
UCSF
UC San Francisco Previously Published Works

Title
The Maximum Caliber Variational Principle for Nonequilibria

Permalink
https://escholarship.org/uc/item/1j86s1vw

Journal
Annual Review of Physical Chemistry, 71(1)

ISSN
0066-426X

Authors
Ghosh, Kingshuk
Dixit, Purushottam D
Agozzino, Luca
et al.

Publication Date
2020-04-20

DOI
10.1146/annurev-physchem-071119-040206
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j86s1vw
https://escholarship.org/uc/item/1j86s1vw#author
https://escholarship.org
http://www.cdlib.org/


The Maximum Caliber Variational Principle for Nonequilibria

Kingshuk Ghosh1,*, Purushottam D. Dixit2,3,*, Luca Agozzino4, Ken A. Dill4

1Department of Physics and Astronomy, University of Denver, Denver, Colorado 80209, USA

2Department of Systems Biology, Columbia University, New York, NY 10032, USA

3Department of Physics, University of Florida, Gainesville, Florida 32611, USA

4Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794, USA

Abstract

Ever since Clausius in 1865 and Boltzmann in 1877, the concepts of entropy and of its 

maximization have been the foundations for predicting how material equilibria derive from 

microscopic properties. But, despite much work, there has been no equally satisfactory general 

variational principle for nonequilibrium situations. However, in 1980, a new avenue was opened 

by E.T. Jaynes and by Shore and Johnson. We review here maximum caliber, which is a 

maximum-entropy-like principle that can infer distributions of flows over pathways, given 

dynamical constraints. This approach is providing new insights, particularly into few-particle 

complex systems, such as gene circuits, protein conformational reaction coordinates, network 

traffic, bird flocking, cell motility, and neuronal firing.

Keywords
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1. RECENT DIRECTIONS IN NONEQUILIBRIUM STATISTICAL PHYSICS

Nonequilibrium physics (NEP) is concerned with flows—often of matter, heat, or electrical 

current. Models often treat the macroscale, where the numbers of molecules or particles 

are large enough to be represented as continuous and differentiable functions of space x 
and time t, such as densities or concentrations c(x, t), and where fluctuations are small. 

Macroscopic flow models include Navier–Stokes hydrodynamics, Ohm’s law of electrical 

currents, and gradient-driven flows of particles by Fick’s law or of heat by Fourier’s law.

kghosh@du.edu .
*These authors contributed equally to this article

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the 
objectivity of this review.

HHS Public Access
Author manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2023 January 09.

Published in final edited form as:
Annu Rev Phys Chem. 2020 April 20; 71: 213–238. doi:10.1146/annurev-physchem-071119-040206.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



But three factors are driving new results. First, the field is expanding beyond thermal 

materials: to the flows of information through the internet (1), to the flows of people 

moving between cities (2), to the flows of assets moving through stock markets (3), to the 

flocking of birds (4), to citations of scientific papers (5), to the trafficking and signaling 

of biochemicals and proteins or regulation inside cellular networks, to the evolutionary 

dynamics of changing genes and proteins in cells (6–9), to neural signals in the brain (10), 

to biological evolution and development, and to other applications. These situations do not 

involve the thermodynamic baths, physical work, or colliding particles that have historically 

been the core of NEP.

Second, there is growing interest in the microscale, thanks to the emergence of single-

particle or few-particle experimental methods. These are cases of nonequilibrium statistical 

physics, where fluctuations and distributions of rates and routes are important.

Third, there is a continuing quest to find a general variational principle that underlies 

nonequilibrium statistical physics just as the second law of thermodynamics and the 

Boltzmann distribution underlie the statistical physics of matter at equilibrium.

Figure 1 gives an abbreviated history. Through the mid-1800s, there arose the 

phenomenological models for Newtonian viscous fluids, Fick’s law of particle flow, 

Fourier’s law of heat flow, and Ohm’s law of electrical currents. The industrial revolution 

drove an understanding of work and heat in steam engines. A variational principle emerged, 

namely the second law of thermodynamics, following the discovery by Clausius around 

1865 that equilibria could be predicted as a tendency toward the maximum of a quantity he 

called entropy, ΔSClausius = δq/T, for heat q and temperature T. Soon thereafter followed the 

kinetic theory of gases, statistical thermodynamics, and the Boltzmann–Gibbs distribution 

law. These added great power and nuance to the second law by (a) harnessing models that 

could interpret macroscopic equilibria through the microscopic properties of molecules and 

materials and (b) rooting our understanding of the second law maximization of entropy 

in probability distributions over microscopic states. However, a key caveat was that these 

principles were restricted to equilibrium, or close to it.

There was a corresponding quest for a variational principle for nonequilibria. The question 

was whether dissipation rates of energy (dU/dt) or entropy (dS/dt) might tend toward 

minima or maxima. Examples include Onsager’s minimum dissipation of energy (11) and 

Prigogine’s minimum entropy production principle (12) and maximum entropy production 

principle (13). However, these putative principles have never been fully satisfactory, because 

they are restricted to near equilibria, requiring assumptions such as local equilibria or weak 

coupling to baths, and are mainly applicable at the macroscopic level, typically assuming—

rather than predicting—the phenomenological relations. A major obstacle on the path to 

a general nonequilibrium statistical physics variational principle has been the lack of an 

experimental relationship serving the role that ΔSClausius = δq/T plays for equilibria.

Today, there are many models of flows—diffusion equations, the Langevin model, master 

equations, random flights, Boltzmann transport, and others. Why do we need an underlying 

variational principle? Current models entail simplifications—independence of particles 
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or time steps, near equilibria, linear force-flow relations, Gaussian noise, large particle 

numbers, or a focus on heat baths and particle collisions, for example. A general variational 

principle is needed as a road map for more challenging nonlinear few-particle complex 

dynamics, where typical simplifications fail, and for applications beyond thermal physics. 

We review here evidence that maximum caliber (Max Cal) may be such a principle.

2. MAXIMUM ENTROPY AND THE BOLTZMANN DISTRIBUTION: A 

MICROSCOPIC BASIS FOR THE SECOND LAW PRINCIPLE

Boltzmann’s famous expression S = k ln W was an assertion that the Clausius macroscopic 

principle had its roots in the number W of possible microscopic arrangements of the 

system, establishing that Boltzmann’s exponential distribution law was the microscopic 

manifestation of the second law variational principle. In more detail, for any probability 

distribution {pi} = p1, p2, p3, ... over options i = 1, 2, 3,..., we can define the mathematical 

entropy of that distribution to be

Smath = − ∑
i

pilnpi . 1.

This quantity can be computed for any distribution. But this mathematical entropy Smath is 

not the same thing as the physical entropy of Clausius, SClausius. Smath is also not what we 

need for making theoretical models of physical equilibria; for that, we need Sstate, which we 

now describe. First, take the distribution pi to be over microscopic states of the system. Next, 

we assert that only the one specific distribution pi = pi*  that maximizes the entropy,

Sstate = − kB ∑
i = states

pi*lnpi*, 2.

is relevant to second law predictions of physical behaviors at equilibrium. In Equation 2, 

kB is the Boltzmann constant. Sstate is defined for one particular distribution, not for just 

any mathematical distribution. Now, for the canonical ensemble—a system is in contact with 

a bath that fixes the average energy of a system—the prediction procedure is to maximize 

Smath over {pi}, subject to a constraint of average energy

∑
i

piEi = E, 3.

where Ei is the energy of microscopic state i and E is the average energy of the system. 

