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ABSTRACT OF THE DISSERTATION

Dynamic Processes in Biological Systems: From Capsid Disassembly to Tissue Growth
and Bacterial Chemotaxis

by

Alireza Ramezani

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Prof. Roya Zandi, Co-Chairperson
Prof. Mark Alber, Co-Chairperson

This thesis explores three projects, offering valuable insights into the dynamic processes

governing biological systems. The first project focuses on Cowpea chlorotic mottle virus

(CCMV) as a model for virus assembly and disassembly studies. A novel model based on

classical nucleation theory explains spontaneous and reversible size conversion of empty

CCMV capsids by accounting for the change in free protein concentration during capsid

assembly and disassembly.

The second project focuses on growth regulation mechanisms in the Drosophila

wing disc tissue, an ideal model for studying developmental processes. We develop a mul-

tiscale chemical-mechanical model that integrates morphogen gradients, mechanical forces,

and tissue dynamics. By comparing spatial distribution of dividing cells in simulations with

experimental data, we reveal the critical role of the Dpp morphogen gradient in determining

tissue size and shape. If the Dpp gradient spreads in a larger domain a larger tissue size

with more symmetric shape can be achieved at a faster growth rate. Additionally, feedback

viii



regulation involving Dpp receptor downregulation enables further morphogen spreading,

prolonging tissue growth at a spatially homogeneous rate. This comprehensive model pro-

vides a deeper understanding of the interplay between chemical signals and mechanical

forces, illuminating the mechanisms controlling tissue growth.

The third project concentrates on bacterial behavior, utilizing a sub-cellular ele-

ment model to understand dynamics of bacterial chemotactic behavior and its impact on

bacterial trajectories. We have investigated bacterial swimming patterns including run-

reverse and run-wrap reverse, in addition to chemotaxis strategies in which the bacteria

exhibit different responses to the chemoattractant in different swimming modes, including

cases where they may not react at all. We have found that simpler motility patterns emerge

greater chemotaxis efficiency compared to complicated swimming patterns. In addition, we

have discovered that a complicated swimming pattern could lead to bacterial aggregation,

only if the dominant swimming mode is involved in the chemotaxis strategy. Based on our

simulations, it has been found that bacteria with a simple swimming pattern lacking in

enough reorientations can recover their chemotactic behavior by adopting a more complex

pattern even if the bacteria won’t respond to the chemical gradient in the adopted mode.
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Chapter 1

Introduction

Virus Disassembly

Viruses have captivated the attention of scientists for centuries. A virus is a unique

entity that exists at the interface of the living and non-living worlds. Unlike cells, viruses

are acellular particles that lack the essential machinery for self-replication and metabolism.

Instead, viruses are composed of genetic material, which can be either DNA or RNA,

enclosed within a protein coat called a capsid. The capsid plays a critical structural compo-

nent, providing stability to the viral genome and facilitating its transmission between host

cells. The genetic material carries the instructions required for viral replication. Viruses

are considered obligate intracellular parasites, as they rely on host cells to provide the nec-

essary cellular machinery and resources for their replication, and propagation. Outside of a

host cell, viruses remain inert, but once they infect a susceptible host cell, they exploit the

cellular machinery to undergo replication, assembly, and ultimately, the release of progeny

viral particles. Understanding the processes by which viruses enter host cells and release
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their genetic material is essential in understanding viral infection and pathogenesis. Viruses

employ diverse strategies to enter host cells, depending on their type. Enveloped viruses

possess a lipid envelope derived from the host cell membrane and can enter the cell through

membrane fusion or endocytosis. Membrane fusion occurs when viral envelope proteins

interact with specific receptors on the host cell membrane, leading to the fusion of the viral

envelope with the cell membrane and subsequent release of the viral capsid and genetic

material into the cytoplasm. Alternatively, through endocytosis, the entire virus particle is

engulfed by the host cell and forms an endosome. The virus then disrupts the endosomal

membrane, releasing the capsid and genetic material. Non-enveloped viruses, lacking a lipid

envelope, often rely on direct penetration of the host cell membrane, facilitated by specific

interactions between viral proteins and cell surface receptors. These interactions trigger

conformational changes in viral proteins, allowing the release of the viral genome into the

host cell. Looking into the assembly and disassembly of viral capsids provides valuable

insights into viral replication, pathogenesis, and the development of antiviral strategies. By

understanding the complexities of these processes, we can enhance our ability to combat

viral infections, improve public health, and advance scientific knowledge in diverse fields

such as virology, medicine, and nanotechnology.

The Caspar and Klug model improved our understanding of viral architecture and

assembly. The model is based on icosahedral symmetry, describing the arrangement of

protein subunits within viral capsids. It provides a general framework for understanding

the assembly of viral capsids. The T-number refers to the triangulation number, which

is a measure of the symmetry and arrangement of subunits within the capsid structure.
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The number of protein subunits needed to construct a capsid increases with the T-number.

These size variations can impact the stability, infectivity, and interactions with host cells

or the immune system.

Classical nucleation theory (CNT) provides a framework for understanding the dy-

namic processes of assembly and disassembly in capsid formation. CNT is a well-established

concept in the field of phase transitions and provides insights into how capsids assemble

from individual protein subunits or disassemble into their building blocks. CNT describes

the initial stages of nucleation, where the first few protein subunits come together to form

a stable nucleus. The nucleus then acts as a template for the subsequent addition of more

subunits, leading to the growth of the capsid. During assembly, the formation of the nu-

cleus involves overcoming an energy barrier known as the nucleation barrier. This barrier

arises due to unfavorable interactions or conformational changes required for subunits to

come together in a specific configuration. Once the nucleus is formed and exceeds a critical

size, it becomes thermodynamically favorable for additional subunits to bind, leading to the

rapid growth of the capsid. CNT explains that nucleation is a stochastic process influenced

by factors such as subunit concentration, temperature, and height of barriers.

On the other hand, CNT also applies to the dissociation of capsids. Disassembly

occurs when the capsid is destabilized, resulting in the breakdown of protein-protein inter-

actions and the release of subunits. Capsid disassembly can be influenced by factors such

as changes in pH, or temperature. CNT explains that disassembly occurs when the energy

required to break the protein-protein interactions exceeds the energy gained from holding

the capsid structure. CNT explains the initial nucleation steps, the growth of capsids from
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stable nuclei, and the factors that influence these processes. By applying CNT principles,

researchers can gain insights into the kinetics of capsid assembly and disassembly, facilitat-

ing the design of strategies to manipulate and control these dynamic processes. In our study,

we utilized a modified classical nucleation theory (CNT) framework, considering only sub-

units and fully formed capsids in the solution while excluding the presence of intermediate

states. This assumption arises because intermediate states may be energetically unstable or

short-lived, making their detection challenging or limited. By focusing on subunits and fully

formed capsids, we simplify the analysis and concentrate on the key components likely to

play significant roles in the assembly and disassembly processes. This approach has poten-

tial consequences on our understanding of the kinetics of capsid assembly and disassembly.

By disregarding intermediate states, we may overlook important transitional steps and the

associated kinetics involved in the pathway. Additionally, the exclusion of intermediate

states might impact our ability to fully comprehend the factors influencing assembly and

disassembly dynamics, such as kinetic barriers and cooperative interactions. It is important

to acknowledge that intermediate states could contribute to the overall assembly landscape,

affecting the pathway, and efficiency of capsid formation. However, focusing on subunits

and fully formed capsids simplifies the analysis and facilitates the characterization of the

dominant structures present in solution. This approach may allow us to discover funda-

mental principles governing capsid assembly and disassembly, highlighting critical factors

that contribute to the formation of stable capsid structures. Future studies could explore

methods to further investigate and characterize these intermediate states.
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Here, we calculate time-series concentrations of different capsid sizes by integrating

rate equations driven from CNT, with the Euler-forward method. This approach provides

a dynamic perspective on the assembly and disassembly processes of capsids and allows us

to track the changes in concentration over time. It provides a quantitative framework for

analyzing the kinetics and dynamics of these processes.

Growth Regulation on Tissue Growth

As we delve into these microscopic entities, we also step into the world of tissue

development. Tissue growth control lies at the heart of developmental biology and is a

fundamental process in maintaining tissue homeostasis and function. Precise regulation of

tissue growth is essential for organisms to achieve proper organ size, shape, and function-

ality. Deviations from normal growth patterns can lead to developmental abnormalities,

tissue overgrowth, or underdevelopment, all of which can have profound implications for an

organism’s health and well-being. Furthermore, dysregulated tissue growth is a reason of

many diseases, including cancer. Abnormal growth patterns and uncontrolled cell prolifer-

ation can lead to the formation of tumors and the spread of malignant cells. Understanding

the mechanisms that govern tissue growth is crucial for explaining the fundamental princi-

ples of embryonic development, and tissue repair. By unraveling the complicated regulatory

pathways involved in growth control, researchers can gain insights into how cells proliferate,

differentiate, and organize to form complex tissues and organs.

The Drosophila wing disc is a simple epithelial structure found during the larval

stages of Drosophila development. It gives rise to the adult wing, and its growth and pat-

terning are tightly regulated to ensure proper wing formation. The wing disc has different
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compartments, such as the anterior and posterior compartments, providing a spatially con-

trolled environment for studying the effects of morphogens and their spreading on tissue

growth. The Drosophila wing disc serves as an invaluable model system for understanding

the fundamental principles of tissue growth and development. Its remarkable regenera-

tive capacity, well-defined structure, and conserved molecular mechanisms make it an ideal

platform for studying the interplay between morphogen signaling, cellular processes, and

tissue growth dynamics. The disc serves as a model to explore how morphogens, such as

Decapentaplegic (Dpp) and Wingless (Wg), establish concentration gradients, which play

essential roles in patterning and growth regulation. These morphogens are secreted from

specific localized sources within the disc, and their diffusion and spreading influence the

activation of downstream signaling pathways and cellular responses.

Regulation of tissue growth involves complex molecular mechanisms. One promi-

nent example is the growth regulation model centered around Decapentaplegic (Dpp), a

morphogen in the Transforming Growth Factor-β (TGF-β) family, which plays a crucial

role in various developmental processes, including tissue growth and patterning in verte-

brates. Dpp gradient is established through a combination of localized Dpp production,

diffusion, and interaction with extracellular inhibitors. Cells interpret the Dpp concentra-

tion as a positional cue, which determines their fate, proliferation rate, and patterning.

Experimental evidence and mathematical modeling have provided insights into

the mechanisms underlying Dpp-mediated growth regulation. Mathematical models, such

as reaction-diffusion, have been used to simulate Dpp distribution and its impact on tissue

growth. These models incorporate parameters such as Dpp production, diffusion, degra-
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dation, and interaction with inhibitors to predict the concentration gradient and subse-

quent cellular responses. Furthermore, studies have identified downstream feedback loops,

involving transcriptional regulation, receptors, and extracellular modulators. These feed-

back loops contribute to the precise control of Dpp signaling, ensuring robust and dynamic

growth regulation. These models have implications beyond Drosophila development, as

similar growth regulation principles have been observed in other organisms.

Mechanical models have played a key role in understanding growth regulation by

investigating the physical forces and mechanical properties that underlie these processes.

Several mechanical models, including agent-based models, vertex-based models, and sub-

cellular element models, have been proposed to study growth regulation. These models

can incorporate various parameters such as tissue stiffness, growth rates, and external me-

chanical forces to analyze tissue growth patterns and predict the mechanical properties of

developing tissues. These models provide a quantitative framework to explore the effects of

mechanical forces, cell-cell interactions, and tissue mechanics on growth dynamics.

Understanding the complex processes of tissue growth and morphogenesis requires

the integration of both mechanical and chemical cues. The interplay between these cues

plays a critical role in shaping tissues and organs during development. While chemical cues,

such as morphogens and signaling molecules, provide positional information and guide cel-

lular behaviors, mechanical cues, including forces and physical properties, influence cell be-

havior, tissue organization, and overall growth dynamics. Mechanical cues are also known to

influence cellular signaling pathways and gene expression, providing feedback mechanisms

that regulate tissue growth. Likewise, chemical signals can influence mechanical properties,
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such as tissue stiffness or contractility, thereby influencing tissue growth. The interplay

between mechanical and chemical cues presents a dynamic feedback system that influences

cellular behavior and tissue organization. The combined consideration of mechanical and

chemical cues not only improves our understanding of developmental processes but also of-

fers insights into tissue engineering strategies, and the treatment of developmental disorders

and diseases. In this study, we build upon previous mechanical and chemical models to de-

velop a refined framework for studying growth regulation. By incorporating novel aspects,

such as the impact of morphogen gradient, we aim to gain deeper insights into the complex

interplay between chemical signaling dynamics and tissue growth.

Bacterial Chemotaxis

The exploration of biological systems extends beyond viral capsids and tissue

growth to contain the bacterial behavior. Bacteria provide a fascinating platform to in-

vestigate the principles that govern living organisms at a cellular level. Rotation of flagella

generates propulsive force and enables bacteria to exhibit various swimming patterns, in-

cluding straight runs, tumbles, and directed changes in direction. Flagellated motion grants

bacteria the ability to actively explore their surroundings, respond to environmental cues,

and find niches for growth and reproduction. By altering the rotational direction of their

flagella, bacteria can modulate their movement in response to external cues such as chem-

ical gradients. This chemotactic behavior allows bacteria to move towards or away from

specific substances, aiding in the search for nutrients, avoiding toxins, and navigation to-

wards optimal environments. Lastly, this thesis extends its exploration with a focus on

modeling chemotactic bacteria, as another application of sub-cellular element model. Here,
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we delve into the dynamic motion of Pseudomonas, a chemotactic bacteria to unravel the

complexities of bacterial navigation within chemical gradients. We study various swim-

ming patterns and chemotaxis strategies by dynamically controlling the bacterial reversal

frequency. Our results reveal that a simple motility pattern proves to be more efficient

in terms of chemotaxis than complex patterns like run-wrap-reverse. Additionally, we ob-

serve that the wrap mode might enhance chemotaxis efficiency, particularly when bacterial

reorientation is limited within the run-reverse pattern. Moreover, our research highlights

that a complex swimming pattern might lead to aggregation, but only when the dominant

swimming mode is chemotactic.

Summary

All projects in this thesis revolve around the interactions within larger systems.

They study how regulating a micro scale interaction or a behavior might control the macro

scale outcome. Considering these projects, this thesis focuses on an exploration of dynamics

in biological systems’ behavior across diverse scales.
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Chapter 2

The Dynamics of Viruslike Capsid

Assembly and Disassembly:

Theoretical methods

Based on previous experimental, theoretical and computer simulation results, we

propose that nucleation serves as the fundamental process governing capsid assembly and

disassembly.[1, 2, 3] To this end, we combine equilibrium theory, inspired by the physics

of supramolecular polymers, and classical nucleation theory (CNT).[4] This allows us to

calculate the time evolution of the assembly and disassembly of mixtures of capsids, the

predictions of which we compare with experimental results provided by our collaborators [5]

. Note that the kinetics of assembling free subunits into competing capsids with different

T numbers has been previously explored. [6, 7] However, a kinetic theory of T number

conversion has not yet been attempted. To derive the essential thermodynamic parameters
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needed for our kinetic theory, we formulate the free energy of an aqueous solution containing

exclusively free ELP-CCMV subunits and fully formed capsids. In our equilibrium theory,

we neglect intermediate states since previous experimental and simulation studies demon-

strate that these states are nearly undetectable (if present at all) and represent short-lived

states.[5, 8, 9, 10, 11, 12] Within a mean-field approximation, the dimensionless free energy

f per solvent molecule in a dilute, aqueous solution represented as follows:

f = xslnxs − xs +
∑

T =1,3
xT lnxT − xT +

∑
T =1,3

qT gT xT (2.1)

Here xs is the mole fraction of ELP-CP subunits, while x1 and x3 correspond to the mole

fractions of the fully formed capsids for T=1 and T=3 species, respectively. Free energy

per solvent molecule is measured in units of the thermal energy kBT with kB Boltzmann’s

constant and T the absolute temperature. See Refs.[4, 13] for the derivation of Equation 2.1.

