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Development/Plasticity/Repair

Sox2 Sustains Recruitment of Oligodendrocyte Progenitor
Cells following CNS Demyelination and Primes Them for
Differentiation during Remyelination

Chao Zhao,1 Dan Ma,1 Malgorzata Zawadzka,1 X Stephen P. J. Fancy,1 Lowri Elis-Williams,1 X Guy Bouvier,1

X John H. Stockley,1 Glaucia Monteiro de Castro,1 Bowei Wang,1 Sabrina Jacobs,1 XPatrizia Casaccia,2

and Robin J. M. Franklin1

1Wellcome Trust–Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical
Campus, Cambridge CB2 0AH, United Kingdom, and 2Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai,
New York, New York 10029-6574

The Sox family of transcription factors have been widely studied in the context of oligodendrocyte development. However, comparatively
little is known about the role of Sox2, especially during CNS remyelination. Here we show that the expression of Sox2 occurs in oligoden-
drocyte progenitor cells (OPCs) in rodent models during myelination and in activated adult OPCs responding to demyelination, and is
also detected in multiple sclerosis lesions. In normal adult white matter of both mice and rats, it is neither expressed by adult OPCs nor by
oligodendrocytes (although it is expressed by a subpopulation of adult astrocytes). Overexpression of Sox2 in rat OPCs in vitro maintains
the cells in a proliferative state and inhibits differentiation, while Sox2 knockout results in decreased OPC proliferation and survival,
suggesting that Sox2 contributes to the expansion of OPCs during the recruitment phase of remyelination. Loss of function in cultured
mouse OPCs also results in an impaired ability to undergo normal differentiation in response to differentiation signals, suggesting that
Sox2 expression in activated OPCs also primes these cells to eventually undergo differentiation. In vivo studies on remyelination follow-
ing experimental toxin-induced demyelination in mice with inducible loss of Sox2 revealed impaired remyelination, which was largely
due to a profound attenuation of OPC recruitment and likely also due to impaired differentiation. Our results reveal a key role of Sox2
expression in OPCs responding to demyelination, enabling them to effectively contribute to remyelination.

Key words: demyelination; oligodendrocyte progenitor cells; remyelination; Sox2

Introduction
Remyelination is a rare example of regeneration within the adult
mammalian CNS in which new myelin sheaths are made by oli-

godendrocytes generated from a population of multipotent CNS
progenitor cells, commonly called oligodendrocyte progenitor
cells (OPCs; Zhao et al., 2005; Franklin and Gallo, 2014). OPCs,
which are abundant throughout the adult CNS, respond to de-
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Significance Statement

Understanding the mechanisms of CNS remyelination is central to developing effective means by which this process can be therapeuti-
cally enhanced in chronic demyelinating diseases such as multiple sclerosis. In this study, we describe the role of Sox2, a transcription
factor widely implicated in stem cell biology, in CNS myelination and remyelination. We show how Sox2 is expressed in oligodendrocyte
progenitor cells (OPCs) preparing to undergo differentiation, allowing them to undergo proliferation and priming them for subsequent
differentiation. Although Sox2 is unlikely to be a direct therapeutic target, these data nevertheless provide more information on how OPC
differentiation is controlled and therefore enriches our understanding of this important CNS regenerative process.
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myelinating injury by first undergoing activation, colonization of
the demyelinated area by proliferation and migration, and even-
tually differentiation into new myelin-forming oligodendrocytes
(Franklin and ffrench-Constant, 2008; Moyon et al., 2015). Crit-
ical to this process is the switch from a proliferative/migratory
state to the exiting from the cell cycle and differentiation into a
nondividing, nonmigratory mature oligodendrocyte. In both de-
velopmental myelination and remyelination, the OPC is guided
through these mutually exclusive phases of proliferation and dif-
ferentiation by a complex network of transcription factors, many
of which have been identified, although the nature of their inter-
actions remains incompletely understood (Wegner, 2000,
Wegner and Stolt, 2005; Emery, 2010; Fancy et al., 2011; Swiss et
al., 2011).

A transcription factors whose expression is increased follow-
ing OPC activation is the HMG family SOX (sex determining
region Y box) member Sox2. This transcription factor has been
extensively studied in stem cell and developmental biology. Sox2
is a master regulator of embryonic stem cells, maintaining self-
renewal and multipotency (Avilion et al., 2003), and is one of the
four transcription factors originally associated with reprogram-
ming somatic cells to a pluripotent state (Takahashi and Ya-
manaka, 2006, Takahashi et al., 2007). In the nervous system,
Sox2 is involved in both developmental neurogenesis (Pevny and
Nicolis, 2010) and adult neurogenesis (Bylund et al., 2003; Gra-
ham et al., 2003; Ferri et al., 2004; Episkopou, 2005).

Sox2 was first described in the context of the oligodendrocyte
lineage in cultured OPCs, where its induction by platelet-derived
growth factor (PDGF) and bone morphogenetic protein 2 is as-
sociated with converting OPCs into multipotent “stem cell-like
cells” (Kondo and Raff, 2000, 2004). Subsequently, Sox2 was
identified as an OPC gene whose expression was subject to the
same epigenetic control as other OPC differentiation inhibiting
transcription factors (Shen et al., 2008). However, a recent article
(Hoffmann et al., 2014) revealed an unexpected role for Sox2 in
the induction rather than the inhibition of oligodendrocyte dif-
ferentiation (via the suppression of miR145). Although the role
of other Sox proteins in oligodendrocytes has been widely studied
(Stolt et al., 2002; Sohn et al., 2006; Finzsch et al., 2008; Chew and
Gallo, 2009; Molofsky et al., 2013), the role of Sox2 in oligoden-
drocyte biology, and especially in remyelination, is incompletely
understood.

Here, we show that Sox2 expression occurs in activated OPCs
during developmental myelination and remyelination following
demyelination, but is expressed in neither adult OPCs in the
nondamaged CNS nor by oligodendrocytes following myelina-
tion or remyelination. Using both loss-of-function and gain-of-
function approaches in cultured OPCs and conditional knockout
of Sox2 in transgenic models, we show that Sox2 promotes OPC
proliferation and survival. We conclude that the increased ex-
pression of Sox2 in activated OPCs responding to demyelination
is critical for remyelination, maintaining them in a proliferating
state and priming them for differentiation.

