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Abstract

Background: Premature menopause is a risk factor for accelerated cardiovascular aging, but 

underlying mechanisms remain incompletely understood. This study investigated the role of 

leukocyte telomere length (LTL), a marker of cellular aging and genomic instability, in the 

association of premature menopause with cardiovascular disease.

Methods: Participants from the UK Biobank and Women’s Health Initiative (WHI) with 

complete reproductive history and LTL measurements were included. Primary analyses tested 

the association between age at menopause and LTL using multivariable-adjusted linear regression. 

Secondary analyses stratified women by history of gynecologic surgery. Mendelian randomization 

was used to infer causal relationships between LTL and age at natural menopause. Multivariable-

adjusted Cox regression and mediation analyses tested the joint associations of premature 

menopause and LTL with incident coronary artery disease (CAD).

Results: This study included 130,254 postmenopausal women (UK Biobank: n=122,224; WHI: 

n=8,030), of whom 4,809 (3.7%) had experienced menopause before age 40. Earlier menopause 

was associated with shorter LTL (meta-analyzed ß=−0.02 SD/5 years of earlier menopause 

[95% confidence interval, CI: −0.02 to −0.01], P=7.2×10−12). This association was stronger 

and significant in both cohorts for women with natural/spontaneous menopause (meta-analyzed 

ß=−0.04 SD/5 years of earlier menopause [95% CI: −0.04 to −0.03], P<2.2×10−16) and was 

independent of hormone therapy use. Mendelian randomization supported a causal association 

of shorter genetically predicted LTL with earlier age at natural menopause. LTL and age at 

menopause were independently associated with incident CAD, and mediation analyses indicated 

small but significant mediation effects of LTL in the association of menopausal age with CAD.

Conclusions: Earlier age at menopause is associated with shorter LTL, especially among 

women with natural menopause. Accelerated telomere shortening may contribute to the 

heightened cardiovascular risk associated with premature menopause.

Graphical Abstract
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INTRODUCTION

Menopause is a critical reproductive aging event that indicates the end of fertility in 

women and is associated with acceleration of cardiovascular disease risk.1,2 The median 

age at menopause is ~50-51 years,3 and age at menopause is increasingly recognized 

as a marker of biological aging and health.2,4 As earlier age at menopause has been 

consistently associated with increased risk of coronary artery disease (CAD) and other 

cardiovascular conditions,5,6 premature menopause (i.e., <40 years) is now incorporated as a 

“risk-enhancing factor” to guide allocation of primary-prevention statin therapy for women 

in midlife.7,8

The association between earlier age at menopause and cardiovascular disease is well-

established. However, emerging evidence suggests that postmenopausal estrogen deficiency 

does not fully explain the increased cardiovascular risk in women with premature 

menopause.9 Genome-wide association studies of age at natural menopause indicate that 

DNA damage repair pathways play an important role in determining reproductive lifespan 

by influencing ovarian reserve early in life, as well as its subsequent rate of depletion.10 

Additionally, recent research indicates that premature menopause is associated with clonal 
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hematopoiesis of indeterminate potential (CHIP),9 an age-related condition characterized 

by the clonal expansion of hematopoietic stem cells with acquired mutations in leukemia-

associated genes. CHIP has been associated with increased incidence of atherosclerotic 

cardiovascular disease, independent of traditional risk factors.9,11 These findings suggest 

that somatic (acquired) genomic phenomena may play a significant role in linking 

reproductive aging with cardiovascular disease.

Telomeres are nucleoprotein complexes that protect chromosomal DNA from shortening 

during successive cell divisions and prevent genomic instability.12 With aging, DNA damage 

repair mechanisms induce cellular senescence when telomeres become critically short,13 

resulting in a “senescence-associated secretory phenotype” that promotes cardiovascular 

aging and disease.13 Leukocyte telomere length (LTL) has been proposed as a biomarker 

of biological aging, with epidemiologic and Mendelian randomization (MR) analyses 

supporting causal effects of shorter LTL on increased risk of cardiovascular disease.14,15 

Recent data suggest that the development of CHIP leads to shorter LTL, possibly due to 

acceleration of the cell cycle in hematopoietic stem cells with CHIP driver mutations.15 

However, the relationship between age at menopause and LTL remains unclear, with existing 

data being limited and inconsistent.16–18 It is currently unknown if LTL contributes to the 

heightened cardiovascular risk in women with premature menopause.