The effective binding free energy between ELP-CP subunits in T=1 and T=3 capsids are

represented by g1 and g3, respectively. These binding free energies are measured in units of

thermal energy and are averaged over all subunits of a fully formed capsid. Additionally,

q1 and q3 represent the number of subunits that constitute the capsid of the T=1,3 shells,

respectively. The first six terms in Equation 2.1 represent the translational entropy and the

entropy of mixing while the last two terms account for the overall (net) binding free energy

of the subunits in assemblies.

An important factor in the development of the classical nucleation theory for

virus capsids, is the difference between the chemical potential of free protein subunits in

the metastable solution and bound proteins in the capsids. The chemical potential of the
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free protein subunits in solution, µs = ∂f/∂xs, and chemical potentials of the capsids,

µT = ∂f/∂xT , follow from Equation 2.1 where T=1,3 indicate the T number of the shell.

The equilibrium distribution of proteins over the free proteins and different types of capsids

can be obtained by minimizing Equation 2.1 subject to the condition of conservation of mass,

cs = xs + q1x1 + q3x3, with cs the overall mole fraction of coat proteins in solution. The

resulting mass-action equations are xT = (xse−gT )qT with T=1,3. The reference chemical

potentials are tacitly absorbed in the binding free energies gT . For each type of capsid,

there is a critical free protein concentration c∗
T below which the concentration of capsids is

almost zero as the number of subunits in the capsids, qT , is large compared to unity. For

CCMV, the basic protein subunits are dimers, so q1 = 30 for the T=1 and q3 = 90 for the

T=3 capsid.

Using the equilibrium theory described above, we can now set up the kinetic theory

of capsid assembly and disassembly within the framework of CNT.[2] The Gibbs free energy

of the formation of an incomplete spherical capsid of the T species containing nT = 1, ..., qT

molecules with a circular rim can be written as

∆GT (nT ) = nT ∆µT + aT

√
(qT (qT − nT ) (2.2)

where aT = 4πRT σT /qT is a dimensionless magnitude of the rim energy, with

RT the radius of the shell and σT the free energy cost per unit length of the rim [4]. σT

can be estimated as σT = −sgT /rT where s ∈ [0, 1] is a geometric factor indicating the

average fraction of bonds that a subunit on the rim is missing, which depends on the local

coordination number and roughness of the rim. rT is the effective diameter of a protein
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unit that is approximated as a disk. Assuming that the surface of a fully formed capsid is

covered entirely by capsid proteins, the effective diameter can be written as rT =
√

qT
4RT

[2].

A previous and more detailed study on the line tension of shells composed of Lennard-Jones

disks, packed on the surface of sphere, shows that s ≈ 0.3 − 0.4, with the latter value an

upper limit as proteins are more flexible than Jennard-Jones particles - we set s = 0.3 in

our simulations [14]. Finally, the first term in Equation 2.2 represents the thermodynamic

driving force for the assembly or disassembly of capsids. To obtain the dimensionless barrier

height, ∆G∗
T for the two T numbers, we calculate the critical nucleus size n∗

T , that is, find

the value of nT for which Equation 2.2 is maximal and insert this into Equation 2.2 to

obtain

∆G∗
as,T = ∆G0

T (
√

Γ2
T + 1 − ΓT ) (2.3)

where ∆G0
T ≡ qT aT /2 is the maximum barrier height and ΓT ≡ −∆µT /aT is a measure for

the degree of super- or undersaturation for the species. We note that ΓT depends on the

concentration of a capsid.

In the process of assembly of a capsid, subunits can attach to and detach from the

growing shell through a sequence of what we presume to be reversible kinetic steps. Within

the classical nucleation theory, the rate of capsid assembly is limited by the formation rate

of the energetically most unfavorable critical nucleus through the Boltzmann weight ∆G∗
T

that acts as a kinetic bottleneck. The steady-state nucleation rate for association reads [4]:

Jas,T = xsν∗
T ZT e−∆G∗

as,T , (2.4)
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where ZT =
√

−1
2π (∂2∆GT /∂n2) |n=n∗

T
=
√

aT
qT π (1 + Γ2

T )3/4 is the so-called Zeldovich factor

which characterizes the sharpness of the free energy barrier. It can be interpreted as a mea-

sure of the lifetime of the critical nucleus of size n∗
T , indicating how long the nucleus persists

before transitioning to further assembly or dissociation [8]. The attempt or attachment fre-

quency ν∗
T of the monomers attaching to the critical nucleus varies based on the mode of

attachment. It can be influenced by factors such as the diffusivity and concentration of free

monomers, the size of the critical nucleus, and an internal molecular time scale associated

with the docking process [15]. To simplify the analysis, we make the assumption that the

attempt frequency does not rely on the size of the clusters or the concentration.

In modeling the disassembly process, we consider the initial state as a fully formed

capsid. Within classical nucleation theory, the rate of capsid disassembly is constrained

by the dissociation of the critical nucleus. Specifically, it depends on the time required

to overcome the height of the free energy barrier ∆G∗
dis,T , but in this case, the process

occurs in the opposite direction compared to the assembly process. The nucleation rate for

disassembly of complete capsids of species T reads

Jdis,T = xT ν∗
T ZT e−∆G∗

dis,T (2.5)

where ∆G∗
dis,T represents the free energy barrier for the disassembly of a shell to form

monomers. Notice that the dissociation rate depends on xT , the capsid concentrations of

species T=1,3. We will assume that the attachment frequency associated with the associa-

tion process is equal to that of the dissociation process, as they describe the same process.

We presume it to be independent of the size of the critical nucleus [16].
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Because capsids with different T numbers have different radius of curvature, we

do not allow for a direct transition from one T number to another one. In our reaction path

pathway, growth or disassembly can only proceed by the shedding or docking of individual

protein subunits, which for CCMV constitute coat protein dimers. This reaction path is well

supported by experimental evidence, as there are no indications of partially disassembled

T=3 particles spontaneously transforming into T=1 particles, or vice versa. Similarly,

T=1 particles do not exhibit a tendency to open up and incorporate subunits to grow

into T=3 particles [5]. Thus, we make the presumption that, firstly, one type of capsid

disassembles into dimers. Secondly, free dimers subsequently reassemble into different capsid

sizes according to their corresponding assembly nucleation rates.

Presuming that kinetic processes are sufficiently slow to allow us to use the ex-

pressions for steady-state nucleation rates for association and dissociation, i.e., presume a

quasi steady state to hold, the set of equations describing the concentration of dimers, T=1

and T=3 capsids in our system can finally be expressed as follows,

dxs

dt
= −q1Jas,1 − q3Jas,3 + q1Jdis,1 + q3Jdis,3 (2.6)

and

dxT

dt
= Jas,T − Jdis,T (2.7)

The expressions on the left-hand sides of Eqs. (2.6 and 2.7) represent time deriva-

tives of the concentrations of the three components in our model. On the right-hand sides,

the terms account for the variations resulting from the formation or dissociation of capsids.
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Throughout the process, all concentrations are considered to be time-dependent while still

adhering to mass conservation principles at all times. To solve the aforementioned system

of equations numerically, we employ an explicit forward Euler method with adaptive time

steps. (See 2.1 for more information.)

Using the solutions obtained from these equations, we can compute the fraction

of dimers present in each type of capsid relative to the total number of dimers across all

capsids,

fT = qT xT∑
i=1,3 qixi

(2.8)

where T=1,3. In general, the time steps in the simulations depend on various parameters,

such as the attempt frequency, binding energies and size of the capsids. In order to fit the

theory to the experimental data, we choose one experimental data point in the time series of

the disassembly of T=3 and the assembly of T=1, and use it as our reference point. When

we find the same ratio of proteins in the two kinds of capsid in our simulations as that in

the experiments, we set the time in the simulations equal to the time in the experiments.

Next, we rescale all other simulation data points accordingly. We repeat this process for the

disassembly of T=1 and the assembly of T=3. To check the robustness of this technique,

we consider different data points as the reference point. The agreement between theory and

experiments does not depend strongly on the reference point that we take. (See 3.3.4 for

more information.)

It is important to realize that the time that it takes to change the pH and the

salt concentration of the buffer solution might not be exactly the same in each experiment.

In addition, the lag time for assembly and disassembly of capsids with different sizes are
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arguably different. Therefore it is difficult to pinpoint the actual “time zero” for each indi-

vidual experiment. In order to deal with this uncertainty, our collaborators start collecting

data 30 minutes after the experiment commences. We assume that the lag times are neg-

ligible on the time scale of the experiment, thus we ignore the first phase of assembly in

CNT in which capsids have not started to assemble or disassemble [4].

2.1 Numerics

The kinetics equations predicted by CNT (Eqs. 2.6 and 2.7) are solved by using

finite difference methods. Assembly and disassembly nucleation rates at the beginning of

the simulation are determined by the initial conditions. The concentrations of capsids and

free dimers are calculated at each time step, using the values and nucleation rates at the

previous time step. Hence, our time-stepping equations read:

xt+∆t
s = xt

s + (−q1J t
as,1 − q3J t

as,3 + q1J t
dis,1 + q3J t

dis,3) ∆t (2.9)

and

xt+∆t
T = xt

T + (J t
as,T − J t

dis,T ) ∆t (2.10)

where xt
s and xt

T are the concentrations of free dimers and capsids of size T at time t; q1

and q3 represent the number of subunits in each fully formed capsid of size T=1 and T=3.

As already alluded to, we assume that dimers are our building blocks, so that q1 = 30

and q3 = 90. The instantaneous steady-state assembly and disassembly nucleation rates of

capsid size T at time t are J t
as,T and J t

dis,T , respectively.

17



The nucleation rates depend highly on the free dimer concentration. In order to

speed up the simulation, we use an adaptive time step such that a maximum of 0.01% of

free dimers at time t can be consumed by growing shells. Similarly, a maximum of 0.01%

of free dimers can be released by dissociated shells at time t. In other words,

∆t = 0.0001xs

Max(J t
1, J t

3) (2.11)

where J t
T =| J t

as,T − J t
dis,T | is the absolute assembly or disassembly rate of capsid size T.

The simulation continues until full depletion of the unfavorable capsid size.

From equilibrium theory and experimental observations, we have to assume that

there are some free dimers remaining in the solution before the quench, that is, before the

induced shift in pH and in salt concentration that on the time scale of the experiment is

(virtually) instantaneous. Therefore, we invoke a non-zero value as our initial free dimer

concentration. Quickly after starting the simulation, the dimer concentration converges to

a fixed concentration relatively close to what must be the smaller critical concentration.

Having initially more dimers in the system leads to the fast formation of capsids. On the

other hand, a low dimer concentration at the start of the simulation increases the initial

disassembly rate. In order to avoid both of these conditions, we choose the initial dimer

concentration near the concentration it converges to. It also helps us to avoid any divergence

in the simulation as the dissociation rates increase significantly at low dimer concentrations.

Based on the dimer concentration at the end of the experiment, which is relatively

close to the critical concentration of the more stable species, we approximate the total

dimer concentration is around 10 times larger than the critical concentration. Therefore,
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the overall protein in the unfavorable capsid we set at 10c∗, where c∗ = Min(c∗
1, c∗

3). (See

table 3.1 and 3.2 for parameter values.) Due to the universality of the phenomena, the model

is capable of reproducing the experimental results by using different binding energies. We

decide to fix the binding energy of T=1 in our framework and generate experimental results

only by changing the binding energy of T=3. This allows us to have a better comparison

between the two types of experiment.
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Chapter 3

The Dynamics of Viruslike Capsid

Assembly and Disassembly

This results were published [5]. I have contributed to this work by developing the

model, computational implementations, computational analysis and curve fittings.

3.1 Introduction

Single-stranded RNA (ssRNA) viruses infect all species in the tree of evolution,

causing significant economic damage and health concerns. The ssRNA genome of such

viruses is protected by a shell called the capsid, composed of many copies of a single or a

few protein subunits. To infect a host cell, a virus needs to enter, disassemble, release its

genome, and use the cell’s machinery for replication. Clearly, the capsid is a responsive

structure: Although it protects the genome and should be stable outside the cell, it must

also readily disassemble once inside the cell and present its genome for replication [1, 17].
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Arguably the most extensively studied viruses in this context are cowpea chlorotic

mottle virus (CCMV) and Brome mosaic virus (BMV), which have proven to be good models

for virus replication studies. The disassembly of the capsid in a cell must be triggered by

changes in the chemical environment, resulting in the weakening of molecular interactions.

Indeed, in vitro studies of CCMV and BMV show that following a pH jump from a neutral

to a basic environment at high ionic strength the capsids of these viruses spontaneously

disassemble [18, 19, 20]. However, since the spatial and temporal resolution of intermediate

structures of these studies are limited, kinetic pathways of disassembly have remained a

mystery.

Generally, despite a huge body of work dedicated to understanding virus uncoating,

our understanding of its kinetics and the factors contributing to it remains rudimentary

[2, 6, 7, 8, 9, 10, 21, 22, 23, 24]. One of the main reasons for the lack of insight is the

fact that the assembly of CCMV is governed by two driving forces involving two species,

namely, the interaction between the capsid proteins (CPs) and that between the ssRNA

and the RNA-binding domain of CPs [13]. Distinguishing the contribution of both in the

disassembly is not trivial, as CCMV shells in the absence of genome are not stable under

physiological conditions [3, 25].

To develop and validate a plausible model that describes capsid assembly and

disassembly, experimental conditions have to be found that allow for the elimination of the

contribution of nucleic acids. This would not only lead to a better understanding of virus

assembly but also allow for the development of tools to manipulate this process, either

by preventing capsid formation and counteracting viral replication or by stabilizing empty
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capsids under physiological conditions as tools for diagnostic and therapeutic applications

[26].

Several years ago the CP variant ELP-CP, which involves the attachment of elastin-

like polypeptides (ELPs) at the N-terminus of the CPs of CCMV have been designed [27].

These ELPs consist of nine repeating Val-Pro-Gly-Xaa-Gly pentapeptide units, which switch

from an extended water-soluble state to a collapsed hydrophobic state in response to an

increase in temperature and/or electrolyte concentration [28]. At pH 5, the ELP-CPs form

viruslike particles (VLPs) with a diameter of 28 nm, similar to the native T = 3 particles

[27]. At pH 7.5, wild-type CPs do not assemble into shells, yet ELP-CPs assemble into

18 nm (T = 1) VLPs upon increasing the salt concentration, a process induced by the

hydrophobicity of the ELPs [27, 29, 30].

Our collaborators describe the results from time-resolved experiments, and inves-

tigate the disassembly of one type of ELP-CP capsid and reassembly of another in response

to pH changes ( section 3.1) [5]. While changing the pH from 5 to 7.5, they monitor how

the T = 3 shells disappear, while the T = 1 shells appear as a function of time. They also

study the disassembly of T = 1 capsids and the assembly of T = 3 capsids by lowering

the pH from 7.5 to 5. To get a better understanding of the mechanism of transition, our

collaborators performed experiments in which they added fluorescently labeled ELP-CPs

to unlabeled capsids. They observe that at both pH 5.0 and 7.5 the capsids can exchange

dimers with the solution which makes it plausible that the observed size change involves

the transfer of dimers [5, 31]. Furthermore, they note that it is unlikely for one structure

to morph into the other one without disassembly because of the change in the radius of
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curvature between the two structures. If the sizes of the two structures were close to each

other, then it would be possible for the big pieces of one shell to be recycled to form another

shell [32]. These experimental findings can be explained by a simple model based on classi-

cal nucleation theory (CNT) applied to viruslike capsids [4, 15, 33, 34], accounting for the

time-evolution of the concentrations of the various species that result from the shedding or

addition of single protein subunits as the different types of shell assemble and disassemble.

As far as we are aware, this is the first study confirming that both assembly and disassembly

of viruslike shells can be explained through CNT as a possible mechanism for quantitatively

reproducing experimental data.

Figure 3.1: Schematic overview of the size change of ELP-CP viruslike particles (VLPs)
upon a shift in pH.