The probabilities are normalized quantities, ∑i pi = 1. The result is the Gibbs–Boltzmann 

distribution,

pi* ∝ e−Ei/kBT , 4.

where pi* are the probabilities that satisfy these conditions. In Equation 4, T is the 

temperature. This distribution is at the core of equilibrium statistical physics. Equation 4 

predicts the equilibrium populations of all the states i = 1, 2, 3,... in a model.
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The lack of care in distinguishing these different meanings of entropy has been a source 

of confusion. SClausius is a predictor only of macroscopic equilibrium thermodynamics: 

that heat tends from hot bodies to cold ones, that particles tend toward places of lower 

concentrations, and that densities tend to equalize in materials, for example. It does not 

tell us about the microscale or distribution functions. Sstate is a quantity we compute from 

microscopic physical models of equilibria. To relate an equilibrium model to corresponding 

macroscopic experiments, we equate Sstate = SClausius. Below, we describe yet another 

entropy that is pertinent to dynamics, namely the path entropy, Spath.

3. MAXIMUM CALIBER IS A VARIATIONAL PRINCIPLE FOR DYNAMICAL 

PROCESSES

Forty years ago, here in the Annual Review of Physical Chemistry, E.T. Jaynes (14) 

introduced the principle of maximum caliber. Here, we review its status as a general 

principle for nonequilibria as well as some applications. It differs from alternatives in (a) its 

basis in particle trajectories, not concentrations; (b) its maximization of path entropies, not 

state entropies; (c) its inferences of microscopic models that have fewer confounding logical 

traps from experimental data constraints; and (d) its axiomatic foundations in probability 

theory (15).

Here is a brief overview. Max Cal is to dynamics what maximum entropy is to equilibrium. 

Whereas maximum entropy focuses on probabilities of states, Max Cal focuses on 

probabilities of pathways or trajectories. Let {Γ} be the set of all possible trajectories of 

a system that is evolving in time. Γ can represent several types of dynamical processes. 

For example, consider a system evolving from an initial state at time Ti into a final state 

at time Tf (see Figure 2) or trajectories of a system that is at steady state. For the former, 

the individual trajectories are given by Γ = xTi, xTi + 1, …, xTf , which the system can take 

between time points Ti and Tf. Other types of trajectories are discussed below. Let PΓ be the 

probability distribution defined over the ensemble {Γ} of paths.

Let J(Γ) be a functional defined on the space of paths. Examples of J include the flux of 

mass/heat carried by the path, the average dissipation along a path, or an average energy 

along a path. Suppose we want to infer the distribution PΓ over the paths while constraining 

the average

J = ∑
Γ

PΓJ(Γ) . 5.

Here, and in the remainder of this review, we use the uppercase P specifically to indicate 

probabilities over paths, whereas we use the lowercase p to indicate generic probabilities, 

and we will specify the meaning of the latter when we use it.

Note that there are potentially infinitely many probability distributions PΓ that are consistent 

with such constraints. Analogous to the equilibrium situation, we maximize the entropy, but 

now over all possible paths, not states:
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Spath = − ∑
Γ

PΓlogPΓ
qΓ

, 6.

Subject to the constraint in Equation 5 and normalization (see Figure 2). Note that qΓ is a 

reference or prior distribution over paths.

This constrained maximization problem is solved by introducing Lagrange multipliers. We 

write the unconstrained optimization function, called the caliber C,

C = − ∑
Γ

PΓlogPΓ
qΓ

− γ ∑
Γ

PΓJ(Γ) − J + α ∑
Γ

PΓ − 1 . 7.

In Equation 7, γ is a Lagrange multiplier that fixes the ensemble average⟨J⟩ to the given 

value, and α ensures normalization. After maximization, we find

PΓ = qΓe−γJ(Γ)

Qd
, 8.

where

Qd = ∑
Γ

qΓe−γJ(Γ),

a sum of weights over paths, is the dynamical equivalent of a partition function. A key result 

of Max Cal is the relationship between measurable average rate quantities and the model 

dynamical partition function,

J = ∑
Γ

J(Γ)PΓ 10.

= − ∂ logQd
∂γ . 11.

In practice, Max Cal works as follows. First, one asserts what trajectories are relevant to the 

problem at hand. Next, on the basis of relevant constraints, one constructs a distribution over 

the path space (Equation 9). Each trajectory is expressed in terms of the statistical weights 

of the steps it takes. Using Equation 9, one can make predictions analogous to equilibrium 

statistical mechanics. For example, all trajectories can be summed into a dynamical partition 

function Qd. Then, Equation 11 can be used to compute all the statistical weights and 

pathway probabilities that are consistent with the given value of ⟨J⟩ and other constraints if 

relevant. To illustrate its machinery, we provide several examples of Max Cal below.
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4. MAXIMUM CALIBER PROVIDES NEW INSIGHTS

4.1. Two-State Dynamics: Predicting Route Distributions from Average Rates

Consider a single colloidal particle that can hop between two energy wells, A and B (see 

Figure 3). This system was studied experimentally by Phillips and colleagues (16) using 

two-laser traps to establish the two states. Figure 3 shows examples of the trajectories 

of the particle that the authors observed under different trap conditions. The dynamics is 

modeled using Max Cal and assuming a two-state Markov model. The figure shows the 

enumeration over all the paths of the statistical weights of each path. The statistical weights 

for what happens at each time step are u for an up-jump, a or b for staying in state A or B, 

respectively, and d for a down-jump. Only two of these are independent, because the weights 

of all the jump-to states must sum to one, and the weights of all the jump-from states must 

sum to one as well.

The Max Cal approach is to extract from the trajectory two of the independent quantities, 

say u and d, and substitute them into the Max Cal expression shown in Figure 3. With 

these two quantities now determined, the full path probability distribution is obtained. For 

example, Max Cal can predict the variance in the rate distribution from the averages. The 

variances agree with the values determined in the experiment.

The same approach—combining Markovian dynamics with Max Cal—has been applied to a 

single-molecule three-state cycle, A ↔ B ↔ C ↔ A (17). It shows that the noise diminishes 

faster with the increase in the average motor spin rate. It also illustrates how trajectory-based 

modeling can capture all trajectories, not just those near equilibrium, and thus applies far 

from equilibrium.

4.2. Deriving a Phenomenological Law from a Variational Principle Beyond the Fick’s Law 
Average

Here we show how a phenomenological law—Fick’s law of diffusion, ⟨J⟩ = −D∂c/∂x—can 

be derived from a simple microscopic model, to illustrate Max Cal as a variational principle. 

Diffusion-equation models in NEP usually assume that particles are sufficiently numerous 

that their densities or concentrations can be expressed as continuous and differentiable 

functions (see Figure 4). But recent colloidal experiments have explored small-numbers 

diffusion (see Figure 5). There are many small-numbers properties that are of interest, 

and useful for model building, such as the width⟨J2⟩, of the distribution. They are readily 

computed using the trajectory approach of Max Cal with a model, in this case called the 

dog-flea model (different spatial points are represented as dogs, and the particles at those 

points are called fleas because they can hop between dogs).

Figure 6a shows a concentration gradient c(x) along a spatial coordinate x. There are Ni 

particles at position xi. In the language of the dog-flea model (18), Ni is the number of fleas 

on a dog located at position xi. In a time interval Δt, r fleas jump off the dog to the right and 

ℓ fleas jump to the left. We are given two constraints: on average, ⟨r⟩ jump right and ⟨ℓ⟩ jump 

left. What is the probability Pi of having specifically r and ℓ jumps of the respective types? 

