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LIST OF FIGURES

Figure 2.1: Cell network formation is optimized by substrate stiffness. (a)
Human umbilical vascular endothelial cells (HUVECs) cultured on
polyacrylamide hydrogel substrates of varying stiffness that were
coated with Matrigel. At high stiffness (5 kPa and glass), the cells
did not form networks but did so on softer substrates (0.5 and 1
kPa). Scale bar = 100 µm. Images reprinted with permission from
ref. [61]. (b) Cartoon of a simulation snapshot where green arrows
indicate the cell’s force dipole, the large purple dashed ring denotes
the elastic interaction range, the blue squiggle indicates a repul-
sive spring to prevent overlap, bold gold arrows represent force
vectors due to elastic interactions, the bold red arrows represent
the net force vector on the central cell, the bold blue arrow rep-
resents torque on central cell due to elastic interaction with neigh-
bors. (c) Cartoon cell deforming the surrounding elastic substrate
by applying forces along a main axis. (d) uxx component of the
strain field caused by a contractile force dipole centered at the ori-
gin pinching along the x-axis for ν = 0.5(left) and ν = 0.1(right)
with coordinate axes labeled. (e) Simulation snapshots of 300 cells
modeled as contractile force dipoles that move and reorient accord-
ing to substrate-mediated cell–cell elastic interaction forces. Cells
form percolating networks only for a range of substrate stiffness val-
ues centered around an optimal stiffness, E∗, above which cells ex-
ert maximal traction force. For substrates around optimal stiffness
(E/E∗ ∼ 1), the substrate-mediated cell–cell elastic interactions
are maximal and can be much larger than the noise in cell move-
ments, whereas for very soft (E/E∗ ≪ 1) or very stiff (E/E∗ ≫ 1)
substrates, the elastic interactions are likely to be overwhelmed by
noise, resulting in a lack of ordered structures. . . . . . . . . . . . 12
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Figure 2.2: Simulation snapshots showing representative final configurations
of model cell dipoles. We explore the parameter space of number of
cells and A ≡ Ec

kBTeff
, the ratio of the characteristic elastic interaction

strength and noise, for Poisson’s ratio, ν = 0.5. At lower packing
fractions, cells form disconnected linear clusters. At lower A val-
ues, cells remain isolated, but at moderate values of A and sufficient
packing fraction, cells form space spanning network configurations
characterized by rings, branches, and junctions. At higher packing
fractions, clumpy structures such as what previous literature calls
”4-rings” occur frequently [58]. The tendency for cells to form only
local connections at low packing fraction and form space spanning
structures at higher packing fraction is consistent with experimental
images of endothelial cells cultured on hydrogel substrates (right
column; images reprinted with permission from Ref. [61]). Scale
bars: 100µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3: Analysis of connectivity percolation of simulated cell clusters pre-
dicts dependence on cell density and strength of substrate-mediated
elastic interactions. (a) Percolation probability for elastic dipoles
- blue and orange - and diffusing sticky disks - green - as a func-
tion of area packing fraction, ϕ. Elastic dipoles undergo the perco-
lation transition at lower packing fractions than purely diffusive,
sticky disks. The insets show characteristic final configurations
for both elastic dipoles and sticky disks at a packing fraction of
.33(N = 300), with an example percolating path shown in red. (b)
The percolation probability for given packing fraction also exhibits
a sharp transition in effective elastic interaction, A. (c) Percolation
phase diagram in packing fraction and effective elastic interaction
space. Generally, network assembly is more likely for higher cell
density and elastic interactions. Each data point and error bar rep-
resents the average and standard error of the mean (SEM), respec-
tively, of forty simulations with the exception of sticky disks in (a)
at the three largest packing fractions which represent nine simula-
tions each, and A = 0.25, 0.625, 0.75, 0.875, and 2.5 in (b) which
represent twenty simulations each. . . . . . . . . . . . . . . . . . . 17
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Figure 2.4: Analysis of connected clusters of endothelial cells cultured on elas-
tic substrates reveals optimal stiffness for cell network formation
(a) Experimental images of human umbilical vascular endothelial
cells (HUVECs) at 8×103/cm2 seeding density 19 hours post seed-
ing on polyacrylamide substrates of varying stiffness: 200kPa (left),
4.5kPa (middle), and 10kPa (right). Insets show 10× magnified im-
ages of the full field of view. Cells on substrates of lower stiffness
tend to remain largely isotropic and isolated (shown by red arrow on
the left), and do not form inter-cellular connections. Cells on sub-
strates of higher stiffness tend to spread and aggregate into dense
isotropic clusters (shown by the red arrow on the right). Both these
tendencies counteract efficient network assembly. (b) Processed bi-
nary skeletons of the raw images in (a). Qualitatively, the interme-
diate substrate stiffness exhibits the most prominent networks. (c)
Quantitative measurement of the percolation probability from ex-
perimental images such as shown in (b) support the model predic-
tion that network formation is optimal on substrates of intermediate
stiffness. Left and right plots show normalized percolation proba-
bility values measured for two different initial cell seeding densities,
8×103/cm2 and 20×103/cm2, respectively. The higher density cell
culture data (right) is selected at an earlier time (9 hours post seed-
ing) because these cells form dense isotropic clusters at later times.
The continuous curves represent model predictions for percolation
probability as a function of substrate stiffness at three different rep-
resentative values of the packing fraction from skeletonized simula-
tion images, ϕ̃. These are chosen to approximately correspond to the
experimental packing fraction, which however varies with substrate
stiffness due to cell spreading. Percolation curves from simulation
in (c) were interpolated from average values obtained for forty sim-
ulations. Experimental data points and error bars are average and
standard error of the mean (SEM), respectively, of subboxes as de-
scribed in Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Figure 2.5: Experiments validate predicted classification of cell cluster mor-
phology into distinct phases. (Center) “Phase diagram” of the dis-
tinct morphology of cell clusters, based on cell density and substrate
stiffness. The color map represents a composite order parameter
(OP , detailed definition in the text) designed to capture both the
cluster percolation probability p and the cluster shape parameter s
as a single value. Ranges of the order parameter values OP > 0.7,
0.25− 0.7 and < 0.25 correspond to percolating “networks”, elon-
gated but disconnected “chains”, and isotropic “isolated” clusters,
respectively. The background color map is created by interpolat-
ing over a set of order parameter values obtained from simulations
of varying cell number (plotted as ϕ̃ - the post-skeletonized fill-
ing fraction) and elastic interaction strength. The experimental data
points, corresponding to different cell densities (measured as frac-
tional area covered by cells in microscopy images) and substrate
stiffness, are classified according to the measured value of the or-
der parameter and overlaid on the simulated phase diagram. They
demonstrate good agreement with the predicted phase boundaries
(dashed lines). (Left - bottom) is the phase diagram showing the
experimental order parameter values using the same color map as
the simulation results in the central phase diagram. This reveals
the non-monotonic behavior of the order parameter vs. substrate
stiffness for the percolating networks, confirming the results of Fig.
4c. (Left-Top, Right-Top and Right-Bottom) show representative
images from the cell culture experiments (at highest seeding den-
sity) and corresponding skeletonized images, to illustrate the occur-
rence of isolated cells, elongated chains and percolating networks
for substrates of stiffness, 200 Pa, 480 Pa and 4.5 kPa, respectively.
Simulation values used to construct the colormap in center panel
are averaged over forty simulations for percolation and three simu-
lations for shape factor for each data point. . . . . . . . . . . . . . 24
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Figure 2.6: Substrate compressibility and rigidity affect efficiency and resilience
of model networks. (a) Average branch length as a function of the
effective elastic interaction for N = 300(ϕ ≈ .33) cells. The lower
ν case shows a greater sensitivity to A indicating a greater aptitude
for tunability than the high ν counterpart. The inset shows aver-
age branch length as a function of packing fraction when A = 10.
Both values of ν show similar behavior except at the highest point
of packing fraction. At this packing fraction, the curves diverge
as global configurations begin to become prevalent. For the low ν
case, this will be long parallel strings whereas the high ν case will
form a single cluster of 4-rings. (b) Normalized branch length his-
togram for A = 1 and ϕ = .33. The networks on substrates of
high ν are sharply peaked around the smallest branch lengths while
the networks at low ν exhibit a broader, longer-tailed distribution.
(c) Cumulative distribution of ring area for N = 300(ϕ ≈ .33) cells
shown both for networks at the shoulder of the percolation transition
and networks well beyond the transition. Networks at high ν con-
tain smaller rings than the networks at low ν. Irreversible networks
show more smaller rings as noise is not great enough to jostle these
compact structures apart to favor more stringy morphologies. (d)
Largest cluster size as a function of the fraction of network branch
segments removed - a measure of a network’s ability to maintain
functionality after being damaged [66]. Networks at the shoulder
of the percolation transition exhibit less robustness than those well
above the percolation transition for the ν = 0.1 case. In the ν = 0.5
case, however, networks retain their robustness even at the shoulder
of the percolation transition. As this robustness metric saturates at
a value of A dependent on the compressibility of the substrate, we
hypothesize cells interacting in the way that we have estimated will
tend to exert only a certain amount of force, enough to build a re-
silient network and no more. Each data point and error bar in (a)-(c)
represent the average and standard error of the mean, respectively,
of three representative simulations. Data points in (d) are averages
of 20 trials per percentage of bonds. . . . . . . . . . . . . . . . . . 26
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Figure 3.1: Fibroblasts embedded in collagen gels induce global compaction.
(A) Bright field images at 1hr, 12hrs, 24hrs, and 48hrs of seed-
ing densities 0.1 million/ml, 1 million/ml, and 5 million/ml. Scale
bars = 1mm. Gels seeded with a higher density of fibroblasts con-
tract to a greater extent within the same time interval. (B) Area as
a function of time for various seeding densities. Highest seeding
densities saturate to a final area of about 15% the initial area. (C)
Compaction parameter (≡ 1 − A

A0
where A is the area of the gel

at time t and A0 is the initial area of the gel disk) as a function of
cell density (top x-axis) or, equivalently, cell–cell gap (bottom x-
axis). Area contraction undergoes a phase transition in cell density
whose critical density can be shifted by time. Reprinted from Acta
Biomaterialia, 154, Umnia Doha, Onur Aydin, Md Saddam Hossain
Joy, Bashar Emon, William Drennan, M. Taher A. Saif, Disorder to
order transition in cell-ECM systems mediated by cell–cell collec-
tive interactions, 290-301, Copyright (2022), with permission from
Elsevier (Ref.[85]). . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.2: Dipole in spring network matrix (blue) schematic. (Left) A model
cell can be seen as a central active node (red) surrounded by six
nodes representing the cell boundary (green). When this cell con-
tracts, it can sense either an isotropized average internal strain (I6)
or an anisotropic average of strains in colinear bonds (A6) by which
to regulate its active force. (Right) Another model of the cell can
be an active bond (red–red), wherein the cell has only one internal
strain with which it modulates its active force production. . . . . . 40

Figure 3.3: Final simulation snapshots of A6 cells in the space of density (1/spac-
ing - x-axis) and feedback parameter α (y-axis). Fixed bound-
ary nodes represented by orange stars. Bonds under slight tension
(compression) represented by thin blue (red) lines. Bonds under
large tension (compression) represented by thick blue (red) lines.
At small spacing and α = 0, tensile strain paths do not reach the
boundary. By increasing α, strain sensitive forces allow tensile
strain paths to broaden and reach the boundary. Similarly, increas-
ing density produces further strain propagation. . . . . . . . . . . . 41

Figure 3.4: Simulated A6 cells with strain sensitive active force show non-
linear boundary stresses. (a) Boundary stress versus the inverse of
the average dipole spacing squared shows that while strain insen-
sitive dipoles (α = 0) are indeed linear, it is unclear if this holds
for α ̸= 0. (b) Boundary stress normalized by α = 0. (c) Bound-
ary stress per dipole reveals that at low average spacing, or high
cell density, boundary stress is indeed non-linear for strain sensitive
dipoles, reaching N2 proportionality at α = 10, indicating a cooper-
ative effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Figure 3.5: Both positional and orientational order are required for energeti-
cally favorable dipolar interactions. (a) Total elastic energy of ma-
trix springs at mechanical equilibrium as a function of seeding ra-
dius (analogous to spacing) for N = 20 A1 active bonds. Average
values of ten simulations are plotted where the error bars are the
standard error of the mean. While for all active bonds - whether
they are sensitive to strain (orange and red) or not (blue and green)
- positions are random, their orientations are made to either be ran-
dom (blue and orange) or fixed along the x-axis (green and red).
For both strain sensitive and insensitive dipoles, whether randomly
or specifically oriented, elastic energy does not decrease with de-
creasing seeding radius, indicating predominantly unfavorable in-
teractions. (b) Total elastic energy of matrix springs at mechani-
cal equilibrium for N = 3 A1 dipoles oriented along the x-axis
placed on a line where intercellular spacing is varied. As expected
for energetically favorable interactions, elastic energy is decreased
as dipole spacing decreases for both strain sensitive (orange) and
strain insensitive (blue) dipoles where the magnitude of the mini-
mum is accentuated for α = 1. . . . . . . . . . . . . . . . . . . . . 43

Figure 4.1: Elastic interactions between model cells on a substrate. (a) Schematic
of adherent cell on an elastic substrate. (b) 1D spring model illus-
trating origin of elastic interaction potential between two contrac-
tile dipoles. The elastic energy stored in the medium corresponding
to the deformation of springs depends on the relative placement of
the dipoles. In particular, placing a contractile dipole in a region
where the medium is already expanded by the other dipole can help
to reduce the overall deformation of the medium. This leads to a
strain-dependent interaction potential between the two dipoles. (c)
Representative spatial maps of the interaction potential Wαβ be-
tween two dipoles, from the solution of the strain field for the full
linear elastic problem of forces exerted on the surface of a semi-
infinite medium are shown. The interaction potential corresponds
to the work done by a point-like dipole in deforming the substrate
in the presence of the strain created by the other. The potential maps
shown here are for a pair of contractile force dipoles of fixed orien-
tation. The second dipole is free to translate but held parallel (left)
or perpendicular (right) to the central dipole which is placed at the
origin and aligned along the x-axis. The contour lines show how the
potential decays in space, whereas blue and red regions correspond
to attractive (Wαβ < 0) and repulsive (Wαβ > 0) interactions, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Figure 4.2: Overview of agent based simulations of active Brownian particles
(ABPs) moving in the x-y plane and interacting mechanically via
elastic deformations induced by contractile, active force dipoles.
(a) An elongated cell with traction forces distributed around its long
axis is modeled as a disk-like particle endowed with a dipole mo-
ment. (b) Each ABP has a dipole axis represented by the bold
black line and an in-plane self-propulsion direction represented by
the gold arrow. These particles move on a linearly elastic, thick,
flat substrate, on which they exert contractile dipolar stresses. Sub-
strate deformation due to one particle is sensed by neighboring par-
ticles. These dipole-dipole elastic interactions are confined to parti-
cles within a cutoff distance rcut = 7σ (shown as the dashed red cir-
cle). Particle overlap is penalized by a short-range steric repulsion.
They are confined by steric repulsions along the top and bottom
walls shown by the thick lines, while being free to move through pe-
riodic boundaries shown by the thin lines. (c) For figure (i), simula-
tion snapshot shows that weakly interacting particles do not stick to
each other and move as independent entities. As the elastic dipolar
interaction parameter A increases, the particles self-assemble into
long chains ((ii)-(iv), zoomed view shown). The flexibility of the
chains and fluctuations in the mean curvature both decrease with
increasing values of the interaction parameter. The colors represent
the self-propulsion direction of each particle, as indicated by the
color wheel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.3: Simulation snapshots of active particles with short range steric re-
pulsions and long-range elastic dipole-dipole interactions as a func-
tion of effective elastic interaction A = P 2/Eσ3kBTeff and Péclet
number Pe = σv0/DT. Particles are confined in the y-direction,
while they experience periodic boundary conditions in the x-direction.
They are colored according to their self-propulsion direction n̂, and
coded based on the color wheel. Motile particles at low effective
elastic interaction collect into clusters at the boundaries. Strong
elastic interactions promote network formation at low activity. Strong
elastic interactions paired with high activity gives rise to active poly-
mers and polar bands. . . . . . . . . . . . . . . . . . . . . . . . . 54
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Figure 4.4: Simulation snapshots of active particles at low packing fraction -
The interaction parameter A ≡ P 2/Eσ3kBTeff and Péclet number
Pe ≡ σv0/DT define the collective behavior of the particles. Parti-
cles are confined in the y-direction, while they experience periodic
boundary conditions in the x-direction. They are colored based on
the direction of n̂, as indicated by the color wheel. At low interac-
tion parameter A = 10, the particles remain isolated and diffuse. At
high Pe, more particles get collected at the confining boundary. At
higher values of the interaction parameter, A, particles form chains.
The typical length of the chains is seen to decrease with increasing
Pe. At very high interaction parameter, A = 200, networks with
multiple branches form at low Pe, while chains aggregate into po-
lar clusters at Pe = 10. Although the particles in the cluster are
oriented in opposite directions, the cluster is stable and moves in
the direction given by its overall polarity. Again at very high Péclet,
Pe = 100, the particles in the chains are oriented in the same direc-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.5: Angular dependent pair correlation function is affected by both
motility and elastic interactions. Strong elastic interactions promote
pair correlation peaks at (r, θ)= (σ,0) , (σ,π). At Pe = 1, these are
the only prominent peaks in the pair correlation function. Motile ac-
tivity gives rise to secondary peaks at roughly (r, θ) = (σ,π

3
mod π),

(σ,2π
3
modπ) as the preeminent structures are bundles of offset trav-

eling chains. Weak elastic interactions broaden the pair correlation
distribution. In this case, motility breaks head-tail symmetry, and
peaks can be seen at multiple integers of particle diameter at the
head (θ = 0 axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Figure 4.6: Elastic interactions promote global nematic order and local polar
order. (a) Global nematic order, measuring the overall alignment of
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3
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Active matter systems are those whose individual constituents convert energy to

move or perform mechanical work. Physicists have long been fascinated by active mat-

ter systems as they are inherently out of thermal equilibrium, making them much more

difficult to classify and quantify using the traditional techniques of statistical mechanics.

Biology, being comprised of many such systems, has become one of the most sought-

after fields for the physics community. In this work, we are predominantly interested in

biological machines that consume chemical energy, like ATP, and use this fuel to exert

forces on their surroundings. We utilize theoretical and computational techniques to in-

vestigate these systems as in silico is a cost effective way to span the parameter space

and learn design principles that can both decipher the current generation of in vivo and

in vitro experiments and propel the next. Here, we develop minimal mechanical mod-

els, conduct computer simulations, and apply quantitative analytics at the cellular level

(chapters 2, 3, and 4) and subcellular scale (chapter 5) to both gain insight into relevant

design principles and make testable predictions regarding the system constituents and

emergent behavior thereof. Specifically, in chapter 2, we ask if cells modeled solely as

coarse grained anisotropic contractile force dipoles are sufficient to produce branched

multicellular network structures and how the mechanical properties of the substrate and

cell response to the substrate affect this tendency. In chapter 3, we ask if cells modeled

as contractile dipoles in a discretized elastic medium can give rise to a strong nonlin-

earity in force production as a function of density suggested by recent experiments of
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fibroblasts embedded in collagen gels. In chapter 4, motivated by a wide variety of sys-

tems like synthetic Janus colloids in an alternating electric field and magnetotactic bac-

teria, we explore the collective behavior of highly motile contractile anisotropic dipoles.

Lastly, in chapter 5, we ask if the geometric helicity of microtubules coupled to mo-

tor propulsion is sufficient to produce emergent chiral motion of isolated microtubules,

rather than a fundamental chirality given by intrinsic curvature.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Mechanobiology

Once thought to be irrelevant relative to genetics and molecular biology, the role of

mechanics in biological structure and function is found to be evermore crucial. Cells

utilize mechanical force generation, transmission, and response to accomplish a host of

functions including locomotion [1], division [2, 3], gene expression and regulation [4],

and differentiation and maturation [5].

While there are a multitude of interactions and influences at play in these processes,

including chemical, thermal, and otherwise, one of the key questions we ask through-

out these studies is: How do mechanical forces facilitate coordinated behavior in noisy

biological environments? Will a deeper understanding of the role of mechanics at this

scale offer insights into cell and tissue pathologies? Can we glean design principles

applicable to regenerative medicine and bioengineering via tissue fabrication or other-

wise? Specifically, in chapter 2, we ask if substrate-mediated mechanical interactions

via mutual substrate deformations are sufficient to form vascular network structures and

how sensitive this self-assembly process is to the mechanical properties of the substrate.

In chapter 3, we ask if active regulation of cell forces in elastic media can give rise

to a phase transition in global contraction. In chapter 4, we investigate the properties

of collective motion resulting from highly motile mechanically interacting particles. In

1
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chapter 5, we study the motion of semi-flexible microtubules propelled by directed me-

chanical forces of kinesin molecular motors.

1.1.2 Active matter

While many materials traditionally studied by physicists are at thermodynamic equi-

librium, living matter is typically active. Active matter are non-equilibrium systems

whose constituents convert a form of available energy into directed motion at the scale

of the constituents. Examples include molecular motors that hydrolyze ATP to take

steps along cytoskeletal filaments, Janus particles whose metallic hemisphere catalyzes

the decomposition of ambient peroxide, flagella and cilia powered bacteria and protozoa

up through macroscopic matter such as schools of fish, flocks of birds, and heavy-metal

concert going humans. Active matter is of ever-increasing interest to the physics com-

munity as they typically exhibit dynamics not expected at thermal equilibrium and are

more and more ubiquitous as both synthetic and organic systems [6].

Several canonical idealizations of active matter systems include active Brownian

particles (ABPs) wherein particle velocity magnitude is fixed but reorients diffusively

[7], run and tumble particles wherein particle velocity magnitude is fixed and undergoes

stochastic tumble events resulting in random orientation [8], and Ornstein-Uhlenbeck

particles wherein both particle velocity magnitude and orientation are dynamic [9].

Characteristic behaviors of these models distinguishing them from equilibrium sys-

tems include boundary accumulation, coordinated motion, and aggregation not requiring

inter-particle interactions - a phenomenon coined motility induced phase separation or

MIPS [10].

A compelling question in the field remains, how do specific interaction forms alter

the behavior of these active systems? In chapter 2, we investigate the collective config-

urations of agents with anisotropic contractile dipolar active force patterns. In chapter

3, we ask if activity in the form of forces on a lattice can give rise to a phase transition

in boundary stress. In chapter 4, we explore the consequences of ABPs with long-range

elastic interactions in a confined environment. In chapter 5, we ask if off-axis propulsion

forces on a filament with both bending and stretching rigidity are sufficient to produce

emergent chiral motion.
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1.2 Background

1.2.1 Cell mechanics

While cells routinely communicate using chemical signals, they also sense each

other through mechanical forces that they exert on each other, either through direct cell–

cell contacts or indirectly, through mutual deformations of a compliant, extracellular

substrate [11, 12]. Large and measurable substrate deformations [13] are produced by

many types of adherent cells. These use mechanical forces actively generated by myosin

motors in their actin cytoskeleton to change shape, move, and sense their surroundings

[14]. Adherent cells ubiquitously induce contractile mechanical deformations in elastic

media. The resulting inter-cellular communication is longer ranged, faster, and more

general than chemical signaling which typically requires diffusive transport and specific

chemical interactions. Elastic substrate-mediated inter-cellular mechanical communi-

cation has been demonstrated for several contractile cell types. For example, endothe-

lial cells modulate their inter-cellular contact frequency according to substrate stiffness

[15], cardiomyocytes synchronize their beating with substrate mechanical oscillations

induced by a distant probe [16, 17], and fibroblasts interact at long range through their

structural remodeling of fibrous extracellular media [18, 19].