3.2 Theory

Experiments suggest that we are pitting the assembly rate of one species against

the disassembly rate of another. In order to explore the role of metastability in our ex-

periments, we resort to CNT, as a plausible model to describe the system. Within CNT,

the steady-state capsid assembly and disassembly rates Jas,T and Jdis,T can be written as

[4, 16]:

23



Jas,T = xsν∗
T ZT e−∆G∗

as,T (3.1)

Jdis,T = xT ν∗
T ZT e−∆G∗

dis,T (3.2)

where ν∗
T , ZT , xs, and xT denote the attempt frequency of dimers attaching to the critical

nucleus, the Zeldovich factor, and the mole fraction of free subunits, and the capsid of a

given T number. ∆G∗
as,T is the height of energy barrier between the free proteins and fully

formed capsids, while ∆G∗
dis,T is the height of the free energy barrier between the assembled

and free CPs (Figures 3.2D and 3.3D for the opposite size shift). The barrier height depends

on the overall protein concentration and on the binding free energies of the proteins in the

two types of shell, gT , in units of thermal energy, averaged over all subunits of a fully formed

capsid. The kinetic equations describing the concentration of dimers and T = 1 and T = 3

capsids read as

dxs

dt
= −q1Jas,1 − q3Jas,3 + q1Jdis,1 + q3Jdis,3 (3.3)

and

dxT

dt
= Jas,T − Jdis,T (3.4)

where q1 and q3 are the numbers of dimers in fully formed T = 1 and 3 capsids, respectively.

The quantities on the left-hand sides of Equations 3.3 and 3.4 represent time derivatives

of the concentrations of the species in our model. The terms on the right-hand sides are

due to the formation or dissociation of capsids. We solve the above system of equations

numerically, using an explicit forward Euler method with adaptive time steps.
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3.3 Results

3.3.1 Reassembly during size decrease

Consistent with the experiments performed by our collaborators ( Figure 3.2B), we

find that upon increasing the pH from 5 to 7.5, the amount of T = 3 structures decreases

while at the same time the number of T = 1 structures increases, indicating that under

these experimental conditions the protein–protein attraction is stronger between subunits

forming T = 1 shells than that of those forming T = 3 ones. Our curve fits in Figure 3.2C

for times up to 30 h give g1 = −15.0 and g3 = −14.7 in thermal energy units.

Figure 3.2: Analysis of ELP-CCMV capsids during the transition from T = 3 to T = 1
particles at pH 7.5. (A) SEC chromatograms measured after indicated dialysis times to
pH 7.5. (B and C) Protein fractions as T = 1 (blue circles) and T = 3 (yellow squares)
capsids as determined by integration of the SEC chromatograms. The solid lines are the
results of our numerical solution (Equations 3.3 and 3.4). See Table 3.1 for more details.
(D) Schematic overview of the proposed reassembly mechanism during size decrease, where
T = 1 capsids are energetically most favorable under the buffer conditions used. ∆G values
are in kBT units. Energy barriers are not drawn to scale; the values provided are indicative.
(E) TEM micrographs of samples that were taken after the indicated dialysis times. T = 1
capsids in the 45 min image are indicated with arrows. Scale bars correspond to 20 nm.
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As the T = 3 shells disassemble, the concentration of free dimers increases and,

at some point, reaches the value of the critical capsid concentration c∗
1 = eg1 , whereupon

T = 1 shells start forming and consuming free dimers. As the free dimer concentration

continues to increase, the disassembly rate of the T = 3 shells decreases, and the assembly

rate of T = 1 shells increases, explaining the behavior of the disassembly and assembly

curves shown in Figure 3.2C. However, fairly quickly the free dimer concentration attains

a more or less constant value because the disassembly of T = 3 shells produces dimers that

are immediately depleted by the formation of T = 1 shells, confirming that the changes in

protein fraction in the capsids are due to the disassembly of T = 3 and assembly of T = 1

( section 3.3.3). We note that the decrease in free dimer concentration after two months in

Figure 3.2A could be due to the fact that dimer proteins at pH 7.5 after prolonged storage

are not highly stable and some aggregation and denaturation will occur over time. The

theory presented in this thesis does not include this effect.

3.3.2 Reassembly during size increase

We next discuss the size shift from T = 1 to T = 3 following a jump in pH from

7.5 to 5 [31]. Figure 3.3A,B show that T = 1 particles, stable at neutral pH, disappear over

time, while T = 3 particles appear. The whole process proceeds much more gradually than

the opposite size shift and takes around 2 months to reach full completion ( Figure 3.3B).

Our collaborators monitor the dynamics using Transmission Electron Microscopy (TEM),

as shown in Figure 3.3E. TEM analysis confirm the observed increase in the number of T

= 3 particles during the assembly and disassembly processes.
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Figure 3.3: Analysis of ELP-CCMV capsids during transition from T = 1 to T = 3 particles
at pH 5.0. (A) SEC chromatograms measured after indicated dialysis times to pH 5.0. (B
and C) Protein fractions as T = 1 (blue circles) and T = 3 (yellow squares) capsids as
determined by integration of the SEC chromatograms . The solid lines are the results
of our numerical solution (Equations 3.3 and 3.4). See Table 3.2 for more details. (D)
Schematic overview of the proposed reassembly mechanism during size increase, where T =
3 capsids are energetically most favorable under the buffer conditions used. ∆G values are
in kBT units. Energy barriers are not drawn to scale; the values provided are indicative. (E)
TEM micrographs of samples taken after the indicated dialysis times. The T = 3 capsids
in the 0.5 h image are indicated with arrows. Scale bars correspond to 20 nm.

The number of T = 1 structures decreases and the amount of T = 3 structures

increases in parallel, which points at stronger attractive interactions between CPs in the

native species at low pH. Our curve fits in Figure 3.3C for times up to 168 h give g1 = −15.0

and g3 = −15.4 in thermal energy units. Again we find that the free subunit concentration

very quickly becomes more or less constant: The disassembly of T = 1 shells produces

dimers that are used for the formation of T = 3 shells.

From Figures 3.2B,C and 3.3B,C, it appears that T = 3 capsids easily dissociate

at pH 7.5, crossing the growing fraction of T = 1 capsids after 6 h, while the disassembly

of T = 1 CPs at pH 5.0 is much slower, crossing the growing fraction of T = 3 capsids
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only after 48 h. This is expected because the smaller size of a T = 1 capsid produces fewer

subunits per disassembled shell. ELPs are positioned closer next to each other because of

the higher curvature of T = 1 shells, and the interaction between ELPs remains strong at

pH 5.0.

3.3.3 Protein exchange between capsids of different size

We showed results of the fraction of proteins in the two types of capsid, fT , as we

find this the most informative. Alternatively, we can also calculate the fraction of dimers

Figure 3.4: The fraction of protein in T=1 (blue line) and T=3 (yellow line) and dimer
( gray line) over the total amount of protein in the solution ( hT ) for the experiments
showing A) disassembly of T=1 (represented in the Figure 3.3) and B) disassembly of T=3
(represented in the Figure 3.2). Refer to Tables 3.1 and 3.2 for the parameter values.

in one type of capsid relative to the total number of dimers in solution, hT = qT xT
cs

, where

T=1,3 is as before the T number of the capsid and cs the overall dimer concentration

in solution. Our simulations show that for our choice of parameters the concentration of

dimers remains constant during the process (see Figure 3.4), implying that the increase in
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the protein fraction in capsids is not due to the assembly of the free dimers initially present

in the solution. This agrees with what is seen in the experiments [5]. This supports the

proposed idea that one capsid size undergoes disassembly, resulting in the formation of free

dimers. Subsequently, these free dimers reassemble to create the other capsid size. The

fraction fT plays a critical role in describing the assembly and disassembly kinetics for the

problem at hand.

3.3.4 Model robustness with respect to different reference points

We have calibrated the simulation results using a reference point in the data series,

as mentioned in the caption for Figures 3.2C and 3.3C. Here we re-calibrated the same

Figure 3.5: The fraction of protein in capsids (fT as described in Equation 2.8) of T=1
(short dashed lines) and T=3 (long dashed lines) for A) disassembly of T=3 (represented
in the Figure 3.2) and B) disassembly of T=1 (represented in the Figure 3.3) experiments,
using different reference times. See Tables 3.1 and 3.2 for parameter values.

simulation data set with respect to a number of reference points to verify the robustness of

our fitting procedure. We find that the curve fits depend only relatively weakly on the choice
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of reference point (Figure 3.5). Unfortunately, our numerical implementation of Classical

Nucleation Theory does not allow us to find the fundamental time scale, that is, the time

scale associated with the attempt frequency. In spite of this, we are able to show that the

disassembly and assembly of the two different capsid sizes can be explained by CNT.

3.4 Conclusions

In this context, we note that under specific conditions, the association and disso-

ciation of empty capsids exhibit hysteresis. This means that the process of capsid assembly

is more favorable or easier compared to the disassembly process [35]. Hence, assembled

capsids can be significantly more stable kinetically than they are thermodynamically, im-

plying that the height of the free energy barrier must be larger for disassembly than it is

for assembly [4, 36]. Both the experimental findings and our theoretical calculations concur

that the disassembly step serves as the rate-limiting factor in the conversion of unstable

capsid shells into stable shells of different sizes.

In conclusion, our investigations demonstrate that ELP-CPs can undergo reversible

switching between T = 1 and T = 3 structures in response to changes in solution condi-

tions. While we acknowledge the possibility of other models explaining these experimental

observations, notably, the interconversion between the two structures can be accurately de-

scribed, particularly during the initial and intermediate timeframes, by CNT. At pH 7.5, the

driving force for the assembly of coat proteins is the interaction between the ELPs, while at

pH 5.0 the attractive interaction between capsid proteins predominates over the attractive

ELP–ELP interactions. Since ELPs are attached to the capsid proteins, the ELP-CCMVs
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do form a shell at pH 7.5, but only the smallest possible one as the ELPs need to be as

close as possible to each other to make contact. This insight is of importance not only for

a more fundamental understanding of virus assembly but also for the improved design of

VLP-based nanomedicines.

3.5 Table of parameters

All parameters related to the simulation of disassembly of T=3 and assembly of

T=1, and vice versa, discussed in the main text and used in our comparison with the

experiments are tabulated below.

parameter Value( unit) Description
g1 −15(kBT ) Binding energy of T=1 capsids
g3 −14.7(kBT ) Binding energy of T=3 capsids
q1 30 Number of dimers in fully formed T=1
q3 90 Number of dimers in fully formed T=3

xs(t = 0) 0.8c∗
1 Initial dimer concentration

x1(t = 0) 0 Initial T=1 concentration
x3(t = 0) 1/9c∗

1 Initial T=3 concentration
ν∗ 1(a.u.) Critical attempt frequency
s 0.3 fraction of bonds at the rim
tr 4(hours) Reference time

Table 3.1: Parameters used in simulation of disassembly of T=3 and assembly of T=1
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parameter Value( unit) Description
g1 −15(kBT ) Binding energy of T=1 capsids
g3 −15.4(kBT ) Binding energy of T=3 capsids
q1 30 Number of dimers in fully formed T=1
q3 90 Number of dimer in fully formed T=3

xs(t = 0) 1.3c∗
3 Initial dimer concentration

x1(t = 0) 1/3c∗
3 Initial T=1 concentration

x3(t = 0) 0 Initial T=3 concentration
ν∗ 1(a.u.) Critical attempt frequency
s 0.3 fraction of bonds at the rim
tr 48(hours) Reference time

Table 3.2: Parameters used in simulation of disassembly of T=1 and assembly of T=3
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Chapter 4

A multiscale chemical-mechanical

model predicts impact of

morphogen spreading on tissue

growth

This results were published [37]. I have contributed to this work in the formal

analysis, investigation, software developing, and visualizations.

4.1 Introduction

Understanding mechanisms underlying proper tissue growth and shape formation

in an embryo is among the most important unanswered questions in developmental biology.
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The growth of tissues and organs always exhibits the property of self-organization, with

precise control of cell proliferation resulting in robust tissue size and specific shape as

integrity. This process also stays robust under external perturbations as observed in wound

healing and tissue regeneration [38, 39, 40, 41, 42, 43]. Uncontrolled cell growth and cell

division often lead to abnormal development or fatal diseases such as cancer.

During tissue development, chemical signals are found to be critical to the reg-

ulation of cell proliferation and tissue shape formation. A variety of molecules, from ex-

tracellular ligands to intracellular proteins, have been identified as growth regulators in

different biological systems. For example, transforming growth factor Beta (TGF − β), a

member of the growth factor superfamily, has been found to regulate the growth in multi-

ple animal organs [44, 45]. In particular, bone morphogenic proteins (BMP) are members

of the TGF − β family and play essential roles in establishing the basic embryonic body

plan for tissue development in vertebrates [46, 47, 48, 49, 50]. Disruption of BMP sig-

nals can affect the growth rate and pattern formation, leading to disorders in adult tissues

[51, 52]. On the other hand, in addition to the central core of the growth control machin-

ery, which depends on chemical cues, cell mechanics play a fundamental role in shaping a

tissue [53, 54, 55, 56, 57, 58, 59, 60]. Each cell has a complex mechanical architecture that

not only shapes itself as integrity but also allows it to sense the physical surroundings and

make responses. For example, cytoskeletal tension in one cell can be affected by differential

growth associated with neighboring cells and modulate intracellular molecular signals to

regulate growth as feedback [61]. Cell deformation can be induced by mechanical forces

such as the adhesion to the extracellular matrix (ECM), contractility in the cytoskeleton,
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and cell–cell adhesion, which may also lead to physical changes of nuclei and an alteration

in gene expression to switch cell fate between growth, differentiation, and apoptosis [62].

Therefore, it is necessary to consider both chemical signals and mechanical properties, as

well as the interplay between them, to understand the general principles involved in tissue

development.

Drosophila wing disc, a primordial epithelial organ that later becomes the adult

wing, as shown in Figure 4.1A, serves as a classic model to study tissue growth regulation

due to its simple geometry, the limited number of cells, and fast growth. Additionally, the

well-established molecular signaling network involved in this tissue contains multiple con-

served molecules critical to other developing systems in mammals [45]. Understanding the

mechanism of growth regulation in the Drosophila wing disc is substantial in understanding

limb development in mammals. In this tissue, Decapentaplegic (Dpp), a homolog of BMP,

forms a spatial gradient across the anterior-posterior (AP) axis of the tissue to establish

and maintain domains of multiple target genes that specify different compartments in the

adult tissue (Figure Figure 4.1B, C). For individual cells, a signal transduction cascade con-

verts local concentrations of Dpp into intracellular phosphorylated MAD (pMAD) through

binding with receptors on the membrane. pMAD protein is also commonly observed in

other systems and related to several cancers in humans [44]. Based on the level of pMAD,

different genes are activated along the AP axis of the imaginal wing disc to establish the

pattern and regulate growth. In terms of mechanical properties, a wing disc consists of

a flat sheet of cells with E-cadherin responsible for cell–cell adhesion between neighboring

cells. Inside individual cells, actomyosin is dynamically rearranged to give rise to different
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levels of contractility, which links to multiple cellular functions, including nuclear motion

during mitotic rounding ( Figure 4.1D) [63] and vesicle trafficking [64, 65]. Moreover, actin

networks in the cytoplasm, as a major component of the cytoskeleton, provide structural

support to each cell and determine cell shapes together with the cytoplasm. More recently,

it has been observed that chemical signals can affect cell mechanics by directly controlling

the subcellular distribution of the small GTPase Rho1 and the regulatory light chain of non-

muscle myosin [66]. Dpp signal promotes the compartmentalization of Rho1 and myosin,

which leads to the contraction of actomyosin filaments and an increase in cortical tension.

This suggests the interaction between chemical signals and mechanical properties also plays

an important role in shaping cells and, therefore, the overall tissue shape.

Several hypotheses regarding growth regulation in the wing disc tissue have been

proposed so far. Substantial data suggest that Dpp morphogen is pivotal in regulat-

ing growth; however, the underlying mechanism remains controversial and uncertain. In

Wartlick et al. [67], it was suggested that cells have memory and will divide if the temporal

change of the Dpp signal reaches a certain threshold value. In contrast, recent experiments

have shown that a Dpp signal is not always required for growth since removing Dpp from

the center of the tissue at some stage during the development does not affect the growth

[68]. On the other hand, mechanical properties have been shown to be critical in regulating

growth based on measurements of cell stress in experiments [61].