We compute Pi by maximizing the path entropy subject to the known average rates, which 

are imposed using Lagrange multipliers λr and λℓ,
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Pi = Qi
−1exp λrr + λℓ ℓ = σrrσℓ

ℓ/Qi, 12.

where we simplify by σ = exp λ and where

Qi = ∑
r, ℓ

Ωi(r, ℓ )exp λrr + λℓ ℓ = 1 + σℓ + σr
Ni

13.

is the dynamical partition function. The latter comes from taking the degeneracy as Ωi(r, ℓ,) = 

Ni!/[Ni – r − ℓ)!r!ℓ!], assuming independence of particles.

The average flux to the right, ⟨r⟩, is given by

〈r〉 = ∂lnQi
∂λr

= Niσr
1 + σr + σℓ

. 14.

Similarly, the flux to the left from the next column, having Ni + 1 particles, is given by

〈 ℓ 〉 = ∂lnQi + 1
∂λℓ

= Ni + 1σℓ
1 + σr + σℓ

. 15.

Now we assume symmetry between left and right (i.e., assuming no drift), yielding λr = λℓ. 

We define p = σℓ/(1 + σr + σℓ) and get the net flux to the right as ⟨J⟩ = ⟨r⟩ − ⟨ℓ⟩ = (Ni − 

Ni + 1)p = ΔNp. We convert this number to a flux (i.e., the number of particles that jump per 

unit time per unit area) and replace numbers with concentrations using ΔN =−AΔcΔx, where 

AΔx is the volume containing the particles. The minus sign indicates that we are considering 

the forward direction to be from i to i + 1,while the gradient Δc = ci + 1 − ci is defined in the 

opposite direction. This gives

〈J〉 = ji − ji + 1
AΔt = pΔN

AΔt = − pΔx2

Δt
Δc
Δx . 16.

Equation 16 is Fick’s law as it pertains to just two adjacent planes of particles. This model 

gives the diffusion coefficient as D = (pΔx2)/(Δt). It explains that the reason the average 

flow of particles is proportional to the difference in concentrations is because there are more 

routes of flow of particles from more concentrated regions.

Although there are other ways to derive Fick’s law, the main points here are that (a) this Max 

Cal approach derives it from an underlying general variational principle; (b) it gives not only 

the average flux, ⟨J⟩ (Equation 16), but also the full distribution Pi of rates (see Figure 7); 

and (c) the Max Cal approach is didactically simple.

4.3. Deriving Kirchoff’s Current Law: How Does Current Divide at a Junction with Two 
Resistors?

Kirchoff’s current relationship states that flows of particles or fluids divide at junctions 

in proportion to the inverse resistance beyond the junction. We summarize Jaynes’s (14) 
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argument that Max Cal derives this principle correctly, while a putative principle of 

minimum entropy production rate does not. While Kirchoff’s principle applies to any type 

of flow, for simplicity, we illustrate it in Figure 8 with two resistors in parallel, Rℓ and Rr. 

The current through a resistor is given in Ohm’s law by i = V0/R, where V0 is the applied 

voltage and R is the resistance. We assume that the resistors are connected to thermal baths 

of temperature Tℓ and Tr, respectively. We ask the question, how does the total current I = Iℓ 
+ Ir split in Ir through the left resistor Rℓ and Ir through the right resistor Rr when the two 

resistors are in parallel?

In the minimum entropy production principle, the current split would be determined by 

extremizing the thermal entropy production, dS /dt = Ṡ, with respect to how the current splits 

through the two paths. We write the entropy production as

Ṡ = Jℓ
Tℓ

+ Jr
Tr

= V 0Iℓ
Tℓ

+ V 0Ir
Tr

= IℓRℓ
2

Tℓ
+ IrRr

2

Tr
, 17.

where Jℓ and Jr are the rate of heat flow across the left and right resistors, respectively.

In Equation 17, the dissipation in a resistor has the usual form: force × flux (V0 × I). We 

have also assumed Ohm’s law: V = IR. Minimizing Ṡ with respect to Iℓ and Ir subject to the 

constraint I = Iℓ + Ir, we get

IℓRℓ
Tℓ

= IrRr
Tr

, 18.

which is clearly wrong because the only thing that determines the current in a resistor at 

voltage V0 is R; the temperature T should not appear. Of course, the resistance could depend 

on temperature, R = R(T), but all that matters for Kirchoff’s law is the resistance.

As above, we combine the dog-flea model with Max Cal. Assume there are N electrons (or 

fleas), of which ℓ can jump through the left branch and r can jump through the right branch 

in a given time interval Δt. We impose ⟨ℓ⟩ and ⟨r⟩ as two constraints. These constraints 

basically relate to properties of the two branches. Imposing these constraints with two 

Lagrange multipliers λℓ and λr, the caliber is

C = ∑ PjlnPj − λℓ ℓ Pj − λrrPj , 19.

where Pj is a microtrajectory defined by a particular partitioning of ℓ and r (the normalization 

condition ∑Pj = 1 is assumed implicitly). Maximizing the caliber, we get Pj ∝ exp (− λℓℓ − 

λrr). Next, converting the microtrajectories in terms of macrotrajectories [PM (ℓ,r)] defined 

by only and r, we get a combinatorial factor N!/[ℓ!r!(N − ℓ − r)!]. Using this, we get a 

multinomial distribution for PM(ℓ, r), which yields ⟨ℓ⟩ = NPℓ and ⟨r⟩ = NPr, where Pℓ = exp (− 

λℓ)/(1 + exp (− λℓ) + exp (− λr)) and Pr = exp (− λr)/(1 + exp (− λℓ) + exp (− λr)) From this, 

we notice that
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ℓ
r = Pℓ

Pr
〈 ℓ 〉 = constant × Pℓ . 20.

Here is the connection with Ohm’s law. First, Ohm’s law currents are macroscopic averaged 

values, so iℓ/ir = ⟨ℓ⟩/⟨r⟩ in the model. Second, our intrinsic quantities correspond to 

resistances in Ohm’s law, Pℓ/Pr = R/Rr. Hence, we recover Kirchoff’s current law—namely, 

that the average flows partition depending on the ratio of resistances. This shows first how 

Max Cal uses only constraints and does not erroneously introduce extraneous factors, like 

temperature, as the minimum entropy production principle does. Second, unlike Kirchoff’s 

law, which applies only to average fluxes, Max Cal plus the dog-flea model also gives the 

full rate distribution of the flows at junctions.

4.4. Maximum Caliber Models Few-Particle Complex Systems and Gene Circuits

Chemical reactions, biochemical networks, and gene circuits often are not simple linear 

systems; they can entail nonlinear elements, negative or positive feedback, oscillators, 

switches, gates, and logic-like elements. These underlying details are often unknown. 

Furthermore, the modelling challenge is compounded for these systems because data 

are noisy due to the small number of particles involved in gene expression. Moreover, 

experiments typically measure the dynamics of few proteins tagged by fluorescent markers, 

whereas the underlying gene expression may be governed by multiple actors. As a result, it 

is usually not possible to infer all underlying interactions and their rates using data. Can we 

instead build an effective dynamical model that is consistent with data and allows us to make 

predictions?

Max Cal is ideal for building such effective few-particle models with limited information, 

such as data on a few species. Max Cal builds models with minimal numbers of parameters 

while allowing maximal determination directly from the data. Below are three examples 

in which Max Cal captures the complex dynamics of few-particle gene circuits. In a gene 

circuit, proteins are synthesized from DNA and can also bind to the DNA and control the 

rate at which it or other proteins are made.