The substrate-mediated elastic interactions between such cells has important impli-

cations for biological processes such as self-organization during blood vessel morpho-

genesis [20] and synchronization of beating cardiac muscle cells [16, 21, 17, 22]. The

overall motility of spatially separated cells is expected to depend on cell–cell mechan-

ical interactions. This is revealed by experimental observations of substrate stiffness-

dependent interactions of pairs of motile cells [23, 24]. These are the fundamental

motivations by which we construct our models in chapters 2-4.

1.2.2 Molecular motors and cytoskeletal filaments

As briefly mentioned in the previous section, molecular motors are proteins which

consume ATP to “walk” along cytoskeletal filaments. While the molecular motor that

was highlighted in the previous section was the force-producing myosin II which has the

tendency to oligomerize into large bipolar aggregate structures, another motor which
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walks preferentially along filaments, in this case microtubules, is kinesin. Unlike the

aforementioned myosin molecule, kinesin does not form aggregates. In the cell, the

motile end of the kinesin - called the heavy chain - binds to a microtubule and walks

toward the plus end of the filament while the non-motile end - called the light chain -

binds to various cargo. It is by this mechanism that several directed intracellular trans-

port functions, such as centriole positioning [25], endocytosis and exocytosis [26, 27],

and axonal transport [28] are executed.

While the roles that the varieties of these motor families play in various specific

complex biological processes remains an ongoing field of study, in vitro experimental

systems called gliding motility assays were built to peer deeper into the fundamen-

tal dynamics of motor-filament transport. Microtubule gliding motility assays are ex-

periments in which kinesin motors are made to have their light chain bind to a sur-

face - usually glass for a stationary distribution or lipids to study the effects of surface

diffusion. Microtubule filaments, cytoskeletal biopolymers comprised of cylindrically

stacked protofilaments - strings of alternating α and β tubulin monomers, are then placed

in an accompanying solution and the system is supplied ATP. With all these components

present, kinesins will bind to the microtubules and, since they cannot translate, push the

microtubules around as they hydrolyze ambient ATP.

While it is known that these systems form polar - global direction of microtubule

alignment and motion characterized by a vector - and nematic - global direction of mi-

crotubule alignment and motion characterized by a double headed vector called a direc-

tor - states and exhibit rich dynamic laning behavior, recent experiments in both dense

and dilute gliding assays show an inherent or emergent chirality. Microtubules in both

seem to rotate in a preferred direction. Depending on the number of protofilaments that

make up the microtubule, the protofilaments may be oriented along the long axis of the

microtubule, as in the case of thirteen protofilaments called MT 13. If, however, the

number of protofilaments deviates from thirteen, the protofilaments have a shallow he-

lical wrapping whose direction depends on whether there are more or less than thirteen

protofilaments present. The action, then, of a kinesin motor which predominantly walks

along one protofilament would be that of an applied force on the microtubule at the

angle of the helical wrapping. This is the fundamental assumption we use to build our
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model in chapter 5.

1.3 Methods

1.3.1 Brownian dynamics

Biological motion at the microscale is stochastic, due to the strong effect of thermal

fluctuations. For example, a micron scale particle in an aqueous environment undergoes

random Brownian motion due to collisions from water molecules. Writing Newton’s

second law most generally for a stochastic point particle we have the following force

balance equation

mr̈ = F − ζ ṙ +
√

2ηkBTW(t), (1.1)

which is comprised of a term representing inertia, mr̈, where m is the mass of the parti-

cle and r̈ is its acceleration, a sum of external forces, F, a term representing dissipative

effects, ζ ṙ, where ζ is a drag coefficient and ṙ is the velocity of the particle, and a

stochastic term where kB is the Boltzmann factor, T is temperature, and W(t) is typ-

ically a Gaussian white noise term for thermal motion, that satisfies ⟨Wi(t)Wj(t
′)⟩ =

δijδ(t−t′), where δ(t) is the Dirac delta function and δij is the Kronecker delta function.

The Reynolds number, written Re = ρuL
µ

, where ρ is the density of the fluid, u is veloc-

ity, L is a characteristic length scale, and µ is the dynamic viscosity, is a dimensionless

quantity that represents the ratio of inertial to viscous forces. Taking the example of a

cell, where the movement speed is on the order of µm
min

and the length scale is on the

order of 10µm, using the density and viscosity of water yields a Reynolds number of

10−7. In many microbiological environments - including all those inspiring the coming

studies - the Reynolds number is much smaller than unity meaning drag is a far more

dominant force than inertia. It is appropriate then to drop the inertial term which allows

us to rewrite eqn.1.1, having solved for velocity, as

ṙ =
1

ζ
F +

√
2DW(t), (1.2)

where D is a diffusion coefficient. Equation 1.2 is the general equation of motion de-

scribing Brownian dynamics - or overdamped Langevin dynamics. It is this framework

of dynamics that we use for all forthcoming chapters.
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1.3.2 Continuum mechanics and Elasticity

Continuum mechanics is the field of study which seeks to understand and mathe-

matically describe deformations of continuous material, whether it be flow of a patch

of fluid, or displacement of a patch of solid. In all forthcoming chapters of this work,

we draw heavily from the framework of elasticity theory - a subset of solid continuum

mechanics which assumes completely reversible deformations with fast relaxation dy-

namics as opposed to viscoelasticity or plasticity [29].

Elasticity is concerned primarily with the relationship between an applied force on

a material and its resulting deformation. This is usually presented as relating stress - the

force per unit area - to strain - the relative non-dimensional change in length, and can

be written most generally in einstein notation as

σij = cijklϵkl, (1.3)

where σij is the second order stress tensor, ϵkl is the second order strain tensor, and

cijkl is the fourth order stiffness tensor. These tensors are symmetric by conservation of

angular momentum balance. While in general the stiffness tensor could be comprised

of many terms, using symmetry arguments and assumptions about the media, one can

rewrite eqn. 1.3 in an explicit, simple, and separable way. Specifically, if one assumes

as we do in chapters 2 and 4 that the material is isotropic - meaning the stiffness in all

directions is identical - and homogeneous - meaning no volume element of the material

is different from any other - then the stiffness tensor can be described by two quantities

such that the strain as a function of stiffness, where the Einstein summation convention

is used for repeated indices, can be written

ϵij =
1

E
[(1 + ν)σij − νδijσkk], (1.4)

where E is the Young’s modulus given by E = σ
ϵ

where σ is an axial stress and ϵ is the

resultant axial strain and ν is Poisson’s ratio written ν = − ϵtrans

ϵaxial
. The former quantity

tells us how much deformation we get out of a given applied force - high E means small

deformation in response to large force, i.e., a rigid material. The latter quantity reveals

to what extent the material is volume preserving. A cube which is volume preserving

when stretched along one axis by an amount ∆L must compress along the other axes
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by an amount ∆L
2

(ν = −−∆L
2∆L

= 1
2
) whereas a cube which is not volume conserving

when stretched along an axis may well not compress at all along the other axes (ν = 0).

It is by these limiting cases that it is typically said that physical value of Poisson’s

ratio varies from 0 to 0.5, however, several materials including engineered systems like

metamaterials can be geometrically designed to produce effectively negative Poisson’s

ratio [30].

Lastly, in chapters 2 and 4 we assume point-like anisotropic dipolar forces in an

infinite half-space. The former means that we can write the displacement field directly

as the product of the applied force and a response function - called a Green’s function

in the following way

ui = Gij∂kPjk, (1.5)

where u is the displacement, Gij is the Green’s function that captures the displacement

in the elastic medium at the location of one cell (dipole) caused by the application of

a point force at the location of the other [29], and P is the dipole moment [31]. The

infinite half-space geometry provides boundary conditions that affords us the ability to

write down the Green’s function as

Gij =
1 + ν

πE

[
(1− ν)

δij
r

+ ν
rirj
r3

]
, (1.6)

where r is the vector coordinate with respect to the center of the dipole.

1.3.3 Agent-based modeling

Agent-based modeling is the approach of explicitly simulating agents or particles

and the dynamics and interactions therein. As opposed to a continuum approach wherein

an average observable quantity - typically a concentration - is discretized by a gridding

schema and whose dynamics are determined by solving continuity constraints, in agent-

based simulations, the corresponding equations of motion whose terms maybe physical

or otherwise are applied to every individual particle comprising the simulation. While

the benefits of continuum modeling - namely the ability to solve complex equations

and extrapolate potent macroscopic data for large systems in a reasonable time - is very

powerful, we utilize agent-based methods for all forthcoming models and simulations.
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We chose this approach in chapters 2-4 because we wanted to construct our system

such that the smallest length scale was the coarse-grained cell itself and corresponding

dipole moment and the collective phenomena to emerge from the competition between

stochasticity, motility, and substrate-mediated interactions alone. We chose this ap-

proach in chapter 5 because we were most interested in teasing out the dynamics of a

single noisy filament with a focus on the effect of off-axis propulsion which is itself the

coarse graining of an assumed sea of ambient motors.



Chapter 2

Optimal mechanical interactions direct

multicellular network formation on

elastic substrates

This chapter has been reprinted per the rights and permissions policy of the Pro-

ceedings of the National Academy of Sciences [32]. Note that all original experimental

images are the work of our collaborator Jose E. Zamora Alvarado in the McCloskey lab.

Portions of the introduction have been moved to the introduction of the dissertation.

2.1 Abstract

Cells self-organize into functional, ordered structures during tissue morphogene-

sis, a process that is evocative of colloidal self-assembly into engineered soft materi-

als. Understanding how inter-cellular mechanical interactions may drive the formation

of ordered and functional multicellular structures is important in developmental biol-

ogy and tissue engineering. Here, by combining an agent-based model for contractile

cells on elastic substrates with endothelial cell culture experiments, we show that sub-

strate deformation-mediated mechanical interactions between cells can cluster and align

them into branched networks. Motivated by the structure and function of vasculogenic

networks, we predict how measures of network connectivity like percolation probabil-

9
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ity and fractal dimension, as well as local morphological features including junctions,

branches, and rings depend on cell contractility and density, and on substrate elastic

properties including stiffness and compressibility. We predict and confirm with exper-

iments that cell network formation is substrate stiffness dependent, being optimal at

intermediate stiffness. We also show the agreement between experimental data and pre-

dicted cell cluster types by mapping a combined phase diagram in cell density substrate

stiffness. Overall, we show that long-range, mechanical interactions provide an opti-

mal and general strategy for multi-cellular self-organization, leading to more robust and

efficient realization of space-spanning networks than through just local inter-cellular

interactions.

2.2 Introduction

The morphogenesis of biological tissue involves the organization of cells into func-

tional, self-assembled structures [33]. The aggregation of cells into ordered structures

requires effectively attractive cell–cell interactions [34]. An example of such a pro-

cess that is relevant to biological development, disease and tissue engineering, is the

morphogenesis of blood vessels. This is initiated by patterned structures of endothelial

cells (ECs), which align end to end to form elongated chains that intersect to give a

branched morphology. Although the conditions required for vascular-like development

in engineered in vitro systems are well established and EC vascular networks have been

mathematically modeled using various approaches [35, 36, 37, 20, 38, 39, 40], the na-

ture of the cell–cell interactions that drive the ECs to find each other to form networks

and the dependence of these interactions on matrix stiffness have not been definitively

identified.

The emergence of complex structures from the interactions of individual agents

bears resemblance to colloidal self-assembly. For example, dipolar particles, such as

ferromagnetic colloids, will align end-to-end into equilibrium, linear structures such as

chains or rings [41]. At higher densities, the chains intersect to form gel-like network

structures [42]. Such structures have been studied in simulation in the context of ac-

tive dipoles representing synthetic active colloids endowed with a permanent or induced
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dipole moment [43, 44, 45] and swimming microorganisms [46] such as magnetotactic

bacteria [47]. Animal cells that adhere to and crawl on elastic substrates and interact

through mechanical deformations of the substrate [48] are also expected to attract and

align to form multicellular structures [49]. Such mechanically directed self-organization

of cells into functional structures, such as vascular networks, implies that network mor-

phology depends on substrate stiffness.

Cells sense substrate mechanical deformations through mechanotransduction occur-

ring at the biomolecular scale [50]. Such cellular signaling is carried out by proteins

associated with the cell–substrate adhesions, that are in turn connected to the cell’s cy-

toskeletal force-generating machinery [13]. At a coarse-grained level, the contractile

apparatus of cells adhered to an extracellular substrate can be modeled as active elastic

inclusions [51], which adapts the theory of material inclusions developed by Eshelby

[52], to describe cellular contractility as force dipoles embedded in an elastic medium.

This general theoretical approach predicts how multicellular and subcellular cytoskele-

tal organization depend on substrate stiffness [49, 53]. It has been applied successfully

to explain experimental observations of substrate stiffness-dependent structural order in

a variety of cell types in a unified manner [54, 55, 56, 21, 57]. While these previous

works focused on the stationary configurations of elastic dipoles in the context of ad-

herent cells [31, 58], we now consider cell self-assembly when the cellular dipoles are

free to translate and rotate in response to mechanical forces, thereby serving as minimal

models for contractile cells that adhere to, spread and crawl on soft media. We show

that cell–cell mechanical interactions mediated by a compliant elastic substrate can drive

network formation and that the resulting network morphology is inherently sensitive to

substrate stiffness.

Coarse-grained material properties of the cellular micro-environment, such as its

stiffness and viscosity, are known to play crucial roles in determining cell structure and

function [50, 5, 59], including for bacterial colonies [60]. Recently, it was shown that

human umbilical vascular endothelial cells (HUVECs) assemble into networks on softer

substrates (E ∼ 1 kPa) but fail to do so on stiffer substrates (Fig. 2.1a), independently of

the type of hydrogel used [61]. In contrast, it was shown in ref. [62] that, under certain

conditions, bovine endothelial cells formed networks preferentially on stiffer substrates
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(E ∼ 10 KPa). Both these experiments show that EC network formation is sensitive to

substrate stiffness, and therefore suggest that cell mechanical interactions mediated by

the substrate are involved.

0.5 kPa 1 kPa 5 kPa

E/E* = .1 E/E* = 1 E/E* = 10

(c)(b)

(d)

ෝ𝒚

ෝ𝒙

Ԧ𝐹

Ԧ𝐹

Ԧ𝑎
𝑷𝒊𝒋 = 𝑭𝒊𝒂𝒋

(a)

(e)

Figure 2.1: Cell network formation is optimized by substrate stiffness. (a) Human um-
bilical vascular endothelial cells (HUVECs) cultured on polyacrylamide hydrogel sub-
strates of varying stiffness that were coated with Matrigel. At high stiffness (5 kPa and
glass), the cells did not form networks but did so on softer substrates (0.5 and 1 kPa).
Scale bar = 100 µm. Images reprinted with permission from ref. [61]. (b) Cartoon of a
simulation snapshot where green arrows indicate the cell’s force dipole, the large purple
dashed ring denotes the elastic interaction range, the blue squiggle indicates a repulsive
spring to prevent overlap, bold gold arrows represent force vectors due to elastic inter-
actions, the bold red arrows represent the net force vector on the central cell, the bold
blue arrow represents torque on central cell due to elastic interaction with neighbors.
(c) Cartoon cell deforming the surrounding elastic substrate by applying forces along
a main axis. (d) uxx component of the strain field caused by a contractile force dipole
centered at the origin pinching along the x-axis for ν = 0.5(left) and ν = 0.1(right) with
coordinate axes labeled. (e) Simulation snapshots of 300 cells modeled as contractile
force dipoles that move and reorient according to substrate-mediated cell–cell elastic in-
teraction forces. Cells form percolating networks only for a range of substrate stiffness
values centered around an optimal stiffness, E∗, above which cells exert maximal trac-
tion force. For substrates around optimal stiffness (E/E∗ ∼ 1), the substrate-mediated
cell–cell elastic interactions are maximal and can be much larger than the noise in cell
movements, whereas for very soft (E/E∗ ≪ 1) or very stiff (E/E∗ ≫ 1) substrates, the
elastic interactions are likely to be overwhelmed by noise, resulting in a lack of ordered
structures.
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2.3 Model and Results

2.3.1 Substrate stiffness-dependent endothelial cell network orga-

nization motivates model for cell mechanical interactions.

To model cell network formation, we incorporate substrate-mediated cell mechanical

interactions into an agent-based model for cell motility [63]. This captures the dynamic

re-arrangements of cells into favorable configurations. In our agent-based approach

[64, 65], summarized in Fig. 2.1b, we consider a system of N particles, each a disk of

diameter d. Depending on the context, each disk could model a cell or its constituent

parts, and their motion represents both cell migration as well as cell spreading, or shape

change dynamics. Details of the cell shape are not included in this minimal model.

These model cells self-organize according to substrate friction-dominated overdamped

dynamics that depend on inter-cell interactions, as well as individual cell stochastic

movements described by an effective diffusion. The model incorporates both short-

range, steric and long-range, substrate-mediated elastic interactions between cells, and

is detailed in the Methods section.

The ubiquitous traction force pattern generated by a single polarized cell with a long

axis a and exerting a typical force F at its adhesions, can be modeled as a force dipole,

Pij = Fiaj (Fig. 2.1c). Note that the cell traction forces are generated by actomyosin

units within the cell, each of which acts as a force dipole. Therefore, the disks in our

model simulations could represent parts of a cell, and their motion represent the dy-

namics of cell protrusions. The resulting deformation induced by a force dipole in the

elastic substrate is given by the strain, uij , which is determined by a force balance in

linear elastic theory (see SI section A.1), and depends on the material properties of the

elastic medium, specifically, the stiffness or Young’s modulus E, and the compressibil-

ity, given by the Poisson’s ratio ν [29]. The substrate deformation (uxx component of

strain) generated by a dipole (oriented along the laboratory x-axis) embedded on the sur-

face of a linear elastic medium is shown in Fig. 2.1d for two representative values of ν.

Here, the blue (red) coloring represents expanded (compressed) regions of the substrate.

We note that the extracellular matrix in biological tissue is typically viscoelastic, and

over long times the cell-generated strains may relax. However, our model still applies
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at short time scales and for linearly elastic synthetic substrates such as polyacrylamide

that are routinely used in cell culture experiments [11].

A second contractile force dipole will tend to position itself in and align its axis

along the local principal stretch in the medium to reduce the substrate deformation. The

resulting interaction potential arises from the minimal coupling of one dipole (denoted

by β) with the medium strain induced by the other (denoted by α), and is given by

Wαβ = P β
iju

α
ij[48]. The interaction energy between two dipoles then decays with their

separation distance as Wαβ ∼ (P 2/E)·r−3
αβ . We denote the characteristic elastic interac-

tion energy when the dipoles are separated by only one cell length as, Ec = P 2/(16Ed3),

where the detailed expression is derived in the SI Section A.1. This coarse-grained de-

scription abstracts out the biophysical details of mechanotransduction, but provides a

simple physical model for the cell response to deformations in their elastic medium

[49].

Representative simulation snapshots (Fig. 2.1e) of final configurations show that

elastic dipolar interactions induce network formation in a stiffness-dependent manner.

The central snapshot corresponds to an optimal substrate stiffness E∗ at which elastic

interactions are maximal, while those to the left (right) correspond to substrates that are

too soft (stiff) for connected network formation. The origin of this optimal stiffness lies

in the adaptation of cell contractile forces to their substrate stiffness, as we discuss later.

2.3.2 Elastic dipolar interactions between model cells induce net-

work formation

We expect the multicellular structures resulting from the dipolar cell–cell inter-

actions to depend on three crucial nondimensional combinations of model parame-

ters: the ratio of a characteristic elastic interaction energy Ec, to noise – denoted by

A = Ec/kBTeff – the effective elastic interaction parameter; the number of cells N ,

equivalently expressed as a cell density or packing fraction, ϕ = πNd2

4L2 ; and Poisson’s ra-

tio, ν, which determines the favorable configurations (both position and orientation) of a

pair of dipoles. To show the types of multicellular structures that result from our model

elastic interactions, we perform Brownian dynamics simulations (detailed in Methods)

to generate representative snapshots at slices of this A− ϕ parameter space for two val-
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Figure 2.2: Simulation snapshots showing representative final configurations of model
cell dipoles. We explore the parameter space of number of cells and A ≡ Ec

kBTeff
, the ratio

of the characteristic elastic interaction strength and noise, for Poisson’s ratio, ν = 0.5.
At lower packing fractions, cells form disconnected linear clusters. At lower A values,
cells remain isolated, but at moderate values of A and sufficient packing fraction, cells
form space spanning network configurations characterized by rings, branches, and junc-
tions. At higher packing fractions, clumpy structures such as what previous literature
calls ”4-rings” occur frequently [58]. The tendency for cells to form only local con-
nections at low packing fraction and form space spanning structures at higher packing
fraction is consistent with experimental images of endothelial cells cultured on hydrogel
substrates (right column; images reprinted with permission from Ref. [61]). Scale bars:
100µm.

ues of ν; 0.5 and 0.1 shown in Figs. 2.2 and SI Fig. A.4, respectively. As packing

fraction is increased, networks form more readily. As the effective elastic interaction

is increased, cells form into networks characterized by chains, junctions, and rings.

This can be thought of naturally as a competition between entropy and energy. At low

packing fractions or effective elastic interaction, cells are either in a gas-like state or

form local chain segments with many open ends which have high entropy. As packing
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fraction or effective elastic interaction increases, cells relinquish translational and rota-

tional freedom for more energetically favorable states such as longer chains, junctions,

or rings. This is consistent with the cell density dependent morphologies seen in images

from in vitro hydrogel experiments (reproduced from Ref. [61]), and shown in Fig. 2.2.

We choose two representative values of ν in our model simulations because their

corresponding strain plots are qualitatively different [31] as seen in Fig. 2.1d. Briefly,

since contractile dipoles prefer to be on stretched regions of the substrate, the low (high)

ν deformation patterns are expected to favor two (four) nearest neighbors. The different

values of Poisson ratio could correspond to synthetic hydrogel substrates and the fibrous

extracellular matrix, respectively. While hydrogel substrates are nearly incompressible

(ν = 0.5), the ECM comprises of networks of fibers which permit remodeling and

poroelastic flows leading to reduced material compressibility (e.g., ν = 0.1) at long

time scales [66].

2.3.3 Substrate deformation-mediated interactions strongly enhance

percolation in model networks

To characterize the extent of multi-cellular network formation, we consider the per-

colation order parameter which quantifies the ability of a connected network to span the

available space. Percolation is defined as the probability that, for a steady state real-

ization of the network, there exists a continuous path through it that spans the length

of the simulation box. To compute percolation probability, we first identify connected

clusters of cells, a process detailed in SI section A.3. A specific network configuration is

considered to be percolating if any two cells within the same cluster are separated by a

Euclidean distance greater than or equal to the simulation box size. The average values

and corresponding errors (forty simulations per data point) are then plotted against vary-

ing packing fraction ϕ in Fig. 2.3a and varying effective elastic interaction parameter A

in Fig. 2.3b. Multiple such simulations are then combined into a phase diagram in A−ϕ

parameter space in Fig 2.3c. The results show that percolation requires both density and

interaction strength to be above corresponding threshold values.

To contrast with the dipoles that mutually align through long-range and anisotropic

interactions, we consider a control system of “diffusing sticky disks”. These agents
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Figure 2.3: Analysis of connectivity percolation of simulated cell clusters predicts
dependence on cell density and strength of substrate-mediated elastic interactions. (a)
Percolation probability for elastic dipoles - blue and orange - and diffusing sticky disks
- green - as a function of area packing fraction, ϕ. Elastic dipoles undergo the per-
colation transition at lower packing fractions than purely diffusive, sticky disks. The
insets show characteristic final configurations for both elastic dipoles and sticky disks
at a packing fraction of .33(N = 300), with an example percolating path shown in red.
(b) The percolation probability for given packing fraction also exhibits a sharp transi-
tion in effective elastic interaction, A. (c) Percolation phase diagram in packing fraction
and effective elastic interaction space. Generally, network assembly is more likely for
higher cell density and elastic interactions. Each data point and error bar represents the
average and standard error of the mean (SEM), respectively, of forty simulations with
the exception of sticky disks in (a) at the three largest packing fractions which represent
nine simulations each, and A = 0.25, 0.625, 0.75, 0.875, and 2.5 in (b) which represent
twenty simulations each.

just diffuse without any long-range interactions and cease movement upon contact with

another agent. We find percolating networks for both interacting elastic dipoles and dif-

fusing sticky disks. However, Fig. 2.3a shows model cells which interact as dipoles at

long-range require far fewer cells to percolate than their sticky disk counterparts given

that the elastic interaction strength is sufficiently greater than noise as shown in Fig. 2.3b

(A ⪆ 1 in the case shown where N = 300). This is because the anisotropic nature of the

dipolar interactions promotes end-to-end alignment of cells, creating elongated struc-
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tures like chains, which can self-assemble into space-spanning networks. We therefore

show that network formation requires fewer cells when cells can sense, move and align

in response to the substrate deformations created by other cells. Thus, networks guided

by mechanical interactions are more cost efficient than when cells move or spread ran-

domly, forming adhesive contacts upon finding their neighbors.

