formulation is intractable and so we need to rely on

approximate posterior inference where the original authors have elected to use the Stochastic

Gradient Variational Bayes estimator. Further, by calling on the reparametrerization trick

as before, the model parameters can be trained by backwards propagation and by applying

ELBO, the resulting objective function can be expressed as, for a single item j and across

of layers l = {1, ..., L}:

Lθ,ϕ(xij) =
1

L

L∑
l=1

log pθ(xij |z
(l)
ij
) + log p(vij |z

(l)
ij
)–KL(qϕ(zij |xij)|p(zij))+ const.

In turn, the gradients can be expressed as follows:

∇µij
L ≈ −µij +

1

L

L∑
l=1

Λvij
(EqθV

[vij]− z
(l)
ij
) +∇

z
(l)
ij

log pθ(xij |z
(l)
ij
),

∇σij
L ≈ 1

σij

− σij +
1

L

L∑
l=1

Λvij
(EqθV

[vij]− z
(l)
ij
) +∇

z
(l)
ij

log pθ(xij |z
(l)
ij
)⊙ ϵ(l).

The equations above offer some additional advantage to their maximum a posteriori (MAP)

estimate counterparts that do not consider the precision parameter, C, to help introduce a

measure of uncertainty.

Predictions can then be made according to Rij = u⊤
i (v

∗
ij
+ E[zij]), or more broadly

speaking, E[Rij|X] = E[ui|X]⊤(E[v∗ij |X] + E[zij |X]. Here, in the presence of cold start

17

items, the latent collaborative variable, v∗ij , will be 0, but E[zij] continues to leverage the

information from the learned latent content variable.

Figure 3.1: Architecture for CVAE where the top, contained portion represents the inference

and generation networks [3]

3.3 CFGAN

Previously, we described the GAN architecture as how it was first introduced by Goodfellow

et al. where the initial application was for image generation. Since then, the technique has

been expanded upon for use-cases in natural language processing and music generation too,

yielding results that are both promising and convincing. Likewise, GANs, although novel

and young, are still no strangers to the domain of recommender systems [22, 23].

Characteristically, methods that follow the GAN framework are comprised of a generator,

G, and discriminator, D. Likewise, the generator is taught to sample a plausible item-of-

interest from the learned distribution of a user’s preferences while the discriminator is trained

to determine whether the item belonged to ground truth set or was synthesized. This is

18

performed conditional on each user and across all n items. Introducing notation, we say

that, conditional on user i, ui, the generator samples a single item ij from the item set with

probability π(fϕ(ij, ui)) which is treated with a soft-max and where f(·) is shorthand for

the generator’s MLP and ϕ is the model parameters belonging to the generator. Similarly,

after treatment with a sigmoid function, the discriminator outputs a scalar representing the

probability σ(gθ(ij, ui)) of item ij coming from the ground truth set, where g(·) is shorthand

for the discriminator’s MLP and θ is the model parameters from the discriminator.

Yet, this single-item index approach struggles to utilize the full modeling capabilities of

the adversarial training design since its discontinuous training inputs not only disallow the

use of back-propagation, but also interfere with recommendation accuracy when contradic-

tory labels are inevitably introduced by the discrete, finite sampling scheme.

Thus, the Collaborative Filtering-based GAN (CFGAN) model [4] improves on these

shortcomings by pivoting the generator to generate a real-valued item vector with which

the discriminator is to consequently discriminate the vectors obtained from the observations

from those sampled by the generator. Then, as before, after several epochs and mini-batches

and conditional on the user, the generator is said to arrive at an underlying distribution

following the user’s interests. And since the model is equipped with vector-wise training and

real-values as with its vanilla counterpart, learning is able to be deployed by back-propagation

with stochastic gradient descent (SGD) for ϕ and θ.