4.4.1. Modeling autoactivation in a single-gene circuit.—Figure 9 shows how 

autoactivation is performed in a single-gene regulatory circuit (20–22). A gene α produces 

a protein of type A. The protein degrades at some rate d. The gene’s DNA is flanked 

by a promoter region. When two A protein molecules in a dimeric form (A2) bind to the 

promoter, gene α then produces protein A faster than it did before.

The experimental data will appear in the form of a noisy switchlike time trace of the 

number NA(t) of A molecules per unit time t (see Figure 9b). It is not possible to infer all 

microscopic rate parameters from these data. Instead, in modeling this circuit, we aim to 

extract the maximum amount of information from the entire stochastic time trace (not just 

averages over it) to infer an effective model. We use the stochastic time trace to infer rate 

g of synthesis, rate d of degradation, and effective accelerated rate g* when the promoter 

is activated. We are not likely to know a priori these rates, the binding affinities of A2 to 
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the promoter, or other such mechanistic variables. Other modeling efforts may include such 

variables explicitly, but these usually require additional parameters without any experimental 

knowledge of their values. Max Cal can be used to extract three core quantities from the 

stochastic data (20, 22). Moreover, Max Cal predicts an effective feedback parameter (K) 

quantifying the coupling between the protein and its promoter. The model also produces 

bimodal distribution, a necessary condition for the model to successfully describe the switch. 

Moreover, the Max Cal model provides insights into how to dial the feedback parameter to 

alter these distributions (20, 22).

Here is how Max Cal works for this simple circuit. We write the caliber as

C = ∑
ℓα , ℓA

−Pℓα, ℓAlogPℓα, ℓA + bα ℓα Pℓα, ℓA + bA ℓA Pℓα, ℓA

+ KA ℓα ℓA Pℓα, ℓA ,
21.

where ℓα is the production state variable, which ranges as integer values between zero 

and some predefined maximum value (M),and ℓA is the degradation state variable, which 

describes the number of previously existing proteins that still exist at the end of the time 

interval. The corresponding Lagrange multipliers for these two constraints are bα and bA, 

and the probability of observing a particular combination of ℓα and ℓA is defined as Pℓα, ℓA. 

The first term, therefore, is the path entropy term. The second and third terms impose the 

constraints on average production and degradation rates, respectively. The information that 

a high number of proteins (NA) should positively correlate with the production of A is 

enforced by constraining the average of ℓαℓA with a Lagrange multiplier, KA (the last term). 

This is the lowest-order term in the coupling of these two variables that must be imposed 

to capture the essence of feedback. Based on this caliber, corresponding caliber-maximized 

path probabilities are

Pℓα, ℓA = Qd
−1 NA

ℓA
exp bα ℓα + bA ℓA + KA ℓα ℓA , 22.

Qd = ∑
ℓα = 0

M
∑

ℓA = 0

NA NA
ℓA

exp bα ℓα + bA ℓA + KA ℓα ℓA . 23.

The likelihood (ℒ) of the experimentally observed trajectory is written in terms of 

Pℓα, ℓA Maximization of the likelihood allows us to determine M, bα, bA, and KA. Upon 

determining these Lagrange multipliers, we can use them to infer different rates, feedback 

parameters, and other features of the circuit (20). None of these parameters are directly 

available in experiment. The feedback parameter is defined as the Pearson correlation 

between the protein production variable, ℓα, and proteins present, ℓA. The value of this 

feedback parameter is an effective measure of how the presence of protein A influences 

protein production. At a molecular level this metric may be affected by the binding constant 

of the dimer protein molecule to the promoter site, among other variables.
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4.4.2. A genetic toggle-switch circuit.—Figure 10 shows a genetic toggle switch 

originally designed by Gardner et al. (23). Gene α makes a protein A at rate g∗, and gene 

β makes a protein B at rate g∗. Each gene is flanked by a repressor region. When a protein 

molecule B binds to the repressor of α, it slows the production of protein A. Likewise, 

when A binds to the repressor of β, it slows the production of B. For this circuit, the 

experimental data are the time traces of the numbers NA(t) and NB(t) of each type of protein 

(see Figure 10b). The Max Cal model produces the alternating output that is the hallmark 

of bistability: as A molecules begin to outnumber B molecules, it becomes winner-take-all, 

and A molecules come to dominate; the reverse is also true. Importantly, Max Cal uses the 

raw input data to predict the production rate in the basal and repressed states as well as the 

degradation rates and the AB correlations (22, 24).

4.4.3. The repressilator, an oscillating genetic circuit.—Figure 11 shows the 

repressilator gene circuit of Elowitz & Leibler (25). It is a circuit of three proteins: A, 

B, and C. Gene α produces protein A; gene β produces protein B; and gene γ produces 

protein C. All are produced at rate g. Protein A can bind to the promoter region of B to 

slow production of protein B; similarly, protein B can slow production of protein C, and 

protein C can slow production of protein A. The rate of production in the repressed state 

is g*, much slower than g. Each protein has the same rate of degradation, d. The raw data 

traces are of each protein as a function of time (see Figure 11b). As before, we maximize the 

likelihood of observing the noisy oscillatory trajectory to infer the underlying effective rates 

g, g*, and d. This fully harnesses the information hidden in the dynamical data (see Figure 

11). The inferred underlying parameters agree well with the underlying model that was used 

to generate the synthetic data (26). Max Cal also predicts the effective feedback strength (K).

4.5. Maximum Caliber Is the Method of Choice When Detailed Models Are Not Known

Traditional modelling approaches have limitations for treating few-particle dynamics and 

complexity (Figure 12). Mass-action (MA) models treat only mass actions (i.e., macroscale 

bulk average kinetics) and not fluctuations or rate distributions. MA plus noise models 

repair this limitation by adding time fluctuations through assumed distributions, such as in 

Langevin equations (27). However, the typical assumed distributions are not always valid. 

For example, such noise models apply only if the dynamics entails a simple unimodal 

distribution; they do not apply for bimodality, such as in the toggle switch. Moreover, such 

models treat complex dynamics by asserting nonlinear functions f—for example, of the Hill 

form, fHill = ⟨A⟩n/[⟨A⟩n + constant]—which are often ad hoc, are not known independently, 

and require multiple parameters. Chemical master equation (CME) models (28) do explicitly 

account appropriately for dynamical fluctuations. However, to construct CME models, one 

needs to know the detailed reaction networks—that is, all the states and the arrows between 

them in terms of multiple species (Y in Figure 12). But often, these many species cannot be 

validated by experiments. Consequently, CME models involve too many parameters and a 

large phase space that can be computationally intractable even for systems as simple as the 

toggle switch or the repressilator. Although finite state projection (29) can help reduce the 

phase space, the combinatorics of multiple species remains a challenge. CME + MA models 

(30) can express the fluctuations, but they also require nonlinear functions, like fHill, and 

parameters that may not reflect an underlying mechanism.
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Max Cal is the method of choice when information available about the underlying circuit is 

minimal. It is a principled way to derive the probabilities of observed trajectories, even in 

complex dynamics, without typical assumptions about the forms of nonlinearities. Due to its 

top-down nature, it keeps phase space minimal and solves the computational challenge of 

CME, and at the same time, it avoids the ad hoc assumptions of CME + MA. Max Cal uses 

all the information in the trajectory, not just the averages over it, even when experiments 

do not give exactly the quantities of interest. Consequently, Max Cal, combined with 

maximum likelihood methods for obtaining parameters, can properly handle data in the form 

of fluorescence signals, and not in molecule numbers, a typical situation in experiments. By 

incorporating a distribution for fluorescence-to-numbers conversion, Max Cal can construct 

the likelihood of observed trajectories in raw fluorescence. This way, Max Cal deconvolutes 

the uncertainty in the fluorescence (per particle) from the small-numbers noise (specific 

to the circuit architecture) and builds models for circuit details. The success of Max Cal 

plus maximum likelihood with fluorescence-to-numbers conversion has been demonstrated 

in different genetic circuits (20, 22, 26).

