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Abstract

Quantification of cell-free DNA (cfDNA) in circulating blood derived from a transplanted

organ is a powerful approach to monitoring post-transplant injury. Genome transplant

dynamics (GTD) quantifies donor-derived cfDNA (dd-cfDNA) by taking advantage of single-

nucleotide polymorphisms (SNPs) distributed across the genome to discriminate donor and

recipient DNA molecules. In its current implementation, GTD requires genotyping of both

the transplant recipient and donor. However, in practice, donor genotype information is

often unavailable. Here, we address this issue by developing an algorithm that estimates

dd-cfDNA levels in the absence of a donor genotype. Our algorithm predicts heart and lung

allograft rejection with an accuracy that is similar to conventional GTD. We furthermore

refined the algorithm to handle closely related recipients and donors, a scenario that is com-

mon in bone marrow and kidney transplantation. We show that it is possible to estimate

dd-cfDNA in bone marrow transplant patients that are unrelated or that are siblings of the

donors, using a hidden Markov model (HMM) of identity-by-descent (IBD) states along the

genome. Last, we demonstrate that comparing dd-cfDNA to the proportion of donor DNA in

white blood cells can differentiate between relapse and the onset of graft-versus-host dis-

ease (GVHD). These methods alleviate some of the barriers to the implementation of GTD,

which will further widen its clinical application.

Author summary

More than 180,000 people live with organ transplants in the US. Monitoring the health of

the allograft is a critically important component of post-transplant therapy. Recently, we
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have demonstrated that cell-free DNA (cfDNA) enables diagnosis of post-transplant rejec-

tion. In this approach, genotyping of the recipient and the donor together with shotgun

sequencing of cfDNA are used to quantify the proportion of donor-derived cfDNA (dd-

cfDNA). This approach offers key advantages over the current practice of organ biopsy,

which is invasive, costly, and risky. However, the difficulty and cost of establishing a pure

reference donor genotype is a major barrier to its widespread clinical implementation.

Here, we developed a computational approach that enables an accurate estimation of dd-

cfDNA levels without the need for a donor genotype. In addition, we provide a solution of

closely related recipients and donors—a scenario which is common in bone marrow and

kidney transplants—by accounting for the identity-by-descent between the recipient and

the donor. Last, we demonstrate a new application of cfDNA in the noninvasive diagnosis

of Graft Versus Host Disease, a serious and difficult-to-diagnose complication of alloge-

neic bone marrow and stem cell transplantation.

Introduction

Solid-organ transplantation is now a common practice [1]. However, the clinical outcomes

remain poor with median survival rate of 5.3 years for lung and 11 years for heart [2–4]. Accu-

rate monitoring of allograft health is essential for long-term survival of the transplant recipient.

The current gold standard method of allograft rejection surveillance is the biopsy (transbron-

chial biopsy for lung transplant and endomyocardial biopsy for heart transplant), but this inva-

sive technique suffers from high cost and myriad complications [5,6]. Recently, enumeration

of cell-free, donor-derived DNA (dd-cfDNA) in the transplant recipient plasma using shotgun

sequencing was suggested as a tool to monitor organ health [7–9]. For female recipients of

a male graft, it is relatively straightforward to identify and quantify donor specific cfDNA

through molecular assays targeting Y chromosome DNA [7]. Genome Transplant Dynamics

(GTD) quantifies donor-derived DNA regardless of the sex of the transplant donor or recipi-

ent. GTD takes advantage of single-nucleotide polymorphisms (SNPs) distributed across the

genome to discriminate donor and recipient DNA molecules. This concept was first demon-

strated in a retrospective study in heart transplantation [10], where increased levels of donor-

derived DNA were shown to correlate with acute cellular rejection (ACR) events as deter-

mined by endomyocardial biopsy.

However, the current implementation of shotgun based GTD, which we will refer to as the

“two-genomes” method, requires genotyping of both the donor and recipient. In contrast to

the recipient genotype that is easy to obtain, the donor genotype is often unavailable. We

therefore set out to develop a method that enables dd-cfDNA monitoring using shotgun

sequencing without donor genotype information—a “one-genome” method. We apply the

method to lung and heart transplant recipient cohort data and demonstrate that the perfor-

mance of a one-genome method approaches the performance of the two-genomes method.

As in solid organ, cfDNA examination may inform about the status of a bone marrow

transplant. More than 10,000 patients receive life-saving allogeneic bone or stem cell trans-

plants in the United States each year, yet complications due to acute Graft-Versus Host Disease

(GVHD) occur frequently (in up to 50% of patients), cause morbidity and mortality, and limit

the therapeutic value of allogeneic bone or stem cell transplants [11]. Diagnosis of GVHD cur-

rently relies on invasive biopsy procedures, such as skin biopsy, colonoscopy, upper endoscopy

or even liver biopsy. These are painful, burdensome, expensive and potentially dangerous

procedures in these profoundly immunocompromised patients. However, few studies have
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examined the utility of cfDNA in the context of bone marrow or stem cell transplantation and

cfDNA was not to monitor GTD of bone marrow transplant [12].

As opposed to heart and lung transplants, in which the donor and recipient are not

related, in bone marrow transplantation (and other transplants, such as kidney) close rela-

tions are common. Therefore, we refined the “one-genome” approach to robustly handle the

scenario where the donor and recipient share a recent common ancestor. Chromosomes of

such donor-recipient share long stretches of DNA that are Identical By Descent (IBD) [13],

which may lead to underestimation of dd-cfDNA. To solve this, we use a hidden Markov

model (HMM) of local IBD states along the genome. We examined whether our “one-

genome” GTD approach can be applied to analyze complications in post bone marrow trans-

plant patients (8 patients, 76 samples). We show that our “one-genome” approach, which

integrate over IBD states, and the previous “two-genomes” approach give similar estimations

of cfDNA in bone marrow transplant patients. In addition, we suggest that a comparison of

the fraction of dd-cfDNA in plasma and in the cellular fraction can be used to discriminate

graft loss or relapse, which are accompanied by an increase in recipient cfDNA from blood

cells, from GVHD, which is accompanied by an increase in recipient cfDNA from other

recipient tissues.