Much work has been done on characterizing the connectivity percolation transition

on various lattice configurations [67]. The critical packing fraction can be widely differ-

ent depending on the lattice geometry, and whether the space-spanning clusters comprise

sites or bonds [68, 69]. The critical packing fraction for site percolation is known to be

ϕC = 0.5 for an infinitely large triangular lattice [70]. In approximate agreement with

this, we find that the critical packing fraction for diffusive sticky disks for the current

finite system size L is ϕC ≈ 0.6. For the dipolar particles, anisotropic interactions

shift the percolation transition to ϕC ≈ 0.2, similar to those seen in dipolar colloidal

assemblies at low reduced temperature [71].

Our observed packing fractions for transition to percolation are specific to the simu-

lation system size, L, and differ from the actual critical packing fraction due to finite size

effects. How prominent these effects will be depends on the fractal dimension, which

provides a measure of how these structures scale with size. Since area scales like L2,

but number of particles scales like Ldf , where df is the fractal dimension, ϕC ∝ Ldf−2.

Therefore, there exists a regime in which ϕC will decrease with increasing L, as shown

by simulations with bigger box sizes (see SI section A.4). We present an analysis of the

fractal dimension of these networks and corresponding experiments in the next section.

2.3.4 Analysis of experimental cell cultures confirms predicted sub-

strate stiffness dependence of cell network formation

We showed in the previous section that the cells’ ability to form networks is expected

to depend on the strength of elastic interactions arising from their mutual deformations

of the substrate. To compare with experiments, we now consider how this elastic inter-

action strength A depends on the substrate stiffness. Experiments show that cells spread

and polarize more on substrates of increasing stiffness, such that their traction force

saturates to a maximal value P0 at a characteristic substrate stiffness, E∗, that depends
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Figure 2.4: Analysis of connected clusters of endothelial cells cultured on elastic sub-
strates reveals optimal stiffness for cell network formation (a) Experimental images of
human umbilical vascular endothelial cells (HUVECs) at 8 × 103/cm2 seeding den-
sity 19 hours post seeding on polyacrylamide substrates of varying stiffness: 200kPa
(left), 4.5kPa (middle), and 10kPa (right). Insets show 10× magnified images of the
full field of view. Cells on substrates of lower stiffness tend to remain largely isotropic
and isolated (shown by red arrow on the left), and do not form inter-cellular connec-
tions. Cells on substrates of higher stiffness tend to spread and aggregate into dense
isotropic clusters (shown by the red arrow on the right). Both these tendencies counter-
act efficient network assembly. (b) Processed binary skeletons of the raw images in (a).
Qualitatively, the intermediate substrate stiffness exhibits the most prominent networks.
(c) Quantitative measurement of the percolation probability from experimental images
such as shown in (b) support the model prediction that network formation is optimal on
substrates of intermediate stiffness. Left and right plots show normalized percolation
probability values measured for two different initial cell seeding densities, 8× 103/cm2

and 20 × 103/cm2, respectively. The higher density cell culture data (right) is selected
at an earlier time (9 hours post seeding) because these cells form dense isotropic clus-
ters at later times. The continuous curves represent model predictions for percolation
probability as a function of substrate stiffness at three different representative values
of the packing fraction from skeletonized simulation images, ϕ̃. These are chosen to
approximately correspond to the experimental packing fraction, which however varies
with substrate stiffness due to cell spreading. Percolation curves from simulation in (c)
were interpolated from average values obtained for forty simulations. Experimental data
points and error bars are average and standard error of the mean (SEM), respectively, of
subboxes as described in Methods.
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on cell type and matrix mechanochemistry. The effective elastic interaction parame-

ter, A, can be mapped to substrate stiffness, E, by using a model relation predicting

the dependence of cell traction force on substrate stiffness [72]: P = P0E/(E + E∗).

The resulting elastic interaction parameter, A, is weak on softer substrates where cell

forces are low and also on stiffer substrates, where the deformations are low. It reaches

a maximum at the characteristic stiffness E∗ as detailed in SI section A.5. This mapping

from effective elastic interaction to substrate stiffness (SI Fig. A.6) results in a peak in

the percolation curves (SI Figs. A.8a and A.8c) over an interval of substrate stiffness

centered around the optimal stiffness E∗. This interval depends on both cell density and

effective temperature representing noisy cell movements. Higher effective temperature

and lower cell density reduce both peak height and width. This result is consistent with

experiments on EC cultures (Fig. 2.1a) which show that percolating networks form only

in a certain range of substrate stiffness, but these previous works do not demonstrate that

network formation is optimal at intermediate substrate stiffness [62, 61].

To test this prediction of our model, we performed 2D cell culture experiments on

elastic substrates over a wide range of stiffness values. Human umbilical vascular en-

dothelial cells (HUVECs) were cultured at three different seeding densities (8×103/cm2,

14 × 103/cm2, and 20 × 103/cm2) on fibronectin-coated polyacrylamide substrates of

varying stiffness: (200 Pa, 480 Pa, 1 kPa, 2 kPa, 4.5 kPa, and 10 kPa). The substrate

preparation protocol, described in Methods, and stiffness characterization of these sub-

strates follow standard precedents [73]. Cells were fluorescently labeled and imaged at

regular intervals over the course of 19 hours post-seeding. While for the lower seeding

density, network formation could be observed at these longer time scales (Fig. 2.4a, mid-

dle), the higher seeding density led to denser, isotropic clusters and a resulting loss of

network morphology (Fig. 2.4a, right). We then considered the images of these denser

cultures at 9 hours instead of 19 hours, where network morphology was still apparent.

We also observed that the dense isotropic clusters were more prevalent at higher sub-

strate stiffness due to enhanced cell spreading and possibly proliferation at later times.

To quantitatively obtain the percolation probability for the observed cell clusters, we

process the experimental images (Fig. 2.4a) by emphasizing inter-cellular connections

as described in Methods under Image Analysis. We then parse the resulting binary im-
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ages (Fig. 2.4b) into NB = 312 sub-boxes each so as to obtain sufficient statistics from a

single experimental image. We next computed the mean percolation probability over all

sub-boxes, p = 1
NB

∑NB

i=1 pi and the corresponding standard error of mean. Here, we set

pi = 1 if the ith sub-box is “percolating” i.e. it contains a cluster that spans the sub-box,

and set pi = 0 otherwise. To compare the sparser, heterogeneous experimental con-

figurations with our simulated networks, we normalized these values by the maximum

mean percolation probability across all experimental seeding densities and stiffnesses.

For practical convenience, we henceforth denote the normalized percolation probability

value as p.

We find that for both the lowest seeding density sampled at long times (Fig. 2.4c -

left) and for the highest seeding density sampled at short times (Fig. 2.4c - right), the

normalized experimental percolation probability exhibits a peak at a stiffness of about

4.5 kPa. Unlike simulations where packing fraction and elastic interaction are indepen-

dent parameters, the area covered by cells in experiments depends on stiffness because

cells spread more on stiffer substrates. This is why we need a range of packing fraction

values from simulation to compare with experiment. Like the experimental images, the

simulation images were skeletonized to emphasize inter-dipole connection (see Meth-

ods, Image Analysis). We denote the corresponding packing fraction of skeletonized

images by ϕ̃ to distinguish from the packing fraction of simulated disks, ϕ. We then

plot a family of interpolated simulation curves as a function of substrate stiffness over

a range of packing fraction values, ϕ̃, chosen to fit the experimental data in Fig. 2.4c.

These values are close to the range of packing fraction values in experimental images

(.05-.15 for 8k
cm2 and .1-.2 for 20k

cm2 ). The quantitative agreement of the experimental data

with simulation values lends credence to our model that network formation is driven

by substrate mediated elastic interactions, and that these are stronger within a range of

substrate stiffness values centered around an optimal value, E∗.

We note an important distinction between the predictions of the cell dipole model

and the observed cell clusters in experiments. These latter tend to exhibit isotropic

dense clusters on stiffer substrates at higher seeding density. We expect this is because

cells spread more on stiffer substrates and form direct adhesive contacts with neigh-

bors. Cell spreading and direct cell-cell contact-based interactions are not implemented
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in our minimal model, since we focus on the long-range substrate-mediated dipolar in-

teractions expected to dominate in dilute cultures. At higher densities, endothelial cells

are known to form confluent monolayers [74]. At intermediate densities, some of these

dense isotropic clusters occur alongside networks and elongated structures. Modeling

these would require a combination of cell-cell and cell-substrate forces. Although dense

isotropic clusters are not seen in our dipole simulations (Fig. 2.1e), their occurrence in

experiment supports our model prediction that the dipolar elastic interaction strength

(A) becomes smaller on stiffer substrates in relation to the isotropic, cell–cell contact

interactions.

While the percolation analysis shown in Fig. 2.4 validated our model predictions for

the substrate stiffness-dependence of network formation, we now seek to predict charac-

teristic morphological traits of the cell clusters. A careful examination of experimental

images in Figs. 2.4 and 2.5 reveals distinct morphologies of cell clusters, ranging from

isolated cells and isotropic clusters to networks and elongated clusters. To obtain a mea-

sure of how elongated each cell cluster is, we calculate a “shape parameter”, defined

as s ≡ R2
g

Area
= 1

N2

∑N
k=1(rk − rCM)2, for each unique cluster as described in Methods

under Image Analysis. Here, Rg represents the radius of gyration of the cluster, which

is defined about its center-of-mass rCM , and N is the number of occupied pixels in each

cluster. The normalization by cluster area ensures that we control for cluster size varia-

tions between different experiments. Lower values of this shape parameter correspond

to isotropic shapes, the theoretical lower bound being 1
2π

for a solid circular disk. Con-

versely, a higher shape parameter corresponds to more elongated clusters. To compare

with simulation, we scale the shape parameter of each cluster by their global means

across all identified clusters at the different seeding densities and stiffnesses. Hence-

forth, the scaled values of the shape parameter are denoted by s.

To classify the dominant morphological feature in each image, we constructed a

composite order parameter combining the global information of connectivity percolation

with the local cluster-scale morphological characteristics captured by the shape factor.

The order parameter is defined such that clusters with normalized percolation probability

above a threshold value (pT = 0.7) are considered “networks”. We choose this value

of pT to pick out experimental images where a few of the largest clusters contain more
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than twenty percent of the total filled area (SI Fig. A.9). If p < pT , implying that

there are no dominant space-spanning clusters, we classify clusters into “isolated” or

“chains”, depending on whether s is less or greater than a threshold value sT = 0.95.

This value of sT is chosen to correspond to simulations with two aligned dipoles, giving

an elongated morphology that this parameter is designed to capture. The order parameter

which accomplishes the above classification is given by OP ≡ Θ(p − pT )p + Θ(pT −
p)(.25+.5(s−sT )), where Θ(x) is the Heaviside step function and the numerical factors

give an 0 < OP < 1 for the specific values of sT and pT , justified above. The differences

are captured by ranges of values of the order parameter: OP > 0.7, 0.25 − 0.7 and

< 0.25 correspond to percolating “networks”, elongated but disconnected “chains”, and

isotropic “isolated” clusters, respectively.

We compute this order parameter for interpolated simulation data and for experimen-

tal data 9 hours post seeding, so that cell proliferation effects are minimal. Experimental

data once again reveals a non-monotonicity in network formation at the high densities

in Fig. 2.5 - bottom left. We construct a phase diagram of this order parameter in ϕ̃−E

space (Fig. 2.5 - center), where the color map corresponds to simulation data. Over-

laid on this phase diagram are discrete markers representing experimental data, which

have been classified into the three distinct regimes according to their measured order

parameter values. The data comprises three initial seeding densities and five stiffness

values giving a total of fifteen data points. Their distribution clearly shows a correlation

between cell area coverage and substrate stiffness. This is due to cells spreading more

on stiffer substrates, readily seen through the lack of low packing fraction data at higher

stiffness.

Phase boundaries are drawn as dashed lines that delineate the distinct regions of the

simulation order parameter values. Of the fifteen experimental data points, only two lie

outside of the corresponding predicted regions. Both of these are at low substrate stiff-

ness and intermediate packing fraction. These are classified as “chains”, but which lie in

the “isolated” part of the predicted phase diagram. We expect that at these intermediate

densities, cells can spread and touch each other to form elongated structures even if the

elastic dipolar interactions are small. Since our model does not include such spreading

effects, this discrepancy is not surprising. Overall, the model phase diagram closely
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Figure 2.5: Experiments validate predicted classification of cell cluster morphology into
distinct phases. (Center) “Phase diagram” of the distinct morphology of cell clusters,
based on cell density and substrate stiffness. The color map represents a composite or-
der parameter (OP , detailed definition in the text) designed to capture both the cluster
percolation probability p and the cluster shape parameter s as a single value. Ranges of
the order parameter values OP > 0.7, 0.25 − 0.7 and < 0.25 correspond to percolat-
ing “networks”, elongated but disconnected “chains”, and isotropic “isolated” clusters,
respectively. The background color map is created by interpolating over a set of or-
der parameter values obtained from simulations of varying cell number (plotted as ϕ̃ -
the post-skeletonized filling fraction) and elastic interaction strength. The experimental
data points, corresponding to different cell densities (measured as fractional area cov-
ered by cells in microscopy images) and substrate stiffness, are classified according to
the measured value of the order parameter and overlaid on the simulated phase diagram.
They demonstrate good agreement with the predicted phase boundaries (dashed lines).
(Left - bottom) is the phase diagram showing the experimental order parameter values
using the same color map as the simulation results in the central phase diagram. This
reveals the non-monotonic behavior of the order parameter vs. substrate stiffness for
the percolating networks, confirming the results of Fig. 4c. (Left-Top, Right-Top and
Right-Bottom) show representative images from the cell culture experiments (at highest
seeding density) and corresponding skeletonized images, to illustrate the occurrence of
isolated cells, elongated chains and percolating networks for substrates of stiffness, 200
Pa, 480 Pa and 4.5 kPa, respectively. Simulation values used to construct the colormap
in center panel are averaged over forty simulations for percolation and three simulations
for shape factor for each data point.

predicts the experimentally observed multicellular structures.

We now further evaluate the morphological similarity of the networks from our sim-

ulated dipoles and our experimental cell culture by calculating the fractal dimension.
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For the “sticky disks”, we find a fractal dimension of df = 1.81, whereas for the dipoles

we find fractal dimensions of df = 1.698 ± .004 and df = 1.711 ± .003 for ν = 0.1

and ν = 0.5, respectively. We find a similar fractal dimension for our experimental HU-

VEC culture in the network regime on a substrate of stiffness E = 4.5kPa, df = 1.722.

Interestingly, simulated networks on substrates of ν = 0.1 and ν = 0.5 are statistically

distinguishable, with the experimental fractal dimension showing reasonable agreement

with the ν = 0.5 simulated dipole case. This is in accordance with the approximately in-

compressible nature of hydrogel substrates. The proximity of the fractal dimensions of

the simulated dipoles to that of experimental cell networks, in relation to the sticky disks,

indicates that cells utilize a more complex strategy to self-assemble than simply random

movement followed by cell–cell adhesion. The elastic dipolar interactions are thus a

plausible strategy allowing the self-assembly of biologically desirable, space-spanning

and cost-effective networks.

2.3.5 Diverse Poisson-ratio dependent morphological features offer

distinct advantages in network assembly and transport func-

tion

We now focus on simulated networks (such as in figure 2.3) to thoroughly charac-

terize their two predominant network morphological constituents - branches and rings .

We relate the resulting structural metrics to the transport function of biological networks.

We highlight qualitative differences in morphology of simulated networks between high

and low Poisson’s ratio values, which may motivate future experimental investigation.

Fig. 2.6a shows average branch length for N = 300 (ϕ = 0.33) cells as a function of

effective elastic interaction (A). The average branch length for the higher ν case remains

roughly constant and low at about two cell lengths. The lower ν case exhibits a peak

in average branch length at the percolation threshold (A = 1) before decreasing and

saturating at high A values. The distribution of branch lengths (Fig. 2.6b) shows that

while ν = 0.5 is sharply peaked at d, ν = 0.1 exhibits branches greater than 18d and

shows a greater relative count in the 3− 10d range.

These results suggest that at higher values of ν, network morphology is more re-
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(a) (b)

(c) (d)

Figure 2.6: Substrate compressibility and rigidity affect efficiency and resilience of
model networks. (a) Average branch length as a function of the effective elastic in-
teraction for N = 300(ϕ ≈ .33) cells. The lower ν case shows a greater sensitivity to A
indicating a greater aptitude for tunability than the high ν counterpart. The inset shows
average branch length as a function of packing fraction when A = 10. Both values of
ν show similar behavior except at the highest point of packing fraction. At this packing
fraction, the curves diverge as global configurations begin to become prevalent. For the
low ν case, this will be long parallel strings whereas the high ν case will form a single
cluster of 4-rings. (b) Normalized branch length histogram for A = 1 and ϕ = .33. The
networks on substrates of high ν are sharply peaked around the smallest branch lengths
while the networks at low ν exhibit a broader, longer-tailed distribution. (c) Cumula-
tive distribution of ring area for N = 300(ϕ ≈ .33) cells shown both for networks at
the shoulder of the percolation transition and networks well beyond the transition. Net-
works at high ν contain smaller rings than the networks at low ν. Irreversible networks
show more smaller rings as noise is not great enough to jostle these compact structures
apart to favor more stringy morphologies. (d) Largest cluster size as a function of the
fraction of network branch segments removed - a measure of a network’s ability to main-
tain functionality after being damaged [66]. Networks at the shoulder of the percolation
transition exhibit less robustness than those well above the percolation transition for the
ν = 0.1 case. In the ν = 0.5 case, however, networks retain their robustness even at the
shoulder of the percolation transition. As this robustness metric saturates at a value of
A dependent on the compressibility of the substrate, we hypothesize cells interacting in
the way that we have estimated will tend to exert only a certain amount of force, enough
to build a resilient network and no more. Each data point and error bar in (a)-(c) rep-
resent the average and standard error of the mean, respectively, of three representative
simulations. Data points in (d) are averages of 20 trials per percentage of bonds.
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silient to noise, and the branch lengths are not as easily tunable, The greater variability

in branch lengths leads to longer branches in the lower ν = 0.1 case, which then requires

(for A ≥ 5) fewer cells to percolate than at ν = 0.5. This is seen by the difference of

the curves at the shoulder of the percolation transition in Figs. 2.3a and SI Fig. A.10.

The greater resilience of the network at higher substrate ν leads to percolation at smaller

A than its low ν counterpart (Figs. 2.3b and SI Fig. A.10). In SI section A.7, we con-

struct a detailed map of the percolation transition in the A−ϕ parameter space, to show

how ν = 0.1 requires fewer cells to percolate for a range of A values, while ν = 0.5

can percolate at lower values of A. This suggests that the two regimes of substrate

compressibility optimize two different measures of cost of network building: one, the

number of cells, and the other, the strength of cell contractility.

Fig. 2.6c shows a cumulative distribution of ring area for our networks at two cru-

cial regions in our parameter space – those at which the networks are well above the

percolation transition (solid lines), or just above it (dashed lines). Similar to the branch

length distribution, the networks at higher ν form many small rings and few large rings,

while the lower ν case shows a broader distribution of ring sizes. The tendency of the

ν = 0.5 configurations to form numerous smaller rings leads to a marginally less effi-

cient area coverage than the low ν case, which forms longer branches and fewer small

rings (SI Fig. A.11). These results are also consistent with the fractal dimensions we

obtained earlier, with df being slightly higher for the ν = 0.5 than the 0.1 cases, indi-

cating more compact structures for the former. These topological features also give rise

to distinct coordination numbers for the two compressibility regimes (SI Fig. A.18). In-

terestingly, the coordination number on the lower Poisson ratio resembles those near the

rigidity percolation of elastic fiber networks[75, 76]- indicating connectivity percolation

as a precursor to mechanical rigidity which is relevant to both tissue development and

disease [77].

To examine the robustness of our model networks to damage, a biologically signifi-

cant property, we measure the largest remaining cluster size as a function of the fraction

of network bonds removed [78] (Fig. 2.6d). We find that whether well above or just at

the percolation threshold, the networks at higher ν retain cluster size well as bonds are

removed. Networks at lower ν well above the percolation transition lose largest cluster
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size at the same rate as their higher ν counterpart. At the shoulder of percolation, how-

ever, networks at low ν lose largest cluster size and fall apart much more rapidly than

any of the other networks. This is the same parameter regime in which networks at low

ν exhibit a peak in branch length. By forming long branches, ring structure formation

is sacrificed. Thus, we find that the prime factor for robust networks is the tendency to

form rings which provide degeneracy to paths between any two nodes in the network - a

result consistent with network structure optimization models [79]. In summary, at lower

ν, networks tend to form longer and more broadly distributed branches which promote

efficiency with respect to the filling and spanning of space at the cost of being suscepti-

ble to damage, while at higher ν, networks are predominantly composed of small rings,

which provide robustness to the networks at the cost of transport efficiency.

2.4 Discussion

Our model generates testable predictions for the dependence of cell network mor-

phology on substrate mechanical properties. By performing and analyzing experiments

on ECs cultured on hydrogels of varying stiffness, we show that network formation is

indeed optimized at an intermediate stiffness. Although many experiments show that

EC network formation or capillary sprouting require softer matrices (Ref. [80] and ref-

erences therein), these findings can show different trends at different stiffness regimes

[81, 82]. We suggest that this may be because cells adapt their traction forces to substrate

stiffness, and therefore, the expected optimal stiffness for network formation should be

where cells attain their maximal contractility. This optimal stiffness may be dependent

on cell type and matrix mechanochemistry [62].

Our modeling thus relates network structure to cell contractility, and the predictions

can be further checked in cell culture experiments on substrates of varying stiffness

and Poisson’s ratio [66], that combine traction force measurement with quantification

of network morphology. The presence of substrate deformation-mediated interactions

can also be directly investigated in a two-cell setup on a micropatterned substrate which

allows one to observe reorientations of one cell in response to the other, similar to strate-

gies used to examine pairwise interactions during cell motility [83] and cardiomyocyte
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synchronization [17].

Further, cells may persistently migrate, in addition to the stochastic movements as-

sumed in the present model. Our prior work suggests that cells form stable network

structures rapidly at lower migration speeds [65]. At high persistent migration speeds,

the networks dissolve and the dipoles self-organize instead into motile chains. This sug-

gests that an optimum cell migration speed is favorable for network formation, which

cells may achieve through self-regulation of their motility through interaction with their

neighbors, such as contact-inhibition of locomotion.

A crucial modeling challenge for vasculogenesis, and other instances of cell net-

work formation in biology, is that multiple factors ranging from cell differentiation to

chemotactic cues could be involved in vivo. Modeling approaches based on different

hypotheses can all lead to network pattern formation [84]. Here, by combining exper-

iments on hydrogels of varying stiffness and a physical model based on mechanical

interactions alone, we aim to isolate the different factors involved. While we focus on

endothelial cell networks as a model system, our predictions are generally applicable to

other contractile cell types that self-organize into networks such as fibroblasts [85], neu-

rons or smooth muscle cells (Table 2.2), as well as to synthetic particles with electric or

magnetic dipolar interactions, that are of interest in materials science.In summary, our

work provides proof-of-concept that substrate-mediated elastic interactions is a physical

strategy that biological cells may employ to direct their self-organization into efficiently

space-spanning, multicellular networks.