Here, we make a general point about model making in molecular kinetics. Kinetics 

textbooks typically describe mechanisms, which are assertions about plausible intermediate 

steps that occur on the dominant route from reactant to product for that process. Such 

mechanisms are learned about average dominant routes because they are done in beakers 

of large numbers of molecules. Here, we tackle a different challenge: namely, learning 

mechanisms in small-numbers kinetics from additional insights that come from the 

distributions of the path (in the form of stochastic trajectories), not just the averages. 

For few-particle flows, the distribution of routes, too, gives mechanistic information (i.e., 

the Lagrange multiplier quantities above). But Max Cal and modeling intermediate states 

are not mutually exclusive. The Max Cal models above can readily be augmented by 

whatever additional variables might be needed to address intermediate states and would 

bring additional insights about the route distributions around them. In other words, Max Cal 

can always include more information if there are data. However, in the absence of data, it 

avoids unnecessary assumptions while giving a minimal consistent model.

4.6. Maximum Caliber Can Infer Distributions over Network Parameters from Single-Cell 
Data

Inside cells are biochemical networks with rate coefficients k that are approximately 

time invariant (31). The biochemical species abundances x(k, t) fluctuate as a function 

of time following Poisson small-numbers statistics. This is called intrinsic noise. This 

intrinsic variability scales ∝1/N, where N is the typical average abundance of a species. 

Another kind of variability, called extrinsic noise (32), is observed when the parameters 

k themselves differ from one cell to the next. This variability leads to different stochastic 

trajectories observed across cells. Can we infer a distribution P(Γ) over trajectories of 

species abundance—that is, x(k, t)—that accounts for the extrinsic noise? One challenge 

is that experimental techniques such as flow cytometry, immunofluorescence (33), and 

single-cell RNA sequencing (34) do not directly give stochastic time traces inside individual 

cells. They give only biochemical species abundances due to cell-to-cell variability in a 

given snapshot of time.
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Max Cal can quantify the extrinsic variability from such time snapshot data (35). Dixit and 

colleagues (35, 36) recently developed an approach that infers from single-cell snapshot data 

the distribution over parameters P(k).Max Cal can also infer the distribution over trajectories 

of abundance P(Γ) in a cell population.

Dixit and colleagues took this approach to study the dynamical evolution of phosphorylation 

levels in the epidermal growth factor–activated Akt pathway, one of the most 

frequently mutated pathways in cancer. This approach predicts the correct distribution of 

phosphorylation levels in the population and also infers those biochemical rate parameters 

that dominate the trajectory distribution.

4.7. Maximum Caliber Estimates the Trafficking Dynamics on Networks

Consider the following problem. A biomolecule has many different metastable 

conformations. We want to compute the full transition matrix for all the rates kab between 

all pairs of states a and b. When using molecular dynamics simulations, this can be slow 

and challenging because transitions are rare, involving states of high free energy, which are 

not sampled very often. But Max Cal gives a fast way to approximately estimate this rate 

matrix, given information that is obtained more quickly. If a computer simulation searches 

the conformational space sufficiently to find and sample the metastable state populations, 

and if we know one or two global rate quantities, such as how fast an overall transition 

occurs, then Max Cal predicts the rate matrix that maximizes the path entropy (Figure 13).

Concretely, in a Markovian system with N states {a, b,...}, the path entropy can be expressed 

in terms of the stationary distribution {pa} and the transition probabilities {kab} (37):

S = − ∑
a, b

pakablogkab . 24.

Max Cal estimates the matrix of transition probabilities subject to limited rate information 

by maximizing the path entropy function in Equation 24.

The limited information can include the full stationary distribution {pa} (see, for example, 

38, 39), stationary state averages E = ∑ paEa, or path ensemble averages of dynamical 

quantities 〈J〉 = ∑a, b pakabJab. The entropy maximization can be carried out in an analytical/

semianalytical manner depending on the constraints. Specifically, Dixit et al. (40) showed 

that the transition rates rab of Max Cal are given by

rab ∝ pb
pa

e−γJab, 25.

where γ is the Lagrange multiplier that enforces the value of the dynamical averag e J .

The Max Cal Markov processes have found applications in a variety of areas, including 

understanding the dynamics of biomolecules (37–46), modeling biochemical reaction 

networks (47), decision theory (48), and machine learning (49). Here, we briefly describe a 

couple of applications in detail.
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4.7.1. Estimating the dynamics of conformational change from molecular 
simulations.—Molecular simulations of protein molecules are often performed to find 

the rates and routes of conformational change, since these actions are often determinative 

of biological mechanisms. As described above, the challenge is that molecular dynamics 

simulations are much poorer at finding and sampling rare kinetic transitions (high free 

energies) than they are at finding and exploring the stable and metastable states. The Max 

Cal equation (Equation 25) provides a useful, practical, simple, and fast way to estimate all 

the transition rates between such conformational states, if we know the populations of the 

stable and metastable states, and if we know one or two global average rate quantities (see 

Figure 13). A demonstration that this formula is an accurate estimator has been given on a 

seven-residue alanine peptide, for which the full rate matrix had been obtained by extensive 

computations (40).

Equation 25 has been similarly applied to a much bigger and more complex protein 

conformational change—namely, the allosteric transition that occurs in G protein–coupled 

receptor ligand-activated dynamics (50). One major issue in using Equation 25 is the 

determination of the dynamical average ⟨J⟩ from an unbiased dynamical ensemble and 

the consequent determination of the Lagrange multiplier γ. Most computational sampling 

techniques that determine equilibrium landscapes employ biased ensembles and cannot 

be used to estimate dynamical quantities. Recently, Meral et al. (50) provided an elegant 

solution. They exploited the fact that unbiased dynamical averages can be estimated from a 

biased ensemble in a metadynamics simulation using collective variable coordinates (51). As 

a result, they simultaneously estimated the equilibrium distribution and obtained unbiased 

dynamical averages of several quantities in Markov state models that they then used with 

Equation 25 to estimate the transition rates.

4.7.2. Determining reaction coordinates in molecular simulations.—An 

important challenge is to find the dominant reaction coordinates in computer simulations of 

biomolecular changes. The conformational spaces are high dimensional; simulations sample 

them only sparsely; and even when a good reaction coordinate is known, the rates along 

that coordinate are not obtainable without sufficient sampling to get converged populations. 

Recently, Tiwary and colleagues (41, 42, 45) developed a clever method to determine 

reaction coordinates using the Max Cal equation (Equation 25). They simulate a process 

of interest with metadynamics, which requires first choosing some collective variables that 

are relevant to the problem at hand. First, they estimate the free energy profile along 

any particular linear combination of the collective variables. Next, for any given linear 

combination of reaction coordinates, they estimate the approximate rate matrix on a grid 

using the Max Cal equation (Equation 25). Finally, they choose as the optimal reaction 

coordinate the linear combination that gives the maximum spectral gap in the rate matrix 

(42) (see Figure 14). Optimizing over the linear combination does not require additional 

simulations, since enhanced simulation techniques such as metadynamics allow one to 

estimate the free energy profile along any linear combination given the free energy profile 

along any other linear combination (42).