Results

Quantifying dd-cfDNA in lung and heart transplant recipients

We developed a statistical model that quantifies donor- and recipient-derived cfDNA frag-

ments in the absence of donor genotype information (Fig 1, see Methods for a formal descrip-

tion of the model). To quantify the observed abundance of alleles of each genotyped SNP

in cfDNA sequences (Fig 1a, S1 Fig) [8], we first filter low quality reads, reads that are not

mapped uniquely to the genome, and reads with potential for mapping biased by genetic vari-

ability [14]. We then remove duplicated reads and count allele appearances of each genotyped

SNP (SAMtools mpileup function [15]). We use all genotyped SNPs, as opposed to the “two

genomes” method that uses only SNPs that are homozygous but differ between recipient and

donor. The observed allele appearances in cfDNA and the recipient genotype are the inputs

for our “one-genome” model.

To calculate the probability of the observed cfDNA, we first calculate the probability of each

possible donor and recipient genotype. The likelihood of the recipient genotype is a function

of the measured genotype and the genotyping error rate. Vital organ transplants are rarely

closely related. Therefore, for heart and lung transplants, our model assumes that the donor

genotype is randomly selected from a human population. Given this assumption, the probabil-

ity of a specific donor allele is its frequency in the population. Our algorithm iterates over 1000

Genomes Project populations and super-populations [16] to detect the most likely ancestral

population of the donor. This simplified model achieves satisfying performance in lung and

heart transplant, but requires refinement for handling bone marrow transplants in which

donor and recipients are often related.

Putting it together, the probability of observing a specific allele in a cfDNA fragment is

computed by integrating over all possible recipient and donor genotypes and depends on the

sequencing error rate, the fraction of dd-cfDNA in the recipient plasma and the probabilities

of observing the allele conditioning on it being donor- or recipient-derived (Fig 1b). Finally,

we compute the log-likelihood of the data by summing log-likelihoods over all SNPs, assuming

SNPs are independent (this assumption is also made by the two-genomes method). We use an

optimization algorithm to find the maximum likelihood parameter values [17].

Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype
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Performance of lung and heart rejection predictions

To assess the performance of the one-genome model, we directly compared estimates of dd-

cfDNA for the one and two-genome methods. We find that the dd-cfDNA predictions based

on the two models are highly correlated for lung transplants (51 patients, 382 samples, Pear-

son’s R2 = 0.996, Spearman’s ρ = 0.97, mean absolute error = 0.002; Fig 2a, S2 Fig; S1 Table).

For heart transplant recipients (59 patients, 435 samples), dd-cfDNA level estimates resulting

from both methods were also highly correlated, but not as strongly as in the lung cohort (Pear-

son’s R2 = 0.990, Spearman’s ρ = 0.82, mean absolute error = 0.001; Fig 2b; S2 Table). This is

due to the lower levels of dd-cfDNA in heart cohort make the inference harder; as reflected by

the increase in the difference between the predictions of the two methods relative to the pre-

dicted value as dd-cfDNA levels decrease below 0.5% (S2 Fig).

We next compared the performance in the diagnosis of organ rejection based on the one-

and two-genomes estimated levels of dd-cfDNA (Fig 1d). We found that the two methods per-

form similarly in differentiating between different levels of organ rejection as determined by

biopsy, for both heart and lung transplants (Fig 2c and 2d, differences in detection quality are

not significant, DeLong two-sided test). We note that for the two-genome method, it is

Fig 1. Illustration of our approach. (a) A blood sample is used to genotype the recipient (cellular fraction,

done once) and to sequence the cfDNA (see S1 Fig for details). (b-c) Illustration of the “one-genome”

statistical model for inferring the percent of dd-cfDNA (red box with gray background). Black arrows show

statistical dependency and text boxes show nuisance parameters (red box with white background), hidden

variables (dotted line box) and measured data (blue box). (b) Shows the model which assumes that the donor

and the recipient are unrelated. (c) When donor and recipient may be closely related (in this work, in case of a

bone marrow transplant) the donor genotype depends on the recipient genotype and the local identity by

descent (IBD) state between the recipient and donor genotypes. IBD states are modeled for each block of

~2cM along the genome. Transitions between IBD states depend on the number of meioses that separate

each pair of recipient-donor chromosomes given their most recent diploid common ancestor (MRCA 1 and

MRCA 2). (d) the inferred percent of dd-cfDNA is used to predict organ rejection.

https://doi.org/10.1371/journal.pcbi.1005629.g001
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possible to measure the assay error rate independently, by analyzing SNPs for which the donor

and recipient genotypes are matched and homozygous. This measure can then be used to per-

form a background error-correction as described previously [8]. We found this error-correc-

tion slightly improves the detection quality for the two-genomes method in the heart cohort

(S3 Fig). Error correction may improve the performance of the one-genome method to similar

extent. In principle, this can be done using pre transplant cfDNA samples by comparing

homozygote sites to the sequencing reads (pre transplant samples from heart and lung trans-

plants were not available to this study). We conclude that donor genotyping is not required for

lung transplant recipients. Donor genotyping can also be avoided in heart transplant

Fig 2. Comparison of predicted levels of dd-cfDNA by one- and two-genomes methods in heart and lung transplant recipients. (a)

and (b) Comparison between levels of dd-cfDNA predicted by the two-genomes method (x-axis) and the one-genome method (y-axis). (c)

and (d) show a comparison of one- and two-genomes methods predictability of organ rejection. Each bar shows the area under the curve

(AUC) of discriminating between two rejection states as measured using biopsies using dd-cfDNA fraction estimates [8,9]. Error bars marks

AUC 95% confidence interval. The significance of the difference between corresponding receiver operating characteristic (ROC) of the one-

genome and two-genomes was evaluated using the DeLong two-sided test [31,32].

https://doi.org/10.1371/journal.pcbi.1005629.g002
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recipients, but the accuracy of the test may be reduced slightly, in particular in detecting mod-

erate rejection.