Materials and Methods
Focal demyelination in caudal cerebellar peduncle in rats and
spinal cord white matter in mice
All animal procedures were performed in compliance with United King-
dom Home Office regulations. The animals were housed under standard
laboratory conditions on a 12 h light/dark cycle with constant access to
food and water. For studies involving demyelination, female Sprague
Dawley rats (Harlan Laboratories) 8 –10 weeks of age were used. Anes-
thesia was induced and maintained with isoflurane supplemented with
buprenorphine (0.03 mg/kg, i.m.). Demyelination was induced bilater-

ally by stereotaxic injection of 4 �l of 0.01% ethidium bromide (EB) into
the caudal cerebellar peduncles (CCPs), as previously described (Wood-
ruff and Franklin, 1999). EB was delivered at a rate of �1 �l/min, and the
injection needle remained in position for 4 min. Controls received an
injection of an equal volume of saline. Mouse demyelinating lesions were
created in ventral spinal cord white matter by direct injection of 1%
lysolecithin, as described previously (Zhao et al., 2008; Fancy et al., 2008)
using both male and female mice aged between 9 and 11 weeks. For cell
proliferation assays in vivo, mouse was provided with 5-ethynyl-2�-
deoxyuridine (EdU; 0.2 mg/ml; Life Technologies) in the drinking water
for 4 d following demyelination.

Tamoxifen-induced recombination in transgenic mice
For fate mapping, transgenic mouse lines expressing inducible cre re-
combinase in defined cell types—Pdgfra-cerERT2, Sox10-icreERT2 mice
for OPCs and oligodendrocyte lineage cells, were provided by Professor
W. Richardson (University College London, London, UK), and Gfap-
creERT2 mice for astrocytes were provided by Dr. F. Kirchoff (University
of Göttingen, Göttingen, Germany; Hirrlinger et al., 2006; Rivers et al.,
2008; McKenzie et al., 2014). Sox2 promoter-driven inducible Cre mice
[Sox2-creERT2 (http://jaxmice.jax.org/strain/017593.html)] and actin
promoter-driven Cre line [Cag-creER (http://jaxmice.jax.org/strain/
004682.html)] were obtained from The Jackson Laboratory (Jaxmice).
For OPC fate mapping, homozygous or heterozygous Cre mice were
crossed with homozygous Rosa26-floxedSTOP-YFP reporters to generate
double-heterozygous offspring for analysis (Rivers et al., 2008). For
GFAP fate mapping, double-homozygous mice (Gfap-creERT2:Rosa26-
floxedSTOP-YFP) were used. For Sox2 fate mapping, double-hete-
rozygous mice were used, except that the reporter line expressed
farnasylated green fluorescent protein (fGFP) rather than yellow fluorescent
protein (YFP), and was provided by Dr. E Rawlins (University of Cambridge,
Cambridge, UK). For conditional Sox2 knock-out experiments, mice ex-
pressing loxP sites flanked Sox2 gene (Sox2fl/fl; provided by Dr. S. Nicolis,
University of Milan, Milan, Italy) were crossed with the creERT2 lines to
produce heterozyous creERT2 and homozygous Sox2fl/fl. The resulting
Sox10-icreERT2:Sox2fl/fl and Cag-CreER:Sox2fl/fl mice were used.

Cre recombination was induced according to the protocols previously
described with minor modifications (Leone et al., 2003; Pohl et al., 2011).
Briefly, tamoxifen (Sigma-Aldrich), dissolved in corn oil containing 10%
ethanol, was given to adult mice at 8 –9 weeks of age by intraperitoneal
injection daily for 5 consecutive days, at 100 mg/kg body weight. This was
stopped 5 d before inducing demyelination. Control animals were age-
matched, non-cre-expressing animals with the same genetic background;
in many cases, littermates received identical doses of tamoxifen. Oral
delivery for tamoxifen via gavage was used in some fate-mapping exper-
iments, as described previously (Zawadzka et al., 2010). Newborn mice
received tamoxifen at dosage of 0.1 mg in 50 �l of corn oil per mouse,
from postnatal day 1 (P1) to P3 at the same time each day. In adult
Gfap-creERT2:Sox2fl/fl mice, nearly 80% of GFAP-expressing cells were
labeled with YFP. In the Cag-creER:Sox2fl/fl line, there was �90% reduc-
tion of Sox2-expressing cells in the spinal cord. The Sox10-icreERT2:
Sox2flfl line also produced �90% efficiency in Sox2 ablation in
oligodendrocyte lineage cells within areas of demyelination in spinal
cord.

Tissue processing
Animals were terminally anesthetized with pentobarbitone and perfused
through the left ventricle with 4% (w/v) paraformaldehyde (PFA) in PBS,
pH 7.4, for cryosectioning. PFA fixed tissue containing a lesion was dis-
sected, post-fixed in 4% PFA for 2– 4 h, then immersed in 20% sucrose
solution prepared with PBS for 48 h before embedding with optimal
cutting temperature compound (Bright Instruments). Coronal frozen
sections were thaw mounted onto poly-L-lysine-coated slides and stored
at �80°C until further use.

Multiple sclerosis tissue
Postmortem human brain tissue from six cases was obtained from the
UK Multiple Sclerosis Tissue Bank. Inflammation was characterized by
immunochemistry with LN3 (HLA-DR) antibody and myelin loss by
Luxol fast blue histology.
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In situ hybridization with cRNA probes
Plasmid containing proteolipid protein (PLP)-1 cDNA was a gift from
Professor I. Griffiths (University of Glasgow, Glagsow, UK). Plasmid
containing full-length Sox2 cDNA was obtained from Dr. M. Wegner
(University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany).
Rat platelet-derived growth factor receptor-� (PDGFRA) cDNA in plas-
mid pGEM was provided by Dr. N. Pringle and Professor W. Richardson
(University College London, London, UK). Details of the in situ hybrid-
ization (ISH) procedure using digoxigenin (DIG)-labeled cRNA probes
have been previously described (Fancy et al., 2004; Zhao et al., 2006). To
label cRNA probes, following linearization of plasmids with appropriate
restriction enzyme and DIG or fluorescein isothiocyanate (FITC), la-
beled antisense probes were synthesized using the DIG RNA labeling kit
(Roche) with suitable RNA polymerases. The target mRNA-expressing
cells were visualized as a dark purple deposition with NBT/BCIP–alkaline
phosphatase combination. Double labeling with two color in situ hybrid-
ization has been described previously (Zhao et al., 2008). In brief, a
mixture of two different target mRNA probes labeled with DIG and
FITC, respectively, was used for hybridization with the same subsequent
procedure of single color in situ hybridization. After visualization of first
target mRNA using NBT/BCIP, the alkaline phosphatase is inactivated by
incubation of the slides at 65°C then 0.1 M glycine, pH 2.2, for 30 min,
respectively. Sections were then incubated with alkaline phosphatase-
conjugated antibody specific to the label of the second probe. The second
target mRNA was visualized by incubating with INT/BCIP, which
formed a magenta/brown deposition around the targets.