2.5 Methods

2.5.1 Model details

We model the ubiquitous traction force pattern of a polarized cell as a single, anisotropic

force dipole. The dipole magnitude is the cell force times the distance along the long

axis of the cell, P = Fa. Since the contractile cytoskeletal machinery (e.g. actomyosin

stress fibers) of the cell is typically aligned along this axis, this is also usually the prin-

cipal direction of stress exerted by the cell and is henceforth called the “dipole axis”.

Such a force dipole induces a strain in the substrate, which is modeled as an infinitely
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thick, linear, isotropic elastic medium.

By considering two dipoles Pα and Pβ , we show in SI section A.1 that the work

done by a dipole β in deforming the elastic medium in the presence of the strain cre-

ated by the other dipole α, is given by [31]: Wαβ = P β
ilu

α
il(r

β), where the strain

can be written in terms of Pα and second derivatives of an elastic Green’s function

as uα
il(r

β) = ∂l∂kGij(r
β − rα)Pα

jk. This minimal coupling between dipolar stress and

medium strain represents the mechanical interaction energy between dipoles. Typical

substrate strains are shown in Fig. 2.1(d) where the blue (red) coloring represents ex-

panded (compressed) regions. A second or test dipole present in these regions would

tend to align its contractile axis along the principal stretch direction of the substrate. In

the expanded (blue) regions, the test dipole is aligned with and attracted towards the

central dipole, whereas in the compressed (red) regions, a test dipole is aligned orthogo-

nally to and repelled away from the central dipole. The orientational dependence of the

strain field is changed by the Poisson’s ratio or compressibility of the substrate [49].

Our computational “many-cell” model considers cells as discrete agents (N agents

in a L × L box with periodic boundary conditions) which move and orient randomly,

but that also interact with one another through long-range elastic interactions via a force

dipole strain field coupling and a short-range repulsive spring. Fig. 2.1(e) shows our

simulation setup and the main ingredients of the model. We ignore details of the cell

shape and subcellular structures in this minimal model and instead consider the cells as

disk-shaped agents endowed with contractile, elastic dipoles. This simplifying assump-

tion implies that we do not consider changes in the shape and size of individual cells

that occur as a result of cell–substrate feedback when substrate stiffness is varied, but

instead focus on the multicellular structures at longer length scales.

We now consider the translational and orientational dynamics of a collection of

model cells. These interact with each other through short range, steric and long-range,

substrate-mediated, elastic interactions, and undergo diffusive motion. The overdamped

Langevin dynamics governing the position of a cell labeled α is
drα
dt

= −µT

∑
β

∂Wαβ

∂rα
+
√

2DT ηα,T(t) (2.1)

where DT is the effective translational diffusivity quantifying the random motion of an

isolated moving cell, with ηT as a random white noise term whose components satisfy
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⟨ηi,T(t)ηj,T(t′)⟩ = δ(t− t′)δij . Typical adherent cells do not move very persistently and

at time scales much longer than their persistence time, their motion is random and has

been shown to be well-characterized by a diffusion constant [23]. We thus neglect the

directed self-propulsion term typically included for active particles from the dynamics.

The mobility µT in Eq. 2.1 is inversely related to the effective friction from the

medium that the moving cell experiences at its adhesive contacts with the substrate.

Similarly, the orientational dynamics of the cell denoted by α is given by

dn̂α

dt
= −µR

∑
β

n̂α × ∂Wαβ

∂n̂α

+
√

2DR ηα,R(t) (2.2)

where n̂α is the unit vector along the dipole axis of the cell α and DR is the effective

rotational diffusivity quantifying the random reorientations of an isolated moving cell.

Cells encounter various forms of internal stochastic effects including internal cytoskele-

tal rearrangements producing membrane morphological fluctuations, substrate surface

binding fluctuations and fluctuations in myosin motor forces, which are all absorbed into

a coarse-grained effective temperature, Teff , in our model. Single cell and cell cluster

experiments have shown this effective temperature to be on the order of 10−15 − 10−14

J [86]. Though the rotational and translational diffusion are in principle independent,

we will here assume them to correspond to the same underlying processes and there-

fore the same effective temperature, kBTeff = DT/µT = DR/µR. We also show some

exceptions to this assumption in the SI section A.10, which all robustly form networks.

The pairwise cell–cell interaction potential Wαβ between cells labeled α and β con-

sists of the long-range elastic interaction arising through their mutual deformation of

the substrate (SI section A.1), and a short-range steric interaction between two cells in

contact, and is given by,

Wαβ =
1

2
k(d− rαβ)

2, when 0 ≤ rαβ ≤ d

=
P 2

E

f(ν, θα, θβ)

r3αβ
, when rαβ > d, (2.3)

where f is a function of Poisson’s ratio - shown in SI section A.1, θα, and θβ where

cos θα = n̂α · r̂αβ and cos θβ = n̂β · r̂αβ are the orientations of cell α and cell β with

respect to their separation vector, rαβ = rβ−rα connecting the centers of the two model

cell dipoles, respectively. Note that while the elastic potential is in principle long-range,
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it decays strongly as a 1/r3 power law, we cut this pairwise interaction off at rαβ > 3d in

our simulations, since the substrate strain induced by one cell is unlikely to be detected

by a cell few cell lengths away [16].

The above equations are non-dimensionalized by a suitable choice of length, time

and energy scales. By choosing the length scale to be the cell diameter d, the time scale

to be an elastic time, tc = 16Ed5

P 2µT
, and a characteristic elastic interaction as the energy

scale, Ec = P 2

16Ed3
, the dynamical equations reduce to (SI section A.11),

dr∗α
dt∗

= −
∑
β

∂W ∗
αβ

∂r∗α
+

√
2

A
η∗
α,T(t

∗), (2.4)

for the translational motion,while the rotational equation of motion can be written as,

dn̂α

dt∗
= −

∑
β

n̂α ×
∂W ∗

αβ

∂n̂α

+

√
2

A
η∗
α,R(t

∗), (2.5)

where the starred variables indicate nondimensionalized quantities, and we have as-

sumed µRd
2 = µT and DRd

2 = DT, although the latter is not required for a system that

is out of equilibrium. The nondimensionalized pairwise interaction potential in Eq. 2.3

is here given by W ∗
αβ = 1

2
k∗(1 − r∗)2Θ(1− r∗) − 16f

r∗3
Θ(r∗ − 1), where k∗ = kd2/Ec.

We introduce an effective elastic interaction parameter quantifying the elastic interaction

strength relative to that of intrinsic noise in the cell motion,

A =
P 2µT

16Ed3DT

=
Ec

kBTeff

, (2.6)

where the noisy cell movements correspond to an effective temperature, kBTeff ≡ DT/µT .

This explicitly shows that A is a measure of the characteristic elastic interaction energy

scale relative to the magnitude of cell stochasticity described by an effective tempera-

ture.

2.5.2 Physiological estimates of parameter values

In experiments, the value of the effective interaction parameter A will depend on

cell contractility, the stiffness of the elastic substrate, and the diffusivity that originates

from the motility of single cells. Importantly, cells adapt their contractile forces to

the stiffness of the underlying substrate. Measurements [87] and models [72] of the
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dependence of cell force on substrate stiffness suggest that the magnitude of the force

dipole can be written as: P (E) = P0/(1 + E/E∗), where the characteristic substrate

stiffness for a given cell at which the cell traction forces saturate to their maximal value

is denoted by E∗. This dependence when inserted into the definition of the effective

elastic interaction parameter, A, in Eq. 2.6, leads to A being a peaked function of E.

Since stiffer substrates are harder to deform and cells on softer substrates don’t generate

enough traction, substrate deformations and therefore elastic interactions are maximal

at an intermediate optimal stiffness value (E = E∗).

Table 2.1: Simulation parameters and their meaning.

Parameter Interpretation Simulation values

A Elastic interaction : Noise 0.1-100

k∗ steric interaction 1.6× 103

ϕ Cell packing fraction 0.05-0.5

d Cell diameter 1

L Box size 26.66

To identify a plausible range for the values of A consistent with cell culture experi-

ments, we note that the typical values for the force dipole for contractile cells adhered

to elastic substrates is P0 = Fd ∼ 10−12 − 10−11 J [53, 58]. This corresponds to mea-

sured traction forces of F ∼ 10 − 100 nN with a distance of ∼ 50 µm separating the

adhesion sites at which the forces act on the substrate [51, 23], which is also the typi-

cal size of the cell along its long axis. For a typical substrate stiffness of E ∼ 1 kPa

characteristic of EC network formation [62, 61], we therefore estimate an elastic dipole

energy of Ec = P 2

16Ed3
= F 2

16Ed
∼ 10−15 J, similar to measured values for cell contractile

energy stored in the elastic substrate [88]. Since, adherent cells crawl by exerting forces

at the focal adhesions at which forces are transmitted to the substrate, the net mobility

that determines cell translation, µT , can be estimated from the friction force at these

adhesion sites. From the observation that the focal adhesions with surface area of 10

µm2 reorient with speeds of µm/min in the direction of an external, applied stress of

kPa [89], we can estimate the mobility coefficient (inverse of friction coefficient) to be
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µT ∼ 0.1µm/min · pN−1. The effective diffusivity characterizing single endothelial

cell movements was measured to be ∼ 10 µm2/min [90, 15, 61]. Together, these give

an estimate for the effective temperature: kBTeff = DT/µT ∼ 10−16 J ∼ 104 kBT . For

substrate stiffness E ∼ E∗ 1 kPa, we thus estimate the ratio of elastic energy to noise to

be A = Ec/kBTeff ∼ 10.

In experiments, the substrate stiffness can be tuned over a wide range. In particular,

Califano et al. tested the formation of EC networks on substrates whose rigidity was

varied from 100Pa − 10kPa [62]. This, in our estimate, corresponds to an interaction

parameter A ∼ 1−100, with A = 0.1 corresponding to high noise or non-optimal values

of substrate stiffness (too soft or too stiff). Similarly, we can estimate the characteristic

timescale as tc = d2

EcµT
∼ 102 min. This timescale of hours is consistent with that

required for the formation of cellular structures in experiments [62].

2.5.3 Experimental Methods

Cell Culture: green florescent protein (GFP) expressing-human umbilical vein en-

dothelial cells (HUVECs) (Angio-Proteomie) were expanded on 10mg/mL fibronectin-

coated plates in Endothelial Cell Growth Medium-2 with BulletKit (EGM-2, Lonza).

Cells used were between passages 3-12. Medium changes were performed every other

day, and cells were split upon reaching 80% confluency.

Polyacrylamide (PAA) fabrication: PAA hydrogels were fabricated similarly to pre-

viously published protocols [73]. Briefly, hydrogels with relative stiffnesses (Young’s

Modulus or elastic modulus, E) at 200Pa, 480Pa, 1kPa, 2kPa, 4.5kPa, and 10kPa were

fabricated by mixing acrylamide from 40% stock solution (Sigma, A4058) with bis-

acrylamide from 2% stock solution (Sigma, M1533) in phosphate buffer saline (PBS).

Air bubbles introduced during mixing were removed by vacuum gas-purge desicca-

tion for 30min. The mixture was then mixed with 10% ammonium persulfate (Sigma,

A3426) and tetramethylethylenediamine (Sigma, T7024) at a 1:100 and 1:1000 ra-

tios, respectively, initiating PAA polymerization. The PAA mixture was then sand-

wiched between an 18mm glass coverslip (Fisher) and a hydrophobically-treated, and

dichlorodimethylsilane (Sigma, 440272)-coated glass slide. After 30min of PAA poly-

merization, the 18mm glass slide with the PAA hydrogel attached was carefully removed
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from the hydrophobic slide. Lastly, PAA hydrogels were functionalized with 0.2mg/mL

sufosuccinimidyl-6-(4’-azido-2’-nitrophenylamino)-hexanoate (Pierce Biotechnology)

followed by 10mg/mL fibronectin.

Vascular Patterning: GFP-HUVECs were seeded on fibronectin- coated PAA hy-

drogels at densities of 8 × 103 cells/cm2, 1.4 × 104 cells/cm2, and 2 × 104 cells/cm2

and imaged on a Nikon Eclipse TE2000-U fluorescent microscope. The images were all

processed using a custom-built image processing macro in FIJI2.

2.5.4 Image Analysis

The following processing is done in order to directly compare simulation predictions

to experimental results (Figs. 2.4 and 2.5) and to obtain network metrics for simulations

(Fig. 2.6 and SI Figs. A.11, A.14, A.15, A.16). All image analysis used in this work was

carried out using the open-source software ImageJ [91]. Raw grayscale experimental

images are imported into ImageJ. ”Enhance Contrast” command is run with ”saturated

pixels” widget set to 2. We then ”Despeckle” the image and ”Enhance Contrast” once

more before running ”Subtract Background” with a rolling ball radius of 50 pixels. We

”Gaussian Blur” with a sigma of 10 pixels. We then threshold, keeping intensities 20

and above. This is then converted into a mask, skeletonized, and dilated four times so

as to preserve the raw filling fraction (Fig. 2.4b).

For simulated networks like those shown in Fig. 2, we replace the isotropic disk

markers with “pill-box” shaped markers (as seen in SI Fig. A.11) which are elongated

along the dipole axis of each cell to guide the subsequent skeletonization. Using ImageJ,

we first apply ”Gaussian Blur” with a sigma of 2 pixels; then, we threshold keeping

intensities 150 and above; and then, convert into a mask and skeletonize. Finally, we

dilate the skeleton four times so that small scale features of assembly like compact

rings are preserved, while washing out the shape of the individual disks. At this point,

both experimental and simulated images are dilated skeletons. The packing fraction of

the dilated skeleton representations of simulations (ϕ̃) are smaller than their respective

non-overlapping disk packing fraction (ϕ) by a factor, ϕ̃ ≈ 0.75ϕ. To compute fractal

dimensions, we follow the aforementioned image processing with the additional step

of dilating experimental skeletons so as to have roughly the same packing fraction as
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simulations. We then use ImageJ’s ”Fractal box count” tool with the default pixel array.

To identify unique clusters in both experimental and simulation images, dilated

skeleton images are imported into a custom python program. This program assigns a

cluster label to the first nonzero pixel, then does recurrent loops assigning neighboring

pixels to the same cluster label until a pixel is identified that does not neighbor any of the

pixels with this cluster label. The cluster label is incremented, and the process repeats

until every nonzero pixel is assigned a cluster label.



Chapter 3

Collective cell polarization drives large

scale compaction of gels

3.1 Introduction

The capacity for a group of cells to coordinate both their relative positions to one

another and the forces they exert on their environment is critical for biological phenom-

ena such as wound healing [92], embryonic development [93], and cancer metastasis

[94]. A recent in vitro experiment of adherent cells embedded in collagen gel networks

mimicking fibrous ECM shows that cell collectives are capable of compacting the sur-

rounding matrix to as little as less than 1% its pre strained volume [95]. Furthermore,

it has been verified across several of these experiments that this compaction follows a

phase transition like behavior in cell seeding density (Fig. 3.1c) [85, 96].

In the most recent of these experiments, it was seen that at low cell seeding density,

cells remain largely sedentary and isolated from one another, and the gel retained its

original shape. At and above a critical seeding density, gel contraction was preceded by

cells forming local connections with one another until a fully connected network struc-

ture had been assembled (like those seen in simulations of cells modeled as anisotropic

contractile force dipoles on elastic substrates [32]). Furthermore, the authors of these

studies consistently state that it is the restructuring of the gel fibers, themselves, that is

necessary for the observed transition. Here, we ask if the capacity for cells to polarize

37
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one another by mutual substrate deformations thereby enhancing the net contractility

they apply to the gel is a sufficient mechanism to produce a transition in the likeness of

experimental observation given a fully connected static matrix network architecture.

We think of this cell coordinated large scale force production in close analogy with

the polarization of electric dipoles. In the case of electric dipoles, the product of the

electric field and the electric polarizability gives a polarization density. In the analogous

case of elastic dipoles, the product of the strain field and a mechanical polarizability

(which we will call the feedback parameter later) gives us a contractility density. It is

in the case of electric dipoles that at high density the dielectric constant of the material

diverges at a critical combination of dipole density and polarizability as seen from the

Clausius-Mossotti equation [97, 98]. We speculate that the shape of the curve in fig. 3.1c

could reflect an experimental realization of the mechanical analogue of the Clausius-

Mossotti relation wherein contractile force dipoles polarize one another by their strain

field in a runaway fashion resulting in large scale contraction of the surrounding gel.

3.2 Model and Results

We utilize a Brownian Dynamics framework in two dimensions where the ECM is

represented by a fully connected triangular lattice of of nodes connected to one another

by Hookean springs with stretching and bending stiffness km and rest length l0,m. Cells

are modeled as “active bonds” of stiffness kc which possess a rest length l0,c smaller

than those of the matrix. This picture of a cell can be implemented as a single bond per

cell, a cell which has a center of contraction, six neighboring nodes, and therefore six

active bonds whose internal strain can be isotropic by averaging over all six bonds or

anisotropic by averaging over colinear pairs. We will call the first representation A1,

the second I6, and the third A6. Lastly, we consider a feedback parameter, α, for the

model cells that up-regulates force production proportionally to cell strain as a coarse

grained mechanism for stress induced myosin recruitment (Fig. 3.2). This model is an

extrapolation of a one-dimensional model of cell polarization on elastic substrates [54].

Rather than considering the deformation of a free boundary as is done in the moti-

vating experiments, we will consider a fixed boundary and use the boundary stress as
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Figure 3.1: Fibroblasts embedded in collagen gels induce global compaction. (A) Bright
field images at 1hr, 12hrs, 24hrs, and 48hrs of seeding densities 0.1 million/ml, 1 mil-
lion/ml, and 5 million/ml. Scale bars = 1mm. Gels seeded with a higher density of
fibroblasts contract to a greater extent within the same time interval. (B) Area as a func-
tion of time for various seeding densities. Highest seeding densities saturate to a final
area of about 15% the initial area. (C) Compaction parameter (≡ 1 − A

A0
where A is

the area of the gel at time t and A0 is the initial area of the gel disk) as a function of
cell density (top x-axis) or, equivalently, cell–cell gap (bottom x-axis). Area contraction
undergoes a phase transition in cell density whose critical density can be shifted by time.
Reprinted from Acta Biomaterialia, 154, Umnia Doha, Onur Aydin, Md Saddam Hos-
sain Joy, Bashar Emon, William Drennan, M. Taher A. Saif, Disorder to order transition
in cell-ECM systems mediated by cell–cell collective interactions, 290-301, Copyright
(2022), with permission from Elsevier (Ref.[85]).

a proxy measure of contraction. For simplicity, we begin by considering the aforemen-

tioned system in athermal conditions. Thus, we can write the equation for the force on
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Figure 3.2: Dipole in spring network matrix (blue) schematic. (Left) A model cell can
be seen as a central active node (red) surrounded by six nodes representing the cell
boundary (green). When this cell contracts, it can sense either an isotropized average
internal strain (I6) or an anisotropic average of strains in colinear bonds (A6) by which
to regulate its active force. (Right) Another model of the cell can be an active bond (red–
red), wherein the cell has only one internal strain with which it modulates its active force
production.

node i, in the A1 representation, by the following:

Fij(rij) =

−kc(1 + α)(rj − ri − l0,ĉlij) lij is active

−km(rj − ri − l0,m l̂ij) lij is not active

where each node will sum over each of its six neighbors and the discretized equation of

motion for each node i can then be written

ri(t+∆t) = ri(t) + ΣN=6
j=1 Fij(rij)∆t. (3.1)

Whether randomly or specifically placed, active bonds are constrained to be within an in-

ner region, called Rin, of the simulated mesh such that Rin = 0.5Rout where Rout is the

radius of the fixed boundary. Simulations are run, regardless of their initial conditions,

with a time step ∆t = 0.01 until mechanical equilibrium is reached (Ftotal ≤ 10−6).

Preliminary simulations of the described system of A6 cells placed such that, for

a given spacing, or separation distance, they are maximally packed yields a qualitative
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trend of more highly strained networks with increasing density and feedback parameter

α (Fig. 3.3).
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Figure 3.3: Final simulation snapshots of A6 cells in the space of density (1/spacing - x-
axis) and feedback parameter α (y-axis). Fixed boundary nodes represented by orange
stars. Bonds under slight tension (compression) represented by thin blue (red) lines.
Bonds under large tension (compression) represented by thick blue (red) lines. At small
spacing and α = 0, tensile strain paths do not reach the boundary. By increasing α, strain
sensitive forces allow tensile strain paths to broaden and reach the boundary. Similarly,
increasing density produces further strain propagation.

To begin to quantitatively compare simulated networks and experiments, we ran-

domly select bonds in the inner region and make them active with the additional con-

straint that no two centers of contraction can be within 3 lattice spacings of one another

until the desired density is reached. This is done to accentuate the substrate mediated

interactions as opposed to direct cell–cell communication. By specifying the number of

dipoles, we can calculate the average intercellular spacing from the relation πR2
in

N
= πa2

where N is the number of dipoles, Rin is the inner seeding radius, and a is the radius

defining an area of exclusion.

In fig. 3.4a, we plot the boundary stress - the total force on the fixed boundary nodes

divided by the circumference of the boundary - as a function of 1
a2

which is proportional
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to N . While we see a linear relation for α = 0, whether the non-zero α cases exhibit

linearity is unclear. If we instead plot boundary stress divided by N , we see that in the

regime of small average spacing, i.e., high density, there is indeed non-linearity which

increases with the feedback parameter α (Fig. 3.4b). While this resultant trend of the

model is in line with the experimental results that motivate it, the magnitude of the

non-linearity is clearly distinct from the fibroblasts in collagen gels.

(a) (b) (c)

Figure 3.4: Simulated A6 cells with strain sensitive active force show non-linear bound-
ary stresses. (a) Boundary stress versus the inverse of the average dipole spacing squared
shows that while strain insensitive dipoles (α = 0) are indeed linear, it is unclear if this
holds for α ̸= 0. (b) Boundary stress normalized by α = 0. (c) Boundary stress per
dipole reveals that at low average spacing, or high cell density, boundary stress is indeed
non-linear for strain sensitive dipoles, reaching N2 proportionality at α = 10, indicating
a cooperative effect.

An obvious and pertinent deviation of these simulations from the collagen gel ex-

periments is the motility of the cells themselves. While one could add dynamics to the

location and/or orientation of the active bonds themselves, another way to account for

this motility in a more discrete way is to simply consider the elastic energy of a given

configuration as cells will move in such a way as to minimize this energy. Modeled

cells exert a contractile force on surrounding nodes, giving rise to a mixture of stretched

and compressed matrix springs. By placing another modeled cell in a stretched region,

the stretch in these proximate matrix springs can be alleviated by the two dipoles can-

celling their forces, thus lowering the elastic energy in the matrix. The opposite is true

for the compliment, that is, placing a model cell in a compressed region accentuates

the compression and the elastic energy is increased. Fig. 3.5(a) shows that randomly

placed A1 model cells with both random and specified dipole orientations exhibit pri-
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marily unfavorable interactions as indicated by higher elastic energy at smaller seeding

radius. Conversely, Fig. 3.5(a) shows that three A1 model cells with x-oriented dipole

orientations decrease elastic energy at smaller spaces. These results indicate that both

positional and orientational order are required for energetically favorable states.