To gain insights into mechanisms of cardiovascular aging in women with premature 

menopause, this study tested the association of age at menopause with LTL among 

postmenopausal women in the UK Biobank and the Women’s Health Initiative (WHI). In 

addition, we inferred whether any associations between age at natural menopause and LTL 

were causal using MR. Finally, we tested the joint association of age at menopause and LTL 

with incident CAD and performed mediation analysis.

METHODS

Data availability

The UK Biobank data that support the findings of the present study can be accessed 

by application (https://www.ukbiobank.ac.uk/register-apply/), and the WHI data can be 

accessed by registered researchers through the WHI online resource (https://www.whi.org/

datasets) or by other researchers through BioLINCC (https://biolincc.nhlbi.nih.gov/studies/

whi_ctos/).

Study design

Briefly, we included postmenopausal women from the UK Biobank and WHI with complete 

reproductive history and LTL measurements. Primary analyses tested the associations 

between age at menopause and LTL using multivariable-adjusted linear regression models. 

Secondary analyses stratified women by history of gynecologic surgery (i.e., hysterectomy 

or bilateral oophorectomy) and tested premature menopause (i.e., <40 years) as well as 

natural and surgical premature menopause as separate exposures. We used MR and linkage 

disequilibrium (LD) score regression to infer causality in the observed associations between 

LTL and age at menopause. Multivariable-adjusted Cox regression and mediation analyses 
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tested the role of LTL in the association of earlier age at menopause with incident coronary 

artery disease. The Supplemental Methods, Tables S1–4, and the Major Resources Table in 

the Supplemental Materials provide a detailed description of all methods used in this study.

Two-sided P<5.0×10−2 was considered statistically significant for the primary analysis. We 

did not apply correction for multiple testing; findings from secondary and MR analyses 

should be considered supportive and hypothesis-generating. All analyses were carried out 

using R version 4.1.3.

RESULTS

Description of the study cohorts

The final study sample included 130,254 postmenopausal women across the UK Biobank 

and WHI with LTL measurements (Figure S1). Among 122,224 women in the UK Biobank 

cohort (median age 61 [interquartile range, IQR: 57-64] years at blood draw), the median 

age at menopause was 50 (IQR: 48-53) years. Overall, 3,899 women (3.2%) in the UK 

Biobank experienced premature menopause (i.e., <40 years), including 1,686 (1.4%) with 

natural premature menopause and 2,213 (1.8%) with surgical premature menopause, and 

9,959 (8.1%) experienced early menopause (i.e., 40-<45 years). Among 8,030 women in 

the WHI cohort (median age 69 [IQR: 64-74] years at blood draw), the median age at 

menopause was 50 (IQR: 45-52) years. In the WHI cohort, 910 women (11.3%) experienced 

premature menopause (239 [3.0%] natural and 671 [8.4%] surgical premature menopause), 

and 1,044 (13.0%) experienced early menopause. Premature menopause, especially surgical 

premature menopause, was more common in the WHI than the UK Biobank. History of 

gynecologic surgery was substantially more common in the WHI irrespective of premature 

menopause status (Table S5).

In both cohorts, women with vs. without premature menopause were more likely to be 

current or former smokers and had higher body mass index (BMI), higher prevalence of 

type 2 diabetes, and higher rates of antihypertensive and cholesterol-lowering medication 

use (Table S5). Prevalent CAD at baseline was more frequent in women with vs. without 

premature menopause. Pooled unadjusted prevalence of CHIP was 5.8% (n=262/4,543) 

among women with premature menopause and 4.2% (n=4,999/117,687) in those without 

(P=8.9×10−7). Among 5,261 women with CHIP, the most frequently mutated driver genes 

were DNMT3A (66.3%), TET2 (14.7%), and ASXL1 (7.6%). Table S6 presents the baseline 

characteristics of women with below-median vs. above-median LTL.