Immunohistochemistry
Frozen sections, or fixed cultured cells, were rinsed in PBS, permeabilized
and blocked with PBS containing 0.3% (v/v) Triton X-100 and 5% (v/v)
normal donkey serum in PBS for 1 h at room temperature (RT; 20 –
25°C), then incubated for 12–16 h at 4°C with primary antibodies fol-
lowed by incubation with fluorophore-conjugated secondary antibodies
for 1 h at RT. Primary and secondary antibodies were diluted in PBS
containing 5% donkey serum and 0.1% Triton X-100. For double
labeling, the above procedure was repeated sequentially using pri-
mary antibodies from different animal species and distinguishable
fluorophore-conjugated secondary antibodies. Cell nuclei were coun-
terstained with DNA fluorescent dye Hoechst 33342 (Sigma-Aldrich) in
PBS. Stained tissue or cells were coverslipped in FluoSave mounting
medium (Millipore) and examined on either a Zeiss Axio Observer Flu-
orescence Microscope or a Leica SP5 Laser Scanning Confocal Micro-
scope. The following primary antibodies were used: Sox2 (goat, 1:500;
Santa Cruz Biotechnology); GFP (goat, 1:1000; rabbit, 1:1000; Abcam);
NG2 (rabbit, 1:500; Millipore), Nkx2.2 (mouse; Developmental Studies
Hybridoma Bank, University of Iowa, Iowa City, IA); Olig2 (rabbit,
1:1000; Millipore); Olig2 (goat, 1:200; R&D Systems); myelin basic pro-
tein (MBP; rat, 1:200; Serotec); GFAP (rabbit, 1:1000; Dako); Transferrin
(rabbit, 1:1000; Abcam); CC-1 (mouse, 1:100; Calbiochem); Olig1 (rab-
bit, 1:2000; a gift from Dr. John Alberta, Dana-Farber Cancer Institute);
periaxin (rabbit, 1:3000; a gift from Professor Peter Brophy, University of
Edinburgh); Ki67 (rabbit, 1:500; Abcam); and ALDH1L1 (mouse; Neu-
roMab). The secondary antibodies used were as follows: Alexa Fluor
488-, 594-, 633-conjugated donkey antibodies against mouse, rat, rabbit,
or goat IgG, IgG1, and IgG2b (1:1000; all from Life Technologies). Anti-
gen retrieval with 10 mM sodium citrate buffer, pH 6.0, was performed
before labeling nuclear antigens. EdU incorporation was visualized using
Click-iT EdU Alexa Fluor 488 Imaging Kit (Life Technologies) before
immunohistochemistry (IHC). The multiple sclerosis (MS) tissue was
paraffin embedded, subjected to biotin–avidin immunostaining tech-
niques for Sox2, and visualized with 3,3�-diaminobenzidine counter-
stained with hematoxylin.

Isolation and culture of oligodendrocyte progenitor cells from
neonatal rats and mice
Rat oligodendrocyte progenitor cell isolation and transfection. OPCs were
isolated from P2 to P3 neonate Sprague Dawley rats by mechanical dis-
sociation of mixed glial cultures as originally described, with some minor
modifications (McCarthy and de Vellis, 1980). Microglia were removed

by differential adhesion to uncoated plastic Petri dishes (Corning). OPCs
present in the supernatant were pelleted by centrifugation (250 � gmax

for 8 min) and seeded at a density of 1.6 � 10 6 per T-75 cm 2 flask in OPC
medium [DMEM supplemented with Sato’s medium, 10 ng/ml platelet-
derived growth factor AA (PDGF-AA) and 10 ng/ml basic fibroblast
growth factor]. After 2 d, OPCs were dissociated with 1.6 U/ml papain
(Worthington Biochemical Corporation) and subsequently blocked
with 20% FCS in DMEM. A total of 5.5 � 10 6 OPCs were transfected
with 4 �g of DNA using the Rat Oligodendrocyte Kit and Amaxa
Nucleofector II device, according to the manufacturer instructions
(Lonza). Plasmid pCDH.CMV-Sox2:EF1-GFP (System Biosciences) was
constructed to contain the full-length mouse Sox2 gene driven by con-
stitutive cytomegalovirus (CMV) promoter and a reporter gene express-
ing GFP controlled by a separate constitutive promoter, elongation
factor 1 (EF1). Control plasmid pCDH:EF1-GFP contained only GFP.
Following transfection, 6.5 � 10 4 OPCs were plated on poly-D-lysine
(PDL)-coated 22-mm-diameter glass coverslips and maintained in OPC
medium with growth factors before switching to differentiation medium
(OPC medium without growth factors). Cells were fixed with 4% para-
formaldehyde before being analyzed for differentiation by immunostain-
ing for myelin basic protein.

Mouse OPC isolation. Mouse OPCs were isolated from cerebral corti-
ces of mice at age P7–P9 from the transgenic line Cag-creER:Sox2flfl.
Litters providing OPCs were administered intraperitoneally with tamox-
ifen at P1–P3, at a concentration of 2 mg/ml, at the same time each day
for 3 d. At P5, genotyping was performed to identify the Cre and non-Cre
carrier littermates from biopsy samples, which were pooled by genotype
for OPC isolation. Recombination in Cre-expressing (knock-out) indi-
viduals was confirmed by PCR using primers designed to detect the Sox2
gene. OPCs were obtained by enzymatic dissociation and subsequent
immunopanning, as detailed previously (Harrington et al., 2010). Cells
from control and Sox2 knock-out animals were then seeded in 12-well
tissue culture plates coated with PDL (Sigma-Aldrich), at a density of
20,000 per well. OPCs were maintained in serum-free medium contain-
ing PDGF-AA and neurotrophin-3 (NT-3), and ciliary neurotrophic fac-
tor (CNTF) for 4 d before being either fixed with 4% PFA or subjected to
the differentiation condition by withdrawing PDGF-AA and NT-3, and
adding triiodothyronine (T3). Differentiated cells were fixed at day 3 or
5. The fixed cells were then analyzed by fluorescence immunocytochem-
istry. The differentiation of OPCs was assessed by morphology or MBP
expression, as described by Huang et al. (2011).