Many computational models have been developed to study tissue growth in differ-

ent biological systems, including cell lineage in epithelia [69, 70, 71, 72] and tumor growth

[73, 74, 75]. To include chemical signaling networks, it is common to use continuous models
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Figure 4.1: A) Diagram of Drosophila larva with wing disc tissue circled. B) Illustrative
diagram of the Drosophila imaginal wing disc. The blue color denotes the Dpp morphogen
gradient. C) Schematic profile of the Dpp morphogen in half wing disc. Its distribution
follows an exponential shape, as observed in experiments. D) Configuration of epithelial
cells in the wing disc pouch. The image has been reproduced from Gibson et al. [63]
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in which the dynamics of chemical signals are captured by a system of differential equa-

tions. This kind of approach usually involves moving boundary problems for capturing

tissue growth that are challenging to solve numerically. It can be overcome by using La-

grangian coordinates [76], immersed boundary method [77], level set method [78], or other

similar approaches. To include cell mechanics, some models use discrete particles to rep-

resent individual cells, which allows one to model cell growth, cell division, and cell–cell

interaction. More specifically, each cell can be represented by a single particle (agent-based

model) [79], multiple particles on the cell membrane (multi-agent-based model) [80], a poly-

gon (vertex-based model) [58, 67, 81, 82], or multiple particles on the cell membrane and in

the cytoplasm (subcellular element method) [83]. In particular, multi-agent-based models

and subcellular element models can describe biologically relevant cell shapes with greater

flexibility due to the multiple nodes involved. Another type of model is based on the finite

element framework, coupled with continuum mechanics principles [84, 85, 86, 87]. Models

of this type focus more on tissue growth without subcellular details. Most existing models

for studying tissue growth focus on either chemical signals or mechanical properties only.

As suggested by recent experimental data, exploring mechanisms involved in tissue growth

regulation requires a model that includes both chemical and mechanical factors, as well as

the interactions between them.

Several coupled chemical-mechanical models have been developed recently and

gained lots of attention. In Aegerter-Wilmsen et al. [88], both chemical signals and me-

chanical cues were considered. However, fixed morphogen gradients were adopted without

considering the temporal dynamics or subcellular activities. Vertex-based models have been
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coupled at the cell level with diffusive molecules [89] or intracellular gene expression [44, 45]

to study tissue development. The subcellular element model has also been coupled with

chemical signals without distinguishing cell membrane and cytoplasm [90, 91]. Those exist-

ing models provide novel insights into growth regulation in different systems. As far as we

know, very few of them consider subcellular details and the interaction between chemical

signals and mechanical forces, which is critical in the regulation of individual cell behavior

and tissue growth.

Here we developed a multiscale coupled chemical-mechanical model where the

mechanical submodel describes cell mechanical and adhesive properties at the subcellular

and cellular levels, and the chemical signaling submodel describes both morphogen gradient

at the tissue level and the intracellular gene regulatory network at the cellular level. This

model was then applied to study growth regulation in Drosophila wing imaginal disc. In

addition, we incorporated a cell division rule proposed in Wartlick et al. [67], in which cells

enter the mitotic phase and divide when the Dpp signal is increased by 50% compared with

that at the beginning of the cell cycle in individual cells. Following this hypothesis and

including cell mechanical properties, morphogen gradients with different decay lengths were

tested in the model to simulate tissue growth. We found that a morphogen gradient with

a larger decay length maintained the tissue growth longer, resulting in a more symmetric

shape at a more spatially homogeneous growth rate, which was consistent with experimental

observations. Together with the assumption of an absorbing boundary condition, feedback

regulation of the downstream signal to inhibit the synthesis of cell membrane receptors

facilitated tissue growth by indirectly expanding the spread of the morphogen gradient.
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Although the chemical-mechanical model was only applied to studying the growth regulation

of Drosophila wing disc, it can be applied to simulate tissue growth and test hypotheses on

growth regulation involved in other epithelial tissues.

4.2 Results

We developed a two-dimensional chemical-mechanical model for studying tissue

development and applied it to explore the growth regulation mechanism in the Drosophila

wing disc. In particular, we aimed to understand how spatially uniform growth can be

achieved and maintained throughout tissue development, as observed in experiments. [37]

4.2.1 Multiscale chemical-mechanical model of tissue development in two

dimensions

During tissue development, both chemical signals and mechanical forces play es-

sential roles in regulating cell growth. We have introduced a multiscale model to integrate

both chemical and mechanical factors and the interactions between them at the subcellu-

lar level (see Figure 4.2). This chemical-mechanical model employs a subcellular element

particle-based method for the mechanical submodel and a system of differential equations as

the submodel for chemical signals coupled both in space and time. Details of each submodel

are provided in “Methods”. In what follows, we briefly describe the coupling of submodels.
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Figure 4.2: A) Triangular mesh over the nodes obtained in the mechanical submodel. B) A
zoom-in view of the triangular mesh within the red box indicated in (a). C) Mathematical
model (left) and a schematic diagram (right) of the chemical signaling network in a single
cell of Drosophila wing disc. D) Discretized tissue with Dpp gradient, denoted by blue-red
color, obtained in the chemical-mechanical model.
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4.2.2 Spatial coupling of mechanical and chemical submodels

The spatial coupling of the chemical signaling submodel and the mechanical sub-

model is achieved by adopting a dynamic triangular mesh over individual cells as well as

the entire tissue. Such dynamic mesh is constructed using discrete nodes representing cell

membranes obtained in the mechanical submodel (Figure 4.2A). Shared edges and junction

points between neighboring cells are identified as the edges and vertices of triangles, respec-

tively (Figure 4.6). Together with cell centers, they give rise to a triangular mesh covering

individual cells (Figure 4.2A, B) (More details about this mesh generator are provided in

“Methods”). The chemical signaling submodel in the form of Eqs. 4.4–4.7 is then simulated

over the latest mesh to reach the steady state, using an initial condition based on the old

Dpp levels from the last update of the chemical signaling submodel in individual cells (

Figure 4.2C). Distributions of chemical signal concentrations are obtained at both individ-

ual cells and tissue level (Figure 4.2D). Meanwhile, cell averages of the chemical signals are

used in the mechanical submodel to direct cell growth and division.

4.2.3 Temporal coupling of mechanical and chemical submodels

Cell growth and division are initiated and regulated by chemical signals. More-

over, the dynamics of chemical signals are at a much faster time scale than the time scale

of mechanical changes. Therefore, quasi-steady states (Figure 5.1) of chemical signaling

distributions are computed over the dynamic mesh, which captures cell and tissue deforma-

tion, and are transmitted into the mechanical submodel at some frequency. This frequency

was chosen to limit redundant computation and unnecessary computational cost, as well as
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to transmit accurate distributions of chemical signals to the mechanical submodel. In our

model, the change in the chemical signaling distribution depended on the deformation of

individual cells. Therefore, to couple two submodels in time, we estimated the average time

that one cell takes to enter the mitotic phase and divide. It was then converted into the fre-

quency to update the quasi-steady state of chemical signaling distribution over the domain

based on the most recent tissue configuration (More details are provided in “ Methods”).

The multiscale chemical-mechanical model can be applied to study tissue devel-

opment and investigate mechanisms underlying growth regulation in different biological

systems. In what follows, we calibrate the model and use it to study the development of

Drosophila wing disc pouch tissue.

4.2.4 Calibration of the model for the development of Drosophila wing

disc pouch

Dpp morphogen is the primary signal controlling cell growth and tissue develop-

ment in Drosophila wing disc pouch [66, 67, 92, 93, 94, 95, 96, 97, 98, 99]. In individual

cells, the Dpp molecule binds with its receptors, Thickvein (Tkv), on the cell membrane

to form the complex phosphorylates MAD (pMAD) as a downstream signal (Figure 4.2C).

Experimental data also suggested pMAD represses the production of Tkv as a negative

feedback regulation [43], leading to a lower synthesis of Tkv near the Dpp source region.

In the multi-scale model, dynamics of the morphogen and the intracellular signal-

ing network are modeled by a system of reaction-diffusion equations as shown in Figure 4.2D.

Parameters d∗’s represent degradation rates and v∗’s represent production rates. vmin and

vmax are the minimum and maximum production rates of Tkv receptors. The production
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of Dpp is modeled as a Hill function of the distance to the Dpp production region located

at the AP boundary. Half of the tissue width is denoted as L(t) and the width of the Dpp

production region is denoted as rsL(t), where rs is a constant calibrated using experimental

data [43]. The activation of intracellular signal pMAD by the binding complex Dpp-Tkv is

also modeled by a Hill function, so is the negative feedback regulation of pMAD on Tkv.

We applied a hypothesized cell division rule proposed in Wartlick et al., 2011 [67]

assuming that cells divide when the level of Dpp signal is increased by 50% compared with

that at the beginning of each cell cycle, i.e., [Dpp]−[DppDiv ]
[DppDiv ] ≥ 50%, where [Dpp] is the Dpp

concentration at the current time and [DppDiv] is the concentration at the beginning of

one cell cycle. This hypothesis, also known as the temporal model, assumes that cells have

a memory to keep track of Dpp level throughout the cell cycle and they divide once its

relative change gets sufficiently large. Therefore, in our model cells have a constant growth

rate during the interphase (Table 5.4), and they progress into the mitotic phase based on

the division rule condition indicated above (Figure 4.5A). All other parameter values were

provided in Table 5.2 and Table 5.3. This model can be easily revised to incorporate any

other cell division rule.

4.2.5 Morphogen absorbance at the tissue boundary and large decay

length prolong tissue growth at a fast and spatially homogeneous

rate

Dpp is generated along the midline of the wing disc and diffuses bilaterally into

the neighboring tissue. Therefore, it forms an exponentially shaped gradient along the AP

axis (Figure 4.1B). To characterize the Dpp gradient, it is common to use a quantity called
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decay length (λ), which measures the distance from the source region to the location where

the Dpp level is reduced to e−1 ≈ 37% of its maximum (see section 5.2 for more details) [43].

A greater decay length represents a further spread of the exponential morphogen gradient.

The experimental data revealed that ubiquitous expression of Tkv led to a smaller decay

length of the Dpp gradient, followed by a slower growth and smaller tissue size [43]. This

observation suggests that the spatial distribution of morphogen gradient should play an

important role in regulating tissue growth.

To understand how the distribution of the Dpp gradient affected tissue growth, we

first used a simplified chemical submodel by ignoring intracellular processes and downstream

signals in the form of Equation 4.3 provided in “Methods”. This simplified model allowed

us to perturb the shape of the gradient easily through tuning one parameter only. In

particular, the source term (second term on the right-hand side of Equation 4.3) is specified

as vDpp/[1+( x
rsL(t))ns ] to represent the synthesis of Dpp molecules along the midline, where

vDpp , rs, ns are constants and L(t) denotes half of the tissue width. Moreover, the decay

length of Dpp in this simplified model can be analytically estimated as λ =
√

DDpp/dDpp

(See section 5.2 for details), depending on the diffusion rate and degradation rate. A

higher diffusion rate or lower degradation rate allows diffusing molecules to travel further,

giving rise to a larger decay length. Both diffusion and degradation rates were calibrated to

achieve a similar decay length observed in experiments [43]. We then coupled this simplified

chemical submodel with the mechanical submodel under the specific cell division rule to

simulate tissue growth. All simulations started with 100 cells (Figure 4.3A). The final shapes

of simulated tissue development are shown in Figure 4.3A’, B-C. To understand how the
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decay length could affect tissue growth, we varied the degradation rate of Dpp concentration,

which changed the underlying decay length under different boundary conditions.

Figure 4.3: A) Initial configuration of the tissue in simulations. Final configuration of the
tissue at t=200 with A’) no flux boundary condition, B) absorbing boundary condition with
a large degradation rate of Dpp, and C) absorbing boundary with a small degradation rate of
Dpp. The scale bar in (A–C) is 10 µm. D) Percentage of cells having n number of neighbors
for simulations and experimental results. E) Normalized Dpp profile at t=200 with respect
to the relative cell position in the tissue under different boundary conditions and with
different degradation rates of Dpp. The black line shows fitted experimental quantification
of the relative Dpp concentrations from 48 to 130 h. F) Cell numbers with respect to time
for different degradation rates and different boundary conditions. G) Tissue circularity with
respect to the cell number for different degradation rates. Circularity was defined as the
ratio of tissue height over tissue width. H) Distribution of the angular position of dividing
cells with respect to tissue center for different degradation rates when there are 500 cells in
the tissue.

First, we considered the scenario that free Dpp molecules cannot escape at the

boundary of the wing disc pouch and are always kept within the tissue. This was modeled

by no flux boundary condition associated with cells located at the tissue boundary. For

tissue growth with no flux boundary condition, smaller degradation resulted in a flatter

Dpp gradient (red and blue triangles in Figure 4.3E). The Dpp concentration was saturated
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at high levels in individual cells, and it did not increase sufficiently to satisfy the cell

division rule at the early stage of development. Therefore, most cells only experienced

one cell cycle, and tissue growth stopped at the early stage, leading to small tissue sizes

(red and blue dash line in Figure 4.3F). With a larger degradation rate, the Dpp gradient

became more exponential (green triangles in Figure 4.3E), which was still far from the

experimental profile of Dpp [67] (black crosses in Figure 4.3E) and the final tissue size

obtained was slightly increased (green dash line in Figure 4.3F). However, tissue growth

was still terminated early, and the overall tissue size was much smaller than that obtained

in experiments (Figure 4.3F). Therefore, by assuming Dpp molecules could not escape at

the boundary, tissue growth only occurred in a short time period at the early stage, and

small final sizes were always obtained for different decay lengths of Dpp.

Second, we considered the scenario with Dpp being completely degraded at the

periphery zone of the tissue (see “Methods” for more information), which was modeled by

using absorbing boundary conditions for cells at the boundary of the tissue. Under these

assumptions, the Dpp gradient changed from a linear shape to an exponential shape as

the tissue size increased (indicated by circles in Figure 4.3E). Furthermore, by assuming

absorbing boundary conditions, the tissue growth was able to reach a size greater than the

decay length of Dpp gradient (indicated by solid lines in Figure 4.3F). We also observed that

with a larger degradation rate, the morphogen gradient became exponential at a smaller

tissue size, and the growth was maintained in a shorter period of time, giving rise to a

smaller tissue size (see solid green line in Figure 4.3F). With a smaller degradation rate, the

morphogen gradient became exponential at a larger tissue size (blue circles in Figure 4.3E)
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and it was still in a good agreement with experimental data [67] (black crosses in Fig-

ure 4.3E). In addition, the growth was maintained for a much longer time (Figure 4.3F).

To compare our simulated tissue size with experimental data more carefully, we found the

time in simulations when a similar cell number was obtained as that at the initial time

point and the last time point in the experiments of Wartlick et al. [67]. Then we scaled the

simulation time accordingly to match those two time points and compared the cell number

at intermediate time points. The simulated tissue growth matched experimental data best

with the smallest degradation rate (Figure 4.3F). These results were consistent with the

experimental observations of a larger decay length of the Dpp, giving rise to larger tissue

sizes [43].

In addition to limited growth, it was also shown that with a higher degradation

rate, the overall shape of the growing tissue, which was symmetric initially (Figure 4.3A),

became asymmetric, and the boundary became less smooth under the absorbing boundary

condition (Figure 4.3B). To look into this further, we tracked in model simulations the

spatial locations of all dividing cells and visualized the distribution by dividing the tissue

into eight sectors of equal size (Figure 4.3H). It was observed that a higher degradation rate

led to more dividing cells near the production region of Dpp, hence faster tissue growth along

the AP boundary. As a result, the height of the tissue grew faster than the width, yielding

an asymmetric shape (Figure 4.3G). In contrast, a smaller degradation rate gave rise to

more spatially homogeneous cell division (Figure 4.3H) and a more symmetric overall tissue

shape (Figure 4.3G). Indeed, the spatially homogeneous growth rate was also observed in

experiments of Drosophila wing disc pouch [67, 100, 101, 102, 103, 104], suggesting larger
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decay length of Dpp might be beneficial to achieve homogeneous growth in a wild-type

wing disc pouch tissue. We also measured the number of neighboring cells throughout the

simulated tissues with different boundary conditions and different degradation rates and

compared them with experimental data (Figure 4.3D). In all cases, most cells had five or

six neighbors, similar to the experimental observations. With the smallest degradation rate

and absorbing boundary condition, the cell population with less than four neighbors was

the smallest, which was most consistent with experimental data.