Association of earlier age at menopause with shorter LTL

As expected, LTL declined with increasing chronologic age (Figure 1). Every 5 years of 

earlier age at menopause was associated with shorter LTL by 0.02 standard deviations (SD; 

95% confidence interval [CI]: −0.03 to −0.02) in minimally (P<2.2×10−16) (Table S7) and 

fully (P=1.1×10−13) (Table 1) adjusted models for the UK Biobank, whereas the same 

associations in the overall WHI cohort were null with significant heterogeneity between 

the UK Biobank and WHI (fully adjusted P[heterogeneity]=4.0×10−3). When stratified by 

history of gynecologic surgery, the association of age at menopause with LTL was stronger 
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among women without prior hysterectomy or bilateral oophorectomy in both cohorts (UK 

Biobank: ß=−0.04 SD/5 years [95% CI: −0.04 to −0.03], P<2.2×10−16; WHI: ß=−0.03 SD/5 

years [95% CI: −0.06 to 0.00], P=4.7×10−2; P[heterogeneity]=5.8×10−1). Among women 

with a history of natural menopause across cohorts, compared with menopause at age 

50-54 years, ages at menopause <40 years, 40-<45 years, and 45-<50 years were associated 

with meta-analyzed adjusted differences in LTL by −0.08 SD (95% CI: −0.13 to −0.04, 

P=5.2×10−4), −0.07 SD (95% CI: −0.10 to −0.05, P=9.4×10−10), and −0.04 SD (95% CI: 

−0.06 to −0.03, P=6.2×10−9; P[heterogeneity]>7.0×10−1 for all categories), respectively; 

a similar graded relationship was not apparent among those with previous gynecologic 

surgery (Figure 2, Table S8). Compared with women who experienced menopause at age 

≥40 years (i.e., without premature menopause), LTL was shorter in those with natural 

premature menopause (meta-analyzed adjusted difference: −0.07 SD [95% CI: −0.12 to 

−0.03], P=1.4×10−3) but not in those with surgical premature menopause (0.00 SD [95% CI: 

−0.04 to 0.04], P=9.9×10−1).

Associations of age at menopause with shorter LTL were consistent across multiple 

sensitivity analyses. These included exclusion of individuals with pre-existing CAD (Table 

S9), exclusion of individuals with a history of cancer (Table S10), exclusion of individuals 

with a history of hysterectomy only without bilateral oophorectomy (Table S11), and 

stratification by age at blood collection (<65 vs. ≥65 years) (Table S12). While associations 

of earlier age at natural menopause with shorter LTL were consistent for women who 

self-reported as Black and those who self-reported as White, exploratory analyses suggested 

that premature natural menopause was associated with a more pronounced decrease in 

LTL in women who self-reported as Black vs. White (P[interaction]=5.9×10−2) (Table 

S13). Associations of age at menopause with shorter LTL were consistent across additional 

sensitivity analyses that accounted for reproductive characteristics, such as those that further 

adjusted for history of hormone therapy (Table S14), stratified by history of hormone 

therapy (Table S15), or further adjusted for age at menarche (Table S16). Women with 

menarche at ≤11 years had shorter LTL (−0.03 SD [95% CI: −0.05 to −0.02], P=1.7×10−4) 

vs. those with menarche at 13 years (Table S17); this significant association persisted after 

further adjustment for age at menopause (−0.03 SD [95% CI: −0.05 to −0.01], P=3.7×10−4). 

There was a graded relationship between shorter reproductive lifespan and shorter LTL, with 

the lowest estimates observed in women with a reproductive lifespan of <33 vs. 36-38 years 

(−0.03 SD [95% CI: −0.05 to −0.01], P=7.8×10−4).

Previous research has established that earlier menopause is associated with an increased 

prevalence of CHIP9 and that CHIP may lead to reduced LTL.15 While presence of 

CHIP was significantly associated with LTL after multivariable adjustment in both the 

UK Biobank (ß=−0.08 SD [95% CI: −0.10 to −0.05], P=4.2×10−7) and WHI (ß=−0.14 

SD [95% CI: −0.22 to −0.06], P=4.4×10−4), adjustment for CHIP did not attenuate the 

associations between age at menopause and LTL (Table S18). In analyses stratified by CHIP 

status, continuous age at menopause and natural premature menopause were significantly 

associated with lower LTL, irrespective of CHIP status (Table S19). When evaluating the 

associations of combined menopause and CHIP status with LTL, the largest magnitude of 

telomere attrition was observed for women with natural premature menopause and CHIP 
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(ß=−0.34 SD [95% CI: −0.53 to −0.16], P=2.9×10−4; Figure S2) vs. those without a history 

of premature menopause and no CHIP.