The mouse OPC transwell migration assay was adapted from pub-
lished protocols using rat OPCs (Stoffels et al., 2015). Briefly, immedi-
ately after isolation, 30,000 OPCs in 200 �l of OPC medium without
growth factors were seeded onto a 24-well Millicell hanging cell culture
insert (8 �m polyethylene terephthalate; Millipore), which was placed in
a 24-well culture plate containing 700 �l of OPC medium with growth
factors (i.e., 20 ng/ml CNTF, 20 ng/ml NT3, and 40 ng/ml PDGF-AA).
The cells were incubated for 4 h, fixed with 4% PFA, and stained with
Hoechst 33342 in PBS. Cells remaining on top of the transwell membrane
were removed by swabbing, and the membrane was inversely mounted
on slides and coverslipped. Cells that had migrated to the underside of
the membrane were imaged from 8 –10 random 10� fields (Observer A1
Inverted Microscope, Zeiss), and Hoechst-stained nuclei were counted
using the open source software ImageJ.

Electron microscopy analysis
Animals were perfused with 4% glutaraldehyde in PBS containing 0.4
mM CaCl2. The spinal cord was coronally sliced at �1 mm thickness and
treated with 2% osmium tetroxide overnight before being subjected to a
standard protocol for epoxy resin embedding (Zhao et al., 2008). Lesions
were located on semithin (1 �m) sections stained with toluidine blue.
Ultrathin sections of the lesion site were cut onto copper grids and
stained with uranyl acetate before being examined with a Hitachi H-600
Transmission Electron Microscope. Myelinated and remyelinated axons
were analyzed for g-ratio, which was calculated as the diameter of axons
divided by the diameter of axons with surrounding myelin sheaths. A
total of 100 –200 axons from three to four animals in each group are
measured for g-ratio.
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Figure 1. Sox2 is expressed by OPCs during developmental myelination but only in astrocytes in adult white matter (WM). A–F, Images show merged fluorescence double immunostaining of
mouse transverse sections of ventral spinal cord white matter at P1 (A, D), P7 (B, E), and P22 (C, F ), double labeled with antibodies against Sox2 and oligodendrocyte lineage marker Olig2 (A–C),
or Sox2 and mature oligodendrocyte marker APC (CC-1). The inset in A shows the boxed area in the main image, with merged Sox2 and Hoechst 33342 staining indicating nuclear localization. Graphs
G–I represent the quantification of the densities of different cell types that express Sox2 throughout postnatal development in ventral spinal cord white matter. J–P, Expression of Sox2 in mouse
spinal cord white matter at P22 (J–L) and P60 (M–P) is further characterized with specific glial markers, and is presented as merged red and green channel images. The arrowheads indicate
representatives of dual-labeled cells. Values are the mean � SE. n � 4. Scale bars: (in F ) A–F, 25 �m; (in J ) J–L, 40 �m; M–P, 75 �m.
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Quantification and data analysis
Immunoreactive cells were counted if they were clearly associated with a
nucleus. Cell density was obtained from at least three areas on separate
sections of unlesioned tissue. For lesions, cells were sampled at random
from three to four transverse sections from the central location of the
lesion (taken to be the section of the lesion with the largest cross-sectional
area). GraphPad Prism and Microsoft Excel software were used for sta-
tistical analysis. An unpaired Student’s t test was used to compare differ-
ences between two groups; statistical significance was set at p 
 0.05.

Results
Sox2 is expressed by oligodendrocyte progenitor cells and
astrocytes in postnatal CNS but not by oligodendrocytes
We first characterized the expression and distribution of Sox2 in
postnatal and adult mouse spinal cord white matter by immuno-
histochemistry. At P1 and P7, when myelination is occurring, nu-
merous cells with Sox2	 nuclei were detected throughout the spinal
cord. These were identified by double-immunofluorescence label-
ing as being Olig2	, NG2	, or Nkx2.2	 OPCs, or GFAP	 astro-
cytes (Fig. 1). No Sox2	 cells were colabeled with the microglia
marker IBA-1 (ionized calcium-binding adapter molecule-1; Fig.
1L). By P22, when most spinal cord axons are myelinated, the

majority of Sox2	 cells were GFAP	 astrocytes, with only 25% of
the Olig2	 oligodendrocyte lineage cells continuing to express
Sox2, among which 15.3% were CC-1	 oligodendrocytes (Fig.
1C,F). By P60, very few Olig2	 cells expressed Sox2, although it
continued to be expressed in �50% of GFAP	 astrocytes (Fig.
1 I,P). These data show that as the spinal cord white matter de-
velops there is loss of Sox2 expression in oligodendrocyte lineage
cells, although it continues to be expressed in a subpopulation of
astrocytes.

Sox2 is expressed by OPCs following acute experimental
demyelination of adult white matter
We next examined Sox2 expression in adult mouse spinal cord
white matter following acute focal demyelination induced by the
injection of lysolecithin (Fig. 2A). At both 5 and 14 d postlesion
(dpl), time points corresponding to peak OPC recruitment and
ongoing differentiation, respectively (Arnett et al., 2004), there
were substantial numbers of Sox2	 cells and Olig2	 cells within
the area of demyelination (Fig. 2B,C). At 5 dpl, 40% of Olig2	

cells also expressed Sox2, although by 14 dpl this proportion had
decreased to 26% and still further to 14% at 21 dpl. Not all Sox2	

cells were colabeled with Olig2	; at each time point, upward of
50% were colabeled with the astrocyte markers GFAP and
ALDH1L1 (Cahoy et al., 2008; data not shown).

The expression of Sox2 in both OPCs and astrocytes generated
a high density of Sox2	 cells within the demyelinated area, which
complicated the analysis of Sox2 expression in oligodendrocyte
lineage cells. We therefore turned to a second toxin-induced
model of demyelination in which there is greater depletion of
astrocytes than occurs following lysolecithin injection. This
model involves the injection of EB and is best characterized in the
adult rat CCP (CCP-EB; Woodruff and Franklin, 1999; Fig. 2D).
We first performed ISH using digoxigenin-labeled Sox2 cRNA
probes. In normal adult white matter, Sox2 mRNA expression
was below the limit of detection by ISH, but at 5 and 7 dpl large

4

(Figure legend continued.) demyelinated areas in rat CCP (G–J) showing overlaid staining of
Sox2 with specific markers using either a combination of in situ hybridization and immunoflu-
orescence, double immunofluorescence, or two-color in situ hybridization. Sox2 mRNA is not
detectable in normal CCP (F), but is strongly expressed at 5 dpl by cells expressing Olig2 (G; inset
shows magnified area), Nkx2.2 (H), PDGFRA (I), and NG2 (J). K, Sox2 	 cells expressing prolif-
eration marker Ki67. L, M, P, Q, At 21 dpl, Sox2 is rarely colocalized with mature oligodendrocyte
markers CC-1 (L), transferrin (M), and PLP mRNA (PLP; P), and remyelinating Schwann cell
periaxin (Q). Sox2 is colocalized only with nucleus-expressing Olig1 at early time points (N, 3
dpl), but later is separate from cells expressing cytoplasmic Olig1 (O). Italic image labels signify
expression of transcripts. Arrowheads indicate examples of colocalization of two or more mark-
ers. The capital L in images marks the area of lesions. Values are shown as the mean � SE. n �
4 –5. Scale bars: B, 200 �m; E, 50 �m; (in F) F, G, 100 �m; H–Q, 50 �m.