Overall, simulation results suggested that the decay length of the morphogen

played an essential role in maintaining tissue growth and determining the final shape when

absorbing boundary condition is applied. Under such boundary conditions and the specific

cell division rule, Dpp distribution with a larger decay length helped a tissue grow longer,

faster, and in a more spatially homogeneous manner, which closely resembled the shape of

the wild-type wing disc pouch observed in experiments. The absorbing boundary condition

with a lower degradation rate allowed Dpp molecules to travel further to establish a gra-

dient with a larger decay length, while no flux boundary condition gave rise to relatively

high concentrations everywhere and much smaller tissues. In fact, the specific cell division

rule was less frequently satisfied under no flux boundary conditions (see Figure 5.2 for de-

tails). In fact, it was observed that due to the hinge region around the wing disc pouch,

the Dpp level dropped to almost zero at the tissue boundary [43], suggesting the absorbing

boundary condition was more biologically relevant. Therefore, the morphogen absorbance

at the peripheral zone also facilitated tissue growth by reshaping the morphogen gradient

in a wild-type wing disc.
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4.2.6 Negative feedback regulation on the synthesis of receptors promotes

tissue growth through increasing morphogen decay length

It was previously shown that the transduction of Dpp signals into cells in the

Drosophila wing disc relies on a receptor kinase Tkv. Removal of Tkv had a similar effect

as the Dpp mutant. Recently, it was also observed that the intracellular downstream signal

pMAD downregulates the production of Tkv as a negative feedback regulation, which may

reshape the morphogen gradient to some extent. [43] Next, we applied our coupled model

with absorbing boundary condition to study the effects of this feedback regulation on tissue

growth.

Notice that in the chemical submodel, the negative feedback regulation of pMAD

on Tkv was modeled using a Hill function, as illustrated in Figure 4.2C. In particular, the

parameter kp denoted the effective level of pMad involved in negative feedback regulation.

Therefore, in simulations, we perturbed kp to give rise to different levels of this feedback

regulation. Higher kp values gave rise to weaker negative regulation in a smaller region,

while lower kp values led to stronger negative regulation in a larger domain. The cell

division rule involved in the coupled model depended on the intracellular signal pMAD.

Simulations were run for low (kp = 10), medium (kp = 1), and high (kp = 0.1)

strength of negative feedback, as well as different values of maximal Tkv receptor production

rate (vmax) (Figure 4.4). All simulations showed a good match with experimental data on

the number of neighboring cells throughout tissues (Figure 4.4D). The simulation results

showed that, with stronger strength of negative feedback of pMAD, i.e., lower values of kp,

the tissue grew faster and the profile of cell number growing over time was closer to the one
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obtained in experiments (Figure 4.4F, F’) and the overall tissue shape was more symmetric

(Figure 4.4G, G’). Moreover, the spatial distribution of dividing cells was more homogeneous

(Figure 4.4H, H’). However, it was also observed that simulation results for kp = 0.1 and 1

were similar to each other. This was because the production rate of Tkv became close to the

minimum almost everywhere within the tissue for sufficiently small kp. Hence, the pMAD

gradient remained more or less the same for sufficiently small kp values. By comparing the

results generated using different values of the maximal receptor production rate (vmax = 10

v.s. 20), it was observed that the effect of the feedback regulation strength became more

significant when vmax was larger, i.e., the difference in the circularity of tissue shape due

to different strength of the negative feedback regulation became more visible (Figure 4.4G,

G’).

In fact, stronger negative feedback regulation of pMAD on Tkv receptors allowed

Dpp molecules to diffuse into a larger area by reducing the binding occurrence near the Dpp

production region, and therefore it gave rise to a pMAD gradient with a larger decay length

(Figure 4.4E, E’). Based on the cell division rule used in this study, depending on temporal

changes of the Dpp signal, a more widely spreading morphogen gradient helped maintain

the tissue growth for a longer time and keep the cell number increasing linearly at a faster

rate, leading to a larger tissue size and more symmetric shape. This was also consistent

with the results obtained by using the simplified chemical submodel (Equation 4.3), in which

decreasing the degradation rate led to a larger tissue size and more spatially homogeneous

cell division.
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Figure 4.4: Tissue configuration at t=250 for vmax = 20 with A) kp = 10.0 B) kp = 1.0 and
C) kp = 0.1. The scale bar in (A–C) is 10µm. D) Percentage of cells having n number of
neighbors for simulations and experimental results. pMAD profile at t=250 with respect
to the relative cell position in the tissue with different levels of feedback regulation and E)
vmax = 20 and E’) vmax = 10. The black line represents fitted experimental quantification
of the relative signal concentrations from 48 to 130 h. Cell numbers at different levels of
feedback regulation over time for F) vmax = 20 and F’) vmax = 10. Tissue circularity with
respect to cell number for different levels of feedback regulation for G) vmax = 20 and G’)
vmax = 10. Distributions of the angular position of dividing cells with respect to the tissue
center for different levels of feedback regulation and H) vmax = 20 and H’) vmax = 10 when
there are 500 cells in each simulation.
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4.3 Discussion

Here we described a multiscale chemical-mechanical model to study growth reg-

ulation involved in tissue development and applied it to study the development of the

Drosophila imaginal wing disc at the larva stage. The mechanical submodel represents

the shape change of individual cells and cell–cell physical interactions. It is coupled with a

chemical submodel by utilizing an adaptive mesh generated over the growing tissue domain.

This chemical signaling submodel describes the dynamics of the morphogen gradient and

associated downstream signals inside individual cells, which control cell growth and divi-

sion in the mechanical submodel. A hypothesized cell division rule based on the morphogen

concentration sensed by individual cells is applied to study how the decay length of the

morphogen gradient affects tissue growth.

By applying different boundary conditions in the chemical submodel, we found

that tissue growth was maintained longer under absorbing boundary conditions. This indi-

cates that the significant reduction of morphogen at the hinge region surrounding a wing

disc tissue, as observed in experiments, could better promote tissue growth, compared with

the case of the hinge region being a simple obstacle and preventing morphogen spread.

By varying the decay length of the morphogen gradient, it was also shown that the tissue

grew faster with a greater decay length. Moreover, cell division became more spatially

homogeneous, giving rise to a more symmetric tissue shape consistent with experimental

observations. We also found that the feedback regulation of pMAD, a downstream signal of

the morphogen, on the synthesis of receptors increased the decay length and therefore facil-
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itated tissue growth. Overall, these results suggest that the decay length of the morphogen

gradient can play an important role in the growth regulation of the wing disc.

In this study, we tested a hypothesized cell division rule based on the temporal

changes of morphogen, which was proposed in Wartlick et al. [67]. However, this chemical-

mechanical model provides a general framework to study growth regulation of epithelial

tissue, and it can be used to investigate other hypothesized mechanisms of growth regulation.

For example, it was shown that cell mechanical stress contributes to growth control through

a feedback loop in the wing disc [60, 100, 102], known as the integral-feedback mechanism,

which might help to achieve a more uniform growth rate in the presence of an exponential

morphogen gradient. In addition, it demonstrated that cytoskeletal tension could regulate

growth by altering the Hippo pathway directly [61], working as an interaction between

chemical signals and mechanical properties at a subcellular scale. Therefore, the multiscale

model developed in this study can be extended to implement cell growth rate in the form

of a function of both cellular mechanical properties and chemical signals.

Moreover, it was suggested that some signaling pathways could be affected by

cell mechanical properties, including shear stress and tension sensed at adherens junctions

[105, 106, 107]. Meanwhile, signaling molecules could rearrange structural components

within individual cells and direct new materials to the cell membrane to modify the me-

chanical properties [66]. These interactions between chemical and mechanical components

can be incorporated into the multiscale model as more detailed experimental quantification

is provided. Also, in this study, the subcellular scale was mostly used in the mechanical

submodel to describe cell growth and introduce mechanical properties. Although we calcu-
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lated the distributions of chemical signals over a mesh with subcellular partitioning, only

cell-based averages were used to regulate cell division. However, this spatial mesh with sub-

cellular partitioning benefited the simulation results in terms of accuracy compared with a

cell-based mesh. It is also possible to apply this coupled model to study polarized chemi-

cal signals within individual cells and subcellular interaction between chemical signals and

mechanical properties for other biological systems.

2D models are commonly used for studying the growth of the Drosophila wing disc

pouch by neglecting the tissue thickness. This is because the wing disc pouch consists of

epithelial cell layers, and the thickness is much smaller than the apical view dimensions.

Also, the key structural components, such as E-cadherins and actomyosin, are concentrated

on the top surface of the epithelia. These components contribute significantly to cell adhe-

sion and contractility. In our 2D mechanical submodel, during cell division, the movement

of the nucleus and a significant amount of cytoplasm added to the top surface of the cell,

known as the process of mitotic rounding, are taken into account to include effects from

the neglected dimension to some level. Additionally, a 2D model allows simulations with a

large number of cells in a high resolution. As a future direction, we will try to extend our

model into 3D to include extracellular matrix (ECM) and the interaction between ECM

and cells, as well as intracellular signals distributed along the 3rd dimension regulating cell

growth. The use of parallel computing and GPU clusters may enable 3D simulations at a

similar resolution with more reasonable computational costs.
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4.4 Methods

4.4.1 Mechanical submodel

For the mechanical submodel, we follow a similar approach as the Epi-scale model

[83]. Epi-scale model is a multiscale subcellular element computational platform that sim-

ulates the growth of epithelial monolayers with detailed cell mechanics. Individual cells

are represented as collections of two types of interacting subcellular nodes: internal nodes

and membrane nodes. Internal nodes account for the cytoplasm, and the membrane nodes

represent both the plasma membrane and associated contractile actomyosin cortex. In-

teractions between internal and membrane nodes are modeled by using different energy

functions, as shown in Figure 4.5B [90, 108]. Combined interactions between internal nodes

(EII) represent the cytoplasmic pressure of a cell. Combined interactions between internal

and membrane nodes of the same cell (EMI) represent the pressure from the cytoplasm to

the membrane. Interactions between membrane nodes of the same cell (EMMS) represent

cortical stiffness. Cell-cell adhesion (EAdh) is modeled by combining pairwise interactions

between membrane nodes of two neighboring cells. EMMD is a repulsive force between

membrane nodes of neighboring cells and prevents membranes of different cells from over-

lapping. Springs and Morse energy functions are utilized to model all the interactions [91].

The following equations of the motion describe movements of internal and membrane nodes,

respectively:

ηẋI
i = −

∑
j

∇EMI
ij +

∑
m

∇EII
im

 i = 1, 2, . . . ..N I
(t) (4.1)

ηẋM
j = −

(∑
i

∇EMI
ij +

∑
k

∇EMMS
kj +

∑
l

∇EMMD
lj + ∇EAdh

j

)
j = 1, 2, ..NM (4.2)

56



where η is the damping coefficient, xI
i and xM

j represent positions of internal and membrane

nodes. m is the index for any internal node. k is the index for any membrane node of the

same cell interacting with the membrane node j. l is the index for any membrane node of

a different cell interacting with the membrane node j. Cell growth is modeled by adding

internal nodes, and therefore N I increases based on cell proliferation rate. The individual

cell cycle in the current model is shown in Figure 4.5A. Initial and final configurations

of the tissue in a simulation with a given growth rate and cell division rate are shown in

Figure 4.5C and Figure 4.5D,E, respectively.

Figure 4.5: A) Life cycle of a cell in the mechanical submodel. B) Mechanical forces between
different nodes in the mechanical submodel. C) Initial tissue configuration in a simulation
with no growth regulations. D) Final tissue configuration from the simulation in (C). E)
Zoom-in view of the final configuration.
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4.4.2 Chemical submodel

In the chemical signaling submodel, we consider a chemical signal which regulates

the growth rate and cell division. A morphogen, which is a signaling molecule governing

the growth and patterning of tissue development, diffuses in the extracellular space to

form a gradient at the tissue level. A reaction-diffusion equation is used to model the

spatiotemporal dynamics as below:

∂ [M ]
∂t

= DM ∇2[M ] + sM (x) − dM [M ] (4.3)

where [M ] denotes the concentration of the morphogen molecules, DM is the diffusion

coefficient of morphogen molecules, and dM is the degradation rate of morphogen molecules.

The production rate of morphogen molecules, varying spatially, is denoted by sM (x). DM

and dM together determine how far the molecules can reach in the steady state (See Table

5.2 –5.4 for more information). The local morphogen concentration is sensed by individual

cells through binding with receptors on the cell membrane to activate the intracellular

signaling network.

To model the intracellular signaling network, we consider the receptor R , the

complex after binding MR, and a downstream signal S. More components with more com-

plex regulations can be modeled similarly. Together with the diffusive morphogen, it gives

rise to a chemical signaling network at both cell and tissue levels, formulated as Equations

4.4–4.7 below. More specifically, the binding of the morphogen molecules and receptors

is reversible, so both binding and unbinding kinetics are included with kon denoting the

binding rate and koff characterizing the unbinding rate. A standard Hill function is ap-
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plied to model the activation of downstream signal S by the complex MR. The maximal

signal production rate and concentration at which the production is half of the maximum

are denoted by vs and kMR, respectively. It is assumed that S regulates the synthesis of the

receptor as a feedback regulation, which is also modeled as a Hill function, to accommodate

the feedback regulation present in the Drosophila wing disc. The minimum and maximum

receptor production rates are vR,min and vR,max. The concentration producing half occu-

pation is represented by ks. Notice that only M can diffuse within the tissue, and all other

components are restricted within the cell without diffusion.

∂ [M ]
∂t

= DM ∇2[M ] + sM (x) − dM [M ] − kon[M ] [R] + koff [MR] (4.4)

∂[R]
∂t

= vR,min + vR,max − vR,min

1 +
(

[S]
kS

)n1 − dR [R] − kon[M ] [R] + koff [MR] (4.5)

∂[MR]
∂t

= kon [M ] [R] − koff [MR] − dMR [MR] (4.6)

∂[S]
∂t

= vS

1 +
(

[MR]
kMR

)n2 − dS [S] (4.7)

4.4.3 Dynamic mesh generator to couple mechanical and chemical sub-

models

To generate a computational mesh for the chemical signaling submodel, we first

identify neighbors of individual cells based on the distance between membrane nodes of

every two cells (See Figure 4.6 and Table 5.1 for more information). In particular, one cell

is considered to be a neighbor of the other if the shortest distance between their membrane

nodes is less than some threshold. This threshold is chosen based on the distance between
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neighboring cells obtained in the equilibrium in the simulation (See Table 5.1 for more

details). The same threshold is also used to determine a common edge between neighboring

cells, i.e., membrane nodes from neighboring cells with a distance less than the threshold

are selected to form a common edge. The middle points are calculated for each pair of

those selected nodes, which give rise to a common edge between these two neighboring cells

(Figure 4.6B). The endpoints of each shared edge are used to determine the vertices of

the triangular mesh. It is possible that multiple cells neighboring each other give rise to a

junction. Therefore we consider all common edges associated with the same junction point

and calculate the centroid of their endpoints near the junction as a vertex in the triangular

mesh (red dots in Figure 4.6C). We go over all junctions and calculate corresponding vertices

throughout the tissue. Next, the center of each cell is obtained by calculating the centroid of

all its membrane nodes, and it is connected to vertices obtained at junctions (Figure 4.6D).

By doing that, each cell is discretized by a triangular mesh that shares a common edge

with its neighboring cells, and triangles in all cells give rise to a mesh covering the entire

tissue (Figure 4.2A). Notice that boundary cells usually lack neighbors along one or more

sides; therefore their discretization will be treated separately (See the next section for more

information). Nodes from cell membranes that act as the tissue boundary in those cells

are selected as vertices such that some minimal distance is satisfied between successive

ones. They are denoted by boundary vertices and connected with the corresponding cell

centers to give rise to the triangular mesh inside boundary cells. A mesh quality check is

implemented to guarantee that no highly skewed triangles are generated for convergence

and accuracy of the computation over the mesh. Adjustment is conducted by merging or
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splitting triangles if triangles are found to be too skewed in the quality check (See the

next section for more information). Such a mesh generator provides triangular meshes in

individual cells, as well as a global mesh over the whole tissue. Moreover, the triangular

mesh is updated at some frequency to accommodate the cell deformation and tissue growth

obtained in the mechanical submodel.