Association of genetic predisposition to shorter LTL with earlier age at natural menopause

LD score regression was used to evaluate the genetic correlation between LTL and age 

at natural menopause. We found a significant and positive genetic correlation between 

both traits (Rg=0.13 [95% CI, 0.06 to 0.20]; P=2.0×10−4), suggesting shared genetic 

architecture between shorter LTL and earlier age at natural menopause. In addition, we 

performed two-sample MR to infer causality in the observed associations between LTL and 

age at natural menopause. We identified 43 uncorrelated, genome-wide significant single-

nucleotide variants associated with LTL (Table S20) and 35 with age at natural menopause 

(Table S21). While MR analysis revealed no significant effect of genetically predicted age 

at menopause on LTL (ß=0.04 SD/5 years [95% CI: −0.03 to 0.11], P=2.4×10−1), each 

SD decrease in genetically predicted LTL was significantly associated with 0.60 years of 

earlier natural menopause (95% CI: 0.07 to 1.14, P=2.8×10−2). The genetic association of 

shorter LTL with earlier natural menopause was highly consistent across sensitivity analyses 

(Figure 3), and there was no evidence of directional pleiotropy affecting these results (Egger 

intercept test: P=6.4×10−1).

Association of shorter LTL with incident CAD events

Given previous work suggesting that shorter LTL is associated with accelerated 

cardiovascular aging,14,15 we further tested the role of LTL in the association of age 

at menopause with CAD. Follow-up for incident CAD events occurred over a median 

11.1 (IQR: 10.4-11.8) years in the UK Biobank and 13.1 (IQR: 6.8-18.8) years in the 

WHI. Over the course of follow-up, 4.4% (n=5,224/119,600) and 15.7% (n=1,130/7,183) 

of women in the UK Biobank and WHI cohorts, respectively, experienced incident CAD 

events. Consistent with the previous literature,5 women with premature menopause more 

often experienced incident CAD events during follow-up (Figure S3), and earlier age 

of continuous menopause and premature menopause were independently associated with 

incident CAD in multivariable-adjusted models (Table S22).

Women with below-average LTL had a higher cumulative incidence of CAD across cohorts 

(Figure S4). After multivariable adjustment, associations between LTL and incident CAD 

were similar among women enrolled in the UK Biobank (HR: 1.07 per SD decrease in 

LTL [95% CI: 1.04-1.10], P=2.2×10−6) and the WHI (HR: 1.09 per SD decrease in LTL 

[95% CI: 1.03-1.16], P=5.4×10−3), yielding a meta-analyzed HR of 1.07 per SD decrease 

in LTL (95% CI: 1.05-1.10, P=5.0×10−8; P[heterogeneity]=5.1×10−1). The association of 

LTL with incident CAD events was robust to sensitivity analyses stratifying by age at blood 

collection (<65 vs. ≥65 years), further adjusted for history of hormone therapy use, stratified 

by history of hormone therapy use, or excluded participants with imputed covariates (Table 

S23). Additional adjustment for CHIP status did not alter the association between shorter 

LTL and incident CAD events (Table S24).

When evaluating the combined impact of age at menopause and LTL on incident CAD 

events, we found that CAD incidence was highest among women with premature menopause 
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and below-median LTL, regardless of history of gynecologic surgery (Figure 3 and Figures 

S5–7). Further stratification by LTL suggested a dose-response relationship between LTL 

and incident CAD, with the highest risks observed in women with the shortest LTL across 

premature menopause categories (Figure S8).

LTL mediates a small but significant portion of CAD risk in women with natural menopause

Mediation analysis showed that approximately 3% of the association of menopausal age 

with incident CAD was attributable to LTL among those with natural menopause (UK 

Biobank: 2.8% [95% CI: 1.6 to 4.7%], P<2.2×10−16; WHI: 2.6% [95% CI: −0.1 to 12.3%], 

P=6.6×10−2). C-reactive protein, HDL cholesterol, and current/former smoking were other 

significant mediators of this association in women with natural menopause, with proportions 

mediated ranging from 1.7% for C-reactive protein (95% CI, 0.9 to 3.1%; P<2.2×10−16) to 

6.1% for smoking (95% CI, 3.9 to 10.3%; P<2.2×10−16) in the UK Biobank (Table S25). 

LTL was not a statistically significant mediator in the association of age at menopause 

with incident CAD for those with previous gynecologic surgery (UK Biobank: 0.1% [−0.7 

to 1.2%], P=6.7×10−1; WHI: 0.2% [95% CI: −33.8 to 46.0%], P=9.1×10−1; Table S26). 