Sox2Olig2 Olig2HoechstSox2Olig2

NAWM, Sox2 Lesion edge, Sox2NAWM, LFB Lesion edge, LFB
A B C D

E F G H

Figure 3. Sox2 can be detected in lesions within MS brains. Sections from postmortem cerebral MS tissue were examined, and demyelinated areas were verified by histology and immunohis-
tochemistry, which revealed chronic plaques with active inflammation at the periphery. A–D, The top row illustrates areas of normal-appearing white matter (NAWM; A, B) and of the edge of a
demyelinated lesion (C, D) depicting myelin by Luxol fast blue (LFB; A, C) and immunostaining for Sox2 (brown; B, D), counterstained with hematoxylin, with positive nuclei indicated by arrows. The
bottom row are images from a lesion edge double stained with Sox2 (E) and Olig2 (F) showing colocalization of the two markers (arrowheads). Scale bars: (in D) A–D, 100 �m; (in H) E–H, 50 �m.
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numbers of Sox2 mRNA-expressing cells were detected within
the area of demyelination (Fig. 2F,G). The numbers of these cells
progressively decreased at 10 and 21 dpl. Sox2-expressing cells
were also detected by IHC, where expression was confined to the
nucleus. The temporal profile of Sox2	 cells closely resembled
that observed for Sox2	/Olig2	 following lysolecithin-induced
demyelination in mice (Fig. 2C,E). Double labeling with IHC or

combined ISH/IHC revealed that almost all Sox2-expressing cells
also expressed Olig2 and were therefore likely to be cells of the
oligodendrocytes lineage, although not all Olig2	 cells coex-
pressed Sox2 (Fig. 2E). At 5 and 7 dpl, when there are few or no
oligodendrocytes within the lesion, we identified Sox2	 cells as
being OPCs by colabeling with the OPC markers NG2, Nkx2.2,
and PDGFRA mRNA (Fig. 2H–J). Approximately 50% of Sox2	
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Figure 4. Sox2 expressing OPCs derived from resting OPCs before demyelination give rise to remyelinating oligodendrocytes. Genetic fate-mapping strategy in transgenic mice with tamoxifen-
inducible Cre/LoxP (CreERT2)-mediated activation of reporter gene YFP (or farnesylated GFP; see Materials and Methods). Tamoxifen was administered to mice (blue arrows) relative to the
demyelination lesion (red arrows) for recombination according to two protocols, as illustrated in A, starting either 10 d before demyelination (Aa) or on the day of demyelination (Ab). Focal
demyelination lesion in ventral spinal cord was created by the injection of lysolecithin (Ac). Conditional expression of Cre recombinase was controlled by specific promoters, as indicated in the image
labels with induction protocols marked in the brackets. B–D, Confocal images show overlaid immunostaining of YFP and Sox2 in the unlesioned white matter (B), and areas of demyelinated lesions
at both 5 dpl (C) and 14 dpl (D). E–I, Fate mapping of cells expressing Sox2 (Sox2-creERT2) with tamoxifen induction immediately following demyelination (Ab). The reporter farnesylated GFP rarely
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cells also expressed the proliferation marker Ki67 (Fig. 2K).
These results indicated that Sox2 is expressed by OPCs in re-
sponse to focal acute demyelination.

Sox2 is expressed by OPCs in multiple sclerosis lesions
To examine the expression of Sox2 in clinical disease, we per-
formed immunohistochemistry on postmortem MS brain tissue.
In normal appearing white matter away from lesions, sparse,
weakly stained Sox2-expressing cells were detected (Fig. 3B). At
the periphery of active lesions, Sox2	 cells with stronger staining
intensity were detected (Fig. 3D). Double-labeling immunohis-
tochemistry revealed that Sox2 colocalized with Olig2 in the nu-
clei, suggesting that Sox2 expression occurred in oligodendrocyte
lineage cells (Fig. 3E–H).

Sox2-labeled OPCs are progeny of resting OPCs and a source
of remyelinating oligodendrocytes following demyelination
Since in the prelesion white matter Sox2 is expressed by astrocytes
and not by OPCs, the question arose of whether the Sox2	 cells
present within the lesion after demyelination had arisen from
prelesion Sox2	 astrocytes or as a result of increased expression
in recruited (and for the most part newly generated) OPCs. We
addressed this question using inducible Cre-lox reporter lines in
which the reporter protein YFP is expressed in either PRGFRA	

OPCs (Pdgfra-creERT2:Rosa26-floxedSTOP-YFP; Zawadzka et al.,
2010) or in GFAP	 astrocytes (Gfap-creERT2:Rosa26-floxed-
STOP-YFP; Hirrlinger et al., 2006). Expression of YFP in either
OPCs or astrocytes within normal prelesion white matter was
induced by systemic administration of tamoxifen 10 d before the
focal demyelination was created by the injection of lysolecithin
into spinal cord white matter (Fig. 4A). In the OPC-YFP mice, the
YFP	 cells did not express Sox2 in unlesioned spinal cord white
matter, but many Sox2	 cells were present within the demyeli-
nated area at both 5 and 14 dpl, indicating increased expression of
Sox2 in recruited OPCs that had either been labeled or were
derived from cells labeled before lesion induction (Fig. 4C–E).
In the astrocyte-YFP mice, many of the GFAP 	 astrocytes
within the lesion expressed Sox2, but none of these cells ex-
pressed CC-1, a marker of differentiated oligodendrocytes
(data not shown). In a separate experiment, we traced the prog-
eny of Sox2-expressing cells following demyelination using Sox2-
creERT2:floxedSTOPRosa26-fGFP mice, where the recombination
was induced immediately following demyelination (Fig. 4Ab). In
an unlesioned spinal cord at 7 d after tamoxifen induction, sub-
stantial numbers of fGFP	 cells were found. These cells did not
express the OPC marker NG2 (Fig. 4E) or the oligodendrocyte
lineage marker Olig2, which is consistent with our earlier obser-
vation that Sox2 expression is minimal in nonactivated adult
oligodendrocyte lineage cells. However, in demyelinated areas at
7 dpl, numerous fGFP	 cells colabeled with NG2 and Olig2 (Fig.
4F,G). The Sox2-labeled cells gave rise to CC-1	 differentiated
oligodendrocytes in the lesions at 14 dpl (Fig. 4H). The majority

of GFAP	 astrocytes in the lesion were also fGFP	 (Fig. 3I).
These data indicate that the resting OPCs in CNS white matter
respond to demyelination by expressing Sox2 and subsequently
differentiate into remyelinating oligodendrocytes.