At this point though, the CFGAN is still not fully compatible with the recommender

system problem since, unlike the classical GAN framework in image generation, the model

here deals with a highly sparse vector, that although real-valued, still only contains 1’s where

an interaction is observed or is empty else. Therefore, in an effort to deter the generator

from simply replicating a user’s item vector and trivially setting all values to be 1, the

notion of negative feedback is introduced. In execution, from the set of empty-valued items,

we designate a proportion of them to be negative items by temporarily setting their values

to be 0 during training. In the final implementation of the CFGAN, the authors explain

19

a design for negative feedback that combines both a zero-reconstruction regularization and

partial-masking. This combination has the effect of forcing the generator to consider both

(1) generating high values close to 1 for the observed items and (2) assigning low values close

to 0 to the unobserved items.

Now, we are able to arrive at the CFGAN’s objective function, taking cui
to be the

condition vector for user i:

V (G,D) =
m∑
i=1

(log(1−D((x̃ui
⊙ (eui

+ kui
)|cui

)))− logD(xui
|cui

)

− log(1−D((x̃ui
⊙ eui

)|cui
)) + α

∑
j

(xuij − x̂uij)
2),

where eui
is the n-dimensional indicator vector for which items user i has interacted with,

kui
is the n-dimensional vector for partial masking, x̃ij is the n-dimensional vector that is

generated from G given cui
and a random noise vector z ∼ R

n, and α is the tuning parameter

for the regularization portion. Further, we have that the first and last terms correspond to

the generator and the terms in between are associated with the discriminator.

Figure 3.2: Architecture for CFGAN using zero regularization and partial masking [4]

20

3.4 LARA

Finally, we shift our discussion to another generative model architecture – specifically one

that continues to use the approach of adversarial learning, but here, as a proposed solution

to the cold-start problem. As is the case with the new arrival of items (or users even), the

lack of historical data makes it difficult to exploit any user-item interaction. Moreover, the

inability to compute similarity scores between users and items, much less to package as a

recommendation, adds an additional obstacle.

Instead, Sun et al. [5] propose using attribution derived from multiple generators de-

ployed through adversarial learning to generate users from each of the item’s attributes.

The similarity of user and item features, presented as attributes in some intermediate stage,

can then be compared to infer the relationship between the new item and users from the

user set U . From their paper, the original authors describe an example from the product

recommendation space with the new item being a Nike shoe. The item’s attributes may be

its brand (Nike), category (sneaker), and selling price (discount). From there, the model is

able to produce user profiles from each of the item attributes for the type of user profiles

who would align closely with each of the attributes such as, favorite brand is Nike, likes to

exercise, and prefers to shop for items on clearance. From these three user profiles, a real

user can be matched to this generated, “ideal” candidate, and in turn, the new item. The use

of multiple generators for different user profiles based on the different item attributes lends

itself to its chosen name, adversariaL neurAl netwoRk with multi-generAtors, or LARA.

In order to ensure that the generated user profiles do not stray too far and eventually

correspond to a real user belonging in U , a discriminator is trained to discriminate between

the generated profiles and observed users. Beyond this, the discriminator also influences

the modeled item attributes to stay relevant through the joint modeling of user profiles and

item attributes, thereby qualifying this approach to be considered a tight-coupled hybrid

technique.

21

Similar to how CFGAN was modeled conditional on a user, LARA is also designed to be

conditional on an item which we will designated with the condition item vector ci for item j.

Continuing with this example, we say that item j has a representation of k-dimension denoted

by zj = [zj1, . . . , zjk]. For each of these k attributes, individual generators G1, . . . , Gk are

trained to produce k user profiles. Finally, the proposed user vector uc is created by deploying

a neural network to concatenate each of the user profiles.

On the other side of the adversarial training, the discriminator is trained with three pairs

of training instances, each conditional on item j from above: ij and the proposed user vector

uc as well as ij paired with a true user u+ and a negative user u−. This type of negative

feedback is comparable to the zero-regularization and partial masking techniques employed

by CFGAN. Together, these three training pairs are used to help the discriminator output a

scalar probability after passed through a sigmoid function with the aim of assigning a value

close to 1 to the (ij, u
+) pair.