Additional analyses testing for effect modification by premature menopause status revealed 

similar directions and magnitudes of effects for most risk factors, including LTL, in women 

with vs. without a history of premature menopause (Table S27). The only risk factor with 

evidence of effect modification by history of premature menopause was systolic blood 

pressure (P[interaction]=4.1×10−4), which was associated with a higher risk of incident 

CAD in women without, but not in those with, a history of premature menopause (Table 

S27).

DISCUSSION

In this study of two large cohorts of postmenopausal women with detailed information 

on reproductive history and LTL measurements, earlier continuous age at menopause 

and natural premature menopause were independently associated with shorter LTL. The 

association between premature menopause and shorter LTL was stronger and more 

consistently observed among women with a history of natural menopause and substantially 

attenuated among women with surgical menopause, implying that postmenopausal sex 

hormone deficiency was not responsible for observed differences in LTL. Additionally, 

findings from this study suggest that accelerated telomere shortening contributes causally 

to earlier natural menopause and highlight the mediating role of LTL in the association 

of earlier age at menopause with incident CAD. These results may have important 

implications for understanding the cardiovascular consequences of early menopause, 

underlying mechanisms, and preventive strategies for this population.

First, natural premature menopause may promote development of CAD via multiple 

pathways linked to genomic instability. Large-scale genome-wide association studies have 

identified variants in DNA damage repair genes as the primary genetic contributors to 

accelerated ovarian aging, implicating genomic instability in the etiology of premature 

natural menopause.10,19 Genetic variants in TERT (i.e., the gene that encodes telomerase 

reverse transcriptase) have been associated with accelerated epigenetic aging and earlier 
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age at natural menopause,20 as well as with CHIP.21 As recent data indicate that women 

with premature natural menopause have a higher prevalence of CHIP vs. those without,9 

with CHIP representing an independent risk factor for CAD,9,11 CHIP likely contributes 

to the heightened cardiovascular risk in this population. Recent work by Nakao et al.15 

revealed a complex interaction between LTL and CHIP, with longer LTL predisposing 

individuals to develop CHIP, which, in turn, accelerates LTL shortening. Similarly, previous 

work indicates that germline mutations in POT1 causing excessively long telomeres can 

lead to a familial predisposition to CHIP,22 and that longer LTL is associated with 

the development of various cancers.23 The current study builds upon these findings by 

showing that the association between LTL and menopausal age is independent of CHIP 

and by identifying a potentially causal association of accelerated telomere attrition with 

earlier natural menopause. Consistent with a causal association of LTL on age at natural 

menopause, research in mice suggests that defective telomere elongation and accelerated 

telomere shortening contribute to oocyte dysfunction, which in turn may lead to accelerated 

reproductive aging.24 These findings, together with previous evidence suggesting an 

association of natural premature menopause with CHIP during midlife,9 highlight the 

importance of genomic instability in the etiology of accelerated reproductive aging as well 

as its association with CAD.

Second, the mechanisms driving cardiovascular risk in individuals with surgical premature 

menopause may differ from those associated with natural premature menopause. While 

deprivation of endogenous estrogen has been proposed as a key mechanism underlying 

the association of both surgical and natural premature menopause with cardiovascular 

disease,25 women who undergo menopause prematurely also have adverse cardiovascular 

risk profiles before the menopausal transition.26 Furthermore, in a recent analysis of 

~144,000 postmenopausal women, use of hormone therapy did not appear to offset 

the risk associated with premature menopause.5 Collectively, these findings suggest that 

mechanisms other than estrogen depletion play a role in the association between earlier age 

at menopause and heightened cardiovascular risk. The current study found no association 

between age at menopause and LTL in women with surgical menopause, underscoring that 

mechanisms of excess cardiovascular risk may differ between natural and surgical premature 

menopause. A study of NHANES showed that the association between surgical menopause 

and cardiovascular disease attenuated after adjusting for family history, suggesting that 

susceptibility genes that increase the risk of both outcomes may explain part of this 

association.27 It is also possible that disease and treatment effects may contribute to 

the excess risk of CAD observed in women who underwent gynecologic surgery due to 

malignancy.28–30 Understanding the mechanistic differences across menopause groups is 

crucial for developing precision medicine approaches to mitigate cardiovascular risk in 

postmenopausal women, warranting further research into mechanisms underlying the higher 

rates of cardiovascular disease in women with prior surgical premature menopause.