Figure 4.6: A) Nodes obtained from the mechanical submodel. Black nodes represent
cytoplasm. Gray nodes represent cell membrane, connected by linear springs. B) Identifying
common edges shared by neighboring cells. Blue dots are obtained as middle points of
membrane nodes from neighboring cells. C) Identifying junction points, i.e., centroids of
endpoints of contacting edges among neighboring cells, denoted by red nodes. D) Triangles
obtained by connecting cell centers and junction points.

4.4.4 Treatments on skewed triangles and boundary cells

Highly skewed triangles involved in the triangular mesh may affect the conver-

gence and precision of the numerical solver. As shown in gray color in Figure 4.7A, a highly

skewed triangle is often generated when the shared edge of two neighboring cells is too

short. To avoid that, we merge two vertices into one at the middle point when the edge

of two neighboring cells is less than a threshold (lintersect) (shown in red in Figure 4.7A’).

Merging two vertices into one implies that each skewed triangle is now merged with the cor-

responding adjacent regular triangle (shown in green color in Figure 4.7A’). Consequently,
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three connected triangles with the one skewed at the middle are now converted into two

regular triangles (shown in blue color in Figure 4.7A").

Figure 4.7: A) Triangular meshes with two highly skewed triangles. A’) Midpoint of two
close vertices is calculated, and A") old vertices are replaced by the midpoint, then we
update triangles accordingly. B) A configuration within which the boundary cell is not
covered by the triangular mesh. B’) Some of the membrane nodes are chosen as vertices.
The number of new vertices depends on the boundary angle. B") New triangles are built
with the new vertices. Membrane nodes in (B’) are chosen such that these triangles are
close to equilateral triangles.

Discretizing boundary cells needs special treatment since some parts of their mem-

brane are not adjacent to any other cells. The membrane parts of boundary cells that are

not adjacent to any other cells (see the cell in red color in Figure 4.7B as an example) are

discretized by selecting a few of their own membrane nodes (blue dots in Figure 4.7B’) as

the vertices of triangles. The number of membrane nodes is chosen so that triangles are

close to equilateral triangles, as shown in Figure 4.7B". Mathematically, the number of new

vertices on the membrane of boundary cells can be approximated according to the following

equation:

nvertex = Round[ θboundary

π/3 ] (4.8)

62



4.4.5 Discretization of governing equations of chemical submodel

We discretize Equations. 4.4–4.7 by using the explicit Euler method in time. The

diffusion of [Dpp] is approximated by passive transport between neighboring triangles. The

chemical submodel is solved on the triangular mesh to obtain the quasi-steady state. The

chemical signaling concentration at the cell level is obtained by calculating the average over

triangles within individual cells and is also used as the initial condition for the next update

on the chemical signaling distribution.

[Dpp]t+∆t
i = [Dpp]ti + ( DDpp

∑
nghbr

Ai,nghbr ([Dpp]tnghbr−[Dpp]ti)
li,nghbr

+ vDpp

1+
(

xi
rsL(t)

)ns − dDpp

1+
(

xi
rsL(t)

)ns [Dpp]ti

− kon[Dpp]ti[Tkv]ti + koff [Dpp_Tkv]ti ) × ∆t

(4.9)

[Tkv]t+∆t
i = [Tkv]ti + ( vmin + vmax−vmin

1+
(

[pMad]t
i

kP

)n1

− dT kv[Tkv]ti − kon[Dpp]ti[Tkv]ti + koff [Dpp_Tkv]ti ) × ∆t

(4.10)

[Dpp_Tkv]t+∆t
i = [Dpp_Tkv]ti + ( − dDpp_T kv[Dpp_Tkv]ti

+ kon[Dpp]ti[Tkv]ti − koff [Dpp_Tkv]ti ) × ∆t

(4.11)

[pMad]t+∆t
i = [pMad]ti +

 vP

1 +
(

[Dpp_T kv]ti
kDpp_T kv

)n2 − dP [pMad]ti

 × ∆t (4.12)

In Equations. 4.9–4.12, [∗]ti is the concentration of chemical signals on triangle i at time

t. The diffusion is approximated as the flux between two neighboring triangles, which

is dependent on the length of the contact edge, Ai,nghbr , and the concentration gradient
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between them. The steady state is obtained when the relative difference in concentrations

of each chemical signal (Dpp, Tkv, and pMad) between two successive time steps is less

than 10−4, i.e.,

[α]t+1
i − [α]ti
[α ]ti ∆t

< 10−4 ∀i ∈ all meshes, α = Dpp, Tkv, DppT kv, pMad (4.13)

Absorbing boundary condition is applied by assuming that free Dpp molecules would be

diminished to zero at the boundary of the domain, corresponding to the fact that no Dpp

signal was captured in the hinged region surrounding the wing disc pouch. We impose this

condition in our chemical submodel by enforcing zero Dpp level on triangles along the tissue

boundary at every time step, i.e.,

[Dpp]ti = 0∀t & ∀i ∈ boundary meshes (4.14)

4.4.6 Frequency of information exchange between mechanical and chem-

ical submodels

When coupling the mechanical and chemical submodels, cell configurations used in

the chemical submodel and chemical signal concentration used in the mechanical submodel

need to be updated at some frequency to ensure consistent information is used in both

submodels. Such frequency has to be chosen appropriately because too small frequencies

will lead to non-compatible information exchanged between two submodels, while too big

frequencies result in redundant computation and high computational cost.
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When applying the coupled model to study the development of the Drosophila wing

disc, the minimum time scale that takes one cell to enter the mitotic phase and divide is used

to estimate the frequency of information exchange between two submodels. Considering the

maximum cell growth rate at the beginning of the simulation (g0,max = 1.1×10−4), it takes

at least 9090 units of time in the mechanical submodel for one cell to start a cell cycle and

divide. Note that the growth rate of daughter cells decays with respect to time. Therefore,

cell cycle length increases in the later stage of the simulation. Thus 9090 units of time

is the shortest cell cycle used in the simulation. Also, the chance of getting cell divisions

will be higher if there are more cells involved. Therefore, we update the steady state of

chemical signal concentration based on the cell configurations obtained most recently in the

mechanical submodel every 200 units of time in the mechanical submodel, i.e., the coupling

frequency fexch = 0.005. This means we update the profile of chemical signals around 45

times within each cell cycle. This estimated frequency allows us to compute the relative

change on the Dpp signal for all cells without too expensive computational cost.

We have utilized Intel(R) Xeon(R) CPU E5-1650 v2 3.50 GHz CPU and an Nvidia

TITAN V graphic card (GPU) to run our simulations. The GPU is used to simulate the

mechanical submodel, whereas the CPU is utilized to calculate the pseudo-steady state of

the morphogen profile in the chemical signaling submodel. Typically, a simulation of the

simplified model takes around 100 h to complete, while a simulation of the advanced model

takes approximately 200 h. These simulation times are obtained from simulations with the

highest rate of cell division in both simplified and advanced models. Other simulations in
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each model take less time to complete as they have fewer cells included in the model during

the simulation.
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Chapter 5

Multi-scale Chemical-Mechanical

Model: Convergence Analysis,

Analytical Solutions, and

Parameter Overview

5.1 Convergence tests on the chemical signaling submodel

To validate the convergence of the numerical method in approximating the quasi-

steady state of the chemical submodel, we solve the reaction-diffusion equation governing the

dynamics of the morphogen within a fixed domain at various mesh sizes. Since we assume

the apical view of the wing disc tissue to be symmetric, we simplify the test by considering
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only the right-hand side of the tissue domain. This approach doesn’t compromise generality

and allows us to focus on assessing convergence.

In this test, we primarily examine the convergence concerning mesh size using the

simplified model (Equation 4.3). An absorbing boundary condition is applied at the right

end. For time integration, we employ the Euler method. Therefore, the equation can be

expressed as follows:

∂M/∂t = D∇2M + s(x) − dM (5.1)

where M denotes the concentration of the morphogen molecules, D is the diffusion coefficient

of morphogen molecules, d represents the degradation rate of morphogen molecules. The

production rate of morphogen molecules by cells, denoted by s(x), varies spatially. In

particular, it is zero almost everywhere except at the origin (Figure 5.1A,B). To obtain

the steady state of Equation 5.1 on a 1D domain, we divide it into N=10 and N=20 equal

subintervals, creating two distinct meshes for the analysis.. We observe that the decay

length of the morphogen gradient, λ =
√

D
d (see section 5.2 for more detail), which measure

the spread of the morphogen, is independent of the spatial mesh size ( Figure 5.1A’, B’),

indicating the convergence of the morphogen gradient when reducing spatial mesh size.

We also compare the relative change of Dpp on meshes with different sizes in a

2D domain. Since the cell division rule employed in the coupled model depends on the

relative change, it it necessary to show that the relative change is independent of mesh size,

and consequently the cell division is independent of the mesh size. Specifically, we select

a tissue arrangement consisting of 200 cells, derived from the simulation of the coupled

model. Subsequently, we employ a mesh generator to create a triangular mesh structure
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from this tissue configuration. Utilizing Equation 5.1, we determine the quasi-steady state

of the morphogen gradient. This process is then replicated for the tissue containing 210

cells, generated through the same simulation of the coupled model. The relative change in

the Dpp level between the two stages is calculated. Subsequently, we proceed to subdivide

each triangle in the meshes for 200 and 210 cells into smaller triangles by dividing the edges

along the cell boundary into 2 or 4 equal segments. Following the same computation as

before, we determine the relative changes in Dpp on these refined meshes. The results are

shown in Figure 5.1C. The relative changes observed across various meshes exhibited highly

similar distributions. Specifically, when comparing the mesh without splitting to the one

with mesh size halved, the R-squared value is 0.9, indicating a strong correlation between

the two data sets of relative changes. The slope is 0.89, and the intercept is 0.005 for this

comparison. Furthermore, when comparing the two refined meshes, the R-squared value

increase to 0.98, indicating an even stronger correlation between the data sets. The slope is

1.2, and the intercept is 0.009 for this comparison. Indeed, both comparisons reveal that the

relative changes of Dpp obtained over different meshes are remarkably similar to each other.

This consistency strongly suggests that the approach we employed to calculate such relative

changes is highly robust to variations in mesh size. We are also verifying the convergence of

the morphogen gradient concerning the time step size in the 2D domain. For this purpose,

we select a tissue configuration from simulation with d = 0.04 containing 182 cells. We

calculate the quasi-steady-state level of Dpp using the time step ∆t = 5 × 10−4. We reduce

the time step by a factor of 2 and 4 and confirm that very similar morphogen gradients
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Figure 5.1: Initial distribution of morphogen in 1D domain using A) 20 and B) 10 mesh
grids. A’) and B’) show the final distributions for (A) and (B) accordingly. Refer to
Table 5.2 for parameters (d = 0.04). C) Relative change in Dpp profile for different mesh
sizes. D) Cell level Dpp profile calculated based on the simplified model using different
time steps and E) Tissue level Dpp calculated as a function of the number of iterations for
different time steps.
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are achieved (Figure 5.1D). However, more iterations is required to reach the quasi-steady

state (Figure 5.1E), indicating the convergence when reducing the time step size.

5.2 Analytical solution to the 1D diffusion equation

The simplified chemical submodel, which considers only one chemical signal, can be

solved analytically on the 1D domain. These analytical solutions provide valuable insights

into how different parameters influence the steady-state distribution. By analyzing these

solutions, we can better understand the behavior of the system under various conditions

and gain important knowledge about the underlying mechanisms. The reaction-diffusion

equation with a specific source function can be written as below:

∂M/∂t = D∇2M − dM + s(x) (5.2)

s(x) =


v x < Ls

0 x > Ls

(5.3)

where M represents the concentration of the morphogen, while D and d correspond to the

diffusion rate and degradation rate, respectively. Production function, denoted by s(x), is

nonzero only near the origin. Ls is the length of the source region For steady state solution

satisfying ∂M/∂t = 0, we can assume it in the form of

M(x) = c1e−x/λ + c2ex/λ (5.4)
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where λ =
√

D/d . Boundary conditions are applied to determine values for c1 and c2.

Assuming M is zero at infinity, the following boundary condition can be used to determine

c2.

M(∞) = 0 ; c2 = 0 (5.5)

On the other hand, the total amount of M within the domain should be equal to the net

change due to the production and degradation based on the mass conservation, i.e.,

∫ ∞

0
M(x)dx = c1

√
D/d = Lsv/d (5.6)

Therefore, c1 can be determined, and the analytical solution is written as below:

M(x) = Lsv√
Dd

e−
√

d/D x (5.7)

From this equation, we observe that the spread of M depends on diffusion rate and degrada-

tion rate, i.e.
√

D/d, which is defined as the decay length. In particular, the concentration

of M spreads further if the decay length is larger. When considering a finite domain with

length L, the following boundary condition is used and c2 can be determined.

M(x = L) = 0 ; c2 = −c1e(−2L)/λ (5.8)
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Similar to the previous calculation, we can determine c1 by integrating both sides of the

reaction-diffusion equation,

∫ L

0
(D∇2M − dM + s(x) ) dx = 0 (5.9)

Therefore c1 and the steady state solution are:

c1 = Lsv

dλ(e−L/λ − 1)2 (5.10)

M(x) = Lsv

dλ(e
−L
λ − 1)2

(e
−x
λ − e

x
λ

e
2L
λ

) (5.11)

Based on this result, we observe that the steady state profile is closer to an exponential

function when λ ≪ L, while it decays linearly when λ ≫ L.

5.3 Comparison of Dpp Relative Change under Different

Boundary Conditions

No flux boundary condition gives rise to a flatter Dpp gradient when the degra-

dation rate is very small. However, the level of Dpp gradient becomes high everywhere.

As shown in Figure 4.5A, in the coupled model, the cell division condition will be checked

multiple times in a cell cycle. Cells will only divide if the relative increase of Dpp exceeds

50%. Therefore, even though a high level of Dpp is achieved, it does not necessarily guar-

antee multiple instances of cell division. For a more detailed comparison of cell divisions
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under the two boundary conditions, we compute the relative change of Dpp in individual

cells for simulated tissues with 200-220 cells under different conditions. Then we plot the

relative change of Dpp against their relative cell positions along the x-axis, as shown in

Figure 5.2. In contrast to the absorbing boundary condition, under no flux boundary con-

dition the relative increase of Dpp level is lower than 50% in most cells, with the exception

of some cells near the middle of the tissue. This is because the absolute Dpp level is high

everywhere and the relative increase becomes small, preventing cell division under no flux

boundary condition. Therefore, Dpp distribution with a larger decay length helps a tissue

grow longer, faster, and in a more spatially homogeneous manner, is only true for absorbing

boundary conditions where the Dpp concentration is always decaying from the source to

the sink.