(a) (b)

Figure 3.5: Both positional and orientational order are required for energetically fa-
vorable dipolar interactions. (a) Total elastic energy of matrix springs at mechanical
equilibrium as a function of seeding radius (analogous to spacing) for N = 20 A1 ac-
tive bonds. Average values of ten simulations are plotted where the error bars are the
standard error of the mean. While for all active bonds - whether they are sensitive to
strain (orange and red) or not (blue and green) - positions are random, their orientations
are made to either be random (blue and orange) or fixed along the x-axis (green and
red). For both strain sensitive and insensitive dipoles, whether randomly or specifically
oriented, elastic energy does not decrease with decreasing seeding radius, indicating
predominantly unfavorable interactions. (b) Total elastic energy of matrix springs at
mechanical equilibrium for N = 3 A1 dipoles oriented along the x-axis placed on a line
where intercellular spacing is varied. As expected for energetically favorable interac-
tions, elastic energy is decreased as dipole spacing decreases for both strain sensitive
(orange) and strain insensitive (blue) dipoles where the magnitude of the minimum is
accentuated for α = 1.

3.3 Summary and Future Work

Motivated by experimental work of fibroblasts embedded in collagen gels, we built a

model of a discretized elastic material realized by a triangular mesh of Hookean springs

with active bonds which produce mechanosensitive dipolar forces on the matrix. Our
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preliminary results show that by increasing simulated cell density and strain sensitive

force production, tensile strain bands can broaden and propagate to the boundary. Fur-

thermore, our simulations confirm a non-linearity in boundary stress as a function of

number of dipoles even for our linear elastic material. While the shape of this non-

linearity is too subtle to be compared to the phase transition seen in experiments, we

have shown that the energetic favorability of cell configurations depends not only on

their effective density, but their spatial and orientational patterning. We thus hypoth-

esize that by weighting boundary stress by a Boltzmann factor in elastic energy that

would privilege highly ordered configurations, as those seen in the supercritical den-

sity regime of collagen gel experiments, we may be able to recover a sharp transition

resembling the global compaction of collagen gels. Additional sources of nonlinearity

that may be explored include a larger stretching modulus than compression modulus of

the matrix springs. We could also include a distance dependent step function to model

direct cell–cell contact mediated force production and transmission. Additionally, we

may make the feedback parameter, α, itself into a functional form like a sigmoid in

strain. This is motivated by observed limits to cell–cell sensing. While the model(s) we

have discussed above assumes cell sensitivity to internal strain, it may be appropriate

to instead assert sensitivity to external strain. We could also phenomenologically im-

pute that cells in ordered multicellular configurations increase their dipole moment. If

these permutations are insufficient to produce the desired phase transition like behavior,

network architecture itself may be necessary to explore, i.e., coordination number less

than six. In these networks, model cells can serve to stretch out floppy modes in the

matrix thereby strengthening boundary force transmission [99], or even dynamic spring

constants in analogy to buckling/breaking and tether formation [100].



Chapter 4

Collective states of active particles with

elastic dipolar interactions

This chapter has been reprinted with permission according to the creative commons

attribution license (CC BY) [65]. Note that portions of figures 4.1, 4.2 and the entirety

of figures 4.4, 4.7, and 4.8 and their corresponding descriptive text was the work of

Subhaya Bose. Portions of the introduction have been moved to the introduction of the

dissertation. References to supplementary information have been omitted.

4.1 Abstract

Many types of animal cells exert active, contractile forces and mechanically de-

form their elastic substrate, to accomplish biological functions such as migration. These

substrate deformations provide a mechanism in principle by which cells may sense

other cells, leading to long-range mechanical inter–cell interactions and possible self-

organization. Here, inspired by cell mechanobiology, we propose an active matter model

comprising self-propelling particles that interact at a distance through their mutual de-

formations of an elastic substrate. By combining a minimal model for the motility of

individual particles with a linear elastic model that accounts for substrate-mediated,

inter–particle interactions, we examine emergent collective states that result from the

interplay of motility and long-range elastic dipolar interactions. In particular, we show

that particles self-assemble into flexible, motile chains which can cluster to form diverse
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larger-scale compact structures with polar order. By computing key structural and dy-

namical metrics, we distinguish between the collective states at weak and strong elastic

interaction strength, as well as at low and high motility. We also show how these states

are affected by confinement within a channel geometry – an important characteristic of

the complex mechanical micro-environment inhabited by cells. Our model predictions

may be generally applicable to active matter with dipolar interactions ranging from bio-

logical cells to synthetic colloids endowed with electric or magnetic dipole moments.

4.2 Introduction

Active matter typically comprises autonomous agents, biological or synthetic in ori-

gin, that harness internal energy sources to move [101, 102]. These agents often un-

dergo complex interactions with each other and their surrounding media that influence

their collective behavior [103]. Mechanical interactions through a material medium are

by their nature long-range and are expected to govern the collective states of active

particles[104], and enrich the large–scale phenomena such as phase separation that arise

purely from motility [10, 105].

In general, active particles endowed with a dipole moment are expected to interact

at long range with each other while also propelling themselves. Passive dipolar particles

such as ferromagnetic colloids at equilibrium will align end-to-end into linear structures

such as chains or rings [41, 106]. At higher densities, the chains intersect to form gel-

like network structures [42]. Topological defects in the networks such as junctions and

rings are expected to affect the phases of passive dipolar fluids [107, 108]. When pow-

ered by chemical activity, dipolar colloidal systems exhibit self-assembly that depends

on both the long-range, anisotropic interactions, as well as active motion, as revealed

in recent experiments [45]. Such structures have also been studied in simulation in

the context of active dipolar particles representing auto-phoretic colloids [109, 44], as

well as swimming microorganisms [46] such as magnetotactic bacteria [47]. In related

theoretical studies, constrained or bundled chains of self-propelling colloidal particles

[110, 111, 112, 113] have also been shown to exhibit collective instabilities. Elasticity

mediated interactions are seen to play critical roles, with the competition between me-
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chanical interactions, steric interactions and activity determining the eventual dynamical

behavior.

Here we build a minimal model of interacting elastic dipoles that is inspired by the

mechanobiology of animal cells that actively deform their elastic substrate, while also

exhibiting persistent motility. The starting point is the observation and deduction that

contractile deformations of the underlying substrate originate from the elastic dipolar

nature of stresses exerted by the cell on the substrate [114]. We show that incorporation

of these substrate-mediated interactions offers a robust way to the formation of com-

pact, and relatively stable collective states. Our model combining active self-propulsion

of the particles with their long-range dipolar interactions applies to a general class of

experimentally realizable systems, including synthetic colloids endowed with perma-

nent or induced magnetic or electric dipole moments [115]. By performing Brownian

dynamics simulations on a collection of such dipolar active particles, we demonstrate

the rich array of collective states that they can self-organize into. In particular, strong

dipolar interactions promote end-to-end alignment of active particles, leading to self-

assembled, motile chains. These chains can then further self-assemble into a hierarchy

of larger-scale structures.

4.3 Model

Our model system consists of soft, repulsive, active Brownian particles (ABPs)

[7, 116] in two dimensions (2D), that interact at long range through elastic dipolar in-

teractions and strongly repel when they overlap. We have previously studied a simple

isotropic interaction model valid in the limit where the propulsion direction was decou-

pled from the magnitude of cell-cell interactions [64]. Here, we analyze a more general

model that accounts for the anisotropy of cell interactions, expected for the elongated

shapes characteristic of migrating cells.

The basis of elastic interactions between model cells is illustrated in Fig. 4.1. The

schematic Fig. 4.1a shows the typical scenario of an adherent cell on top of an elastic

substrate. The internal cytoskeletal machinery of the cell comprising actin stress fibers

and myosin II molecular motors generates contractile mechanical forces, that are com-
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Figure 4.1: Elastic interactions between model cells on a substrate. (a) Schematic of
adherent cell on an elastic substrate. (b) 1D spring model illustrating origin of elastic
interaction potential between two contractile dipoles. The elastic energy stored in the
medium corresponding to the deformation of springs depends on the relative placement
of the dipoles. In particular, placing a contractile dipole in a region where the medium
is already expanded by the other dipole can help to reduce the overall deformation of
the medium. This leads to a strain-dependent interaction potential between the two
dipoles. (c) Representative spatial maps of the interaction potential Wαβ between two
dipoles, from the solution of the strain field for the full linear elastic problem of forces
exerted on the surface of a semi-infinite medium are shown. The interaction potential
corresponds to the work done by a point-like dipole in deforming the substrate in the
presence of the strain created by the other. The potential maps shown here are for a pair
of contractile force dipoles of fixed orientation. The second dipole is free to translate
but held parallel (left) or perpendicular (right) to the central dipole which is placed at the
origin and aligned along the x-axis. The contour lines show how the potential decays in
space, whereas blue and red regions correspond to attractive (Wαβ < 0) and repulsive
(Wαβ > 0) interactions, respectively.
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municated to the external substrate through cell-substrate focal adhesions [117]. In a

minimal, coarse-grained description, the traction force distribution of an elongated cell

with a long axis a and exerting a typical force F at the adhesion sites, can be modeled as

a force dipole with dipole moment Pij = Fiaj . The theory of continuous elastic media

then determines that the distribution of forces from multiple cells will lead to a restoring

stress σ in the medium, that satisfies a force balance [29], ∂jσij = −∂jpij , where the net

dipole density, pij(x) = ΣαP
α
ijδ(x − xα) is the sum of traction forces exerted by each

point-like cell dipole, here labeled by an index α. In modeling cells as point-like dipoles,

we ignore their finite size, an assumption that is valid only at “far field”, i.e. at distances

large compared to cell length. While this is not strictly the case in our simulations, a

more general model accounting for finite separation of the cell forces is expected to lead

to qualitatively similar interactions [22].

By considering two dipoles Pα and Pβ , we can show that the work done by a dipole

β in deforming the elastic medium in the presence of the strain created by the other

dipole α, is given by [31]: Wαβ = P β
iju

α
ij(x

β). This minimal coupling between dipolar

stress and medium strain represents the mechanical interaction energy between dipoles.

The strain in the elastic medium created by dipole α at the position of the dipole β is

given by the gradient of the displacement, uij(x) =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
) and can be calculated

using standard methods in linear elastic theory [29]. This is detailed in the Methods

section, where we follow the treatment introduced in Ref. [31]. The mechanical inter-

action between a pair of force dipoles is illustrated by the schematic in Fig. 4.1b in the

form of a 1D series of springs representing the effect of the elastic substrate. While the

springs underlying the contractile dipoles are compressed, the springs between them are

stretched. By moving to different positions in the medium for a given position of dipole

α, the dipole β can reduce the net substrate deformation energy by compressing regions

stretched by dipole α. This leads to a substrate deformation-mediated elastic force on

the dipole β,

fβ
el = −∂Wαβ

∂xβ
= −P β

ij

∂uα
ij(xβ)

∂xβ
j

, (4.1)

given by the gradient of the strain induced by the other dipole, where the strain therefore

acts as a potential. While the expressions vary in detail, this physical interaction between

elastic dipoles considered here is analogous to the interaction of an electric dipole with
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the electric field induced by another dipole. A similar reciprocal force results on dipole

α, since the interactions are based on an elastic free energy. The physical origin of this

force is the tendency of the passive elastic medium to minimize its deformations in re-

sponse to the active, contractile forces generated by the cells. This generic mechanical

interaction between dipoles is not limited to cells [31], but also occurs for passive in-

clusions in an elastic medium [118]. Experimentally, hydrogen atoms in metals were

shown to diffuse and distribute themselves according to configurations dictated by these

elastic interactions [119].

Pairwise dipolar interactions are anisotropic and depend on both the distance be-

tween and relative orientations of the two particles with respect to their separation axis.

Insights into the nature of the elastic interaction potential between a pair of force dipoles

may be obtained from Fig. 4.1c where we plot spatial maps of the interaction potential

Wαβ for two cells with fixed orientation. To plot these functions, we choose a reference

contractile force dipole α that is fixed at the origin with its axis along the −x direc-

tion, i.e. whose dipole moment has purely the Pxx component. A second test dipole

β interacts with the reference dipole according to its position and orientation. The red

(blue) regions in the potential maps in Fig. 4.1c represent repulsion (attraction) which

arises from the substrate strain. Here, we use the convention that stretched (compressed)

regions have positive (negative) strain, while compressive dipole moment is negative.

While the map on the left corresponds to parallel alignment, that on the right maps the

interaction potential for perpendicular alignment of the two dipoles. In this example, we

fix the orientation of the second dipole to be either parallel or perpendicular, and there-

fore it couples to either the uxx or the uyy component of the strain according to Eq. 4.1.

In general, the dipoles can also rotate and change its relative orientations. In particular,

while the favorable parallel configuration shown here leads to end-to-end alignment of

the dipoles, the unfavorable perpendicular configuration will lead to mutual torques that

tend to orient them in the favorable parallel configuration. The elastic material compris-

ing the substrate is treated as homogeneous and isotropic with shear and compression

modulii proportional to the Young’s modulus E, and a Poisson ratio ν that provides a

measure of its compressibility [49]. While the Poisson’s ratio can in principle have the

full range −1 < ν < 1/2 in linear elasticity theory, the figures plotted here correspond
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to ν = 0.11.

The interaction potential and model dynamics are detailed in the Methods Sec-

tion 4.5 in Eq. 4.4-Eq. 4.7. As shown in Fig. 4.2a, the ABPs – here termed parti-

cles – are modeled as circular disks of diameter σ, each particle being endowed with

a dipole moment and a self-propulsion direction n̂. The orientation of n̂ is aligned

with the dipole axis (shown as the bold black line). This assumption is reasonable for

motile cells with elongated shape, but is not necessarily satisfied for all cell types, where

higher force multipoles may be relevant [24]. Particles are assumed to self-propel with

a speed v0. This phenomenologically models the movement of cells which require in-

ternal cell forces arising from actomyosin activity as well as the remodeling dynamics

of the cell-substrate adhesions, not explicitly modeled here. Additionally, the motion

of each particle is subject to forces and torques arising from dipolar interactions with

other particles, as well as a random stochastic force. This latter mimics the effect of

the thermal environment surrounding the particles and leads to diffusive effects in both

orientation and spatial position of the ABPs.

Since we are motivated by adherent cells on elastic substrates whose contractile

traction forces act as elastic dipoles, a cutoff distance of rcut = 7σ (red dashed circle

in Fig. 4.2a) is imposed on the long range dipolar interactions. The choice of a cut-

off length for interactions is consistent with experimental observations that cells can

interact with one another via mechanical signaling at distances that are up to a few

cell lengths away [15, 16]. In addition to the long-range interactions mediated by the

elastic substrate, cells may also interact via short-range interactions. Here we introduce

short-range steric repulsion using a mechanical model using compressive springs that

discourage overlap between neighboring particles. Specifically, two particles in close-

contact exert a repulsive elastic force on each other when the center-to-center distance

is less than the rest length σ of these springs.

The ensuing dipolar interactions, when strong enough relative to the stochastic noise,

cause end-to-end chaining of the particles along their dipole axis. Examples of this

1This choice ensures end-to-end alignment of dipoles and provides interactions seen not just in cells
but also in other types of active matter that feature particles with magnetic or electric dipole moments.
The interactions at ν > 0.3 have a different symmetry and can result in more complex structures such as
short rings without any electric or magnetic analogs [58].
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Figure 4.2: Overview of agent based simulations of active Brownian particles (ABPs)
moving in the x-y plane and interacting mechanically via elastic deformations induced
by contractile, active force dipoles. (a) An elongated cell with traction forces distributed
around its long axis is modeled as a disk-like particle endowed with a dipole moment.
(b) Each ABP has a dipole axis represented by the bold black line and an in-plane self-
propulsion direction represented by the gold arrow. These particles move on a linearly
elastic, thick, flat substrate, on which they exert contractile dipolar stresses. Substrate
deformation due to one particle is sensed by neighboring particles. These dipole-dipole
elastic interactions are confined to particles within a cutoff distance rcut = 7σ (shown
as the dashed red circle). Particle overlap is penalized by a short-range steric repulsion.
They are confined by steric repulsions along the top and bottom walls shown by the thick
lines, while being free to move through periodic boundaries shown by the thin lines. (c)
For figure (i), simulation snapshot shows that weakly interacting particles do not stick to
each other and move as independent entities. As the elastic dipolar interaction parameter
A increases, the particles self-assemble into long chains ((ii)-(iv), zoomed view shown).
The flexibility of the chains and fluctuations in the mean curvature both decrease with
increasing values of the interaction parameter. The colors represent the self-propulsion
direction of each particle, as indicated by the color wheel.
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chaining process are seen to occur in our simulations and representative snapshots are

shown in figure 4.2c. As expected intuitively, increasing interaction gives rise to stronger

alignment resulting in chains that are progressively less flexible. The effective elastic

bending modulus of these chains that determines the fluctuations of the backbone con-

tour of the chained ABPs is thus higher with increasing interaction strength.

To illustrate the bulk behavior of interacting ABPs as well as the effect of confine-

ment on emergent collective patterns, we simulate a few hundred of these particles in

a box confined in the y− direction, and periodic in the x− direction. The confining

boundary is lined by repulsive springs of the same type used to penalize particle overlap

and keeps the ABPs from escaping the simulation box. This setup mimics a channel

geometry typically used in cell motility experiments [120] and is used in other works on

simulations of ABPs under confinement [121, 122, 123]. We focus on the physical bar-

riers to cell motility and not interfaces in the elastic medium. In principle, such elastic

interfaces can lead to additional elastic torques and forces on dipoles by inducing “im-

age forces” [31], but this is outside the scope of the present work. One way to realize

this type of confining boundary that does not induce stresses in the elastic medium is to

culture cells on a large and thick slab of hydrogel with uniform elastic properties, but

micropattern a specific region of the substrate with ligands to which the cells can adhere

– a common technique in mechanobiological cell culture studies [13].

The important nondimensional control parameters in the model are the elastic dipole-

dipole interaction strength A, the active self-propulsion velocity characterized by a

Péclet number,. Pe, and the packing fraction, ϕ. The packing fraction used in sim-

ulations below is typically either ϕ = 0.08 or 0.25 corresponding to relatively dilute

regimes, except in a narrow channel geometry where we go up to ϕ = 0.75. Definitions

and physical interpretations of these parameters are provided in the Methods Section 4.5.
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Figure 4.3: Simulation snapshots of active particles with short range steric repulsions
and long-range elastic dipole-dipole interactions as a function of effective elastic inter-
action A = P 2/Eσ3kBTeff and Péclet number Pe = σv0/DT. Particles are confined in
the y-direction, while they experience periodic boundary conditions in the x-direction.
They are colored according to their self-propulsion direction n̂, and coded based on the
color wheel. Motile particles at low effective elastic interaction collect into clusters at
the boundaries. Strong elastic interactions promote network formation at low activity.
Strong elastic interactions paired with high activity gives rise to active polymers and
polar bands.
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Figure 4.4: Simulation snapshots of active particles at low packing fraction - The
interaction parameter A ≡ P 2/Eσ3kBTeff and Péclet number Pe ≡ σv0/DT define the
collective behavior of the particles. Particles are confined in the y-direction, while they
experience periodic boundary conditions in the x-direction. They are colored based on
the direction of n̂, as indicated by the color wheel. At low interaction parameter A = 10,
the particles remain isolated and diffuse. At high Pe, more particles get collected at the
confining boundary. At higher values of the interaction parameter, A, particles form
chains. The typical length of the chains is seen to decrease with increasing Pe. At
very high interaction parameter, A = 200, networks with multiple branches form at low
Pe, while chains aggregate into polar clusters at Pe = 10. Although the particles in the
cluster are oriented in opposite directions, the cluster is stable and moves in the direction
given by its overall polarity. Again at very high Péclet, Pe = 100, the particles in the
chains are oriented in the same direction.
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4.4 Results

4.4.1 Characteristic states of active dipolar particles: chains, polar

bands, clusters and networks

We first explore the possible collective structures that result from the combination of

active self-propulsion with dipolar attraction and alignment. We explore the parameter

space of activity (given by the Péclet number, Pe) and strength of dipolar interactions

(given by the effective elastic interaction parameter, A) for two representative systems:

one dilute and the other semi-dilute. We show representative snapshots of the steady

states of the simulations by coloring the particles according to their orientation. Collec-

tions of these snapshots as well as the color wheel corresponding to particle orientations

are shown in Figs. 4.3, where the packing fraction ϕ ≈ 0.25, and Fig. 4.4, where the

packing fraction ϕ ≈ 0.08.

We see from figure 4.3 that at both low motility and weak elastic interactions(A = 1),

particles do not form any ordered structures but are distributed uniformly in space, over

the utilized simulation time. As motility is increased (Pe ≥ 10), particles are seen

clumping up at the boundary with their orientation vectors facing the wall at which they

are localized. This is a familiar result of confined active Brownian particles (ABPs)

wherein these tend to point towards the wall until their orientation is sufficiently ran-

domized by the rotational diffusion[124]. As elastic interactions are dialed up such that

the motions resulting from the dipolar interactions are much stronger than the stochastic

diffusion of the system, structures characteristic of dipolar interactions emerge. In the

case of low particle motility (Pe = 1), and high elastic interactions, we see a branched

network form. In the case of intermediate motility (Pe = 10), networks are broken

down into a single traveling cluster. In the former case, the particles comprising any

given chain can either be oriented parallel (0) or anti-parallel (π) with respect to one

another as the dipolar interaction is head-tail symmetric. In the latter case, networks

form at short timescales and are compressed into one motile cluster at long timescales.

This motile cluster contains numerous defects (shown by their different color) - particles

oriented anti-parallel to the direction of cluster motion - caused by the earlier stage of

network formation. Lastly, in the case of high particle motility (Pe = 100), particles
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assemble into traveling flexible chains which predominantly move parallel to the confin-

ing boundary and undergo inter-chain collisions in the bulk. Much of our forthcoming

analysis is focused on these highly ordered, yet highly dynamic, structures.

At low packing fraction (Fig. 4.4), for A = 10 the elastic interaction between the

particles is low and they diffuse around in the simulation space which is in contrast to

what we see for higher packing fraction (Fig. 4.3) where particles show alignment with

weak attraction. Accumulation of the particles can be seen at the confining boundaries

which is attributed to the activity of the particles. Upon increasing the elastic strength to

A = 50, formation of chains has been observed. At Pe = 1, long and branched chains

of particles are formed. Increasing motility leads to a decrease in length of the chains

and an increased polarity. At even higher elastic strength of A = 200, long chains with

multiple branches are seen for Pe = 1. At increased activity, the chains stick to each

other and form an ordered cluster that moves coherently in the direction determined by

the net polarity of the constituent particles.

4.4.2 Pair correlations reveal spatial organization of active chains

To quantify the spatial distribution of particles around their neighbors, we calculate

the pair correlation function, g(r, θ), the probability of finding a neighboring particle

at a distance r in a direction θ from the central agent’s orientation axis. We calculate

this quantity by averaging over the positions of all agents over time and binning every

other agent according to its separation vector (both distance and angle) from the current

central agent. Finally the distribution is normalized such that g(r, θ) approaches 1 for

distance r going to infinity. We then analyze the peaks in (r, θ) space. Fig. 4.5 shows

four such distance and angle dependent maps in the space of motility and elastic inter-

action. Elastic interactions localize the peaks of the pair correlation function. When

motility is low, particles form branched networks, and the primary configuration of par-

ticles is in straight chains. In this case, there exists two prominent peaks in the pair

correlation function at (σ,0) and (σ,π). When both motility and elastic interactions are

high, particles form into flexible traveling chains that have a tendency to join one another

in a parallel fashion with an offset - a configuration that is energetically favorable to the

elastic interaction and can be seen prominently in the simulation snapshot corresponding
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Figure 4.5: Angular dependent pair correlation function is affected by both motility and
elastic interactions. Strong elastic interactions promote pair correlation peaks at (r, θ)=
(σ,0) , (σ,π). At Pe = 1, these are the only prominent peaks in the pair correlation
function. Motile activity gives rise to secondary peaks at roughly (r, θ) = (σ,π

3
mod π),

(σ,2π
3
mod π) as the preeminent structures are bundles of offset traveling chains. Weak

elastic interactions broaden the pair correlation distribution. In this case, motility breaks
head-tail symmetry, and peaks can be seen at multiple integers of particle diameter at
the head (θ = 0 axis).

to A = 100 and Pe = 100 in Fig. 4.3. In this case, the primary peaks still occur at (σ,0)

and (σ,π), but secondary peaks are present at (σ,π
3
mod π) and (σ,2π

3
mod π), indicating

the offset parallel band structure. Low elastic interactions constitute the more familiar

case of collections of repulsive ABPs. In this regime, the head-tail symmetry character-

istic of the elastic interactions is broken as particles are more likely to encounter other

particles along their direction of propulsion [125]. There exists a single prominent peak

at the head of the dipole that monotonically decreases on either side of the head axis.