Third, women with premature menopause may derive particular benefit from intensive 

primordial and primary prevention strategies. Indeed, current guidelines incorporate history 

of premature menopause as a risk-enhancing factor to help inform allocation of primary-

prevention statin therapy.7,8 Nonpharmacologic interventions may also be particularly 

important in those who experienced early menopause.5 Animal experiments and randomized 
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controlled trials in humans have demonstrated that endurance exercise interventions can 

increase telomerase activity and LTL.31–33 Nonrandomized clinical trial data suggest that 

other modifiable lifestyle factors such as diet, stress management, and social support may 

also favorably affect LTL.34 Importantly, MR analyses suggest a causal role of LTL in 

the development of CAD,14,35 which implies that reversing LTL shortening may lead to 

improved cardiovascular outcomes in women with premature menopause. Furthermore, in 

a substudy of WOSCOPS, a randomized controlled trial of statin therapy in the primary 

prevention setting, individuals in the lowest tertile of LTL had a twofold risk of developing 

CAD vs. those in the highest tertile over a five-year follow-up period.36 However, allocation 

to statin treatment completely abrogated LTL-attributable cardiovascular risk. This clinical 

benefit of statins among individuals with low LTL is supported by previous research, both 

in animals and in vitro, demonstrating a positive effect of statins on telomere biology.37,38 

These data, along with the findings from the current study, indicate that individuals with 

premature menopause, especially those with short LTL, may derive particular benefit from 

primary-prevention statin therapy. In addition, telomere-directed therapeutics are emerging 

as potential tools for preventing and treating cardiovascular disease. For instance, the 

ongoing TACTIC trial aims to investigate the effects of a small-molecule telomerase 

activator on telomere length, immune function, and endothelial function in patients with 

acute coronary syndromes.39

Study limitations

Strengths of this study include a large sample size of postmenopausal women and the 

use of state-of-the-art methods to estimate LTL. However, this study has limitations. First, 

most study participants were White, implicating that findings from this study may not be 

generalizable to women from other races/ethnicities. As exploratory analyses suggested that 

natural premature menopause was associated with a more pronounced decrease in LTL in 

women who self-reported as Black vs. White, further research is warranted into mechanisms 

of genomic and reproductive aging in women from non-White racial and/or ethnic groups. 

Second, the UK Biobank and WHI cohorts differ with respect to age, gynecologic surgery 

and hormone therapy practices, LTL measurement methods, and DNA sequencing methods. 

Despite this heterogeneity, associations of earlier age at natural menopause with LTL, 

and of LTL with incident CAD, were highly concordant across cohorts. Third, to avoid 

introducing bias by categorically excluding women who underwent hysterectomy alone 

without oophorectomy,40 we retained such individuals in primary analyses and labeled 

them as having had surgical premature menopause when the hysterectomy occurred before 

age 40 years, which may have introduced misclassification in this group; however, null 

findings among women who underwent surgical premature menopause were consistent in 

sensitivity analyses excluding those who underwent hysterectomy with ovarian conservation. 

Furthermore, hysterectomy with ovarian preservation is associated with earlier age of 

menopause.41 Finally, age at menopause was ascertained by participant self-report in both 

cohorts, which may lead to misclassification. However, any such misclassification would 

be expected to bias results toward the null.9 Furthermore, the use of self-reported age at 

menopause in this study may reflect its utility in clinical practice.
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CONCLUSIONS

Earlier age at menopause is independently associated with LTL, especially among women 

with natural menopause, with MR analyses supporting causal effects of shorter LTL on 

earlier age of natural menopause. Furthermore, LTL mediates a proportion of the excess 

cardiovascular risk associated with premature natural menopause. These findings extend our 

understanding of the link between premature menopause and heightened cardiovascular risk 

and highlight opportunities for cardiovascular prevention in this population.
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NON-STANDARD ABBREVIATIONS AND ACRONYMS

BMI body mass index

CAD coronary artery disease

CHIP clonal hematopoiesis of indeterminate potential

CI confidence interval

HR hazard ratio
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IQR interquartile range

LD linkage disequilibrium

LTL leukocyte telomere length

MR Mendelian randomization

SD standard deviation

WHI Women’s Health Initiative
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Novelty and Significance

What is known?

• Women who undergo menopause prematurely are at heightened risk of 

cardiovascular disease through partially unknown mechanisms.

• Whether age at menopause is associated with telomere attrition, and whether 

this contributes to the heightened cardiovascular risk in those with premature 

menopause, is unclear.

What new information does this article contribute?