Figure 5.2: Relative change of Dpp value at cell level. The relative change in Dpp value
calculated as the tissue grew from 200 to 220 cells under two boundary conditions: A)
absorbing and B) no flux. The values are presented as a function of relative distance from
the source region to individual cells. Tissue configurations are taken from the simulation
resulting from a simplified model using absorbing boundary condition with d = 0.04. Dif-
ferent degradation rates are tested under different boundary conditions.
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5.4 Table of parameters

5.4.1 Parameters used in mesh generation method

In the mechanical submodel, it is important to consider the distance between mem-

brane nodes of neighboring cells, which averages around 0.3 µm. Therefore, the threshold

value, denoted as lthres, used to determine whether two cells are neighbors, should exceed

0.3 µm. Simultaneously, lthres must be sufficiently small to distinguish membrane nodes

from adjacent cells. To satisfy both conditions, we opt for lthres to be 0.5 µm. The same

threshold value is also utilized for merging closely located vertices into a single entity, as

discussed in the section on Methods, and it is denoted as lintersect. To avoid skewed triangles

in the mesh, we ensure that there is at least a 1.0 µm distance between two neighboring

vertices. In the simulated tissue, it is common to observe three cells that are neighbors to

each other, and there are a few cases where four cells are also neighbors. To determine the

vertices shared by three or four cells in the mesh structure, different threshold values are

utilized. Specifically, for three-cell cases, we use lthres = 0.5 µm, and for four-cell cases, a

higher resolution is required, so we apply lthres−4cell = 0.35 µm to identify neighboring cells

more accurately. A list of parameters used for discretization is shown as below:

parameter Value Unit Description
lthres 0.5 µm Based on the resolution of the model

lintersect 0.5 µm Based on the resolution of the model
lthres−4cell 0.35 µm Based on the resolution of the model

Table 5.1: Parameters used in discretization in the mechanical and chemical submodels
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5.4.2 Parameters used in mechanical and chemical submodels and their

coupling

Parameters related to the mechanical submodel, chemical submodel, and coupling

are listed below:

parameter Value Unit Source or calibration section
DDpp 20.0 µm2.s−1 [43]
vDpp 1.0 M.s−1 [43]
dDpp 0.04 & 0.4 & 4.0 s−1 Parameter study

rs 0.12 _ [43]
∆t 5 × 10−4 s Based on stability of algorithm

fexch 0.005 s−1 Based on cell cycle lifetime

Table 5.2: Parameters in simplified chemical submodel in Eqn 8. We studied the effect of
degradation of Dpp on tissue growth, proliferation distribution of cells within the tissue,
and tissue circularity

parameter Value Unit Source or calibration section
dDpp 0.1 µm2.s−1 Calibration in this study
kon 0.025 M−1.s−1 [43]
koff 0.000025 M−1.s−1 [43]
ns 40.0 _ [43]

vmin 1.0 M.s−1 [43]
vmax 10 & 20 M.s−1 Parameter study
dT kv 0.1 s−1 [43]
kp 0.1 & 1.0 & 10 M Parameter study
n1 8.0 _ [43]

dDpp_T kv 0.1 s−1 [43]
vpMad 1.0 M.s−1 [43]
dpMad 0.1 s−1 [43]

kDpp_T kv 1.0 M [43]
n2 -2.0 _ [43]

Table 5.3: Parameters in the advanced chemical submodel. Parameters not included are
the same as the simplified model. kp and vmax are perturbed to study the effect of feedback
strength on tissue growth.
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The mechanical submodel has been calibrated in Nematbakhsh et al., (2017) [83].

We used the same mechanical parameters that can describe the mechanical properties of

cells in Drosophila wing disc. The growth related parameters have been reduced in this

study to reach better convergence, as shown in Table 5.4. The proliferation rate of the cell

ith is chosen stochastically between the minimum (g0,min) and maximum ( g0,max) growth

speed to resemble randomness in the cell growth rate. The maximum and minimum growth

speed decay exponentially with respect to time to resemble growth speed reduction in the

wing disc in time.

gi(t) = Rnd(g0,min, g0,max) e−kgt (5.12)

gi(t) = (g0,Avg + Rnd(−g0, g0)) e−kgt (5.13)

parameter Value Unit Source or calibration section
g0,min 0.55 × 10−4 a.u−1 Model convergence
g0,max 1.1 × 10−4 a.u−1 Model convergence

kg 1.1 × 10−5 a.u−1 _

Table 5.4: Parameters in the mechanical submodel. * Arbitrary unit of time.
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Chapter 6

Modeling Study of Bacterial

Chemotactic Dynamics

6.1 Introduction

Flagellated motion in bacteria is a common mechanism that can lead to different

swimming patterns depending on the number of flagella, and their location on the bacterial

cell body. For example, different swimming patterns can occur due to differences in the

bundling of flagella, such as the run-tumble pattern in E. coli, the run-reverse pattern

in Pseudomonas aeruginosa and Pseudomonas putida, and the run-reverse-flick pattern in

Vibrio alginolyticus [109, 110, 111, 112, 113, 114]. Bacterial chemotaxis refers to the way

that the bacteria sense and react to chemical signals in their environment, and emerge a

biased motion. This enables bacteria to understand signals and navigate towards or away

from a source of nutrition or other resources to improve their survival chance. Chemotaxis
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in E. coli controls frequency and duration of tumbling [115, 116, 117, 118, 119]. In some

other bacteria, the motility pattern of the bacteria including running, and reversing, as well

as the frequency of their reversals, is influenced by the gradient of the chemical signal [111].

The bacteria exhibit random swimming direction after each reversal event, however, they

tend to reverse more often when swimming in the opposite direction of the chemoattractant

gradient [111, 120].

A new swimming mode, called wrap mode, was discovered by simultaneously track-

ing individual bacteria and their flagellum [120, 121, 122]. In this mode, flagellar filament

wraps around the bacteria cell body and unwraps momentarily when the flagellum switches

its direction of rotation. Increasing the randomness in bacterial swimming direction, and

decreasing the swimming speed are two important characteristics of the wrap mode [122].

The wrap mode is observed in the swimming pattern of Pseudomonas aeruginosa [122],

Pseudomonas putida [120], and some other polar flagellated bacteria [123, 124, 125]. A

computational study of chemotactic bacteria using Monod–Wyman–Changeux model shows

that the wrap mode increases the bacterial chemotactic ability [115, 122]. A study on the

motion of P. putida in the presence of a chemoattractant gradient revealed that the rate

of transitions between swimming modes changes only when the bacteria is moving down

the gradient in the wrap mode. Analytical study utilizing Keller-Segel approach suggests

that when only one swimming mode is involved in the chemotactic strategy, the chemotaxis

is optimized only if the bacteria swims faster in the chemotactic mode. However a mixed

chemotactic strategy involving both run and wrap modes might be more effective if the

bacterial reorientation during the wrap mode is insufficient [120].
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Here we create and calibrate a multi-scale model of chemotactic bacteria and

use this model to test various chemotaxis strategies and swimming patterns within fluid

environments.

6.2 Results

6.2.1 Model simulations of bacteria in liquid

For simulations of bacterial chemotaxis in liquid, initially, Nb cells are distributed

in a circular pattern of the radius R0 with the center located in the center of the square

domain of size Lx × Ly. The orientation of the bacteria is randomly chosen between 0

(horizontal direction toward the right) and 2π. Bacteria might enter the wrap mode before

reversing direction of motion depending on the choice of wrapping probability introduced

in the model. Assuming the wrapping probability is zero, the bacteria would follow a run-

reverse pattern.However, for nonzero wrapping probability the bacteria will follow a run-

wrap-reverse swimming pattern. The background duration of runs in absence of chemoat-

tractant gradient is calibrated using experimental data presented in Tian et al.[122] The run,

and wrap durations are randomly drawn from an experimental distribution with a mean of

2.1 s and 1.0 s, respectively. However, durations might change depending on whether the

bacteria is moving up or down the gradient. A point source of chemoattractant is located

at the center of the domain. The distribution of the chemoattractant in the 2D domain

is calculated using a finite difference method with no flux boundary condition. Using a

chemotactic model explained in “Bacterial chemotactic submodel” , bacteria may reverse
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sooner than expected if it is moving down the gradient. The simulations modeled bacterial

movement for 200 seconds.

6.2.2 Determination of the levels of chemotaxis sensitivity for bacteria

utilizing a run-reverse pattern to aggregation towards a source

Here we describe simulations of bacterial motion using a run-reverse pattern with

different bacterial sensitivities to the chemoattractant gradient, ξ. We use three metrics to

measure the chemotaxis efficiency and bacterial aggregation, including drift velocity, mean

distance from the source, and aggregation time. The drift velocity of individual bacteria

represents how far they move towards the source within a given time window. The average

drift velocity is computed for the entire bacterial colony. The aggregation time is the

accumulative time spent by each bacteria closer than an arbitrary threshold of 5 µm to the

source. We show that the biased motion toward the up gradient increases with ξ . This

can be seen through an increase in drift velocity toward the source, vd, from relatively zero

for low sensitivities ( ξ = 1 and ξ = 2) to vd = 12 µm/s and vd = 6.1 µm/s for high

sensitivities( ξ = 20 and ξ = 50, respectively) ( Figure 6.1A). In addition, the average

distance from the source, D̄, is more random for low sensitivity ( dark blue in Figure 6.1B).

However, D̄ decreases faster when sensitivity is higher. For intermediate sensitivities (

ξ = 2 and ξ = 5) the chemotaxis is weak far from the source, therefore the bacteria

behave the same in both simulations at the beginning of the simulations (red and green

in Figure 6.1B). Chemotaxis increases with the shortening of the distance from the source

as the gradient becomes stronger. Higher sensitivity (ξ = 5) emerges a faster reduction in
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D̄. This transition happens when the average distance of the bacteria from the source is

around 260 µm.

Figure 6.1: A) Drift velocity, B) distance from the source, and C) aggregation time as a
function of time in simulations with run-reverse pattern

The aggregation time (tag), increases with ξ (Figure 6.1C). The aggregation time

measured at the end of the simulation, tag, is 0, 0, 45.2, 115.5 and 127.7, for ξ equal to 1, 2,

5, 10, 20, and 50, respectively. for low sensitivities to chemotaxis (ξ = 1) the aggregation

time is almost 0 (Dark blue in Figure 6.1C). This is because the chemotaxis sensitivity is

small not only for making a biased motion toward up the chemoattractant gradient but

also for keeping the bacteria that reached the source due to the random motion. For an

intermediate level of chemotaxis sensitivity (ξ = 10), the aggregation time is tag = 45.2 s

(burgundy in Figure 6.1C). The biased motion is strong enough to maintain bacteria near

the source as the chemoattractant gradient is stronger close to the source. However, it

takes a while for each individual bacteria to aggregate since further from the source the

gradient is weak. By further increasing the sensitivity, the motion becomes more and more

biased toward the source of the gradient even far from the source. This results in early

aggregation of bacteria in the source region, therefore, increasing aggregation time. The
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aggregation time for high sensitivities(ξ = 20 and ξ = 50) is tag = 115.5 s and tag = 127.7 s,

respectively( light blue and yellow in Figure 6.1C). In these simulations we observe that

the chemotaxis is not only important to improve navigation toward the source but also

helps the bacteria to remain in a region with a high concentration of chemoattractant. We

identified a range of parameter values for chemotaxis sensitivity in the baseline model that

exhibits different degrees of chemotactic performance. This results can be used for future

variations of the models and simulations.

6.3 Addition of wrap mode leads to a decreased ability to

aggregate around a point source

In the previous section, we study the impact of chemotaxis sensitivity on bacterial

motion that undergoes a run-reverse pattern. However recent studies revealed that the

P. aeruginosa might enter into a new swimming mode, called wrap mode [120, 121, 122].

Motivated by these studies, we simulate the bacterial motion following a run-wrap-reverse

pattern. The bacteria might enter to the wrap mode before reversing its direction of motion

using a stochastic process ( Refer to subsection 6.7.2 for more details.). First, we study

the motion in the case that both wrap and run modes are involved in the chemotactic

mechanism. In order to observe the impact of new motility pattern in the chemotaxis,

we set the chemotactic sensitivity to be the same in both modes (ξwrap = ξrun ≡ ξ). We

find that the bacterial motion is still random for low chemotaxis sensitivities(ξ = 1, 2 and

5). Furthermore, we observe an increase in biased motion as ξ increases, however, the

biased motion toward the source is not as efficient as the run-reverse pattern. This can
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be seen by the drop in the drift velocity and aggregation time for a fixed ξ. e.g Drift

velocity and final aggregation time are vd = 9.1 µm/s and tag = 53.3 s, respectively in run-

wrap-reverse pattern( yellow in Figure 6.2A and 6.2C), while they are vd = 12 µm/s and

tag = 127.6 s for the run-reverse pattern(yellow in Figure 6.1A and 6.1C) when ξ = 50. Here

we conclude that having a more complicated swimming pattern results in lower efficiency in

chemotaxis. Second, we study the bacterial motion in the case of no chemotactic behavior

Figure 6.2: A) Drift velocity, B) distance from the source, and C) aggregation time as a
function of time in the simulation with run-wrap-reverse pattern while both run and wrap
mode involved in chemotaxis mechanism.

in the wrap mode (ξwrap = 0.0). Similar to the previous simulations, biased motion still

increases with run. However it displays a further decrease in the drift velocity ( Figure 6.3A)

and aggregation time (Figure 6.3C) (e.g. vd = 5.6 µm/s and tag = 27.9 s for ξrun = 50)

compared to the simulation with chemotactic wrap mode (Figure 6.2). These results suggest

that introducing a new phase in which the bacteria is not chemotactic results in weaker

biased motion. For further investigations, we add a stochastic process for bacteria to follow

a run-reverse or a run-wrap-reverse pattern. The wrapping probability, Pwrap, determines

which pattern emerges whenever the run duration is over. Increasing Pwrap represents

a shift from a run-reverse to a run-wrap-reverse pattern. We observe that increasing the
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Figure 6.3: A) Drift velocity, B) distance from the source, and C) aggregation time as a
function of time in the simulation with run-wrap-reverse pattern while the wrap mode is
not involved in the chemotaxis mechanism.

Pwrap while the wrap mode is not involved in the chemotaxis mechanism leads to lower drift

velocity and aggregation time. For a low probability of wrapping ( dark blue in Figure 6.4),

Figure 6.4: A) Drift velocity, B) distance from the source and C) aggregation time as a
function of time for different wrapping probability, while the wrap mode is not involved in
the chemotaxis mechanism.

the results look like the simulation with only the run-reverse pattern. On the other hand,

high wrapping probabilities shows weaker biased motion as the duration of non-chemotactic

phase increased, and the results are similar to non-chemotactic wrap mode in run-wrap-

reverse pattern (Figure 6.3).
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6.4 Chemotaxis within the dominant swimming mode is re-

sponsible for the aggregation ability of bacteria

In another chemotaxis mechanism, bacteria are not chemotactic during the run

mode, meaning that the motion is unbiased regardless of the direction of motion concerning

the chemoattractant gradient while the bacteria is in the run mode. Such behavior has

been observed in the swimming of P. putida [120]. Thus we simulate the motion of bacteria

following this pattern with relatively high sensitivity during the wrap mode (ξwrap = 20)

and very low sensitivity during the run mode (ξrun = 0.01). The bacteria will spend

more time in the chemotactic phase as the wrapping probability increases, however, the

motion is almost random even for very high wrapping probabilities (Pwrap = 1.0). The drift

velocities calculated for all simulations are almost zero, except for Pwrap = 1.0 (yellow line

in Figure 6.5A) with a drift velocity below 2 µm/s. For the high wrapping probability, we

observe that the average distance from the source is reduced to 300 µm, then increases to

350 µm (yellow line in Figure 6.5B). Also by looking at the trajectory of individual bacteria,

we noticed that those bacteria that successfully get closer to the source through chemotaxis,

or even random motions, are unable to maintain their short distance to the source ( yellow

line in Figure 6.5B). The aggregation time is shorter than 0.3 s for all of the simulations(

results are not included). These simulations suggest that this pattern cannot produce an

aggregation near the source region, at least when the bacteria spend a long enough time in

a non-chemotaxis phase.
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Figure 6.5: A,C) Drift velocity and B,D) distance from the source as a function of time for
simulations with non-chemotactic run mode with run-wrap-reverse pattern. (A,B) Run and
wrap durations are drawn from experimental distribution. (C,D) Distributions of run and
wrap modes have been exchanged.
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In another set of simulations, we exchange the time distributions of run and wrap

modes so that the non-chemotactic mode become the shorter mode. Simulations with longer

wrap mode and shorter run mode show an improvement in drift velocities and aggregation

time. Most simulations reveal non-zero drift velocity (vd is 2.6, 1.8, 1.2, and 1.2 µm for

Pwrap equal to 1.0, 0.8, 0.6, and 0.4, respectively) and the aggregation time is below 1.5 s in

the simulations ( results are not included). The average distance from the source decreases

as Pwrap increases. For low wrapping probabilities( Pwrap = 0.0 or Pwrap = 0.2) the aver-

age distance from the source is about D̄ = 375 µm while for high wrapping probabilities

(Pwrap = 1.0) is almost D̄ = 150 µm. These simulations suggest that reducing the dura-

tion of the non-chemotactic phase and enhancing the duration of the chemotactic phase

improve the chemotaxis behavior. Yet, the mechanism is more efficient when the run mode

is involved in the chemotaxis strategy rather than the wrap mode.