Altogether, the addition of the third training pair, (ij, u
−), discourages the generator from

forming proposed users ill-suited for item j through the same mechanism as the negative

feedback example from CFGAN. But its presence must also be accounted for in the objective

function which is taken over all items j = 1, . . . , n:

Eu+∼ptrue(u+|ij) [logD(u+|ij)] + Euc∼pθ(uc|ij) [log(1−D(uc|ij))]

+Eu−∼pfalse(u−|ij) [log(1−D(u−|ij))],

where the θ is the parameters of the generator. Both θ, ϕ are updated by SGD using the

alternating optimization as with the vanilla GAN.

For predictions with the trained model, given an inputted item, user profiles are generated

and concatenated to form a proposed user vector. From this point, similarity scores are used

to find the top-K users from U by comparison of the vectors uc and u1, . . . , um ∈ U .

22

Figure 3.3: Architecture for LARA including the multi-generator design for the creation of

multiple user profiles from the item attributes [5]

23

CHAPTER 4

Evaluation

This chapter describe how we measured the effectiveness of the aforementioned models with

a real-world dataset. We evaluate the model performance and how well it solves the ranking

and classification problems by measure of the metrics introduced in Section 2.1.

4.1 Data

We choose to measure the success of the models described in the previous chapter within

the domain of movie recommendations and with the popular MovieLens-1M dataset that

has been cited in countless literature pertaining to the topic of recommender systems. The

dataset is comprised of 1,000,209 movie ratings on a scale of 1-5 from 6,039 users and 3,883

items. As warned in Section 2.1, it is often the case that these recommender system problems

face sparsity as is the case here with 95.72% of the values in user-item matrix, X, empty.

Also included are some metadata on the users including gender, age, occupation, and zip

code. Movie information is also provided in the form of 18 genres where some items may

have more genres tagged than others.

4.2 Implementation

For the models that are designed to receive implicit, binary feedback, we present the ratings

that are equal to or greater than 4 as 1’s and all other ratings to be 0’s. Recall that based on

24

the use of negative feedback with the unobserved interactions, some of the empty elements

may eventually be randomly imputed with 0’s too during training.

In general, we retain the same technical architecture for each of the models as the au-

thors originally intended. Hyperparameters, where present, were chosen across a number of

different methods among the four models and the same optimal values determined from each

tuning method by the authors are applied in this paper too.

To facilitate a more efficient training design, we only keep the users who have provided

feedback to 20 or more movies. Additionally, although our models do not explicitly account

for temporal effects and shifting preferences, as is the way users interact with these items in

time, we hold out the most recent interactions for our test set in our 80/20 train-test split.

Models such as CVAE and LARA that make use of the item information, here in the

form of specifically the genre information, receive the input as a one-hot encoded vector

∈ R18, where a movie belonging to three genres will have three 1’s assigned to the corre-

sponding indices and 0’s elsewhere. Therefore, in the LARA implementation, 18 generators

are trained, one for each genre attribute. In the CVAE implementation, several of the acti-

vation layers were altered from its original design that used the CiteULike datasets in order

to accommodate the MovieLens dataset and its desired output.

Again, we measure the effectiveness of the models for their ability to solve the ranking

and classification problems with precision (P@K), recall (R@K), and normalized discounted

cumulative gain (NDCG@K) for K = 20.

4.3 Results

The results for each of the models are presented in Table 4.1.

25

Table 4.1: Summary of Performance for Proposed Models

Method P@20 R@20 NDCG@20

CF-VAE 0.392 0.542 0.420

CVAE 0.362 0.453 0.674

CFGAN 0.412 0.484 0.487

LARA 0.286 0.334 0.839

26

CHAPTER 5

Conclusion

This chapter offers some insights and plausible explications for how the designs of the models

explain their results from the previous chapter. Finally, we conclude this paper with some

final thoughts on the intersection of recommender systems and generative modeling and

possible future work.