Decreased expression of Sox2 is necessary for
oligodendrocyte differentiation
We have shown that during developmental myelination Sox2
expression is reduced in the later stages of the oligodendrocyte
lineage associated with myelination (Fig. 1D–F,H). We next
asked whether decreased expression of Sox2 was also associated
with OPC differentiation into remyelinating oligodendrocytes.
In the rat CCP-EB model, little Sox2 expression was detected at
21 dpl (when remyelination is complete) in oligodendrocytes
expressing any of the oligodendrocyte markers CC-1, transferrin,
and PLP mRNA (Fig. 2L,M,P); neither did we see Sox2 expres-
sion in periaxin-expressing remyelinating Schwann cells, many
of which we have previously shown are of OPC origin (Zawadzka
et al., 2010; Fig. 2Q). Sox2 was expressed only in cells with nuclear
Olig1 expression (occurring in OPCs at an earlier stage of remy-
elination), but not in cells with cytoplasmic Olig1 expression
(occurring in mature oligodendrocytes in later stages of the lin-
eage; Arnett et al., 2004; Kitada and Rowitch, 2006; Niu et al.,
2012; Fig. 2N,O). These observations suggest that downregula-
tion of Sox2 may be required for OPC differentiation. To test
whether the presence of Sox2 is sufficient to inhibit OPC differ-
entiation, we transfected cultured rat OPCs with a full-length
Sox2 sequence under the control of the CMV promoter and
found that overexpression of Sox2 in OPCs resulted in a signifi-
cant reduction in differentiation, which was revealed by both a
decrease in the proportion of Olig2	 cells that expressed MBP
and the presence of fewer cells with the complex morphology of
differentiated cells (Fig. 5L–N). This result indicates that Sox2 is
an intrinsic differentiation inhibitor, along with several other
transcription factors such as hes5 (Kondo and Raff, 2000; John et
al., 2002; Liu et al., 2006; Zhang et al., 2009), id2/4 (Kondo and
Raff, 2000; Chen et al., 2012), and Tcf7l2 (Fu et al., 2009; Fancy et
al., 2008).

Loss of Sox2 reduces OPC proliferation and survival in vitro
A role for Sox2 in inhibiting OPC differentiation predicts that the
loss of Sox2 will lead to premature differentiation, and acceler-
ated myelination and remyelination. We tested this prediction
using a double-transgenic mouse line expressing tamoxifen-
inducible CAG promoter (chicken �-actin promoter with CMV
enhancer), and controlled Cre recombinase and Sox2 gene
flanked by loxP sites (CAG-creER:Sox2fl/fl). Recombination was
induced before OPC isolation by immunopanning with CD140a
(PDGFRA) antibody, which resulted in efficient recombination
of Sox2 genes in all cells in the cre carriers and significant loss of
Sox2 protein in isolated OPCs, as revealed by immunostaining
(Fig. 5B,C) and Western blotting (data not shown). OPCs from
both Sox2-depleted mice and controls (non-Cre-expressing lit-
termates) were grown for 4 d in the presence of the OPC mitogens
PDGF-AA and NT3. Despite being seeded at the same density,
there were �50% fewer Olig2	 cells in the Sox2-deficient cul-
tures compared with controls (Fig. 5D). This difference was mir-
rored by a lower proportion of cells expressing the proliferation
marker Ki67 and increased numbers of cells with pyknotic nuclei,
which are indicative of cell death (Fig. 5E,F). In a transwell mi-
gration assay, involving plating freshly isolated OPCs into the top
chamber of a 6 mm hanging cell culture insert (polyethylene
terephthalate, 8 �m pore size), there was a significant reduction

4

(Figure legend continued.) proliferating culturing conditions, Sox2 ablation did not alter the
proportion of MBP-expressing cells in the Olig2 	 population. I–K, Extent of differentiation of
OPCs was assessed by calculating the proportions of three levels of morphological complexity of
MBP-expressing cells (I) following the withdrawal of PDGF-AA and NT-3, and the addition of T3
at day 3 (J) and day 5 (K), respectively. L–N, Overexpression of Sox2 by transfecting isolated rat
OPCs resulted in a decreased number of MBP-expressing cells (L, M) and was quantified by the
relative number of levels of morphological complexity of MBP labeling (N). All values are the
mean � SE. n � 3. **p 
 0.01, ***p 
 0.001, unpaired t tests comparing knockouts and
controls. Scale bars: (in B) B, C, 100 �m; I, 50 �m; (in L) L, M, 50 �m.
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Figure 6. Deletion of Sox2 postnatally reduced numbers of OPCs but caused no impairment in developmental myelination. Mice expressing Cag-CreER:Sox2fl/fl and control Sox2fl/fl littermates
received tamoxifen from P1 to P3, and were analyzed at the indicated time points. A–D, I, L, There was a loss of Sox2 expression in spinal cords of Cre-expressing animals (A, C, and I), but the densities
of CC-1 	 cells were similar (B, D, and L). J, Olig2 	 cells were significantly decreased at P8 in knock-out animals, and this is mirrored by a decreased density of PDGFRA 	 cells and a reduction in
Ki67 	 proliferating Olig2 	 cells (gray bars). E–H, M, A mild (
20%) but significant decrease in the numbers of PLP mRNA-expressing cells at both P8 and P14 was observed. G and H are enlarged
boxed areas in E and F, respectively. N–P, At P14, no visible difference was observed in myelin morphology in ventral spinal cord under electron microscopy (N, O), which is confirmed by
quantification of the g-ratio (P). Values are the mean � SE. n � 4. *p 
 0.05, **p 
 0.01, ***p 
 0.001, unpaired t test. The legend in I also applies to J–M. Scale bars: (in C) A–D, 100 �m; E,
F, 1500 �m; G, H, 60 �m; N, O, 2.5 �m.
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in the number of OPCs migrating to the underside within a 4 h
period across the gradient of mitogens, suggesting impaired OPC
migration in the absence of Sox2 (Fig. 5G). Despite the presence
of OPC mitogens, a proportion of OPCs differentiated into
Olig2	/MBP	 cells; however, the proportion of these cells
among the Olig2 population was the same in both groups (Fig.
5H). Under differentiating conditions, which were created by the
withdrawal of mitogens and the addition of thyroid hormone
(T3) for 3 or 5 d, there was an impaired differentiation in the
Sox2-deficient cells compared with controls, which was revealed
as a decrease in the proportion of MBP	 cells with mature
membrane-bearing morphology (Fig. 5I–K). This result was at
variance with our hypothesis that the absence of Sox2 would
accelerate differentiation. A possible explanation is that the ex-
tent of differentiation was the consequence of reduced numbers
of cells in Sox2-deficient cultures, as the rate of differentiation is
closely associated with OPC densities (Yang et al., 2005, Rosen-
berg et al., 2008). However, a recent report (Hoffmann et al.,
2014) has shown that Sox2 expression is retained at the early stage
of terminal differentiation and is important for differentiation.
Although obtained using OPCs from neonatal CNS that may not
necessarily predict the behavior of adult-derived OPCs, our in
vitro data suggest that Sox2 is a positive contributor to OPC
proliferation and survival, and that its expression is also required
to “prime” OPCs for full differentiation.