6.5 Emergence of wrap mode recover the strong chemotaxis

in swimming pattern with small turning angles

In a simulation of chemotactic bacteria with small turning angles on average,

θturn,max, individual bacteria are able to reduce their distance to the source just by having

a biased forward and backward motion. However at some stage in their path, they reach a

point where their direction is perpendicular to the direction of the source. Then, they will

move back and forth, and the length of their movement is determined by the local chemoat-

tractant gradient. Therefore, the chemotaxis behavior is limited in this case and it highly
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Figure 6.6: A) Drift velocity, B) distance from the source and C) aggregation time as a
function of time for different wrapping probability for bacteria following run-reverse pattern
without re-orientations)

depends on the initial orientation of bacteria. Here we have introduced a source of reori-

entation with wrapping mode with different probability of occurrence. We have observed

that the emergence of non-chemotactic wrap mode, serving as a source for reorientation,

recovers the effective chemotaxis and results in faster aggregation of the bacteria around

the source region. We also observed that having a high probability of the wrapping mode

is unnecessary, as a small reorientation is sufficient to recover strong chemotaxis.

6.6 Conclusion and Future Plans

In this study, we have developed a Sub-Cellular Element model and integrated

it with a chemotaxis model to analyze diverse bacterial motility patterns under different

chemotaxis strategies. We observed that chemotaxis is particularly effective for simple

swimming patterns like the run-reverse motion. The efficiency of chemotaxis increases with

the sensitivity of the bacteria to the chemoattractant. Complicated swimming patterns

are not necessarily increasing chemotaxis. However, in specific cases, such as bacteria em-

ploying a run-reverse pattern without reorientation, chemotaxis becomes limited. In such
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scenarios, incorporating a reorientation source using the wrap mode significantly enhances

the efficiency of chemotaxis. These findings are more consistent with the outcomes de-

rived from the Keler-Segel analytical approach, rather than the agent-based model with

Monod-Wyman-Changeux for describing chemotaxis behavior [120, 122]. One possible ex-

planation behind this difference lies in the variations between the models employed to reflect

chemotaxis behavior. Another possible explanation concerns the dissimilarities in cell body

re-orientation. In the study by Tian et al. (2022) [122], cells alter their orientation during

both the pull and push modes, while in our model, re-orientations occur following the rever-

sal events. It is plausible that the average cell body re-orientation differs across the models.

Our simulations involving mixed chemotaxis strategies revealed that if bacteria spend ex-

tended periods in a non-chemotactic mode, they struggle to remain near the source region.

Hence, chemotaxis and aggregation are most robust when the dominant swimming mode is

part of the chemotaxis strategy.

The model we have developed enables the simulation of bacterial motion in the

presence of a fungi network. Specifically, the model incorporates the bacteria’s natural

inclination to follow hyphae segments. The presence of a fungal network can affect the

ability of bacteria to sense these chemical cues. Fungal hyphae may act as a physical barrier

to the bacterial motion, preventing bacteria from moving and doing chemotaxis. Moreover,

fungal hyphae may also secrete chemicals that attract or repel bacteria, further affecting

bacterial chemotaxis around fungal networks. Our future plans involve simulating how

bacteria interact with the hyphae structure through their responses to small metabolites,

and investigating how bacteria migrate towards the tips of the fungi network by utilizing
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highway following and chemotaxis in response to the large metabolites secreted at the tips

of the network.

6.7 Methods

6.7.1 Model description

In this section we describe a subcellular element modeling approach [126] and use

it to represent individual bacteria and their mechanical interactions with other bacteria and

the environment. Then we account for the chemotactic response of the bacteria [127], and

couple it with the mechanical submodel. Parameters involved in this model can be found

in Table 6.1 and 6.2

6.7.2 Bacterial motility submodel

Mechanical Model of Bacteria. We use the Subcellular Element (SCE) model

to describe bacterial physical properties and motion. In this model, each bacteria is rep-

resented by nodes connected to one another by linear and rotational springs (Figure 6.7).

Pseudomonas is a relatively small bacteria with a length of approximately 2 µm on av-

erage, In order to reduce the computational cost while still accounting for the details in

the physical properties of the bacteria, we assume that each bacteria consists of five nodes.

Linear springs allow for a reasonable amount of straining in the bacteria length while gen-

erally maintaining its average length fixed. In an individual cell, the bonding force, F i
bond,

represents the force between two nodes connected by linear spring.
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F i
bond =

∑
j∈BN(i)

kb(|xi − xj | − leq)r̂ij (6.1)

where leq, the equilibrium distance between two consecutive nodes, is equal to the length

of the bacteria divided by the number of springs required to connect the nodes, Nnodes − 1

(Figure 6.7). In this case we have leq = 0.5 µm. The set of bonded neighbors of node is

donated by BN(i). kb is the linear spring constant (Table 6.1), xi is the position of node i,

and r̂ij is the directional unit vector pointing from node i to node j.

Figure 6.7: Interactions between different nodes in the Sub-Cellular Element model.

Bending stiffness of a bacteria is modeled by rotational springs. The bending

energy of a joint, constituted by 3 consecutive nodes namely i, j and k, denoted by Ubend,

reads as:

Ubend = kbend[1 − cos(θijk − θeq)] (6.2)

where kbend is the corresponding spring constant (Table 6.1), θijk is the angle between nodes

i, j, and k, and θeq = π is the equilibrium angle. The bending forces of a joint (F i
bend, F k

bend,
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and F j
bend) can be calculated by getting the derivative of bending energy (Equation 6.2).

[128]

F i
bend = −kbend( r⃗kj

|rij ||rkj |
− cosθijk

r⃗ij

|rij |2
) (6.3)

F k
bend = −kbend( r⃗ij

|rij ||rkj |
− cosθijk

r⃗kj

|rkj |2
) (6.4)

F j
bend = −(F i

bend + F k
bend) (6.5)

Swimming motility of the bacteria due to the flagellum activities is also modeled. Each

bacteria moves forward with a constant propulsive force fmotor. In order to have a smooth

motion in the simulated bacteria, the propulsive force is distributed uniformly among all

the nodes of the bacteria (Figure 6.7). Therefore the propulsive force applied to each node

follows:

F i
motor = fmotor

Nnodes
r̂i,i+1 (6.6)

Starting from the node at the tail to the head, each node is moving toward the next node.

The head node also moves in the same direction as the node behind it. We also assume

that the propulsive force is similar for all the bacteria moving in a medium.

The dynamics of each SCE is achieved by the cell-cell and cell-environment inter-

actions. Since our model assumes an overdamped regime,the inertia forces are negligible.

The motion of the bacteria is represented by the following equation,

dxi(t)
dt

= −1
γ

∇iU
i(x, t) (6.7)
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−∇iU
i(x, t) = F i(x, t) = F i

bond + F i
bend + F i

motor (6.8)

where γ is the friction coefficient and −∇iU
i(x, t) is the net force acting on node i. The term

on the left hand side of the Equation 6.7 depicts the time derivative of the location of the

bacteria in 2D space. The term on the right hand side of the Equation 6.7 is the equivalent

force applied to the element due to the interactions written as a gradient of energy state of

the system, −∇iU
i(x, t). We use Euler’s forward method to solve the equations of motion.

In vitro experiments, the vertical displacement of the bacteria is limited compared to their

horizontal displacement, therefore we made our bacterial model in 2D. In order to maintain

the number of bacteria in each simulation we used periodic boundary conditions for the

motion of bacteria,assuming a bacteria reaches to the domain from one side when another

one leaves from the other side.

Mechanical Modeling Of The Wrap Mode. A new mode of motion has been

observed in the swimming of Pseudomonas aeruginosa and Pseudomonas putida in which

their flagellum might wrap around the bacteria when the flagellum switches its direction

of rotation. This results in a reduction to the speed of the bacteria while randomizing its

direction of motion. In this way, the bacteria continues moving forward with an increase in

its angular velocity until the flagellum unwraps causing the bacteria to undergo a standard

reversal process. We have added this mode of motion to our model using a stochastic process

which assigns a probability for the bacteria to enter wrap mode before each reversal. The

duration and angular velocity of the wrap mode has been measured experimentally for

P.aeruginosa. Thus, in our model, if the bacteria enters wrap mode, we randomly select a

turn angle and mode duration from experimentally observed distributions. During the wrap
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mode, a reduced motor force is applied to the nodes, and the orientation of the force at

the head node is rotated by the turn angle. We assume that wrap mode delays the reversal

process and after the chosen duration the bacteria reverses as described below.

6.7.3 Bacterial chemotactic submodel

The bacteria do run-reverse in order to navigate better toward nutrition sources.

The frequency of reversing the direction of motion is controlled by an internal clock. Pre-

vious studies show that the reversal rate follows the equation below [127]:

λ = λ0e(−ξv·∇s Θ(−v·∇s)); Θ(u) =


0 u < 0

1 u > 0

(6.9)

where λ0 is the rate of reversal in absence of chemoattractant, v is the velocity of the

bacteria. The concentration of chemoattractant is represented by s, and ξ is a scalar that

corresponds to the strength of the chemotaxis. Here we assume the bacteria is a pessimistic

bacteria in terms of chemotactic behavior meaning that the frequency of reversal increases

as the bacteria is moving down the gradient but remains unchanged while moving up the

gradient. In our model, the reversal rate is controlled by a Heaviside function Θ(−v · ∇s).

When a bacterium is moving up a gradient, v · ∇s > 0 , and Θ = 0, therefore the reversal

frequency remains unchanged (λ = λ0), and the bacteria continue moving up the gradient.

On the other hand, when a bacterium is moving down the gradient, v · ∇s < 0, then

Θ = 1 and a relatively high frequency of reversal helps the bacteria to avoid an unfavorable
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environment. The bacteria reverses its direction of motion earlier in order to search for a

new environment that might be more suitable for them.

Bacteria Clock and Bacterial Reversals. Within our model, each bacteria

has an internal clock that keeps track of the time spent in its current swimming mode

(e.g run mode or wrap mode). The time on the clock increases with every simulation

step until it reaches a maximal threshold defined as Trev = 1
λrun

run for run mode and

Tunwrap = 1
λwrap

wrap for wrap mode. Then the bacteria starts its next swimming mode.

During the reversal time, the bacteria rotates its orientation randomly and tries to explore

a different path. We use a uniform distribution between −π/3 and π/3 for the turning

angle of the bacteria. The motor force at the head node of the bacteria is perturbed by

turning angle for a short interval, called turning time. Note that the turning angle is

not a function of chemoattractant concentration and the only way that the bacteria use

chemotaxis to navigate to the source is through controlling the reversal rate. The reversal

time and unwrapping time might be manipulated only if the related swimming mode is

involved in the chemotaxis mechanism.

Computational Implementation Of The Model. We use a finite difference

method to model diffusion and secretion of chemoattractant in the environment. The do-

main is discretized to squares with length of 5 µm and the chemoattractant can diffuse from

one square to 4 neighboring squares. Note that the size of the grid must be smaller than

the average distance travelled by bacteria in during each run because we need to calculate

the gradient of chemoattractant based on a temporal manner, and it depends on how long

96



the bacteria moves within that interval. The concentration of chemoattractant is used to

modify the reversal rates of bacteria moving in the 2D domain.

v · ∇s = s(x(t + ∆t), y(t + ∆t)) − s(x(t), y(t))
∆t

(6.10)

The time scale of diffusion of chemoattractant is faster than the motion of the bacte-

ria, therefore we calculate the profile before initializing the bacteria colony. We find the

chemoattractant distribution by solving diffusion equation with a constant source located

at the center of the domain using Euler forward method.

6.7.4 Table of Parameters

Parameters used for modeling individual bacteria, their swimming patters, mod-

eling the secretion and diffusion of chemoattractant, and domain properties are listed here.
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Parameter Value Unit Description and source
Lbacteria 2 µm Length of bacteria[129]
Nnodes 5 _ Number of nodes in a bacteria

kb 5.0 µN · µm−1 Stiffness of linear spring
kbend 0.5 µN · µm Stiffness of torsional spring

fmotor,run 1.5 µN Motor force in run mode
fmotor,wrap 0.64 µN Motor force in wrap mode

trun 0.7 s Run mode’s mean duration [122]
twrap -0.4 s Wrap mode’s mean duration[122]
σt,run 0.6 _ Run mode’s duration SD[122]
σt,wrap 0.9 _ Wrap mode’s duration SD[122]
ω̄wrap 0.52 s−1 Wrap mode’s mean angular velocity[122]

σω,wrap 0.18 _ Wrap mode’s angular velocity SD[122]
θturn,max π/3 _ Maximum turning angle

tturn 0.2 s Duration of turning
tmin 0.3 s Minimum duration of modes

Lx × Ly 1000 × 1000 µm2 Size of the domain
Nb 50 _ Number of bacteria

Ttotal 200 s Total time of simulation
γ 0.01 µN · s · µm−1 Damping coefficient
dt 0.00001 s time step
R0 375 µm Initial distance from the source

Ragg 5 µm Threshold of source vicinity
ξ Parameter study* _ Bacterial chemotaxis sensitivity

Pwrap Parameter study** _ Wrapping probability

Table 6.1: Mechanical and motility parameters used in simulating bacterial swimming.
∗ The sensitivity of the bacteria to the chemical gradient has been changed in different
simulations. The numbers are 1, 2, 5, 10, 20, and 50.
∗∗ The wrapping probability is zero for run-reverse pattern, and is chosen from 0.2, 0.4,
0.6, 0.8, and 1.0 for run-wrap-reverse pattern.

parameter Value Unit Description and source
D 200 µm2

a.u of time Diffusion coefficient
p 100 a.u Chemoattractant secretion rate

dtchem 0.05 a.u of time chemical model’s time step
∆x × ∆y 5 × 5 µm2 Grid size

tchem 500 a.u of time Total duration of chemical model

Table 6.2: parameters used in simulating chemoattractant distribution
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Chapter 7

Summary

In this conclusion, the three projects have successfully uncovered complex dynam-

ics that occur across different biological scales.The first project focused on viral capsid as-

sembly and disassembly, highlighting the interesting hysteresis demonstrated by the empty

capsids. The classical nucleation theory was utilized to explain these transitions by ana-

lyzing changes in free protein concentration during the process, indicating the existence of

barriers for both assembly and disassembly.

The second project investigates morphogen spreading and tissue growth, with a

focus on understanding the regulatory mechanisms that govern tissue development in the

Drosophila wing disc tissue. By integrating chemical signals and mechanical forces through

a multiscale model, we have gained a deeper understanding of the complex interplay that

drives tissue size, shape, and growth regulation. Our research has revealed that the size

of the domain of the Dpp morphogen gradient is a crucial factor in determining tissue

size and shape, with larger gradients leading to faster growth rates and more symmetric
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shapes. Additionally, we have discovered that the downregulation feedback is a key mecha-

nism that allows for morphogen spreading, thereby prolonging tissue growth at a spatially

homogeneous rate.

In the third project, we focused on modeling chemotactic bacteria. Our study

involved analyzing various bacterial swimming patterns and chemotaxis strategies to gain

insights into how bacterial chemotaxis can be optimized and the impact of complex behav-

iors on aggregation. Throughout our research, we explored a wide range of bacterial motility

patterns and found that chemotaxis is most efficient in simple swimming patterns, such as

the run-reverse motion. While complex swimming patterns may lead to aggregation, this

only occurs when the dominant swimming mode is chemotactic. Finally, we discovered that

complex swimming patterns can recover the chemotaxis efficiency for cases with limited

re-orientation.

In summary, these projects have uncovered the basic principles that govern biologi-

cal systems across various scales. They have provided valuable insights into the complexities

of viral dynamics, tissue growth regulation, and bacterial movement. The intersection of

these research pathways enriching our understanding of the multifaceted dynamics in the

world of biology.
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