Quantifying donor-derived cfDNA in bone marrow transplant recipients

Because bone marrow donors are often close relatives of the recipients, the assumption that

the donor is randomly selected from the population no longer holds. Chromosomes of closely-

related individuals contain long segments of identical genotype. These segments are said to be

identical by descent (IBD). The abundance and length of the IBD segments depend on the

number of meioses separating the two chromosomes and the recombination rate [13,18–21].

Ignoring IBD may lead to under-estimation of dd-cfDNA level. We therefore extended our

model to account for possible IBD by learning recipient-donor relatedness. We implemented

a Hidden Markov Model (HMM) with three states (Fig 1b and 1c; see Methods for details):

when there is no IBD (IBD = 0), the model emission probabilities are similar to the above

unrelated donor-recipient model; when one pair of chromosomes is IBD (IBD = 1), the geno-

type of one donor allele will be similar to one of the recipient alleles and the other donor allele

likelihood depends on its abundance in the population (independently of the recipient geno-

type); lastly, when both chromosome pairs are in IBD (IBD = 2) the recipient and donor geno-

types are identical. In our model, transitions between IBD states can occur only between pre-

calculated 2centimorgan blocks [22]. Transition probabilities depend on the recipient-donor

relatedness, which is represented by the number of meioses separating each pair of donor-

recipient chromosomes (Fig 1b). In other words, in our refined model, the donor genotype

depends on the population allele frequency and the recipient genotype according to the local

IBD state.

Accuracy of dd-cfDNA level estimations in bone marrow transplant

recipients

To evaluate the performance of the refined one-genome method, we applied it to 76 samples

from 8 bone marrow transplant recipient patients (Fig 3, S2 Fig; S3 Table). Two of the donors

(for patients I4 and I5) were unrelated to the recipients and six were siblings of the recipients

(S4 Table). As expected, the naïve implementation of the one-genome method underestimates

dd-cfDNA in sibling donors, that share about 50% of their genotype due to IBD, but not in

unrelated donors (Fig 3a). When our model is set to learn the relationship between the donor

and the recipient, its dd-cfDNA level estimates match the two-genomes method (Pearson’s

R2 = 0.998, Spearman’s ρ = 0.99, mean absolute error = 0.004; Fig 3a). Reassuringly, these pre-

dictions strongly correlate with the fraction of reads originating from the X chromosomes

when the donor and recipient sex is different (S4 Fig). We conclude that accurate estimation

of dd-cfDNA in bone marrow recipients does not require donor genotyping. These results

may also apply to other settings, such as kidney transplants.

Differentiating between relapse and graft versus host disease in bone

marrow transplant recipients

The success of bone marrow transplants is often impaired by cancer relapses and graft versus

host disease (GVHD) [11]. Diagnosing and differentiating between the two remains a major

challenge in the field. The current gold standard for a successful engraftment is absolute neu-

trophil count greater than 500 for three consecutive days. This corresponds to 47–82% dd-

cfDNA in our patients (S5 Fig; S4 Table). We notice that in patients who relapse (patients I3)

or have acute GVHD (patients I1 and I8) or chronic GVHD (patients I2), the level of cfDNA

Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype
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drops after reaching its peak (24%, 33%, 11% and 24%, respectively). Although our cohort is

too small to assess significance, this observation suggests that GTD can be used to monitor

bone marrow transplant health.

What are potential explanations for an increase in the level of cfDNA from recipient origin?

In the case of a cancer relapse, the fraction of lymphocytes of recipient origin increases. The

cfDNA will therefore reflect increasing levels of recipient-origin lymphocytes. On the other

hand, in the case of GVHD, the fraction of lymphocytes from recipient origin does not increase.

In this case, the increase in dd-cfDNA is caused by injury to recipient tissues. We therefore

hypothesized that differences in the recipient-origin DNA in the cellular and plasma (cell-free)

fractions can distinguish between relapse and GVHD. As a proof of principle, we sequenced

both the cfDNA and the cellular fraction in patient I8. In agreement with our hypothesis, the

two values match until the onset of the acute GVHD (since most cfDNA originates from lym-

phocytes) and then diverge—after the onset of GVHD, the cellular fraction remains low and

cfDNA level increases (Fig 4). This “N of one” experiment demonstrates the great potential of

GTD to distinguish between relapses and GVHD—an urgent unmet need in the field.

Method performances in various simulated levels of dd-cfDNA,

genotyped SNPs and cfDNA sequencing depth

To further assess the robustness and accuracy of the one-genome method described here, we

performed extensive simulations (S6–S11 Figs; S5 Table). To this end, we created synthetic

Fig 3. Comparison of predicted levels of dd-cfDNA by one- and two-genomes methods in bone marrow transplant recipients. (a) Comparison

between levels of dd-cfDNA predicted by the two-genomes method (x-axis) and the one-genome method (y-axis) when learning donor and recipient

relatedness (orange) or naively assuming that they are unrelated (blue). The later under-estimates dd-cfDNA levels when the recipient and donor are

siblings. Dashed lines show 1:1 and 2:1 ratios. (b) An example of cfDNA level estimates in a single bone marrow transplant recipient that is a sibling of the

donor (I6).

https://doi.org/10.1371/journal.pcbi.1005629.g003
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mixtures of two individuals using data of pre-transplant cfDNA available from the bone-mar-

row transplant cohort (patients I8, I2, I3). We simulated degrees of donor-recipient relatedness

using the same approach as was used for IBD inference and sub-sampled both the SNPs and

the cfDNA sequencing reads (see Methods for details). We compared the simulated level of

dd-cfDNA to the level that was estimated by a one-genome model that learns the relatedness

between the donor and the recipient.