The principle assumed here is that reaction coordinates usually describe large-scale motions, 

which are slower than small-scale motions (side-chain rotations, small displacements of 
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solvent, etc.). Thus, a pathway that has clearly separated slow motions is a good candidate 

reaction coordinate. This approach extends to multidimensional reaction coordinates (45) 

and has been applied to several examples (43, 44).

4.7.3. Using maximum caliber to correct/update Markov models, given new 
data.—Consider the following common practical problem. All the microscopic rates have 

been estimated in a model network. Now imagine a situation in which, either because of 

perturbations to the experimental system or because of erroneous determination of rates, the 

experimental data do not agree with these predictions. For example, in simulating protein 

folding, due to inaccuracies in all atom force fields, the computed folding rates may disagree 

with experiments. Poor sampling can also lead to such inaccuracies, a well-known issue in 

biomolecular simulations (52). How is the rate matrix then corrected? In most cases, there 

is no unique answer. Max Cal gives a best way to correct the full microscopic rate matrix, 

to bring the model into agreement with the data (47, 53). If the original computed rates are 

{qab}, then we can take the new data-corrected rates to be {kab}, which are obtained by 

maximizing the relative entropy,

S = − ∑
a, b

pakablog kab
qab

. 26.

In another example (47), a growth factor membrane receptor protein undergoes a four-state 

biochemical cycle: unbound to ligand; bound; activated, due to phosphorylation; or degraded 

(Figure 15). For the normal wild-type protein, these rates are known.

Now, some mutations of the receptor—such as in some cancers (54)—cause the activated-

state population pact to be larger by an observable amount. We want to use this single 

observation to update our predicted populations and rates of the four-state model. To do 

this, we maximize the relative path entropy subject to the new value of pact. Notably, while 

there are infinitely many ways to update the rate matrix to fit this information, this approach 

predicts that a higher phosphorylation level is most likely obtained through a decrease in the 

receptor internalization rate (47), a well-documented aberration in the growth factor pathway 

(54, 55).

4.8. Other Applications of Maximum Caliber

Max Cal has also been successfully applied to bird flocking (56), cell motility (57), and 

the firing of neurons (10, 58). For bird flocking, Cavagna et al. (56) constructed a Max Cal 

formalism that correlates observables at two consecutive time steps. This model was shown 

to be superior to one based on static information alone, when benchmarked using synthetic 

data. Tweedy et al. (57) have used Max Cal to model cell motility from cell shapes. They 

infer Lagrange multipliers by analyzing the time evolution of cell-shape trajectories. Their 

inferred Lagrange multipliers can successfully discriminate between drug-treated cells and 

untreated cells, and between genetically modified cells and unmodified parent cells. And 

Max Cal has been used to capture complex critical dynamics of neurons (10, 58). When 

shown natural images, retinal neurons exhibit all-or-none behavior. Using maximum entropy 

(59), studies have established critical behavior in statistical properties of collective neuronal 
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firing. These studies found that the Lagrange multipliers for the maximum entropy models 

were fine-tuned to criticality correspond to a spin glass model. Mora et al. (10) extended 

these observations to the dynamical regime; they modeled the collective behavior of neurons 

by constraining neuron-neuron correlations across time. They showed that incorporating 

dynamical information about neuronal firing using Max Cal predicted that retinal neurons 

are poised at dynamical criticality as well.

5. MAXIMUM CALIBER DERIVES WELL-KNOWN RESULTS OF 

NONEQUILIBRIUM PHYSICS, AS IT SHOULD

5.1. Why Are Markov Models So Ubiquitous in Nonequilibrium Physics?

Markov modeling is effective for a wide range of dynamical processes. In first-order Markov 

models, it is assumed that populations of states, and the rates between them, are adequately 

approximated by knowing only the properties of a given state and its adjacent kinetic 

state (the states at the immediately preceding and following steps). It neglects any more 

distant memory. Why are Markov models so ubiquitous and useful for modeling nature? 

The principle of Max Cal gives an explanation. Among modeling approaches, Max Cal is 

maximally data driven, insofar as it uses directly measured observables. And the point here 

is that the nature of the data that are available through any particular experiment determines 

the best model that captures those data. For example, in a two-state process, A ↔ B, if 

we know only the four quantities—the frequencies of transitions from A to B, A to A, 

B to B, and B to A—then the class of models that maximize the caliber is first-order 

Markovian (60–63). Models with more parameters (higher-order Markov, for example) are 

not warranted unless we have more information. From maximizing caliber with the given 

set of constraints mentioned above, it follows that the rate between two states in two 

consecutive time steps depends only on the previous time step. Lee & Pressé (62) provided 

a rigorous description when data can involve more than two steps, that is, when there is 

memory.

5.2. Known Near-Equilibrium Statistical Physics Results Can Be Derived from Maximum 
Caliber

Max Cal can derive well-known results of near-equilibrium statistical physics that 

relate fluxes, flows, and entropy production. These include the Green–Kubo relationship, 

Onsager’s reciprocal relationship, and Prigogine’s minimum entropy production principle 

(64). For example, following the experiments of Thomson on the coupling of electrical and 

heat flows, Onsager considered two types of flow—say a and b flow between two baths. If 

the fluxes Ja and Jb are linear in the forces (λa, λb), then they couple as follows:

Ja = Laaλa + Labλb, 27.

Jb = Lbaλa + Lbbλb . 28.

Onsager gave a microscopic argument for a reciprocity relationship, Lab = Lba. It can be 

derived much more simply from Max Cal. First, if the particle fluxes at any given time for 

Ghosh et al. Page 16

Annu Rev Phys Chem. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any given trajectory Γ are ja(Γ, t) and jb(Γ, t), then Max Cal predicts the distribution over 

trajectories as

P (Γ) = p(Γ)
Qd

exp ∑
t

λa(t)ja(t) + ∑
t

λb(t)jb(t) , 29.

where Qd is the dynamical partition function, λa(t) and λb(t) are Lagrange multipliers, and 

p(Γ) is the equilibrium distribution. Now, because Max Cal is a partition-function-based 

approach, we immediately have the first and second derivatives,

Ja(t) = ∂logQd
∂λa(t) , 30.

∂Ja(t)
∂λb(τ) = ∂2logQd

∂λa(t)λb(τ) . 31.

Just like in the Maxwell relations for equilibrium thermodynamics, the second derivative 

obtained is independent of the order of differentiation, from which the Onsager reciprocal 

relations follow immediately (see Reference 64 for details of the derivation).

These coupling relationships can be useful not only for thermoelectrics or work and heat, but 

also for how biochemical energy sources drive reactions, molecular motors, and ion pumps 

and for how energy sources can increase precision in biomolecular clocks and proofreading, 

as well as for how photovoltaic materials couple light to current or heat.

6. QUESTIONS, CRITICISMS, PERSPECTIVES, AND LIMITS OF THIS 

REVIEW

This section provides some broader context. But first we note that space limits us from 

reviewing other important, active, and related matters of nonequilibrium statistical physics, 

such as stochastic thermodynamics (65) and large-deviation theory (66).