5.1 Discussion

Speaking to the use of the multinomial likelihood in the CF-VAE model, we are able to

recognize its utility in the classification problem as suggested by the P@20 and R@20 score

as well as an appropriate proxy for the top-K ranking loss in the rank problem as indicated

by the NDCG@20 score. In their original paper, the authors include comparisons against

Gaussian and logistic likelihoods, both of which fall short in their ability to position the

items in order of descending interest. This is almost to be expected since the multinomial

likelihood is more akin to the recommender system problem by construct, as the probability

weights can be thought of as a level of interest. All of the probability weights needing to

sum up to 1 also forces the model to carefully consider where it assigns weights and to which

items.

Regarding the CVAE model, we observe an impressive NDCG@20 score by nature of

its construction as a Bayesian generative model. In turn, this allows for a more robust

performance since we are able to sample an entire vector from the learned latent distribution

27

instead of relying on a single point estimate.

The strong P@20 and R@20 for the CFGAN model also speaks to the effectiveness of the

vector-wise training in comparison to other GAN-based collaborative filtering models that

still rely on single-item indexing [24] and other collaborative filtering approaches that utilize

traditional pointwise optimization [25] thereby hindering the amount of learning by each

model. In effect, the two models are able to consistently encourage one another to improve

the capability for the generator to create more plausible samples and for the discriminator

to provide feedback on how to produce a more realistic instance.

The LARA model achieved the highest NDCG@20 score of all the other models demon-

strating the possible gains from exploring the user-item interactions and conceptualizing the

user representations at the attribute-level. One possible explanation for this can be demon-

strated through a brief illustration of a user who likes an item, but only for some attributes

more so than others. At the interaction-level, all the item’s attributes, here genre, are obfus-

cated into a single representation. This is harmful especially in a GAN model that is used

to generating dense vectors that contrast with the sparse user vectors that we observe. But

in the case of attribute-level user-item interaction, each attribute is passed through its own

generator and generated item attributes are used to create user profiles whose similarities

are allowed to be more idiosyncratic.

Overall, consistent with the vanilla version, the adversarial networks were the most diffi-

cult to train in terms of convergence as they are frequently cautioned as unstable techniques.

While we did not encounter such obstacles as mode collapsing or vanishing gradients, the

design of the problem naturally adds difficulty. Unlike the vanilla versions and in other

instances of image or music generation, we do not have to deal with a random noise in-

put the same way to generate new and varied instances as our aim is to produce realistic

recommendations from our item set I or user set U .

We can also expand the input data to also receive explicit, non-binary feedback in future

work. Some of these adjustments may be as simple as switching the underlying distribu-

28

tion, such as form multinomial to Gaussian for the CF-VAE model. Future work can also

explore the consequences of changing the conditional input of the CFGAN model from user-

conditional, as currently set, to item-conditional.

When dealing with the cold-start problem, we see how the Bayesian approach to genera-

tive modeling equips the model to still yield relevant outputs. This is suggestive of a strong

prior and its influence on the likelihood through multiple training epochs. The presence of

an assumed prior distribution also makes it robust when faced with sparsity.

5.2 Concluding Remarks

To conclude, we have described use-cases of generative modeling, specifically variations of

the VAE and GAN frameworks, in the practice of recommender systems. Moreover, we

have achieved impressive results for both the ranking and classification problem at hand. In

particular, we have shown how the current linear-based modeling approaches such as matrix

factorization are handicapped not only by their assumptions of linearity, but of normality too

– especially when tasked with learning an entire latent distribution. Rather, by leaning into

the universal approximation theorem, the true user-item interactions in the latent space can

be untapped and modeled to achieve strong results for the recommender problem. Broadly

speaking, VAEs and GANs both lend themselves well to the domain of recommender systems

due to their interoperability with the popular latent variable models used in practice for the

last few decades, but also because of their advanced modeling capabilities. In particular, we

see that their architectures are positioned in a manner that makes it highly conducive and

relatable to tightly coupled hybrid models that solve the elusive cold-start problem.

29

REFERENCES

[1] Visualizing mnist with a deep variational autoencoder, 2018.