In general, we found an excellent agreement between the simulated and predicted dd-

cfDNA across relatedness (Spearman’s ρ >0.997 and median absolute error 0.0006–0.0012

using 600-700K SNPs, and 1.75x cfDNA sequencing; S6 Fig). In the range of 0.2%-10% that is

clinically important for heart and lung transplant rejection prediction, the error is usually

below 1–5% of the predicted value. The performances reduced only slightly when 1x cfDNA

Fig 4. Comparing the fraction of cfDNA that is recipient-derived to the fraction of recipient-derived blood cells may detect GVHD. A

proof of principle in a single bone marrow transplant recipient (patient I8), that differences in the recipient-derived cfDNA and recipient-

derived blood cells levels may indicate onset of GVHD. The difference between the two measurements is due to injured tissue-derived

cfDNA. In contrast, when relapse occurs both measurements should show an increase in recipient-derived fraction (not shown in this figure).

This may help to distinguish between GVHD and relapse in bone-marrow transplanted patients.

https://doi.org/10.1371/journal.pcbi.1005629.g004
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sequencing and 600-700K or 157K SNPs are used as input (S7–S9 Figs). We further evaluated

the robustness of the one-genome method against the depth of cfDNA sequencing (S10 Fig)

and the number of genotyped SNPs (S11 Fig). We find even when only 150K SNPs are used or

a 0.33x cfDNA sequencing (~40 USD in our academic sequencing center) the relative absolute

error is within 10% of the simulated value (for example absolute error of 0.1% for 1% simulated

dd-cfDNA). For bone marrow transplants, even the lowest cfDNA sequence coverage that we

simulated (0.1x for unrelated and 1x for related) gave very good results (Spearman’s ρ>
0.993). The relative error increases below 0.1% dd-cfDNA but the absolute error is very low in

that range (with 600K SNPs and 1.75x it is most often below 0.01% and at most 0.1%). In sum-

mary, our simulations show that inference of the percent of dd-cfDNA using the one-genome

method has low error across the clinically relevant range.

Discussion

In conclusion, we have introduced several technical improvements to shotgun sequencing-

based GTD that alleviate barriers to its widespread clinical implementation, including the diffi-

culty and cost of establishing a pure reference donor genotype. We provide a method to quan-

tify dd-cfDNA in plasma in the absence of donor genotype information and demonstrate that

its diagnostic performance approaches the diagnostic performance of conventional GTD. We

extend the method with integration over hidden local IBD states to be able to handle the chal-

lenging scenario in which the transplant donor and transplant recipient are close relatives—a

scenario that frequently arises in kidney and bone marrow transplantation. We note that the

problem of estimating dd-cfDNA levels is related to identifying contamination in a sequenced

sample for which the genotype is known [23], this application may also benefit from our solu-

tion for close relatives.

Very recently, targeted-sequencing was suggested as an alternative method to assess dd-

cfDNA levels [24]. However, this method suffers from a relatively high lower limit of detection

(0.2% dd-cfDNA). The method furthermore has a relatively low upper limit of detection

(25% dd-cfDNA) which excludes application in liver, lung and bone marrow transplantation

[9,24,25]. Shotgun sequencing GTD has a larger dynamic range and is furthermore simulta-

neously informative of infection [9,26] and tissues-of-origin of cfDNA [27]. Detailed simula-

tions indicate that donor DNA levels can be robustly captured using shotgun sequencing, in

absence of a donor genotype, even with low coverage sequencing and genotyping. An analysis

of the accuracy of donor DNA predictions as function of depth of sequencing indicated that

0.33–0.5x cfDNA sequence coverage of the human genome may be sufficient to robustly quan-

tify donor DNA. Such coverage can be achieved at a cost of 40–60 USD, at our academic geno-

mics facility. We note that, at such low coverage, the cost of sequencing is a minor component

of the overall assay cost.

Last, we introduce a new application of cell-free DNA in the monitoring of the health and

success of bone marrow transplants. We show that the proportion of donor DNA in plasma

can be used to monitor the success of engraftment in allogeneic bone marrow transplantation,

and we provide evidence demonstrating that combined measurement of chimerism in the cell-

free and cellular compartments can distinguish changes in dd-cfDNA due to graft loss and

GVHD. Collectively, these studies greatly expand the utility of GTD in transplantation.

Methods

cfDNA sequencing and genotype data collection

The cfDNA sequencing and genotyping data for heart and lung transplant recipients was avail-

able from our previous studies [8,9]. Additional dd-cfDNA measurements were performed for
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bone marrow transplant patients (8 patients, 76 samples), using methods previously described

[8,9]. In short, recipient plasma was collected at several time points before the transplant pro-

cedure (two time points) and at several time points after transplantation sequenced. cfDNA

was purified from plasma and sequenced (Illumina HiSeq 200 or HiSeq 2500 1 × 50bp or

2 × 100bp). Donor and recipient genotyping was performed using Illumina whole-genome

arrays HumanOmni2.5–8 or HumanOmni1 prior to the transplant.