• Earlier age at menopause, particularly natural menopause, was associated 

with shorter leukocyte telomere length.

• Leukocyte telomere length was a mediator in the association of earlier age at 

natural menopause with incident coronary artery disease. Highest risks were 

observed in women with premature menopause and below-average telomere 

length.

• These findings suggest that somatic genomic phenomena play a role in the 

association of premature natural menopause with cardiovascular disease.

In two large cohorts collectively including 130,254 postmenopausal women, earlier age 

at menopause was independently associated with shorter leukocyte telomere length 

(LTL), especially among women with natural menopause. Mendelian randomization 

analyses revealed a significant association of genetically predicted LTL with age at 

natural menopause, suggesting that accelerated telomere attrition contributes causally to 

natural premature menopause. Analyses of incident coronary artery disease indicated 

that LTL was a mediator of excess cardiovascular risk in women with premature 

natural menopause, and the highest event rates were observed in those who underwent 

menopause prematurely and had below-average LTL. These findings highlight the role 

of somatic genomic phenomena in the association of premature natural menopause 

with coronary artery disease and support intensive lifestyle interventions and primary 

prevention strategies in women who experience premature menopause.
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Figure 1. Leukocyte telomere length vs. chronologic age in the UK Biobank and Women’s Health 
Initiative by premature menopause status and history of gynecologic surgery.
The colored lines represent the unadjusted Z-scores for leukocyte telomere length (LTL), 

plotted against age at blood draw and stratified by history of premature menopause. 

Plots were generated with the ggplot package in R version 4.1.3 using locally weighted 

polynomial smoothing.
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Figure 2. Meta-analyzed adjusted differences in leukocyte telomere length (LTL) by age at 
menopause among women with and without a history of gynecologic surgery.
The bar graph represents the meta-analyzed effect size of each menopausal age category on 

LTL, calculated using linear regression models adjusted for age, age2, race/ethnicity, the first 

ten principal of genetic ancestry, current/former smoking status, body mass index, diabetes 

status, current hormone therapy use, and prevalent coronary artery disease. Analyses in the 

WHI were further adjusted for inverse probability of sampling weights, while those in the 

UK Biobank were further adjusted for Townsend deprivation index. Age at menopause was 

incorporated as a categorical, nonordered variable with age 50-54 years as the reference 

category. The error bars indicate 95% confidence intervals. No corrections for multiple 

comparisons were made. ***P<1.0×10−3, *P<5.0×10−2.
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Figure 3. Mendelian randomization (MR) analyses showing genetic associations between 
leukocyte telomere length and age at natural menopause.
Main MR analyses used the inverse-variance-weighted (IVW) method, using genome-wide 

significant (P<5×10−8) single-nucleotide variants (SNVs) clumped into independent loci 

using a linkage disequilibrium R2 threshold of 1×10−4. Sensitivity analyses used the MR 

with robust adjusted profile score (MR-RAPS) and median-based MR methods, as well 

as the IVW method using more lenient P-value (5.0×10−5) or linkage disequilibrium R² 

(1.0×10−1) thresholds. Genetic data were expressed per standard deviation of (increased) 

leukocyte telomere length and per year of (older) age at natural menopause. No corrections 

for multiple comparisons were made. CI indicates confidence interval.
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Figure 4. Pooled cumulative incidence and multivariable-adjusted associations of menopause and 
leukocyte telomere length (LTL) categories with incident coronary artery disease (CAD) events.
The upper panels show the pooled cumulative incidence of CAD events among (A) 

all postmenopausal women, (B) women without a history of gynecologic surgery, and 

(C) women with a history of gynecologic surgery during follow-up truncated at 12.7 

years. The lower panel (D) shows the adjusted HRs for incident CAD events during 

follow-up meta-analyzed across cohorts. P-values correspond to Cox regression models 

adjusted for age, age², the first ten principal components of genetic ancestry, race/ethnicity, 

current/former smoking status, body mass index, diabetes status, current hormone therapy 

use, antihypertensive medication use, cholesterol-lowering medication use, systolic blood 

pressure, total cholesterol, and high-density lipoprotein cholesterol. Analyses in the WHI 

were further adjusted for inverse probability of sampling weights, while those in the UK 

Biobank were further adjusted for Townsend deprivation index. Menopause status and 

LTL were included as combined nonordered, categorical variables, with women without 

premature menopause and above-median LTL constituting the reference category. No 

corrections for multiple comparisons were made.
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