[2] Shota Harada, Hideaki Hayashi, and Seiichi Uchida. Biosignal generation and latent
variable analysis with recurrent generative adversarial networks, 2019.

[3] Xiaopeng Li and James She. Collaborative variational autoencoder for recommender
systems. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’17, page 305–314, New York, NY, USA, 2017.
Association for Computing Machinery.

[4] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. Cfgan: A generic
collaborative filtering framework based on generative adversarial networks. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’18, page 137–146, New York, NY, USA, 2018. Association for Computing
Machinery.

[5] Changfeng Sun, Han Liu, Meng Liu, Zhaochun Ren, Tian Gan, and Liqiang Nie. Lara:
Attribute-to-feature adversarial learning for new-item recommendation. In Proceedings
of the 13th International Conference on Web Search and Data Mining, WSDM ’20, page
582–590, New York, NY, USA, 2020. Association for Computing Machinery.

[6] C. Dadouchi and B. Agard. Recommender systems as an agility enabler in supply chain
management. Journal of Intelligent Manufacturing, 32:1229–1248, 2021.

[7] Navin Dookeram, Zahira Hosein, and Patrick Hosein. A recommender system for the
upselling of telecommunications products. In 2022 24th International Conference on
Advanced Communication Technology (ICACT), pages 66–72, 2022.

[8] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[9] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collaborative
filtering model. KDD ’08, page 426–434, New York, NY, USA, 2008. Association for
Computing Machinery.

[10] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender
systems. pages 497–506, 12 2011.

[11] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

30

[13] Shuo Yang, Mohammed Korayem, Khalifeh AlJadda, Trey Grainger, and Sriraam
Natarajan. Combining content-based and collaborative filtering for job recommenda-
tion system: A cost-sensitive statistical relational learning approach. Knowledge-Based
Systems, 136:37–45, 2017.

[14] Poonam B Thorat, Rajeshwari M Goudar, and Sunita Barve. Survey on collabora-
tive filtering, content-based filtering and hybrid recommendation system. International
Journal of Computer Applications, 110(4):31–36, 2015.

[15] G Geetha, M Safa, C Fancy, and D Saranya. A hybrid approach using collaborative
filtering and content based filtering for recommender system. In Journal of Physics:
Conference Series, volume 1000, page 012101. IOP Publishing, 2018.

[16] Guibing Guo. Resolving data sparsity and cold start in recommender systems. In Judith
Masthoff, Bamshad Mobasher, Michel C. Desmarais, and Roger Nkambou, editors, User
Modeling, Adaptation, and Personalization, pages 361–364, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[17] Gunnar Schröder, Maik Thiele, and Wolfgang Lehner. Setting goals and choosing met-
rics for recommender system evaluations. In UCERSTI2 workshop at the 5th ACM
conference on recommender systems, Chicago, USA, volume 23, page 53, 2011.

[18] J.A. Lasserre, C.M. Bishop, and T.P. Minka. Principled hybrids of generative and
discriminative models. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 1, pages 87–94, 2006.

[19] Lars Ruthotto and Eldad Haber. An introduction to deep generative modeling, 2021.

[20] Abu Kamruzzaman and Charles C. Tappert. Developing deep learning models to sim-
ulate human declarative episodic memory storage. International Journal of Advanced
Computer Science and Applications, 10(3), 2019.

[21] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational
autoencoders for collaborative filtering, 2018.

[22] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. Irgan: A minimax game for unifying generative and discrim-
inative information retrieval models. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17,
page 515–524, New York, NY, USA, 2017. Association for Computing Machinery.

[23] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang,
Xing Xie, and Minyi Guo. Graphgan: Graph representation learning with generative
adversarial nets, 2017.

31

[24] Martin Saveski and Amin Mantrach. Item cold-start recommendations: Learning local
collective embeddings. In Proceedings of the 8th ACM Conference on Recommender
Systems, RecSys ’14, page 89–96, New York, NY, USA, 2014. Association for Computing
Machinery.

[25] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, page
452–461, Arlington, Virginia, USA, 2009. AUAI Press.

32