Estimating allele representation in cfDNA fragments

Several steps were applied to the cfDNA sequencing reads to achieve counts of allele represen-

tation for each genotyped SNP (S1 Fig). First, low quality reads were filtered out (reads in

which more than 50% of the base qualities are below 20). Second, reads were mapped to the

human genome (UCSC version hg19) using bowtie2 [28] (with the following parameters: -D

20 -R 3 -N 0 -L 20 -i S,1,0.50 -I 20 -X 500—no-mixed—no-discordant—no-unal–t) and SAM-

tools [29] was used to filter paired ends reads where one of the reads was unmapped (flags -f 3

-F 3852 for pair ends reads and -F 3844 for single end reads) or reads with P>0.05 to be

mapped non-uniquely. Third, WASP [14] was applied to remove reads in which the mapping

may be biased by the genotype. Fourth, duplicated reads (reads that map to the same exact

location) were removed by scripts that selects randomly which of the duplicated reads to keep

and are therefore not biased towards a specific genotype[14]. Fifth, chromosomal coverage

was computed using HTSeq [30]. Sixth, the number of cfDNA reads that contain each SNP

allele was computed using SAMtools mpileup function. These counts were used as input for

the model.

Estimating cfDNA donor-derived in recipient that is unrelated to the

donor

As vital organs such as heart and lungs are donated post-mortem, donors are usually unrelated

to recipients. Therefore, our model assumes that the donor was randomly selected from some

ancestral population. This is clearly a simplifying assumption—donors may have a mixed

ancestry and their MHC is often matched to the recipient MHC—nonetheless we find that we

can achieve good performance by making this assumption (we note that modeling of mixed

ancestry did not improved the predictions). Given the population from which the donor was

drawn, the prior probability of observing each allele in the donor is exactly the allele frequency

in the population (assuming Hardy-Weinberg equilibrium). Since the donor population is

unknown, the optimization function iterates over 1000 Genomes project populations and

super-population [16] and selects the population that maximize the likelihood. The goal of the

model is to estimate the fraction of cfDNA that is donor-derived (dd-cfDNA) given the recipi-

ent measured genotype and the cfDNA reads (see model illustration in Fig 1b).

Formally, let N be the number of bi-allelic SNP that were genotyped in the recipient; A and

B denote the two possible alleles for SNPi where i 2 {1,2,. . .,N}; ðRi1
;Ri2
Þ be the recipient true

genotype in SNPi; ðR�i1 ;R
�
i2
Þ be the recipient observed (measured) genotype in SNPi; ðDi1

;Di2
Þ

be the donor true genotype in SNPi; f popm
iA be the frequency of allele A of SNPi in population m;

Cij2f1;2;...;Kig
be the true SNPi allele in a cfDNA fragment that contains it; and C�ij2f1;2;...;Kig

be the

observed allele of SNPi from a sequencing read of this fragment. The observed data (R�, C�) is

therefore the recipient measured genotype at N SNPs and the observed allele of these SNPs in

cfDNA sequencing reads.

Lets also define the following model parameters (θ): d 2 [0,1] is the fraction cfDNA frag-

ments that are donor-derived (dd-cfDNA); es 2 [10−9, 10−2] is the sequencing error rate;
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eg 2 [10−9, 10−3] is the genotyping error rate; and Popm 2 {1,. . .,M} is one of M ancestral popu-

lation and super populations of 1000 genomes project from which the donor is randomly

drawn. The model sequencing and genotyping error rates were bound to technically realistic

range. The goal of our model is to estimate d–the fraction of dd-cfDNA.

In our model, of the dependency of the observed recipient genotype of SNPi on the true

genotype involves the genotyping error rate. So, for example:

PððR�i1 ;R
�
i2
Þ ¼ AA jðRi1

;Ri2
Þ; egÞ ¼ ð1 � egÞ

2
1fRi1

¼ A;Ri2
¼ Ag

þ2ðegÞð1 � egÞ1fRi1
¼ A;Ri2

¼ Bg

þðegÞ
2
1fRi1

¼ B;Ri2
¼ Bg

Similarly, the dependency of the observed allele in a sequencing read that map to SNPi on

the true allele of SNPi in the cfDNA fragment that was sequenced involves the sequencing

error rate (this also capture PCR amplifications errors):

PðC�ij ¼ AjCij
; esÞ ¼ ð1 � esÞ1fCij

¼ Ag þ ðesÞ1fCij
¼ Bg

Following the assumption that the donor was randomly drawn from a population, the

genotype of SNPi depends on SNPi alleles frequencies in the population and therefore on

which ancestral population is used to achieve the SNPi alleles frequencies estimates:

PðDi1
¼ d1;Di2

¼ d2jpopmÞ ¼ f popm
id1
� f popm

id2
; where d1 2 fA;Bg and d2 2 fA;Bg

Lastly, the probability that a cfDNA sequence that maps to SNPi contains a specific allele of

SNPi depends of the true genotypes of the recipient and the donor and the fraction of dd-

cfDNA (d); for example:

PðCij
¼ A jðRi1

;Ri2
Þ; ðDi1

;Di2
Þ; dÞ ¼

d �

1 � 1fDi1
¼ A;Di2

¼ Agþ

0:5 � 1fDi1
¼ A;Di2

¼ Bgþ

0 � 1fDi1
¼ B;Di2

¼ Bg

0:5 � 1fDi1
¼ B;Di2

¼ Agþ

0

B
B
B
@

1

C
C
C
A
þ

ð1 � dÞ �

1 � 1fRi1
¼ A;Ri2

¼ Agþ

0:5 � 1fRi1
¼ A;Ri2

¼ Bgþ

0 � 1fRi1
¼ B;Ri2

¼ Bg

0:5 � 1fRi1
¼ B;Ri2

¼ Agþ

0

B
B
B
@

1

C
C
C
A

Putting it together the likelihood of observing the recipient genotype and the sequencing

reads that map to SNPi is:

PiððR
�

i1
;R�i2Þ; C�i1 ; . . . C�iKi

jd; es; eg;popmÞ

¼
YKi

j¼1

X

c;r1 ;r1 ;d1;d2;c2fA;Bg

PðC�ij jCij
¼ c; seÞ

�PðCij
jðRi1

;Ri2
Þ; ðDi1

;Di2
Þ; dÞ

�PðDi1
¼ d1;Di2

¼ d2jpopmÞ

�PðRi1
¼ r1;Ri2

¼ r2Þ

�PðR�i1 ;R
�
i2
jRi1
¼ r1;Ri2

¼ r2; geÞ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
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Although it is possible to model the probability of the recipient genotype (PðRi1
;Ri2
Þ) using

population allele frequency data, we assume here a uniform probability since, in practice the

genotyping error is very low and therefore the measured recipient genotype is highly informa-

tive on the true recipient genotype.