Ablation of Sox2 in vivo has a minor effect on developmental
myelination but impairs OPC recruitment and remyelination
after demyelination
We next tested the effect of Sox2 knockout on developmental
CNS myelination and remyelination in vivo using a highly effi-
cient Sox2 knock-out line, Cag-creER:Sox2fl/fl. Postnatal admin-
istration of tamoxifen at P1–P3 resulted in a nearly complete loss
of Sox2	 cells throughout the spinal cord when examined at P8
and P14 (Fig. 6A,C,I). This led to a 40% reduction in density of
PDGFRA mRNA	 OPCs and Olig2	 oligodendrocyte lineage
cells, and a reduction in Ki67	 proliferating Olig2	 cells at P8
(Fig. 6 J,K). However, at P14 there was only a modest reduction
in PLP mRNA-expressing cells but no significant difference in the
densities of either Olig2	 and CC-1	 cells (Fig. 6L,M). No dif-
ference was detected in myelination examined by electron mi-
croscopy, and similar g-ratios were obtained in ventral spinal
cord white matter obtained from control and Sox2 knock-out
littermates (Fig. 6N–P). These data indicate that deletion of the
Sox2 gene at an early postnatal stage transiently reduces the num-
ber of proliferating OPCs but has no sustained effect on myelina-
tion. The absence of Sox2 knockout in vivo did not result in
precocious OPC differentiation.

Demyelination was induced in ventral spinal cord white mat-
ter 10 –12 d after tamoxifen administration in Cag-creER:Sox2fl/fl

and control mice. As in development, recombination resulted in
a reduction in Sox2 expression throughout the spinal cord, in-
cluding the area of demyelination (see Fig. 7B–D). The loss of
Sox2 did not alter the densities of oligodendrocyte lineage cells in
unlesioned spinal cord white matter, but resulted in a reduction
of Olig2	 cells in the lesion area compared with controls at 3, 5,
and 14 dpl, supporting a role for Sox2 in OPC recruitment fol-
lowing demyelination (Fig. 7D,E). Compared with controls,
there was a substantial reduction in CC-1	 and PLP mRNA-
expressing cells within lesions in Sox2-deficient animals (Fig.
7F,G, J,K), which was reflected in reduced remyelination and
higher g-ratios (indicative of thinner myelin sheaths; Fig. 7L–N).

The data from Sox2 knock-out mice indicated a role for Sox2
in the repopulation of demyelinated areas by OPCs and in sub-
sequent impairment in remyelination. A possible explanation for
the impaired remyelination is that it occurs as a consequence of
the reduced recruitment rather than being due to the role of Sox2
in OPC differentiation per se. We therefore reasoned that if Sox2
impaired remyelination due to its effects on OPC recruitment,
then ablation of Sox2 during the recruitment phase of remyeli-
nation would impair remyelination, while ablation during the
differentiation phase would not. To test this, we induced Sox2
knockout at 3– 6 dpl (OPC recruitment phase) or 11–14 dpl (dif-
ferentiation phase) in Cag-creER:Sox2fl/fl mice. Tamoxifen injec-
tion at both stages resulted in a substantial loss of Sox2 in lesions
(Fig. 8B–D,I–K). However, only in the early knockout was there
a significant reduction of differentiated oligodendrocytes in le-
sions (Fig. 8E–G,L–N). We next demonstrated by EdU incorpo-
ration that, following demyelination, OPC proliferation
predominantly occurs in the first 5 dpl, though small numbers
continue to proliferate at 14 dpl (Fig. 9). From this, we inferred
that Sox2 plays a role in the OPC recruitment stage of CNS
remyelination.

Impairment of remyelination is primarily attributable to loss
of Sox2 in OPCs
Since Sox2 is expressed by both astrocytes and OPCs following
demyelination, the impaired remyelination in Cag-creER:Sox2fl/fl

mice, in which the Sox2 gene is deleted in all cell types, could be,
at least in part, the consequence of a loss of Sox2 in astrocytes,
which are known to play important roles in oligodendrocyte re-
myelination (Franklin et al., 1991, 1993; Talbott et al., 2005). We
therefore next tested the effect of Sox2 knockout specifically
within oligodendrocyte lineage cells. In initial experiments, we
used an OPC-specific inducible Sox2 knock-out line (Pdgfra-
creERT2:Sox2fl/fl). However, the efficiency of recombination in
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these mice was low, and the data generated were inconclusive
(data not shown). We therefore performed subsequent experi-
ments using an oligodendrocyte lineage-specific knock-out line,
Sox10-icreERT2:Sox2fl/fl, which produced a �90% reduction in
the numbers of Sox2	Olig2	 cells (Fig. 10C,F) in lesions. Using
this line, we were able to replicate the remyelination phenotype of
constitutive inducible knockout in Cag-creER:Sox2fl/fl, although
to a smaller extent (Fig. 10). Sox2 knockout did not lead to mor-

phological changes in GFAP	 astrocytes in white matter at the
developmental and adult stages (Fig. 11B–E). Following toxin-
induced demyelination, there were no obvious differences in the
GFAP	 astrocytes (Fig. 11F,G), although this does not preclude
functional changes that are not evident by GFAP immunostain-
ing. In subsequent experiments using a tamoxifen-inducible as-
trocyte conditional Sox2 knockout (GFAP-creERT2:Sox2fl/fl), we
did not detect a significant difference in astrocyte Sox2 knockout
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from control mice in remyelination (Fig. 11H). This finding sup-
ports the interpretation that impaired remyelination in
lysolecithin-injected mice is primarily due Sox2 ablation in
OPCs.