Increasing motility in the ABP system adds layers to the single peak function in integer

multiples of particle size σ as collision frequency increases.
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Figure 4.6: Elastic interactions promote global nematic order and local polar order. (a)
Global nematic order, measuring the overall alignment of the particles’ dipole axes, vs.
time for low effective elastic interaction and high activity. Average global nematic order
is negligible for these parameters. (b) Global nematic order vs. time for high effec-
tive elastic interaction and high activity. The system quickly gains a persistent global
nematic order parameter near unity because the chains align parallel to each other. (c)
Spatial distribution of time averaged polar order, where grid size is 3.75σ x 3.75σ, mea-
suring the overall orientation of motility for the particles, for a characteristic run at low
effective elastic interaction and high activity. Particles accumulate at the boundary and
exhibit polar order along that boundary. This order rapidly decays away from the bound-
ary and there is virtually no polar order observed in the bulk. (d) Spatial distribution of
time averaged polar order, where grid size is 3.75σ x 3.75σ, for a characteristic run at
high effective elastic interaction and high activity. A polar order near unity is observed
at the boundary and persists into the bulk where near the middle of the channel |p| ≈ 0.3.
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4.4.3 Activity and elastic interactions promote orientational order

At higher interaction strength, A, and higher motility, Pe, we see chains that move

parallel to each other forming polar bands at high density (top right of Fig. 4.3). Since

chains are elongated objects, a collection of them can give rise to orientational order,

similar to active nematic and polar states that result from active, anisotropic particles

[101]. This type of order is commonly seen in active matter comprising suspensions

of cytoskeletal filaments and motors [126]. To quantify the orientational order in these

cases and to distinguish from the individual ABPs under confinement, we measure the

nematic and polar order for these states. The magnitude of the nematic order parameter

is defined as an average over the orientation of all particles, S ≡ 2⟨cos2 θ⟩ − 1, where

θ is the angle between a particle’s orientation and the average director. In this case,

the global alignment direction is parallel to the confining boundaries given by the x−
axis. The nematic order tells us how well the dipoles are aligned, without distinguishing

between the head and tail and contains no information about the motility direction. To

quantify the oriented motion, we calculate the polar order, whose magnitude is given by,

|p| ≡
√

⟨nx⟩2 + ⟨ny⟩2, where nx and ny are the x and y components of the orientation

vector, n̂, respectively. This quantity is higher if the particles are oriented in the same

direction, in addition to being aligned. While nematic alignment is encouraged by the

passive dipolar interactions, active motility induces polar order.

Fig. 4.6(a,c) shows the global nematic order in time and Fig. 4.6(b,d) shows the

time averaged spatial map of the polar order parameter, calculated by subdividing the

simulation box into regions of dimension 3.75σ x 3.75σ, for both ABPs and traveling

flexible chains. In the ABP system, the global nematic order is small due to the tendency

of particles at the walls to be oriented orthogonal to the wall and those in the bulk to

be oriented parallel to the wall, as well as the presence of orientational fluctuations

from rotational diffusion. Traveling flexible chains of dipolar particles exhibit a global

nematic order close to unity as all particles in this system tend to point along a director

parallel to the confined boundary. Spatially resolving the average magnitude of the polar

order parameter gives us a picture of particle alignment at a smaller length scale. ABPs

exhibit polar alignment at the boundary. This alignment quickly diminishes, and no

polar order is seen in the bulk. Traveling chains form bands at the boundary such that
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p > 0.7 up to 6σ away from the wall. The polar order of these flexible chains drops off

far less drastically in the bulk than the ABP system.

4.4.4 Transport properties of active chains are distinct from single

particles

The mean-squared displacement or MSD is a typical metric that quantifies how

motile entities cover space in time. In Fig. 4.7, we report the MSD for simulations with

a packing fraction ϕ ≈ 0.08 in a square box of size 30σ, corresponding to the struc-

tures shown in Fig. 4.4. Given the confinement along one direction, we calculate the

MSD separately for the confined (y-) and unconfined (x-) directions. The unconfined

MSD, ⟨x2⟩, for particles with low elastic interaction e.g., at A = 10 , shows similar

trends to individual active Brownian particles [127]. At short time intervals, individual

ABPs propel persistently in the direction of their orientation, leading to ballistic behav-

ior. In Fig. 4.7a, we see such behavior at very short time scales which gave way to

super-diffusive behavior at intermediate time scales, where particles are slowed down

by collisions with other particles. At sufficiently long time scales, the particles are dif-

fusive as the rotational diffusion randomizes their orientation. Increasing Péclet number

increases the timescale for super-diffusive behavior as the persistence time is longer.

We see qualitatively different regimes in the MSD for particles with stronger in-

teraction in Fig. 4.7b. At interaction strength A ≥ 100, which leads to formation of

long, stable chains, we observe larger-scale structures such as branches, clusters and

networks in the simulation snapshots shown in Fig. 4.4. In this case, the particles show

sub-diffusive behavior at shorter time scales when they are still moving individually in

an uncorrelated manner and beginning to form these structures. On the other hand, at

longer time scales, they cluster into larger scale structures that move coherently in a

specific direction like polar flocks, giving rise to a ballistic behavior. The crossover

from subdiffusive to nearly ballistic behavior occurs earlier for higher Péclet numbers.

At higher particle motility, we obtain ballistic behavior for all time scales. The result-

ing behavior is thus qualitatively different from single ABP behavior, which show a

crossover from persistent to diffusive motion at timescales longer than the persistence

time (∼ Pe). Here, on the other hand, the long time behavior is dictated by large-scale,
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Figure 4.7: Mean-Squared Displacement or MSD vs. time interval, for 100 particles in
a square simulation box of 30σ. Due to confinement of particles in y-direction, MSD is
plotted separately for x and y components of displacement. (a), (b) MSD along uncon-
fined direction: for A = 10, particles are super-diffusive at short time scale and diffusive
at longer time scale, where the crossover time scale is determined by the Péclet number
(Pe) of the particles. At A = 100, particles align themselves to form chains or clus-
ters. At low Pe, the particles show sub-diffusive behavior at shorter times and ballistic
behavior at longer times. At higher Pe, the ballistic behavior of particles is observed
at all time scales. (c), (d) MSD along confined direction: particles reach the confining
boundary at shorter times for high Pe number, and also at low elastic interactions A. At
higher A, particles chain up and move predominantly parallel to the confining boundary.
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polar structures that self-assemble irreversibly and move persistently at long times.

The MSD in the confined direction, ⟨y2⟩, plateaus off at long times, both for the

individual ABPs (Fig. 4.7c) and the larger scale structures (Fig. 4.7d). The time scale

to reach a plateau in the MSD corresponds to the time it takes an entity to reach the

confining walls from the bulk of the simulation box. Thus, ⟨y2⟩ reaches a plateau at a

shorter time scale for highly motile particles, as compared to the less motile ones. Due to

the confining wall in the y-direction and strong alignment with neighboring particles at

A = 100, the particles line up into chains that orient and move parallel to the confining

walls, and not as much in the y-direction. Thus, ⟨y2⟩ for A = 100 reaches the plateau

later than for the A = 10 case, for corresponding values of Pe.

4.4.5 Collisions of active chains reveal stable, mobile structures

We observe from simulations at low packing fraction (Fig. 4.4) that once particles

self-assemble into chains, these can intersect to form junctions and get organized into

larger-scale polar structures. We now explore in more detail the inter-chain interactions

responsible for this self-organization. To do this, particles were initialized in an ordered

chain and oriented in the same direction. Two such chains were oriented initially at

different angles to control their approach direction, as shown in the insets in Fig. 4.8.

At A = 200 the junctions formed by chains depended on the Péclet number and the

angle and position of approach. The ‘Y’ junction was the most observed for all Péclet

number, which is formed from when the second chain attaches itself at the middle of

the first chain (Figure 4.8, top left). An ‘eye’ (Figure 4.8, top right) is formed from two

closely spaced ‘Y’s, which is observed for higher Péclet number, Pe = 5 and 10 and

when the chains are oriented in the same direction. Again, at low particle motility Pe =

1, the chains upon colliding head on form a longer and more rigid chain (Figure 4.8,

bottom left). On the other hand, at Pe = 5 chains show buckling upon undergoing head

on collision which leads to a propelling ‘necklace’ (Figure 4.8, bottom right). At even

higher Péclet number, the force between the particles is overpowered causing particles

to detach from a chain and thereby creating defects. All these cases have been observed

for A = 200. These junctions are also observed at lower elastic strength A = 50 and 100

but were unstable giving rise to many defects. Chains may interact with each other in
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Figure 4.8: Interaction of two motile chains. Two straight chains of 10 particles each are
initialized to approach each other at an angle of π

3
and also π (“head-on”) at Pe = 1 and

5. At Pe = 1, a ‘Y’ junction forms for an approach angle of π
3

whereas at Pe = 5, an
‘eye’ ( two junctions) occurs. Upon head-on collision, a longer fluctuating chain with
negligible net motility results at Pe = 1, and a propelling, buckled shape is observed at
Pe = 5. Insets at the top corners represent the approach of the chains. Color represents
angle of orientation of particles. The arrows indicate progression in time and suggest
that the configurations are both stable and motile.
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a head-tail fashion which results in a stable longer chain. Chains with multiple defects

have also been observed to form these ‘Y’ and ‘eye’ structures at A = 200 and Pe = 1

(Figure 4.4).

4.4.6 Stronger confinement in narrow channels reveals polar clus-

tering dynamics

In our system of traveling flexible chains comprised of strongly interacting and

highly motile dipolar particles (A = 100, P e = 100), bands that form along the confin-

ing boundary are relatively stable compared to those that form in the bulk. The latter are

subject to more frequent collisions with other traveling chains. In order to gain under-

standing of these chain collision dynamics, we confine the same number of particles into

a channel of width Ly = L
3

, where L is the box size of our original simulation space,

in order to induce more frequent and global chain-chain collisions. In this system we

find a cyclic tripartite state dynamic. As shown in figure 4.9a, at some point, the parti-

cles with orientations +x become well mixed with particles with orientations −x. The

particles will then separate into lanes according to their polarity so that they can move

unimpeded. These lanes will then collide which initializes another well mixed system

and the cycle repeats.

This effect of colliding lanes can be seen quantitatively by tracking the magnitude

of the polar order parameter averaged over boxes of width 3σ and height 2.5σ in time

shown in figure 4.9b. The well mixed system has an average polar order parameter of

p ≈ 0.2. The system then phase separates into lanes with average polar order parame-

ter ≈ 0.6. The +x and −x lanes collide, and the resultant combination has an average

polar order parameter ≈ 0.4. When the channel is sufficiently wide, collisions between

opposite lanes are less common, and the average polar order is bolstered by persistent

polar chains at the confining boundary as seen in Fig. 4.9c. This time dependent for-

mation and disbanding of polar structures is consistent with bead spring simulations of

semiflexible filaments in the high activity regime [128].
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Mixed (𝑡 = 𝑡0)

Laning (𝑡 = 𝑡0 + 𝑎∆𝑡)

Collision and remixing (𝑡 = 𝑡0 + 𝑎∆𝑡 + 𝑏∆𝑡)
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Figure 4.9: Traveling chains in a narrow channel exhibit cycles of mixing, laning, and
collision and remixing. (a) Snapshots of a simulation where channel width has been
decreased by a factor of 3. Dynamics of the system are encompassed by three cyclic
states: A mixed state shown at an arbitrary initial time t0, a phase separated laning
state shown a short time after t0, and a collision and remixing state shown a short time
after the laning state. (b) Polar order averaged over boxes of width 3σ and height 2.5σ
versus time is shown to elucidate the three states described in (a). The polar order for
a mixed - laning - collision and remixing cycle are shown in the red circles. When the
system is well mixed, the average polar order is small (p ≈ 0.2). When the particles
separate into lanes, the polar order increases rapidly (p ≈ 0.6). When the lanes then
collide and begin remixing, the remnants of the bulk of the lanes provide polar order
while mixed particles and the interface between lanes decreases polar order (p ≈ 0.4).
(c) Polar order averaged over boxes of width 3σ and height 2.5σ versus time for three
channel widths. Time averaged polar order, shown in dashed horizontal lines, is similar
for the Ly = 20 and Ly = 30 cases when collision dynamics occur in the bulk, but non-
interacting traveling chains line the boundaries. Time averaged polar order is smaller
for the Ly = 10 case as collision dynamics are global phenomena.



67

4.5 Methods

Here, we present the equations governing the motion of the active motile particles

discussed earlier and their interaction via the elastic substrate on which they move. In

our model, we treat the particles as circular active Brownian particles (ABPs) that in-

teract with other particles via long-range substrate modulated interactions and direct

short-range particle-particle steric contact interactions. Long range interactions arise as

each ABP exerts a contractile stress dipole P on the flat, semi-infinite, linearly elastic,

isotropic substrate, thereby inducing strain fields which induces an effective force on

nearby particles. For simplicity, we assume that the dipole axis is coincident with the

direction of motion of the particle. For instance, in an elongated cell, the force dipole

axis coincides with the orientational axis of the cell, that is also the direction of self-

propulsion.

In the derivation that follows we use Einstein summation convention over the Latin

indices, while Greek indices are used to label the particles. Consider a particle α that

deforms the substrate. The work done by the associated dipole, Pα in deforming the

substrate in the presence of the strain created by a second dipole Pβ (generated by a

second particle β) is given by [31],

Wαβ = P β
ij∂j∂lG

αβ
ik (rαβ)P

α
kl, (4.2)

where rαβ = rβ − rα is the separation vector connecting the centers of particles α and

β (Fig. 4.10) (c.f [114, 49]). The elastic half space or Boussinesq Green’s function that

gives the displacement field in the linearly elastic medium at the location of one particle

caused by the application of a point force at the location of the other is given by [29],

Gαβ
ik (rαβ) =

1 + ν

πE

[
(1− ν)

δik
rαβ

+ ν
rαβ,irαβ,k

r3αβ

]
, (4.3)

where E is the stiffness (Young’s modulus) and ν is Poisson’s ratio of the substrate.

Given the linearity of the problem, superposition of strain fields each of which is ob-

tained by using the Green’s function (Eqn. 4.3) appropriately provides the net displace-

ment at a test position due to particles around it.

Two particles in our model interact via a combination of pairwise long-range and

short-range interactions. The long range interaction forces originate from the substrate-

mediated, elastic dipole-dipole interaction potential, Wαβ . The short-range interactions
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Figure 4.10: Schematic of two interacting particles with all relevant angles and vectors
labeled. n̂i are unit vectors of force dipoles. θ′i are angles of force dipoles with respect to
the lab frame x-axis. θα and θβ are angles of force dipoles with respect to their separation
vector rαβ which has components rαβ,x and rαβ,y.

are steric in nature and prevent ABPs from overlapping. This functionality is achieved

in the framework of our model by linear springs that only resist compression. Taken

together, the total interaction potential between particles α and β can be written as,

Wαβ =
1

2
k(σ − rαβ)

2, when 0 ≤ rαβ < σ

=
P 2

E

f(ν, θα, θβ)

r3αβ
, when σ ≤ rαβ < rcut

= 0, when rαβ ≥ rcut. (4.4)

where k is the spring constant of the linear (repulsive) spring preventing overlap, σ is the

particle diameter (kept constant in our simulations), and rcut is a cutoff distance beyond

which the dipolar interactions are neglected. The magnitude of each force dipole is taken

to be the same value denoted by P . The dependence of the pairwise dipolar interactions

on the orientations of the two dipoles with respect to their separation vectors, and on the
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Poisson ratio of the medium, ν, is expressed compactly in the expression [49],

f(ν, θα, θβ) =
ν(ν + 1)

2π

(
3(cos2 θα + cos2 θβ − 5 cos2 θα cos

2 θβ − 1
3
) (4.5)

− (2− ν−1) cos2(θα − θβ)− 3(ν−1 − 4) cos θα cos θβ cos(θα − θβ)
)
.

where cos θα = n̂α · r⃗αβ and cos θβ = n̂β · r⃗αβ are the orientations of particles, α and

β, with respect to their separation vector, respectively (Fig. 4.10).

Motivated by natural and synthetic systems to which our model is applicable, we

assume that the particles are in an over-damped viscous environment, and the inertia

of the ABPs can be ignored. We can then write the equations of motion governing the

translation and rotation, respectively, of particle α as,

drα
dt

= v0n̂α − µT

∑
β

∂Wαβ

∂rα
+
√

2DT ηT,α(t) (4.6)

and
dn̂α

dt
= −µR

∑
β

n̂α × ∂Wαβ

∂n̂α

+
√
2DR ηR,α(t), (4.7)

where rα and n̂α are the position and orientation of particle α, respectively. In the

equations above DT and DR are the translational and rotational diffusivity quantifying

the random motion of a single particle, respectively. The viscous environment results

in the translational and rotational mobilities, µT and µR respectively. Random white

noise terms ηT and ηR have components that satisfy ⟨ηi,T(t)ηj,T(t′)⟩ = δ(t− t′)δij and

⟨ηi,R(t)ηj,R(t′)⟩ = δ(t − t′)δij . Since the fluctuation dissipation theorem is not neces-

sarily satisfied for a nonequilibrium system, the translational and rotational diffusivity

are independent of each other. However, to reduce the number of free parameters and

in the interest of simplicity, we assume that DT = σ2DR and µT = σ2µR. This allows

the definition of an effective temperature, kBTeff = DT/µT . Finally we emphasize that

each particle is endowed with the same dipole strength, P , and self-propulsion velocity,

v0, both of which are constant.

We now choose the cell diameter σ, the diffusion time, σ2/DT, and the effective

thermal energy that quantifies the strength of stochastic fluctuations, DT/µT , as phys-

ically relevant length, time, and energy scales in our model. Solutions to the scaled
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dynamical model are then dependent on three non-dimensional numbers,

Pe =
v0σ

DT

, A =
µTP

2

Eσ3DT

, k∗ =
µTkσ

2

DT

(4.8)

where Pe is the Péclet number that is a measure of the self-propulsion in terms of the

diffusion of motile particles, A is an effective elastic dipole-dipole interaction parameter,

and k∗ is the nondimensional steric spring constant.

Nondimensional forms of the dynamical equations Eq. 4.6-4.7 are discretized and

numerically solved using the explicit half-order Euler-Maruyama method [129]. We use

a time step of ∆t = 10−4 for a total of 105 − 106 timesteps corresponding to a total

simulation time of 10 − 100. Each particle was initialized with a random position and

orientation in our simulation box of size Lx = 30σ and 10σ ≤ Ly ≤ 30σ with periodic

boundary conditions in x and confinement modeled by repulsive springs identical to

those used for particle-particle steric repulsions, with a fixed spring constant, k∗ =

104, placed along the top and bottom walls. In our simulations, we want particles near

each other to interact via the elastic potential at every time step, and to ensure that

the overlap of particles is minimized. Furthermore, to ensure that the particles are not

subject to unphysical repulsive forces, we choose k∗ such that k∗∆t = 1. The higher

order structures formed by the particles at different k∗ are qualitatively similar when

the timestep is appropriately rescaled. A and Pe are varied and analyzed in the Results

section of the text.

4.6 Discussion

We have shown the typical collective behavior that emerges when active particles

interact with each other as dipoles, using Brownian dynamics simulations. This minimal

model is inspired by collective cell motility on elastic substrates where the cell-cell

interaction is mediated by their mutual deformations of the passive substrate. While

some of the emergent collective structures have analogs in cell culture experiments,

such as the network organization of endothelial cells [62], our model is not intended

to capture any specific biological behavior. We expect the first tests of our model to

happen in dilute cell culture experiments that measure both pairwise cell interactions

and substrate traction forces as in Ref. [23, 24].
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The passive dipolar interactions lead to the end-to-end alignment of the particles into

motile chains, which can be mutually aligned into polar bands and clusters because of

their active motion. Polar chains that travel in opposite directions would be sorted into

bands that get out of each other’s way. These basic implications of our model, while

specifically demonstrated here for elastic dipoles, belong to a broader class of active

particles with dipolar interactions [109, 44, 130], and may therefore also be experimen-

tally realized in active colloids endowed with permanent or induced dipole moments

[45, 131]. We note that the symmetry of the elastic dipolar interactions is modified at

higher Poisson’s ratio [49], which is expected to result in structures such as active rings

with rotational motion. This richer behavior with elastic interactions is a direct conse-

quence of the tensorial, as opposed to vectorial nature of the elastic dipoles, in contrast

with magnetic or electric dipoles, and will be the subject of future study. We further note

that the mechanical interactions between cells in elastic media is, in reality, expected to

include effects not considered here including from the nonlinear elastic properties of the

substrate and nonlinear effects arising from the cells actively maintaining mechanical

homeostasis at their boundaries, such as by regulating their shape [132]. We also ignore

the elastic response of the cells themselves, which can give rise to additional interactions

similar to that between rigid inclusions in soft media [133].

We focused on the strong elastic interaction cases in the dilute regime, where the

self-assembly and dynamics of single chains can be studied. Since the chains are stable

in this regime, they resemble other active polymer systems [126], that typically arise

in gliding assays of biological filaments [134] or with synthetic colloids [106]. Polar

bands are also seen at a higher density of active polymers [128]. However, in our system

where these chains are self-assembled by dipolar interactions, multiple chains can stick

to each other at higher interaction strength, while they can also fall apart, when colliding

at high motility. By showing how a pair of chains interact with each other, we show the

stable higher order structures that form and contribute to the polar clusters seen at higher

density. Although not investigated in detail here, it will also be interesting to explore

the bending dynamics of a single active polymer [135, 136] and characterize how the

bending rigidity increases with dipolar interaction strength or decreases with particle

motility.
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To conclude, we note that our cell mechanobiology-inspired model also realizes a

new class of active matter with long-range dipolar interactions. The emergent self-

organization behavior distinct from the two typically studied pathways to the clustering

of active particles: motility-induced phase separation [10], and Vicsek-style models

[137]. In the latter, particle alignment is imposed in an agent-based manner, whereas

here alignment emerges as a natural consequence of physical interactions.



Chapter 5

Off-axis propulsion and stochastic

buckling drive chiral motion of active

filaments

Note the code used for the forthcoming Brownian dynamics bead-spring chain sim-

ulations was written by Madhuvanthi Athani [138, 139].

5.1 Introduction

Chirality is a ubiquitous characteristic of nature observed across many biologically

relevant length scales from the molecular scale wherein amino acid prevalence seems

to highly favor the left-handed conformation [140, 141] to the subcellular and cellular

scale [142, 143] to the scale of organism [144] wherein certain organs, for example, are

consistently found on one side of the midline. A recent result suggests that symmetry

breaking at all scales may be the result of a small set of motor proteins [145]. This

left-right asymmetry is present from early stages of embryogenesis [146].

Several living systems that exhibit chirality have been of great interest to both the

physics and biology communities. Examples include bacteria which form static spi-

ral structures as a result of proliferation [147] and dynamic vortical structures in their

collective motion [148, 149]. Furthermore, crystalline formations of starfish embryos

73



74

were recently found to preferentially rotate in a coordinated fashion [150]. In addition

to being seen in collective systems, single filament rotation has also been observed in

experiments of actin gliding on myosin motors bound to lipid bilayers [151].

Here we take inspiration from a recent experimental result which shows that kinesin

propelled microtubules on gliding assays exhibit persistent rotation of the nematic direc-

tor characterizing their collective orientation [152]. Preliminary image analysis of dilute

gliding microtubule assays, where the density of filaments is not high enough to form

orientationally ordered phases, likewise suggest directionally biased rotation. While

there have been several mechanisms proposed for this rotation such as motor induced

filament curvature [153] and collision induced torque [154], there is not yet consensus

as to which modalities and to what degree govern both the single and collective filament

rotations observed in these gliding microtubule experiments.