Finally, assuming that SNPs are independent (this is reasonable assumption because we

used only genotyped SNPs), the likelihood function is:

LðR�;C�jyÞ ¼
YN

i¼1

PððR�i1 ;R
�

i2
Þ; C�i1 ; . . . C�iKi

jd; se; ge;popmÞ

where R�, C� are genome-wide measured recipient genotype and all mapped sequencing reads

correspondingly. We use L-BFGS-B to minimize the negative log likelihood for each possible

donor ancestral population and select the population that obtains the minimal negative log

likelihood.

Estimating donor-derived cfDNA in related recipient and donor

In contrast to lung and heart, bone marrow and other organs such as kidney, are often donated

by individuals that are closely related to the recipient. Therefore, the assumption that the

donor is drawn randomly from the population is no longer valid. Closely-related individuals

share stretches of identical haplotypes that were inherited from a recent common ancestor, a

phenomenon known as Identity By Descent (IBD). For each pair of chromosomes, IBD seg-

ments’ length distribution and total length depend on the number of meioses from their Most

Recent Common Ancestor (MRCA). The model accounts for IBD using a non-homogenous

Hidden Markov Model (HMM) in which each position in the genome can be in one of three

states IBD = 0, IBD = 1 or IBD = 2. The three states correspond to 0,1, or 2 pairs of chromo-

somes being identical by descent (Fig 1b). For efficiency and to avoid strong effects of linkage

disequilibrium (LD), transitions are allowed only between ~2cM blocks, which are pre-calcu-

lated using a recombination rate map [22]. In each block, each one of the two haploid pairs of

donor-recipient genomes can be in IBD or no-IBD state. The transitions between the IBD

states for each haploid pair depend on the average genetic distance between the blocks and the

marginal probability of the pair to be IBD, similar to the plink method [13]. In short, consider

two haploids (c1 and c2) that share a common diploid ancestor with c1 and c2 separated by

m� 2 meiosis events. m = 1 –log2(PIBD) where PIBD 2 [0,1] is the marginal probability of the

pair to be in IBD state. We define lb,b+1 to be the genetic distance between two neighboring

loci b,b+1 (here, approximated by the average genetic distance between blocks in cMorgan

units). The probability of an odd number of recombination events is yb;bþ1 ¼
1� e
� 2�lb;bþ1

100

2
. We

also define y1(θb,b+1, m) = (1 − θb,b+1)m−2 and y2(θb,b+1) = (1 − θb,b+1)2 + θb,b+1
2. The transition

matrix for two haploids is:

Tb;bþ1ðmiÞ ¼
1 �

1 � y
1
ðyb;bþ1;m1Þ�y2

ðyb;bþ1Þ

2mi � 1 � 1

� �
1 � y

1
ðyb;bþ1;m1Þ�y2

ðyb;bþ1Þ

2mi� 1 � 1

1 � y
1
ðyb;bþ1;m1Þ�y2

ðyb;bþ1Þ y
1
ðyb;bþ1;m1Þ�y2

ðyb;bþ1Þ

2

6
4

3

7
5

where i 2 {1,2}. The transition matrix for the IBD states of the two pairs of haploids is a simple

combination of the two haploid pairs transition matrices and depends on their two IBD

parameters: PI
IBD and PII

IBD. Similar to PLINK, we limit PI
IBD and PII

IBD to be at most 0.5. This

excludes parent-child relations from the donor-recipient relationships. Although we did

not address it in this work, dd-cfDNA of parent-child donor-recipient can be estimated by
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multiply by two the percent dd-cfDNA predicted when restricting the donor and recipient to

be unrelated.

The emissions probabilities of each SNP in each IBD state are similar to the likelihood func-

tion above with one difference—the probability of the donor genotype depends also on the

recipient genotype (in addition to its dependence on the ancestral population):

PiððR
�

i1
;R�i2Þ; C�i1 ; . . . C�iKi

jd; es; eg;popmÞ

¼
YKi

j¼1

X

c;r1 ;r1 ;d1 ;d2;c2fA;Bg

PðC�ij jCij
¼ c; seÞ

�PðCij
jðRi1

;Ri2
Þ; ðDi1

;Di2
Þ; dÞ

�PðDi1
¼ d1;Di2

¼ d2jRi1
¼ r1;Ri2

¼ r2; IBDi; popmÞ

�PðRi1
¼ r1;Ri2

¼ r2Þ

�PðR�i1 ;R
�
i2
jRi1
¼ r1;Ri2

¼ r2; geÞ

0

B
B
B
B
B
B
B
B
@
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C
C
C
C
C
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Tables 1–3 show PðDi1
¼ d1;Di2

¼ d2jRi1
¼ r1;Ri2

¼ r2; IBDi; popmÞ for a bi-allelic SNPi,

which has two possible alleles: A and B that are occur with frequency fA and fB in Popm respec-

tively, for IBDi = 0,1,2.

Table 1. Probabilities of donor genotypes of a bi-allelic SNP conditioning on recipient genotype,

donor population and no IBD. The table shows PðDi1 ¼ d1;Di2 ¼ d2jRi1 ¼ r1;Ri2 ¼ r2; IBDi ¼ 0;popmÞ for a

bi-allelic SNPi, which has two possible alleles: A and B that are occur with frequency fA and fB in Popm

respectively.