6.1. Does Maximum Caliber Handle Dissipation Properly?

Does Max Cal properly handle dissipative processes (67, 68)? If Γ denotes a trajectory, and 

if the only constraint is on ⟨J⟩, then Max Cal predicts that the populations of the routes will 

be

P (Γ) ∝ eμJ(Γ) . 32.

But imagine a particle moving through a viscous fluid. Its average velocity could be 

achieved in different ways: either through a large force applied to the particle in a high-

viscosity medium or through a small force applied in a low-viscosity medium. We would 

expect the route distribution to be different in those two cases. But Equation 32 implies 

that there should be no difference in the route distributions. Is this a failure of Max Cal? 

No. Indeed the route distributions will be different. But the single constraint on ⟨J⟩ is not 
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sufficient for such dissipative systems, where the rates U̇ of energy input and output are also 

critical. In this case, we need the following (69):

P (Γ) ∝ eμJ(Γ) + νU̇(Γ) .

This additional constraint leads to the correct rate distribution, as shown in an exact model 

(69). However, note that Max Cal does not itself specify what constraints are needed for any 

given problem. This is a decision required of the modeler, depending on what is relevant for 

a given problem. The challenge resembles that of equilibrium thermodynamics: Specifying 

the temperature alone is not sufficient in situations where volumes and concentrations are 

changing at the same time; then one must also specify the pressures and chemical potentials.

6.2. Numerical Issues in Learning Lagrange Multipliers from Data

Application of Max Cal to noisy biological data often poses numerical challenges. Using 

data to fit several Lagrange multipliers at a time can be computationally expensive (70, 

71). Fitting data can involve solving simultaneously N nonlinear equations. They are often 

not independent. Often, analytical expressions are not available for how ⟨J⟩ depends on 

the statistical weights. And data often have experimental errors. So obtaining Lagrange 

multipliers from data can involve stochastic sampling of coupled nonlinear equations. 

As a result, we sometimes determine constraints not as precisely fixed values but rather 

as distributions over the possible Lagrange multipliers (35). Another challenge in the 

application of Max Cal can be in determining the state space. As was shown in the gene 

network or Markov models for biomolecules, we impose a state space a priori. More 

sophisticated models do not require imposing that space (72, 73).

6.3. Is Maximum Caliber a Principle of Inference, or of Physics?

In summary, Max Cal is a general method for drawing inferences about distributions of rates 

and routes in models of dynamical processes. Given a model, and given limited data—such 

as a few average rates or any other moments—Max Cal predicts the distribution that is 

consistent with the model, the data, and the rules of probability. We view this as identical in 

spirit to how equilibrium statistical mechanics infers distributions. We regard all of statistical 

mechanics as drawing inferences about models of physics.

A question is whether statistical physics can be derived from mechanics, and thus is 

deeper than just inference. Our view is that, in practice, it cannot. While the first law 

is about energies and mechanics and is grounded in physical quantities, the second law 

is about populations—and thus is about inferences or probability theory. One cannot 

derive the second law from the first. Not everything is derivable from pure mechanics 

alone. To paraphrase E.T. Jaynes, Boltzmann’s brilliance was in recognizing that while gas 

behaviors could be determined, in principle, by following all billiard-ball-like collisions over 

time, the only practical way to compute properties was to replace the detailed mechanics 

with a statistical description, hence the term statistical mechanics (74). Once we accept 

Boltzmann’s intellectual leap, and we use the expression S = klnW or S = − ∑ pilnpi, we are 
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necessarily regarding entropy variation as a task of drawing inferences about models from 

data.

Still, there are differences between physical and nonphysical inferences. If all we know is an 

average flux, Max Cal can infer the distribution, but nothing more. But, if the model we use 

in Max Cal is more physical, we can learn more, such as how the rates depend on properties 

of the particle or the flow networks, for example. Where Hamiltonian dynamics does apply, 

it can bring additional mechanistic insights relating forces and flows to properties of the 

underlying molecules. Moreover, among different types of constraints, temperature occupies 

a special place in statistical thermodynamics. Thermal equilibrium has an experimental 

ground truth that dynamics does not, namely that of the Clausius relationship, SClausius 

= q/T = ⟨U⟩/T, which determines the entropy from the mean energy. But the Clausius 

relationship holds only at equilibrium, and under various additional limiting restrictions. 

There is no corresponding ground-truth experimental foundation yet known for dynamics far 

from equilibrium.

6.4. How Does Maximum Caliber Remedy Key Difficulties of Nonequilibrium Physics?

Here we briefly summarize how Max Cal addresses typical challenges and issues with 

nonequilibrium physics.

6.4.1. Maximum caliber operates on trajectories (paths), not states.—A Max 

Cal model can include all relevant paths, including those very distant from equilibrium. 

An important but underappreciated point from Shore & Johnson (15) is that the function 

−∑ pilnpi (a) is the only function that enforces the consistency of the laws of probability, 

but (b) is a valid predictor only for the single distribution function pi*  that maximizes 

it. The only path entropy that is invoked in Max Cal is Spath = − k∑ pΓ*lnpΓ*, having 

route probabilities pΓ* that maximize it. There is no need to consider any deviations from 

that distribution; hence, it satisfies the Shore–Johnson criterion for consistent probabilistic 

inferences (15, 63, 75).

6.4.2. It is not limited to near equilibrium.—Max Cal does not require continuum-

function starting points, such as a state entropy Sstate = S(U, V, N), which is a continuous 

and differentiable function of extensive variables of space and time, and which is strictly 

defined only for equilibria (by the Clausius relation).In order for this smoothness to hold, 

an assumption of local equilibrium necessarily follows. This is restrictive, and it limits 

consideration to processes that take only small steps, equilibrating along the way (76).

6.4.3. It applies to nonthermal systems.—Max Cal is not limited to thermal 

processes, or to temperature baths, so it is readily applicable to a broad range of flow 

problems. It is agnostic about where the model or data come from. It is not limited to 

materials, molecules, their collisions, Hamiltonian systems, the Liouville theorem, heat bath, 

or temperature. Max Cal is more general, including for stochastic-dynamic systems, gene 

circuits, networks, and other systems.
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6.5. Maximum Caliber Gives a Way to Rationalize Different Classes of Nonequilibrium 
Physics

Nonequilibrium processes are often classified into broad categories, such as equilibrium, 

near-equilibrium relaxations (for example, resulting from changing conditions imposed on 

reaction networks or diffusion from high to low concentration), near-equilibrium steady 

state (constant ohmic current through a resistor or dragging a sphere slowly through 

a viscous liquid), or far from equilibrium (driving a sphere to cause turbulence in a 

fluid). These distinctions can be made naturally according to what constraints are relevant 

for formulation in Max Cal. Of course, equilibrium requires the satisfaction of detailed 

balance, with no additional rates imposed otherwise. Near equilibria are processes that 

dissipate, but where the dissipation is linearly proportional to some flow rate ⟨J⟩ for a 

fixed applied force. For example, consider ohmic heat dissipation that is proportional to 

voltage × current. Another example is Stokes’s law, in which a sphere in a viscous liquid 

dissipates ∝ force × velocity. In these cases, near equilibrium can be defined by specifying 

the relevant rate ⟨J⟩ alone, because the linear proportionality with dissipation requires no 

additional dissipation constraint. Near equilibria have one or more of the corresponding 

features: (a) linear force-flow relations, (b) the correspondence of entropy production with 

dissipation, (c) the applicability of local equilibria assumptions, and (d) Green–Kubo and 

Onsager reciprocal relations and Prigogine’s minimum entropy production (64). In contrast, 

far-from-equilibrium processes may require additional information for specifying both the 

macroscopics and microscopics—for example, particular models for the excess dissipation 

beyond that which is specified by ⟨J⟩ alone, or force constraints that cannot be interpreted as 

simple gradients in thermodynamic intensive variables.