Microtubules are comprised of stacks of strings, called protofilaments, made up of

a succession of heterodimers of the protein tubulin. Depending on how many protofil-

aments make up the microtubule, the orientation of the protofilaments may be exactly

parallel to the axis of the microtubule, as is in the case of microtubules with thirteen

protofilaments (MT 13), or there may be a helical wrapping of the protofilaments, as is

the case for non-MT 13 microtubules, where the deviation from thirteen sets both the di-

rection and degree of twist of the protofilaments [155]. Kinesins are motor proteins that

bind to microtubules and hydrolyze ATP to walk along the filaments. Kinesin walk, pri-

marily, along protofilaments taking steps alternating between α and β tubulin. We thus

posit that one of the contributing factors to observed rotation of microtubules in gliding

motility assay experiments is the action of kinesin on a single microtubule. The instan-

taneous propulsive force on a given microtubule from a motor is not directly along the

long axis of the microtubule, but at some small angle determined by the helicity of the

protofilaments comprising the microtubule. This angle should be non-zero in filaments

where the number of constituent protofilament differs from thirteen [156].
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5.2 Model and Results

5.2.1 Off-axis propelled bead-spring chains show persistent rota-

tion in the direction of offset

In this study, we utilize a bead-spring filament model and run two dimensional Brow-

nian dynamics simulations (described fully in Refs. [138, 139]) where each bead has an

active force v0 along the direction of its local tangent, n̂, plus an angle, θoffset, moti-

vated by the action of an individual myosin motor walking along a helical path of tubulin

heterodimers corresponding to a protofilament comprising the microtubule (Fig. 5.1a).

Additionally, beads are connected to one other through Hookean springs that cannot

easily stretch or compress and can bend with an energy cost, where the bending stiff-

ness parameter, kbend, is a main parameter of the model. We find, qualitatively, that

flexible filaments exhibit a dynamic behavior in which a kink is nucleated by thermal

fluctuations in an approximately straight filament thereby inducing a torque in the di-

rection of offset. This torque induces a greater curvature in the kink which gives rise

to an even greater torque in the direction of offset. All the while, the kink is travelling

down relative to the filament due to propulsion until it is fully extruded thereby leaving

the filament straight. This process, which will be described in more detail later, results

in a net rotation of the filament (Fig. 5.1b). The aforementioned rotation modality is

for unobstructed freely gliding filaments. Filaments, however, may well interact with

obstacles, such as dead motors. In this case, a piece of the filament is rendered pinned.

When this pinning occurs at the tail of the filament, the filament is subject to stretch-

ing forces and rotates in the direction of offset, while if the pinning occurs at the head,

the filament is subject to compressive forces and rotates opposite the offset with greater

magnitude (Fig. 5.1c).

The central parameters of the aforementioned model are the bending stiffness, kbend,

which can be tuned experimentally by both the polymerization and stabilization protocol

of the microtubules [157, 158] and the offset angle, θoffset, which is determined by the

number of protofilaments that comprise the microtubule where thirteen protofilament

microtubules (MT 13) have no measurable angular difference between the long axis of

the filament and orientation of the constituent protofilaments and deviations about this
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Figure 5.1: Free chiral active filaments (CAF) persistently rotate in the direction of
offset propulsion, while pinning cases provide the full spectrum of rotation events. (a)
Modified bead-spring model wherein each bead is driven at an identical angle, shown
by arcs, relative to the local tangent direction. (b) Time lapse images of a characteristic
rotation event of a freely gliding CAF where each filament is colored by its average
orientation according to the inset color wheel. (c) Interaction with defects can give
rise to tail pinned events (top) wherein the tail bead cannot translate which gives rise to
filament stretching and rotation in the direction of offset, or head pinned events (bottom)
wherein the head bead cannot translate which gives rise to filament compression and
rotation in the direction opposite the offset.

number of protofilaments determine direction and degree of protofilament helicity [155].

We find that simulated filaments exhibit persistent rotation in the direction of the offset

angle where rotation rate scales with magnitude of offset (Fig. 5.2 - left). Furthermore,

given an offset angle, simulated filaments show greater rotation as they become easier

to bend until they are too flimsy at which point they exhibit very little rotation (Fig. 5.2

- right). The justification and corresponding intuition for this emergent optimal bending

stiffness will be discussed later.
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Figure 5.2: Off-axes driven filaments rotate in the direction of the offset propulsion.
(Left) Flexible filaments (kbend = 0.3) rotate more at larger offsets in the direction of
offset. (Right) Filaments exhibit rotation rates that scale with bending flexibility until
the filament is too flimsy (kbend = 0.003 − blue)) at which point thermal fluctuations
dominate. N = 100 simulations were run per curve.

5.2.2 Rotation dynamics are governed by a positive feedback be-

tween torque and curvature driven by kink nucleation and

propagation

We have observed qualitatively that, rather than rotating in a smooth fashion at a

fixed rate as would be the case with a tangentially driven filaments with an inherent

curvature, off-axis driven filament rotation is characterized by bursts of high rotation

events induced by curvature. To investigate this behavior quantitatively, we calculate

the torque about the center of mass of the filament by the following:

TorqueCOM = ΣN
i=0(rCOM − ri)× v0n̂prop, (5.1)

where i is the bead number that runs from the head bead (i = 0) to the tail bead (i = N ),

rCOM is the center of mass vector defined by rCOM = 1
N
ΣN

i=0ri where ri is the position

of bead i, and v0n̂prop is the propulsive force vector. Additionally, we calculate the

curvature of each bead as

Curvaturei =
n̂i,i+1 × n̂i−1,i

|n̂i,i+1 × n̂i−1,i|
arccos

(
n̂i,i+1 · n̂i−1,i

)
/∆s, (5.2)
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where n̂i,i+1 = ri+1−ri
|ri+1−ri| is the local forward tangent and ∆s = |ri − ri−1| is the sep-

aration distance of beads i and i − 1. Plotting the filament configurations of the three

highest torque events in our sample reveals an accompanying high curvature event, or

kink (Fig. 5.3a). Furthermore, plotting the full distributions of torque versus the curva-

ture of the bead with the greatest curvature in the chain (Fig. 5.3b - left) shows that both

the highest torque and curvature events occur in the direction of offset while plotting

torque versus the average curvature of beads in the chain (Fig. 5.3b - right) confirms the

direct relation between torque and curvature we would expect. Calculating the Pearson

correlation coefficient of both maximum and mean curvature shows that while at zero

offset mean curvature is entirely correlated with torque, the maximum curvature only be-

comes strongly correlated with torque at larger offsets where the proposed mechanism

of kink nucleation followed by torque curvature feedback is prominent (Fig. 5.3c).

(a)

(b)

(c)

Figure 5.3: Torque about filament center of mass is correlated with curvature. (a)
Snapshots of filaments corresponding to the three largest negative torque events where
θoffset = −0.1, kbend = 0.3, and the head bead has been colored red. Configurations
show pronounced kinks, suggesting a torque-curvature correlation. (b) Scatter plots of
torque about the center of mass of the filament as a function of max (left) or mean (right)
indicate larger torque events being clockwise - in the direction of offset - and accom-
panied by greater curvature. (c) Pearson correlation coefficient as a function of θoffset
shows that while average curvature is consistently strongly correlated with torque, max
curvature is more strongly correlated with torque at higher offsets, where cyclic kink
nucleation, propagation, and extrusion is accentuated.
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5.2.3 Offset propulsion aids onset of buckling

Analysis of bead resolved curvatures indicates that while almost no curvature is

localized near the head of the chain, curvature increases smoothly toward the tail until

a maximum is reached, indicating the position at which the kink defect is sharpest.

Interestingly, while the position of the kink relative to the chain does not vary widely

with θoffset, the magnitude of the characteristic curvature increases monotonically with

offset (Fig. 5.4 - left). In contrast with passive filaments undergoing solely thermal

fluctuations which would be fully characterized by a Boltzmann distribution in bending

energy and, therefore, a gaussian distribution in curvature, it has been found in previous

analyses of actin gliding assays paired with models of active filaments that propelled

filaments exhibit non-gaussian curvature distributions [159]. In this study, it was found

that motor heterogeneity led to bursts of activity within the chain that induced buckling

instabilities as evidenced by exponential tails in the filament curvature distributions.

Similarly, we find that off-axis propulsion can aid in the onset of buckling. Additionally,

we see that the exponential in the non-gaussian region scales with offset, indicating a

chiral length scale (Fig. 5.4 - right).

Figure 5.4: Curvature distributions suggest tail favored curvature and a chiral length
scale. (Left) Bead resolved curvatures indicate high curvature events being localized to
the tail of the filament. The magnitude of these high curvature events increases with
magnitude of the offset angle. (Right) Nonzero offset filaments exhibit an exponential
tail in their curvature distributions indicating a length scale emerging from activity in-
duced chirality. N = 100 simulations were run per curve.
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5.2.4 Optimal flexibility promotes robust rotation

The rotation mechanism we have discussed up to this point consisting of a kink

nucleation event followed by a cycle of torque and curvature feedback ultimately being

relieved by extrusion assumes a flexible filament. A phase diagram of rotation rates in

the space of bending stiffness parameter, kbend, and reduced temperature, T∗, reveals

a stripe corresponding to a fixed ratio kbend

T∗ that results in the greatest rotation rates

(Fig. 5.5a,b). If a filament has too great a persistence length, thermal fluctuations will

be insufficient to nucleate the kink that we know is needed for directed rotation events.

Conversely, if the filament is too flimsy, the picture of a single kink parsing the filament

into an active head segment that acts as a lever arm in these high torque events and a

relatively stationary tail falters and a menagerie of thermal fluctuations saturates any

coherent motion. It is only between these regimes wherein thermal fluctuations are

prominent enough to induce a kink event and the filament is stiff enough to maintain

roughly straight conformations on either side of the kink that give rise to rotation events

as we have described them (Fig. 5.5c).

5.3 Summary, Discussion, and Future Work

Motivated by the lattice geometry of non-MT 13 microtubules combined with kinesin-

1 motor proteins that walk along protofilament paths, we utilize Brownian dynamics to

simulate single filaments driven at an offset angle relative to the filament orientation

representative of the angle of microtubule supertwist as a coarse grained model of di-

lute microtubule gliding assays. We have shown that filaments modeled as bead-spring

chains wherein each bead comprising the chain undergoes constant propulsion at an an-

gle relative to the local tangent exhibit rotation. We have shown that this rotation occurs

in the direction of the offset angle and that the magnitude of rotation increases with off-

set angle magnitude and is nonmonotonic in bending stiffness. We showed that rotation

is characterized by cycles of kink nucleation, a positive feedback loop between torque

and curvature, and kink extrusion via an effective reptation. We found that the location

of greatest kink curvature is insensitive to offset, and the magnitude monotonically in-

creases with greater offset. Lastly, we show that offset propulsion aids in active buckling
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(a) (b)

(c)

Figure 5.5: Phase Diagram reveals a persistence length at which rotation is optimized.
(a) Phase diagram in bending rigidity and reduced temperature (kbend, T ∗) space where
θoffset = −0.1. Dark boxes along the diagonal indicate large magnitude rotations in the
direction of offset. (b) Plots of rotation rates at various bending rigidities as a function
of reduced temperature. Those with dashed lines show pronounced minima within this
interval of temperature while those which are purely points remain near zero over the
temperature space. (c) A stripe of characteristic snapshots at kbend = 0.3 for increasing
reduced temperatures T ∗ = 10−3, 10−2, 10−1, 100, where the beads are colored by the
filament’s average orientation. At very low temperature, the filament remains roughly
straight and so largely translates diagonally. At very high temperatures, large thermal
fluctuations produce globular structures. At intermediate temperatures, thermal fluctu-
ations are strong enough to nucleate a kink in the filament which causes large rotation
events. N = 100 simulations were run per parameter set in (a) and (b).

in the emergence of a chiral length scale revealed by curvature distributions.

The results we have presented were predominantly for negative offset angles which

corresponds to left-handed supertwist [155]. We found that for such a helicity, one

would expect clockwise rotation. Preliminary experimental analysis suggests, however,

that for MT 14, whose lattice structure indeed indicates left-handed supertwist [160], as

well as for a predominantly MT 12 system whose supertwist is right-handed, filament

rotation is overall counterclockwise. This suggests that either there is another mecha-

nism for chirality in dilute microtubule gliding assays or that, even for these systems,
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surface defects and/or the effects of motor heterogeneity, both of which could give rise to

head-pinned rotation events which rotate opposite the free filament (Fig. 5.1c - bottom),

are influential to differing degrees with respect to density and stiffness. A definitive

check for the validity of our model would be running the same experimental conditions

with motors pinned to both the top and bottom of the glass slide. If the statistics indicate

the filaments are rotating in opposite directions, this will lend credence to our proposed

mechanism.
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Final Discussion and Future Work

In this work, we have built minimal models, conducted agent-based Brownian dy-

namics simulations, and ran comparative data analyses of multicellular and cell com-

ponent systems. We have found that purely mechanical models of motile agents were

sufficient to consistently qualitatively recapitulate behavior of their in vitro experimen-

tal counterparts, occasionally quantitatively match the experimental system, and inspire

new kinds of experimental systems yet to be realized.

In chapter 2, we coarse grained the focal adhesion coupled actomyosin force distri-

bution of cells into a stochastic anisotropic contractile force dipole in elastic half-space.

We found that simulations of this minimal mechanical approximate model gave rise to

fractal network architectures in a density and substrate mechanical properties dependent

way - a qualitatively similar result to those of cell cultures on hydrogels. Furthermore,

we compared both global transport properties via the percolation probability metric and

local morphological traits via the shape factor metric with collaborative cell culture ex-

periments and found strong agreement between simulation and experiment over a broad

range of packing fractions and substrate stiffness. This lends strong credence to the

importance of substrate-mediated cell-cell elastic interactions in the early stages of vas-

culogenesis and cellular self-assembly. Future work includes considering both more

realistic environmental conditions and laying the groundwork for engineered systems.

For the former, this means considering not a purely linear, elastic substrate in two dimen-

sions but a nonlinear, viscoelastic fibrous medium in three dimensions. The extracellular

matrix is a three-dimensional environment comprised of cross-linked fibers as well as
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fluid in their interstices. While there could, indeed, be several ways to alter the model

to describe the matrix more accurately, one such path would be to change the form of

the Green’s function so as to implement a memory kernel for strain propagation to han-

dle viscoelasticity. Furthermore, coupling dipole orientation to a dynamic local nematic

order parameter may be a viable strategy to compensate for the local directional bias of

the fibrous ECM. As for engineered systems, another prominent future direction would

be to consider a patterned substrate, that is, a medium with heterogeneous stiffness.

Having spatial control over stiffness should, by our model predictions, allow for spatial

control of cellular structure. Similarily, conducting cell culture experiments on mate-

rials of varying Poisson’s ratio including metamaterials with negative Poisson’s ratio

would give insight into the corresponding characteristic cellular configurations. Real-

izing these engineering feats would give immense control to the assembly process and

might allow for designed cellular architectures which would have potential applications

to tissue engineering and medicine.

In chapter 3, we have shown preliminary results regarding the nonlinearity of force

production and boundary stress of anisotropic dipoles embedded in a triangular mesh

as a model for compaction of collagen gels by embedded fibroblasts. We showed that

a model where cell contractility is sensitive to internal strain exhibits a weakly non-

linear boundary stress regime as a function of cell density. We have also shown that

while model cells configured in a line decrease elastic energy with increasing density,

randomly distributed cells with both random and specified orientations do no such mini-

mization. The prime direction of future work on this project is then to pair the aforemen-

tioned results and plot a modified boundary stress that takes into account the probability

of such a macrostate - as states which lower elastic energy would be more likely - by

multiplying the corresponding boundary stress by a Boltzmann factor. This, we predict,

will give a sharper transition of macroscopic contractility versus cell density that could

explain global compaction seen in in vitro collagen gel experiments. If this is insuffi-

cient, there remain several avenues of nonlinearity to explore. Namely, motivated by

collagen fiber behavior, making matrix springs easier to compress than to stretch may

help accentuate the transition. It could also be that the feedback parameter itself need be

a functional rather than a static value. Specifically, one could either implement a critical
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strain, internal or external, that must be surpassed before the activity feedback is ap-

plied. Similarly, a hard distance cutoff for a neighbor to upregulate its force production

may be explored.

In chapter 4, motivated by a variety of synthetic and organic systems, we placed

simulated motile elastic dipolar particles in a channel geometry. We found that at low

elastic interaction strength, particles displayed typical ABP behavior, that is, they col-

lected at the boundary forming clumps with polar order oriented orthogonal to the con-

fining boundary. At high elastic interaction strength and low motility, they formed net-

work structures similar to those studied in depth in chapter 2 of this dissertation. At

intermediate activity, network structure occurred at early times and was followed by

compaction into a master cluster. This cluster translated in the direction of the sum of

the propulsion orientations of the constituent particles but was hindered by frozen-in

defects of the opposing orientations. At high motility, dipolar particles self-assembled

into flexible brittle motile polymers that formed protected polar bands at the confining

boundaries and underwent highly dynamic reconfigurations in the bulk as the result of

frequent collisions. Such highly motile substrate mediated interactive particles have yet

to be realized in experiment, but bare resemblance to driven Janus colloid systems and

constitute a novel active matter system with long-range interactions. Microfluidic de-

vices may offer a fitting in vitro test bed for the dynamics seen in our simulations. Cell

motility experiments in this environment wherein cell-cell contacts via cadherin medi-

ated binding are suppressed may give rise to a portion of our phase space. Additionally,

the dynamic behavior of highly motile dipolar particles - active transient chains - may

hold general promise in therapeutics and drug transport as directed filament motility for

fast transport and disbanding for substance release is desirable.

In chapter 5 we considered the shallow helical winding of non-MT 13 microtubules.

We modeled the action of kinesin motors on such microtubules as a bead-spring chain

with a propulsion on each bead given by the local tangent direction plus an offset angle.

We found that simulated filaments rotate in the direction of offset angle with a magnitude

that increases with magnitude of offset angle. We found that this rotary motion is gov-

erned by a cyclic process of kink nucleation followed by feedback between torque and

curvature until the kink is extruded by which point a net rotation was achieved. This ro-
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tation was suppressed at both very high filament bending rigidity when the filament sim-

ply remained straight and translates diagonally, and at very low filament rigidity when

thermal fluctuations washed out any coherent offset induced motion. These simulation

predictions must be verified by single filament microtubule gliding assay experiments

paying close attention to the presence of defects. As we have shown in the limiting

cases of head and tail pinning, rotation events characteristic of these circumstances and

the free filament are vastly different. The link between single filament behavior and col-

lective nematic orientation rotation observed in dense suspensions needs to be explored

in greater depth. More generally, the idea of offset driven filaments could hold promise

in fields such as soft robotics. The transport properties that chiral chains without in-

trinsic curvature are capable of should be explored by engineered systems. Specifically,

characterizing how these filaments navigate boundaries and behave in crowded environ-

ments could inform design principles of dynamically chiral particle chains.



Appendix A

SI - Chapter 2

A.1 Elastic dipole interaction model

Dipole A Dipole B

Supp. Fig. A.1: 1D spring model illustrating origin of elastic interaction potential
between two contractile dipoles.

Consistent with adherent cell behavior on soft substrates, we assume our model cells

are elongated and exert contractile traction forces at the poles of their long body axis. It

is by this behavior that we model our cells as contractile force dipoles. The mechanical

interaction between a pair of force dipoles is illustrated by the schematic in Fig. A.1 in

the form of a 1D series of springs representing the effect of the elastic substrate. While

the springs underlying the contractile dipoles are compressed, the springs between them

are stretched. By moving to different positions in the medium for a given position of

dipole A, the dipole B can reduce the net substrate deformation energy by compressing

regions stretched by dipole A. This physical interaction between elastic dipoles con-

sidered here is analogous to the interaction of an electric dipole with the electric field

87
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induced by another dipole. A similar reciprocal force results on dipole A, since the in-

teractions are based on an elastic free energy. The physical origin of this force is the

tendency of the passive elastic medium to minimize its deformations in response to the

active, contractile forces generated by the cells. We now assume these cells are on an

isotropic, homogeneous, linear substrate in elastic halfspace of Young’s modulus and

Poisson’s ratio E and ν, respectively, and derive the displacement field due to a coarse-

graining of the traction forces on either side of the nucleus into single point like forces,

F1 and F2 where F1 = −F2, separated by a distance a. Let the center of the force

distribution lie at r′. Then, by elasticity theory, the displacement at position r can be

written

ui(r) = Gij(r− (r′ − a

2
))F 1

j +Gij(r− (r′ +
a

2
))F 2

j , (A.1)

where Gij is the Green’s function that captures the displacement in the elastic medium at

the location of one cell (dipole) caused by the application of a point force at the location

of the other [29] defined as

Gij(r) =
1 + ν

πE

[
(1− ν)

δij
r

+ ν
rirj
r3

]
. (A.2)

Replacing F1 = −F2 = F in eqn. A.1 and performing a Taylor expansion about r− r′

to first order in a gives

ui(r) = ∂kGij(r− r′)Fjak = ∂kGij(r− r′)Pjk, (A.3)

where Pjk = Fjak is the force dipole representation of one of our cell’s force distribu-

tion, ∂k is the partial derivative with respect to xk, and terms of order a2 and higher have

been neglected. We now write the strain by the derivatives of the displacement field as

uil(r) =
1
2
(∂lui(r)+∂iul(r)), now substituting our symmetric Green’s function, we can

write the strain field as

uil(r) = ∂l∂kGij(r− r′)Pjk, (A.4)

where the uxx and uyy fields are shown in Fig. A.2. Lastly, we note that that by coupling

the strain field due to one cell in the proximity of another, we can write the work done by

deforming the medium and thus an effective pairwise interaction potential energy given

by

Wαβ(rαβ) = P β
il ∂k∂lG

αβ
ij (rαβ)P

α
jk, (A.5)
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𝜈 = 0.1

𝜈 = 0.5

𝑢𝑥𝑥 𝑢𝑦𝑦

Supp. Fig. A.2: uxx(left) and uyy(right) components of strain field due to a contrac-
tile force dipole oriented along the x−axis in elastic half-space of a linear, isotropic
medium. uxx component shows the ν = 0.1(top) map whose orientational distribution
is that of an electric field from a quadrupole, while ν = 0.5(bottom) resembles an elec-
tric octupole. uyy has a similar structure for both shown values of Poisson’s ratio, ν.

where Pα and Pβ are the magnitude of the contractile force dipole exerted by cell α

and cell β, respectively. E is the Young’s modulus of the elastic substrate, ν is Poisson’s

ratio, and rαβ = rβ−rα is the separation vector connecting the positions of cell dipoles,

α and β.

By transforming to the separation vector coordinate frame, the cell-cell elastic po-

tential can be written as [31]

Wαβ =
PαPβ

Er3αβ
f(ν, θα, θβ), (A.6)

where cos(θα) = n̂α · rαβ and cos(θβ) = n̂β · rαβ are the orientations of cell α and cell

β with respect to their separation vector, respectively. All relevant geometrical aspects

of this interaction are realized and labeled in Fig. A.3. The dependence on these angles
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and the Poisson’s ratio is collected in the function,

f(ν, θα, θβ) =
ν(ν + 1)

2π

(
3(cos2 θα + cos2 θβ − 5 cos2 θα cos

2 θβ − 1
3
) (A.7)

− (2− ν−1) cos2(θα − θβ)− 3(ν−1 − 4) cos θα cos θβ cos(θα − θβ)
)
.

For simplicity, We will assume the magnitude of all contractile cell force dipoles in our

system are equal, so Pα = Pβ = P , which is justified when considering a culture of

identical cells.