Donor genotype

Conditioning on the recipient genoptype AA AB or BA BB

AA f2A 2fAfB f2B
AB or BA f2A 2fAfB f2B

BB f2A 2fAfB f2B

https://doi.org/10.1371/journal.pcbi.1005629.t001

Table 2. Probabilities of donor genotypes of a bi-allelic SNP conditioning on recipient genotype,

donor population and IBD between one haploid pair of donor-recipient genomes. The table shows

PðDi1 ¼ d1;Di2 ¼ d2jRi1 ¼ r1;Ri2 ¼ r2; IBDi ¼ 1;popmÞ for a bi-allelic SNPi, which has two possible alleles: A

and B that are occur with frequency fA and fB in Popm respectively.

Donor genotype

Conditioning on the recipient genoptype AA AB or BA BB

AA fA fB 0

AB or BA 0.5fA (0.5fA + 0.5fB) 0.5fB

BB 0 fA fB

https://doi.org/10.1371/journal.pcbi.1005629.t002

Table 3. Probabilities of donor genotypes of a bi-allelic SNP conditioning on recipient genotype,

donor population and IBD between two haploid pairs of donor-recipient genomes. The table shows

PðDi1 ¼ d1;Di2 ¼ d2jRi1 ¼ r1;Ri2 ¼ r2; IBDi ¼ 2;popmÞ for a bi-allelic SNPi, which has two possible alleles: A

and B that are occur with frequency fA and fB in Popm respectively.

Donor genotype

Conditioning on the recipient genoptype AA AB or BA BB

AA 1 0 0

AB or BA 0 1 0

BB 0 0 1

https://doi.org/10.1371/journal.pcbi.1005629.t003
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Putting it together, the parameters of interest of the model is d—the fraction of dd-cfDNA,

and the nuisance parameters are es—sequencing error probability, eg—genotyping probability,

popm—donor’s ancestral population and PI
IBD and PII

IBD IBD probabilities for two haploid pairs.

We used the forward algorithm to integrate the likelihood over all possible HMM paths for

specific parameter values, and optimize the likelihood using L-BFGS-B.

Comparing one-genome and two-genomes methods predictability of

organ rejection

To assess how well each method dd-cfDNA predictions can be used to discriminate between

different levels of heart and lung rejection, we computed the area under the curve (AUC) of

the receiver operating characteristic (ROC) similar to how this was done in our previous publi-

cations [8,9]: the dd-cfDNA prediction of one lung donation were doubled to match the levels

of two lungs donations and measurements previous to 14 and 60 days following heart and lung

transplant correspondingly were removed from the analysis. A two-sided DeLong test [31]

(Implemented in R pROC package [32]) was used to assess the significance of the difference

between two corresponding ROC curves.

Simulating organ transplant recipient samples

To simulate organ transplant recipient samples, we used the pre-transplant samples from the

bone marrow cohort of patients I2, I3, and I8. In each simulation, we considered one sample

as the recipient and one sample as the donor. We merged the data from the two samples and

filtered SNPs that were clear genotyping errors (0.2% of the SNPs; homozygote SNPs with

cfDNA reads that contain the non-present allele). We then mixed randomly sampled reads

from each of the two samples at a specific ratio. We considered the fraction of the second sam-

ple as the simulated fraction of dd-cfDNA. To simulate IBD we used the same HMM transition

matrix as used for the inference. In each transition between genetics blocks, we randomly

selected one of the states for the next block using the transition probabilities matrix. If a state

has an IBD state of 1, for each “donor” read we randomly selected with probability 0.5 read

from the first sample and with probability 0.5 read from the second sample. In IBD state 2 all

the “donor” reads were selected from the first sample and in IBD state 0 all “donor” reads were

from the second sample. We down sampled the SNPs by taking K SNPs in each genetic block

with the highest alternative allele frequency in 1000 genomes project (we simulated K = 100,50

and 20). We randomly down sampled the reads to a desired average coverage (we simulated

average coverage of 1.75, 1, 0.5. 0.33 and 0.1). To run many simulations, we saved running

time by limiting the inference to a single population. We used the population that was inferred

for the donor, since for these cases (I2, I3 and I8) the donor was a sibling of the recipient. We

show in S12 Fig that this gives similar results to using all the populations for a subset of the

simulations.

Supporting information

S1 Table. Lung transplant cohort. Clinical and experimental information and predicted dd-

cfDNA levels using two- and one-genome methods of samples drawn from lung transplant

recipients.

(XLSX)

S2 Table. Heart transplant cohort. Clinical and experimental information and predicted dd-

cfDNA levels using two- and one-genome methods of samples drawn from heart transplant
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recipients.

(XLSX)

S3 Table. Bone marrow transplant cohort. Experimental information and predicted dd-

cfDNA levels using two- and one-genome methods of samples drawn from bone marrow

transplant recipients.

(XLSX)

S4 Table. Clinical events in bone marrow transplant recipients. Engraftment, GVHD,

repalse and VOD diagnosis dates of marrow transplant recipients.

(XLSX)

S5 Table. Results of simulation. Method performances in various simulated levels of dd-

cfDNA, genotyped SNPs and cfDNA sequencing depth.

(XLSX)

S6 Table. Results of simulations comparing multi and single population optimization.

Comparing predictions of percent of dd-cfDNA using all 1000 genomes populations and a sin-

gle population that was inferred for the simulated donor sibling in the real data.

(XLSX)

S1 Fig. cfDNA sequencing and genotyping data processing pipeline. Illustration of the pipe-

line used to retrieve allele counts in cfDNA fragments for each recipient-genotyped SNP from

the raw cfDNA sequencing and genotyping measurements.