7. SUMMARY: MAXIMUM CALIBER IS A GENERAL VARIATIONAL 

PRINCIPLE FOR DYNAMICS AND PATHWAYS

Max Cal is a principle for inferring distributions of rates and routes in dynamical models, 

given limited data. It can derive well-known near-equilibrium results, and it can delineate 

near equilibrium from far from equilibrium, but is also valid far from equilibrium. It 

overcomes traditional problems of NEP. With models, it can derive phenomenological laws, 

such as Fick’s law. It is applicable to few-particle complex systems, such as gene circuits. 

Its logic is advantageous for building the simplest models allowed by the data. And, while 

not fully proven in all contexts, it gives every indication of being a general principle for 

nonequilibria.
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Figure 1. 
Timeline of key developments in nonequilibrium physics: (top row) developers, (middle 
row) nonequilibrium processes and models, and (bottom row) equilibria. The blue boxes 

denote principles explored and realized.
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Figure 2. 
Path entropy measures the uniformity of the traffic distribution through different routes. Line 

thickness indicates the traffic density, i.e., pathway probability.
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Figure 3. 
The use of maximum caliber plus a Markov model to represent two-state dynamics, A 
↔ B. (a) Different trajectories are represented by different landscapes. Maximum caliber 

enumerates trajectories, weighted by path weights that are unknown at the start. (b) 

Measured averages, like the average number of times a particle remained in state A 
(⟨Naa⟩), then determine those weights and thus the relative probabilities of all the paths. 

(c) The predicted variances, given the mean, agree with experiments. Panel c adapted with 

permission from Reference 16.
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Figure 4. 
Diffusion-equation modeling treats concentration c(x, t) as continuous and differentiable—

for example, in Fick’s law, ⟨J⟩ = −D∂c/∂x.
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Figure 5. 
Diffusion at the microscopic level of colloidal particles on a microscopic slide (18). (a) 

The microfluidic apparatus used to measure the free diffusion of a few colloidal beads to 

quantify fluctuations. (b) A snapshot from the video used to track the movements of the 

beads over time. (c) Three typical concentration profiles measured using the apparatus. 

These profiles indicate that few-particle flows such as the one measured in this experiment 

entail large fluctuations. Phenomenology like Fick’s law just describes averages for large 

numbers of particles, and not the fluctuations indicated here. Figure adapted from Reference 

18 with permission from the American Association of Physics Teachers.
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Figure 6. 
(a) Concentration gradient c(x) showing bins i and i + 1, illustrating the different numbers 

N of particles in each one. (b) One possible trajectory, labeled with the statistical weights of 

the steps.
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Figure 7. 
Simple diffusion, from maximum caliber with the dog-flea model, successfully predicts few-

particle experiments (19). First, it derives Fick’s first law, ⟨J⟩ = −D∂c/∂x, from a variational 

principle. Second, it shows that Fick’s law holds down to the few-particle limit. Third, it 

correctly predicts the full rate distribution. Fourth, it computes a Maxwell’s demon–like 

quantity of wrong-way flows (quantified by ϕbadactor), showing that they become negligible 

as the net flux gets larger. And fifth, it accurately gives a flux fluctuation relationship. All 

these predictions result when given only one quantity, equivalent to knowing the diffusion 

constant, D (see Reference 19 for more information). Figure adapted with permission from 

Reference 19.
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Figure 8. 
Maximum caliber derives Kirchoff’s current principle—namely, that current divides at 

junctions in proportion to the relative flow resistances of the channels.
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Figure 9. 
Maximum caliber (Max Cal) predicts the dynamics of an autoactivation gene circuit. (a) 

Gene α produces protein A. When A2 (dimer of A) binds to the promoter, production 

of protein A speeds up (20). Note that negative feedback can be readily treated similarly, 

except that the light blue region here called the promoter is replaced by a region called the 

repressor, and the effect of repression is to slow down, rather than speed up, production of 

A. (b) The experiment measures this stochastic switchlike trajectory. (c) Using this as input, 

Max Cal predicts protein production rates in the normal (g) and accelerated (g*) states, as 

well as degradation rate d.
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Figure 10. 
Maximum caliber (Max Cal) gives rate distributions in a toggle-switch gene circuit. (a) Gene 

α produces protein A. Gene β produces protein B. The binding of A represses production of 

B, and the binding of B represses production of A. (b) The effect is bistability (winner-take-

all): When either species, A or B, enters into small excess, it then grows further to fully 

dominate the population. The stochastic trajectory is experimentally measured. Bottom part 

of panel b adapted with permission from Reference 22. (c) In the absence of anything else, 

Max Cal uses the stochastic trajectory for both proteins to infer different rate parameters g, 

g*, d, etc.
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Figure 11. 
Maximum caliber (Max Cal) gives the few-particle dynamics of the repressilator gene 

circuit. (a) Genes α, β, and γ produce proteins A, B, and C, respectively. The binding of 

A represses production of B, the binding of B represses production of C, and the binding 

of C represses production of A. (b) The effect is an oscillatory time trace. The distribution 

of populations of A, B, and C contains less information than the stochastic time trajectory, 

typically measured in experiments. (c) In the absence of anything else, Max Cal uses the 

stochastic trajectory for all three proteins to infer different rate parameters g, g∗, and d and 

feedback strength K. Panel c adapted with permission from Reference 26.
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Figure 12. 
Traditional dynamical models of gene networks. (a) Mass-action (MA) model describes 

averages (A) with arbitrary nonlinear function f to model feedback (kd is the degradation 

rate). (b) MA + random noise model adds random noise around the MA equation, yielding 

a Langevin-type equation. (c) Chemical master equation (CME) model describes time 

evolution of probability distributions (P) in terms of transition probabilities (W) determined 

by invoking a set of auxiliary species ({Y}) that are often not seen in experiments. (d) CME 

+ MA is a coarse-grained model for the time evolution of probability when substituting the 

phenomenological f functions used in MA for W.
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Figure 13. 
Maximum caliber gives a fast estimate of traffic flows on networks. If we know the 

steady-state populations of the mobile elements that flow through a network, then the 

maximum caliber equation (Equation 25) estimates the full transition-rate matrix, as that 

which maximizes the path entropy.
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Figure 14. 
Maximum caliber can identify good RCs. A complex potential energy landscape (panel a) 

can be projected onto any RC; ΔG is free energy (panels b and c). Maximum caliber allows 

us to quickly estimate the approximate kinetics along any RC and identify the RC that leads 

to the highest separation in timescales (panels d and e). In this simple example, RC1 is a 

better reaction coordinate than RC2.

Abbreviations: CV, collective variable; RC, reaction coordinate.
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Figure 15. 
Model of the growth factor–activated pathway. The four states (①–④) of the receptor are as 

follows. (①) Ligand-free receptors (green) on the cell surface can be (②) bound by a ligand 

(yellow) and then (③) phosphorylated. (④) All receptors can be internalized and degraded, 

albeit at different rates. The arrows indicate transition rates, and the most altered transition 

rate, as predicted by maximum caliber, is shown in (a) gray and (b) pink.
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