Discussion
The two keys steps in remyelination are as follows: first, the
recruitment of OPCs to and their expansion within areas of
demyelination; and, second, the differentiation of recruited
cells into new postmitotic myelin-forming oligodendrocytes.
The recruitment stage occurs rapidly following acute demyeli-
nation and is necessary to provide sufficient numbers of cells
that are capable of remyelinating the entire area of demyelina-
tion. This usually involves generating a superfluity of cells,
such that the number generated is in excess of the number
required (a common pattern in both developmental and re-

generative biology). The differentiation phase requires OPCs
to drop out of the cell cycle and initiate a myelination program
that reinvests the demyelinated axon with new myelin sheaths.
During the recruitment phase, it is essential that cells do not
differentiate prematurely, potentially leading to a shortfall in
the number required to make a sufficient number of oligoden-
drocytes. The control of these two stages of remyelination
involves a network of transcription factors, whose pattern of
expression carefully regulates the timely transition from one
phase to another (Sohn et al., 2006; Magri et al., 2014). For
example, tcf7l2, hes5, and id2/4 are transcription factors
whose expression increases the number of OPCs following
demyelination as part of the OPC activation response, and
inhibiting oligodendrocyte differentiation (Fancy et al., 2008).
At a critical stage, the expression of these transcription factors
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needs to be suppressed in order for differentiation to occur.
Chromatin modification through histone acetylation by his-
tone deacetylases is a key mechanism involved in the suppres-
sion of differentiation inhibitory transcription factors (Liu
and Casaccia, 2010). Dysregulation of these mechanisms can
alter the kinetics of remyelination, causing it to occur slowly,
as it occurs in aging (Shen et al., 2008).

In this study, we show that the transcription factor Sox2 has a
distinctive pattern of expression during myelination and remy-
elination. In developmental myelination, Sox2 is expressed in
OPCs, but is no longer expressed as these cells differentiate into
myelinating oligodendrocytes or persist as adult OPCs. Thus, in
the adult it ceases to be detectable in oligodendrocyte lineage cells
and can only be detected in a subset of astrocytes. However, fol-
lowing acute demyelination, Sox2 is expressed by OPCs that be-
come rapidly activated in response to injury. By genetic fate
mapping, we have been able to show that the Sox2-expressing
cells within acute demyelinating lesions are derived from OPCs
and not from Sox2-expressing astrocytes. As in developmental
myelination, its levels of expression decline as recruited OPCs
differentiate into remyelinating oligodendrocytes. Thus, Sox2
shares a pattern of expression with other activation genes such as
tcf7l2, suggesting that it too may be primarily involved in recruit-
ment rather than the differentiation phase of remyelination.

Such a function would be consistent with its role in multipo-
tent neural progenitor cells, where it is required for proliferation,
the maintenance of a pan-neural progenitor identity, and the
inhibition of differentiation (Bylund et al., 2003; Graham et al.,
2003). To test this, we first used undertook a gain-of-function
experiment in cultured OPCs, where forced expression led to an
inhibition of differentiation. From this, we predicted that a loss of
function during either myelination or remyelination would lead
to precocious differentiation and premature remyelination.
When we used an efficient, inducible constitutive, and cell-
specific knock-out approach, we were able to show an impair-
ment of remyelination. This seemed at variance with our
hypothesis, but further analysis indicated that the loss of Sox2
function produced such a profound impairment in OPC recruit-
ment (and increased OPC cell death) that the provision of OPCs
became rate limiting, leading to an overall impairment of remy-
elination. Thus, our data suggest that Sox2 plays a role similar to
that of other differentiation inhibitory transcription factors, in-
cluding tcf7l2, id2/4, and hes5, and to its role in multipotent
neural progenitor cells, where its decreased expression is required
for neuronal differentiation (Graham et al., 2003). It is notewor-
thy that the notch signaling pathway, another inhibitor of oligo-
dendrocyte differentiation during myelination (Wang et al.,
1998), is a downstream effector of Sox2 in neural stem cells (Bani-
Yaghoub et al., 2006). Our conclusions are, however, different
from those drawn by Hoffmann et al. (2014), who concluded that
Sox2 (and Sox3) are involved in differentiation.

We are not certain how to resolve this apparent discrepancy
but suggest that, while Sox2 plays a role in recruitment, its expres-
sion within OPCs may also be required to prime them to differ-
entiate, and that without this priming differentiation is impaired.
This is based on the difficulty in inducing OPC differentiation in
vitro in the absence of Sox2. Such a role may also account for the
impairment of remyelination that we found with the Cag-cre-
ERT2:Sox2fl/fl mice, where, in addition to reducing OPC recruit-
ment, those OPCs that were present within the lesion were less
efficient at becoming new remyelinating oligodendrocytes. The
relatively mild phenotype observed in developmental myelina-
tion, consistent with the results of Hoffmann et al. (2014) who

could find no profound role of Sox2 in perinatal OPCs, con-
trasted with the results obtained during remyelination. High lev-
els of redundancy are recognized in Sox proteins, especially
within oligodendrocyte lineage cells between Sox2 and Sox3.
However, the differences between the developmental and regen-
erative responses to the exclusive loss of Sox2 suggest that the
level of redundancy in Sox2 function and the capacity for com-
pensation by Sox3 may decline in adulthood. Another explana-
tion is that the inducible Sox2 knock-out approach used in this
study rendered the compensatory effects incomplete compared
with germline knockout.

An intriguing observation in our study was the expression of
Sox2 in a proportion of astrocytes in the adult spinal cord. We do
not know what the function of Sox2 is in astrocytes and, using a
GFAP-Cre-targeted approach to deplete Sox2 in astrocytes, can
find no evidence that it contributes to CNS remyelination, while
acknowledging that the Sox2 expression in astrocytes not cap-
tured by this approach may play a contributory role.

The function of Sox transcription family proteins is normally
associated with its partner transcription factors (for review, see
Kondoh and Kamachi, 2010). The most in-depth studies were
performed on Sox2–Oct3/4 interaction in embryonic stem cells,
and a number of target genes have been identified. Other exam-
ples include Sox2-BRN2 in neural progenitor cells regulating
Sox2 and nestin genes (Miyagi et al., 2006), Sox10-BRN2 regu-
lating the Krox20 gene in Schwann cells (Ghislain and Charnay,
2006), and Sox10-Olig1 driving MBP gene expression in oligo-
dendrocytes (Li et al., 2007). The identification of Sox2-
associated genes and the partner factors in OPCs remains an area
for future discovery.
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