(PDF)

S2 Fig. Differences between estimation of dd-cfDNA levels by one- and two-genomes

methods. Assuming the two-genomes model is the gold standard, we assess the absolute error

of the one-genome method in lung (a) heart (b) and bone marrow (c) recipients. Note that this

may be an over estimated error, since the two-genomes method is probably not completely

accurate.

(PDF)

S3 Fig. Comparison of organ rejection states using one-genome method and two-genomes

method with error correction in heart and lung transplant recipients. (a) and (b) show a

comparison of one- and two-genomes methods predictability of organ rejection. In opposed

to Fig 2, here the two-genome prediction was corrected by error estimation. Each bar shows

the area under the curve (AUC) of discriminating between two rejection states as measured

using biopsies using dd-cfDNA fraction estimates [8,9]. Error bars marks AUC 95% confi-

dence interval. The significance of the difference between corresponding receiver operating

characteristic (ROC) of the one-genome and two-genomes was done using DeLong two sided

test [32,31].

(PDF)

S4 Fig. A comparison between predicted levels of dd-cfDNA and the fraction of reads that

map to the X chromosome when recipient and donor sex are different. Patients I1, I2 and

I4 the recipient are males with female donors; patient I8 is a female with a male donor.

(PDF)

S5 Fig. A comparison between one- and two-genomes methods predictions of cfDNA levels

in bone marrow transplant patients. Each panel shows results for a single patient. Dotted-

dash line marks day in which engraftment was detected (absolute neutrophil count (ANC) >

500 for three consecutive days). Purple dashed lines mark clinical diagnoses. Notice that the
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predictions of one-genome method that learns IBD are similar to the prediction of the two-

genomes method, while fixing the one-genome method to non-related recipient and donor

state (IBD = 0) underestimate the dd-cfDNA fraction.

(PDF)

S6 Fig. Method performance for different levels of relatedness of recipient and donor. A

comparison of the predicted and simulated levels of dd-cfDNA (a) and the corresponding

absolute error (b) for different levels of relatedness of the donor and the recipient. dd-cfDNA

levels were estimated using 640-700K SNPs and cfDNA sequencing depth of 1.76–1.78x (cor-

responding to 26M 100bp paired ends reads or 210 USD in our academic sequencing center).

Larger markers the median result for a simulated dd-cfDNA level, smaller, unconnected mark-

ers show independent simulations. Lines show spline interpolation of the median values.

(PDF)

S7 Fig. Method performance for different levels of relatedness of recipient and donor with

1x cfDNA sequencing coverage input. A comparison of the predicted and simulated levels of

dd-cfDNA (a) and the corresponding absolute error (b) for different levels of relatedness of

the donor and the recipient. dd-cfDNA levels were estimated using 640-700K SNPs and

cfDNA sequencing depth of 1x (corresponding to 15M 100bp paired ends reads or 120 USD in

our academic sequencing center). Larger markers the median result for a simulated dd-cfDNA

level, smaller, unconnected markers show independent simulations. Lines show spline interpo-

lation of the median values.

(PDF)

S8 Fig. Method performance for different levels of relatedness of recipient and donor with

150K SNPs and 1x cfDNA sequencing coverage input. A comparison of the predicted and

simulated levels of dd-cfDNA (a) and the corresponding absolute error (b) for different levels

of relatedness of the donor and the recipient. dd-cfDNA levels were estimated using 157K

SNPs and cfDNA sequencing depth of 1x (corresponding to 15M 100bp paired ends reads or

120 USD in our academic sequencing center). Larger markers the median result for a simu-

lated dd-cfDNA level, smaller, unconnected markers show independent simulations. Lines

show spline interpolation of the median values.

(PDF)

S9 Fig. Method performance for different levels of relatedness of recipient and donor with

<1x cfDNA sequencing coverage input. A comparison of the predicted and simulated levels

of dd-cfDNA (a,c) and the corresponding absolute error (b,d) for different levels of relatedness

of the donor and the recipient. dd-cfDNA levels were estimated using 640-700K SNPs and

cfDNA sequencing depth of 0.5x (a,b) or 0.33x (c,d). Larger markers the median result for a

simulated dd-cfDNA level, smaller, unconnected markers show independent simulations.

Lines show spline interpolation of the median values.

(PDF)

S10 Fig. Method performance for unrelated recipient and donor using different number of

cfDNA sequencing reads. A comparison of the predicted and simulated levels of dd-cfDNA

(a) and the corresponding absolute error (b) for different levels of relatedness of the donor and

the recipient. dd-cfDNA levels were estimated using 640-700K SNPs and cfDNA sequencing

depth of 0.1–1.78x. Larger markers the median result for a simulated dd-cfDNA level, smaller,

unconnected markers show independent simulations. Lines show spline interpolation of the

median values.

(PDF)
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S11 Fig. Method performance for unrelated recipient and donor using different number of

genotyped SNPs. A comparison of the predicted and simulated levels of dd-cfDNA (a) and

the corresponding absolute error (b) for different levels of relatedness of the donor and the

recipient. dd-cfDNA levels were estimated using 640-700K SNPs and cfDNA sequencing

depth of 0.1–1.78x. Larger markers the median result for a simulated dd-cfDNA level, smaller,

unconnected marker show independent simulations. Lines show spline interpolation of the

median values.

(PDF)

S12 Fig. Comparing one-genome method predicted percent of cfDNA when optimizing

over all 1000 genome populations to when optimizing over a single population, over simu-

lated data. Comparing predicted percent cf-ddDNA using all 1000 genomes project popula-

tions (x-axis) to using the single population (y-axis) over 93 simulations (Pearson’s R2 =

0.995). The single population was the population that was inferred for the simulated “donor”

sibling in real samples.

(PDF)
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