ෝ𝒏𝛼

𝛼

𝛽

𝒓𝛼𝛽

𝒓𝛼𝛽 , 𝑥

𝒓𝛼𝛽 ,𝑦

𝜃𝛼

𝜃′𝛼

𝜃𝛽

Inter-particle

separation vector

ෝ𝒏𝛽
𝜃′𝛽

Supp. Fig. A.3: Schematic of two interacting particles with all relevant angles and
vectors labeled. n̂i are unit vectors of force dipoles. θ′i are angles of force dipoles with
respect to the lab frame x-axis. θα and θβ are angles of force dipoles with respect to their
separation vector rαβ which has components rαβ,x and rαβ,y.

Taking derivatives of eqn. A.6 with respect to xβ and yβ to compute the x and y

components of the force, respectively, on cell α from cell β yields
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−dWαβ

dxα

=
dWαβ

dxβ

=
∂Wαβ

∂xβ

+
∂Wαβ

∂θα

∂θα
∂xβ

+
∂Wαβ

∂θβ

∂θβ
∂xβ

(A.8)

= −3P 2(1 + ν)

16πEr5αβ

(
− 2 + 2ν + 6(ν − 1)(cos 2θα + cos 2θβ)

+ (ν − 2) cos 2(θα − θβ)− 15ν cos 2(θα + θβ)
)
rαβ,x

− P 2(1 + ν)

16πEr5αβ

(
12(ν − 1)(sin 2θα + sin 2θβ)− 60ν sin 2(θα + θβ)

)
rαβ,y

and

−dWαβ

dyα
=

dWαβ

dyβ
=

∂Wαβ

∂yβ
+

∂Wαβ

∂θα

∂θα
∂yβ

+
∂Wαβ

∂θβ

∂θβ
∂yβ

(A.9)

= −3P 2(1 + ν)

16πEr5αβ

(
− 2 + 2ν + 6(ν − 1)(cos 2θα + cos 2θβ)

+ (ν − 2) cos 2(θα − θβ)− 15ν cos 2(θα + θβ)
)
rαβ,y

+
P 2(1 + ν)

16πEr5αβ

(
12(ν − 1)(sin 2θα + sin 2θβ)− 60ν sin 2(θα + θβ)

)
rαβ,x ,

where rαβ,x ≡ xβ−xα and rαβ,y ≡ yβ−yα are the x and y- components of the separation

vector rαβ , respectively.

Similarly, for the torque on cell α by cell β, we take a derivative of the elastic

potential with respect to θα

−∂Wαβ

∂θα
= −P 2(1 + ν)

8πEr3αβ

(
− 6(ν − 1) sin 2θα (A.10)

− (ν − 2) sin 2(θα − θβ) + 15ν sin 2(θα + θβ)
)
.

A.2 Phase portrait of simulation final snapshots on com-

pressible and incompressible substrates

Fig. A.4b is shown in the main text. We now show the phase portrait for the low ν

case in Supp. Fig. A.4a. While the trends and general dependence on A and N is the

same for both values of Poisson’s ratio, we can see from the A = 10, N = 300 cases
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that ν = 0.1 forms longer chained, larger ringed structures than the ν = 0.5 system

which forms compact structures of tight rings and many junctions.

𝜈 = 0.1

Supp. Fig. A.4: Simulation snapshots of final configurations in the parameter space of
number of cells and A ≡ Ec

kBTeff
, the ratio of the characteristic elastic interaction strength

and noise, for ν = 0.1 (left) and ν = 0.5 (right). At lower packing fractions, cells form
segments of branches and stems. At lower A values, cells remain isolated. At higher
values of A with sufficient packing fraction, cells form space spanning network config-
urations characterised by rings, branches, and junctions. At higher packing fractions,
parallel chains occur frequently in these networks.

A.3 Computational analysis of networks

Identifying clusters

Each cell is assigned to a cluster by assigning an initial cell to zeroth cluster. Then

the cells in its neighbor list - a list identifying all other cells that are within 1.2d of

the central cell - are assigned to this cluster. The neighbor list of each of these neigh-

bors is assigned this cluster label in an identical way. Once all neighbor lists have been

exhausted, we search for unassigned cells and repeat the process with an incremented

cluster number until every cell belongs to one or the other cluster. Once each cell be-
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longs to a cluster, cell-cell distances are checked. If the distance between any two cells

within the same cluster is greater than or equal to the size of the simulation box, we

consider that realization of the network to be percolating. This calculation is done at

the final time step of forty simulations per data point shown in Fig. 3 for dipoles and

ten simulations per data point for diffusive sticky disks. The average value and corre-

sponding error are then plotted as a function of packing fraction ϕ in Fig. 3a and of the

effective elastic interaction parameter A in Fig. 3b.

Identifying junctions/branches

Final configurations of cells, like those shown in Figs. 1 and 2, are re-plotted with

elongated black markers on cell positions along the direction of the dipole axis. This

gives us networks like those shown in Supp. Fig. 11. These images are imported into

imageJ [91], Gaussian blurred, intensity thresholded, binarized, and skeletonized. By

then using the ”Analyze Skeleton” plugin in ImageJ, we obtain skeleton information

including the full branch length distribution and junction counts [161].

Identifying rings

Instead of using the ”Analyze Skeleton” plugin in ImageJ, we invert the binarized

image described above and utilize the ”Analyze Particles” function of ImageJ to obtain

a distribution of rings and ring areas in the networks.

A.4 Critical packing fraction dependent on box size

In the main text, the connectivity percolation we report is for a specific box size

L = 26.66d. This curve is subject to shift and/or dilate/contract under varying the box

size (Supp. Fig. A.5). The box size we chose to use in the main text is appropriate

(given our characteristic length scale of ≈ 50µm to compare to in vitro experiments of

cells on compliant substrates.



94

0.0 0.2 0.4 0.6 0.8 1.0
Packing Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

ol
at

io
n 

Pr
ob

ab
ilit

y

= 0.1, A = 10
L=26.66
L=39.99
L=53.32

Supp. Fig. A.5: Critical packing fraction of elastic dipoles decreases with increasing
box size. Due to the highly anisotropic nature of elastic dipolar interactions, dipoles
will percolate at lower critical area fraction as (near the transition) area scales as L2

whereas cluster size scales as Ldf where df is the fractal dimension. Thus, the critical
packing fraction will go as Ldf−2 where df − 2 < 0.

A.5 Mapping the effective interaction parameter to sub-

strate stiffness

We have considered the effective elastic interaction, A, to be the model parameter

which encodes stochasticity, cell forces, and substrate stiffness. We wish now to relate

this parameter to an easily accessible and measurable experimental value - substrate

stiffness. By casting A in terms of substrate stiffness, we aim to predict trends with

varying substrate stiffness, which can be directly tested in experiment. It is known from

traction force experiments (such as Ref. [87]) that cells on elastic substrates adapt their

forces to substrate stiffness. Adherent cells on softer substrates build fewer and smaller

focal adhesions. With increasing substrate stiffness, cells spread more and exert stronger

traction forces which saturate to a constant value beyond a typical substrate stiffness E∗
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Supp. Fig. A.6: Mapping A to E. Four curves characterized by various choices of opti-
mal substrate stiffness E∗ for A0 are shown. Range of A values mapped to E decreases
as the choice of optimal stiffness increases.

which depends on cell type (table A.1). This mechanical adaptivity of the cell traction

Table A.1: Contractility and optimal stiffness of various cell types.

P0 (J) E∗ (kPa) Cell Type

10−12[53][58] 1-10[62, 61] Endothelial

10−13[162] 0.1[163, 164] Neuron

10−9[165] 20[163] Smooth Muscle

10−11 [166] 10 [166] Astrocyte

is modeled by considering a force dipole magnitude that scales with substrate stiffness

as [54],

P (E) = P0E/(E + E∗). (A.11)

Plugging in A.11 to our definition of A gives us A = P 2

16Ed3kBTeff
=

P 2
0E

16(E+E∗)2d3kBTeff
,

which has a non-monotonic dependence on substrate stiffness, as seen in Supp. Fig. A.6,

reaching a maximum of A0

4
where A0 ≡ P 2

0

16d3kBTeff
at E = E∗. We now have a mapping

from effective interaction parameter A to substrate stiffness E which we can directly

relate to experiments.

We know from experiments of endothelial cells on elastic substrates, that cells can

form networks or remain isolated from one another depending on the substrate rigidity
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Supp. Fig. A.7: Percolation probability as a function of effective elastic interaction for
N = 300(ϕ ≈ .33) cells where ν = 0.1. The percolation curve is fit well to a hyperbolic
tangent function with two free parameters corresponding to the position and width of the
transition.

[62]. This is to say that there is a range of viable substrate stiffnesses over which cells

will self-assemble into vascular networks. We now ask if we can predict the viable range

of stiffnesses that accommodate network formation. We use the metric of percolation

probability to quantify the tendency for network formation. We know that we can make

these predictions numerically as we now have a mapping from A to E for our simula-

tions. Percolation vs. substrate stiffness curves are shown in Supp. Fig. A.8b for various

values of A0 ≡ P 2
0

16kBTeffd3
, the effective elastic interaction without stiffness dependence.

We now seek to develop an analytic treatment of the substrate dependent percolation

metric and obtain a closed form expression which predicts the range of substrate stiff-

nesses conducive to network formation. Supp. Fig. A.7 shows that percolation vs. A is

well fit by a hyperbolic tangent function with two fit parameters A∗ and k such that

p = .5 tanh
(A− A∗

k

)
+ .5, (A.12)

where p is the percolation probability. We will use the full width at half maximum

(FWHM) to represent the range of values over which networks are formed. In order to

find the FWHM, which we will call Σ, of the above function, we set p equal to half of

its maximum value, which we assume is 1. This gives us the condition A = A∗, which
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(b)

(c)
(a)

Supp. Fig. A.8: Percolation peak width as a function of A0. (a) Percolation probability
as a function of substrate stiffness for various values of A0. (b) Blue curve shows the
analytic expression for percolation peak width quadratic in A0 gives good agreement
with mappings from simulation data, shown in red dots obtained from (a), except at
lower values of A0 where the analytical expression breaks down due to an assumption
of transition (pmax ≈ 1). (c) Percolation probability as a function of elastic substrate
stiffness where the optimal stiffness is assumed to be 1 kPa. Percolation peak is centered
on critical stiffness and has a width dependent on both packing fraction and effective
temperature.

we can rewrite in the following way

E2 +
(
2E∗ − A0

A∗

)
E + E∗2 = 0. (A.13)

Thus, we obtain an expression for the FWHM of our percolation curves given by

Σ =

√(A0

A∗ − 2E∗
)2

− 4E∗2. (A.14)

Supp. Fig. A.8a shows a comparison of peak width for various values of A0 computed

with A.14 and computed numerically from Supp. Fig. A.8b. The plot shows great agree-

ment between the analytical prediction and numerical results except at values of A0 that

are close to the analytical solution condition P 2
0

16d3kBTeffA∗ ≥ 4E∗. This disparity, shown

in the inset of Supp. Fig. A.8a is due to the assumption that the maximum percolation

value is 1, which is not the case for the red curve in Supp. Fig. A.8b.
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Thus, A.14 provides us a closed form expression, valid over a large interval of pa-

rameter space, for the range of substrate stiffnesses over which cells will form perco-

lating networks. This value is dependent on cell forces, effective temperature, cell size,

and a fit parameter A∗ which represents the position of the percolation transition. In par-

ticular, it predicts that higher force dipole magnitude (P0), lower noise (Teff), and higher

cell density corresponding to lower required elastic interaction for percolation (A∗), all

lead to wider peaks in percolation vs substrate stiffness.

A.6 Order Parameter Thresholds informed by largest

cluster and spatial extent

Supp. Fig. A.9: Largest relative cluster group size. Values are the sum of the largest
clusters contributions as determined by the DBSCAN algorithm with tolerance .01, cor-
responding to a one percent difference in relative cluster size. Only those whose largest
cluster group contributes at least twenty percent the total cell area are classified as per-
colating structures.
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In the main text, we classify experimental systems into percolating “networks” if

the average percolation is greater than pT = 0.7; into elongated ”chains” if the perco-

lation is below pT and shape factor above sT = 0.95; and isotropic ”isolated” clusters

if percolation is below pT and shape factor is below sT . Supp. Fig. A.9 shows that the

percolation threshold value corresponds to the largest cluster group (as determined by a

density-based spatial clustering algorithm with a max distance set to one percent [167])

account for more than twenty percent of total cell area. The shape factor threshold is

chosen as it is greater than two simulation cells in a line - the elongated morphology we

want to characterize with this metric.

A.7 Dependence of percolation on packing fraction and

elastic interactions

Supp. Fig. A.10: Percolation contour plots show ν = 0.1 is more efficient with respect
to N while ν = 0.5 is more efficient with respect to A. (a) Color represents percolation
probability in (A,N ) space for ν = 0.1 (left) and ν = 0.5 (right). For A < 5, ν = 0.5 is
more percolating while for A ≥ 5, ν = 0.1 is more percolating.

While we report several percolation curves in Fig.3 of the main text, Supp. Fig. A.10

shows a percolation contour map in (A,N ) space. At low A, ν = 0.5 percolates more

reliably than the low ν counterpart as the system is more resilient to noise. At A ≥ 5,

however, ν = 0.1 percolates more reliably with fewer cells as we have seen the lower ν
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system forms more extended structures in general. The full percolation map then shows

that networks at low Poisson’s ratio are more efficient with respect to number of cells,

whereas the high Poisson’s ratio networks are more efficient with respect to effective

elastic interaction.

A.8 Irrigation area reveals a marginal efficiency for net-

works at low Poisson’s ratio

(a) (b)

(c) (d)

Supp. Fig. A.11: Substrate compressibility alters area coverage of networks. (a) Frac-
tion of available area covered by simulated networks at A = 10 and ϕ = .33(N = 300),
as the cell area is uniformly inflated by a dilation factor . ν = 0.1 exhibits greater area
for given dilation than the ν = 0.5 case. This is due to the fact that higher values of ν
produce networks with more compact structures like junctions and 4-rings. These struc-
tures overlap with one another when inflated unlike sparse networks with long branches.
(b) Ratio of area coverage of ν = 0.1 to ν = 0.5 for A = 10 and ϕ = .33(N = 300).
The plot increases sharply past unity then saturates to one at area limited dilation. (c)
Visualizations of homogeneous dilation of a representative ν = 0.1 network. (d) Visu-
alizations of homogeneous dilation of a representative ν = 0.5 network.

The ability of a biological network to efficiently cover space is crucial to deliver sig-

nals and materials. Assuming the drainage area of each cell to be a dilation factor times

the cell size, we analyze how the filling area of our networks scale with this cell dila-
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tion. We can then determine the density of interconnections within our networks. Supp.

Fig. A.11 shows the filled area fraction of our networks as a function of homogeneous

dilation factors. Realizations of these dilated networks at different dilation factors are

shown as shaded regions in part c and d. This plot shows that the lower ν case increases

area coverage as a function of dilation faster than the higher ν case. This reinforces

the result in Fig. 6e as area fraction growth rate is maximized when cell overlap and

proximity is minimized. Since higher values of Poisson’s ratio produce networks with

more compact structures of higher neighbor counts, its area coverage does not scale with

dilation as strongly as the lower ν case.

A.9 Model network morphological features depend on

substrate compressibility given by Poisson’s ratio

While percolation is by nature a global quantity describing the whole network, we

now employ more local metrics to classify the topology of our networks. Figs. A.12a-d

show characteristic networks of N = 300 (ϕ = 0.33) cells for ν = 0.1 (top) and ν = 0.5

(bottom) when the system is well past the percolation transition (A = 10, right), and at

the shoulder of the transition (A ≤ 1, left). The particles in these snapshots have been

given artificially elongated bodies along their dipole axis to emphasize the backbone of

the network and aid the image analysis process, detailed in SI section A.3. The relative

number of the different topological features of these networks, e.g. open ends, junctions,

and rings, will determine the average number of neighbors (or coordination number, z)

of each cell dipole.

Fig. A.12e shows that the average number of neighbors increases with effective

elastic interaction A (for N = 300 fixed) and cell number density (for A = 10 fixed),

for both ν = 0.1 and ν = 0.5 that saturates in A. This quantity is calculated for

the final simulation configuration of three networks per value of Poisson’s ratio. The

saturating neighbor count for each Poisson’s ratio is reached for percolating networks

and corresponds to the disparate topological features characteristic of these two cases.

The higher ν = 0.5 (incompressible) substrate case shows a higher saturating neighbor

(z > 3), which indicates the preeminent structures inherent to this network are junctions
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𝐴 ≤ 1 𝐴 = 10

𝜈 = 0.1

𝜈 = 0.5

Supp. Fig. A.12: Neighbor counts reveal relative prevalence of various morphological
structures in networks formed by elastic dipolar interactions.(a)-(d) Simulation snap-
shots of cell assemblies at the shoulder of the percolation transition (left) and well
above the percolation transition (right).(e) Number of neighbors as a function of A when
ϕ = .33(N = 300) for ν = 0.1 - blue - and ν = 0.5 - orange where a neighbor in this
context is defined as a cell α whose center is within one and a half cell diameters away
from cell β (|rαβ| ≤ 1.5d). While the number of neighbors is relatively insensitive to
A, there is a marked difference between the two values of Poisson’s ratio. Across A
space, cells on substrates of higher ν values accumulate more neighbors than the lower
ν cases. Inset shows number of neighbors as a function of packing fraction for A = 10.
Cells on higher ν value substrates have more neighbors than the low ν case regardless
of packing fraction. (f) Number of neighbors as a function of substrate stiffness. Opti-
mal stiffness is assumed to be 1 kPa. N = 200(ϕ ≈ .22) exhibits an average neighbor
count of 1-2 indicating the prominence of short chains. N = 300(ϕ ≈ .33) case shows
average neighbor counts of 2-3 indicating an abundance of chains, rings, and junctions.
The peak in neighbor count over stiffness is taller and wider for lower effective temper-
ature and higher cell density. Each data point and error bar represents the average and
standard error of the mean, respectively, of ten simulations.

and tighter rings (with up to 4 neighbors), consistent with the characteristic simulation

snapshots in Fig. A.12d. The saturating neighbor count for low ν = 0.1 (more com-

pressible) substrates is lower (2 < z < 3. This suggests that these networks exhibit long

chains as well as more interconnected structures like junctions and rings, consistent with

the characteristic simulation snapshots shown in Fig. A.12b. This trend is seen over a

wide range of packing fractions as shown by the inset in Fig. A.12e. The qualitative

differences between the two types of networks ultimately arise from the different orien-

tational dependencies of the deformation induced by a dipole, as shown in Fig. 1e, with

a transition expected at ν = 0.3 [53]. We note that these results are for a relatively di-
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lute regime (ϕ = 0.33), whereas in the limit of complete packing, neighbor count would

saturate to a maximum possible value of 6.

Interestingly, the networks on the lower Poisson ratio substrates exhibit a saturating

neighbor count (z ≃ 2.6), that is very close to that for the predicted rigidity percolation

threshold for elastic fiber networks (zc = 2.67) [75, 76]. This may be attributed to

the self-assembled linear chains that mimic semiflexible polymers [168], with bending

rigidity of a “polymer” of disks, set by the dipolar interaction strength, A. This implies

that although we do not measure the rigidity of networks in simulation, the connectivity

percolation is closely related to it and predicts the onset of rigidity percolation threshold

as well. Such a transition from isolated, fluid-like, motile cells to a mechanically rigid

state has been shown to be biologically important for epithelial cells during development

and disease [77], and may also be relevant to network-forming endothelial cells.

Similarly to percolation, Fig. A.12f shows that neighbor counts exhibit peaks over

intervals of substrate stiffness centered around the characteristic substrate stiffness (cho-

sen to be E∗ = 1 kPa) and can be narrowed and decreased by increasing effective tem-

perature and decreasing packing fraction. This result is consistent with Fig. 1 where

cells on substrates that are too soft or too stiff remain isolated and have fewer neighbors

than those in network configurations that form at the optimal stiffness range.

A.10 Simulation results for different choices of transla-

tional and rotational diffusivity

While the results we present in the main text are for systems in which we choose

the rotational and translational diffusivity to be proportional (d2DR = DT ), this is not

required to be the case for cells. The random movements of cells are caused by their

internal physico-chemical activity, and the diffusivities are therefore not constrained by

the fluctuation-dissipation theorem. Supp. Fig. A.13 shows that both ν = 0.1(top)

and ν = 0.5(bottom) systems give rise to similar network configurations, whether the

rotational diffusion is half or double its translational counterpart. This suggests that a

different choice of rotational and translational diffusivity does not change the tendency

of dipoles to form networks.
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𝐷𝑇 = 𝑑2𝐷𝑅 𝐷𝑇 = .5𝑑2𝐷𝑅 𝐷𝑇 = 2𝑑2𝐷𝑅

𝜈 = 0.1

𝜈 = 0.5

Supp. Fig. A.13: Network formation tendency robust to differing diffusion coefficients.
(left) Networks formed from assumption stated in main text (DT = d2DR). (middle)
Networks form when DT = .5d2DR. (right) Networks form when DT = 2d2DR.

A.11 Nondimensionalization of Langevin equations

We begin with the Langevin equation for cell position stated on the first line of the

Model section of the main text.

drα
dt

= −µT

∑
β

∂Wαβ

∂rα
+
√

2DT ηα,T(t) , (A.15)

where DT is the effective translational diffusivity quantifying the random motion of an

isolated moving cell, with η as a random white noise term whose components satisfy

⟨ηi(t)ηj(t′)⟩ = δ(t − t′)δij . Note that η - the noise term describing active cell motility

- has units of t−1/2. Wαβ is a long-range elastic potential (full form shown in kdwrite

equation number) when d ≤ rαβ ≤ 3d and a steric spring given by Wαβ = 1
2
k(d− rαβ)

2

when 0 < rαβ ≤ d.

We now choose characteristic time, length, and energy scales. Let r∗ = r
d

be a di-

mensionless distance vector scaled by cell size, let W ∗
αβ =

(
P 2

16Ed3

)−1

Wαβ be a dimen-

sionless energy scaled by elastic energy at cell length separation, and let t∗ = P 2µT

16Ed5
t be

a dimensionless time scaled by an elastic interaction.
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Non-dimensionalizing our translational Langevin equation using the above charac-

teristic scales gives us the following equation

dr∗α
dt∗

= −
∑
β

∂W ∗
αβ

∂r∗α
+

√
2

A
η∗
α,T(t

∗) , (A.16)

where

A ≡ P 2µT

16Ed3DT

=
P 2

16Ed3kBTeff

=
Ec

kBTeff

(A.17)

is a dimensionless parameter that is the ratio of characteristic elastic energy to an effec-

tive temperature called the effective elastic interaction.

The Langevin equation for cell orientation is given by

dn̂α

dt
= −µR

∑
β

(
n̂α × ∂Wαβ

∂n̂α

)
+
√

2DR ηα,R(t) (A.18)

where n̂ is the cell orientation and DR is the effective rotational diffusivity quantifying

the random reorientations of an isolated moving cell.

Nondimensionalizing eqn. A.18 with the same scales as in the translational Langevin

equation and assuming µRd
2 = µT and DRd

2 = DT gives us

dn̂α

dt∗
= −

∑
β

(
n̂α ×

∂W ∗
αβ

∂n̂α

)
+

√
2

A
η∗
α,R(t

∗) . (A.19)

A.12 Junction count shows similar behavior to neighbor

counts

Another metric that can be used to probe the morphologies of our branched net-

works is junction density - the number of cells connected to a node after skeletonizing

normalized by the total number of cells. Junction density is shown in Supp. Fig. A.14

as a function of A (left) and ϕ (or N ) (right). Unsurprisingly, junction density vs. A

follows the same trend as neighbors vs. A shown in Supp. Fig. A.12 since junctions are

structures which promote higher neighbor counts. In contrast with neighbors vs. ϕ, our

highest value of packing for junction density exhibits a different trend. While neighbor

counts continue to increase, junction density slightly decreases for ν = 0.1. This is due

to the ground states explored in the previous section. At our highest packing fraction,



106

(a) (b)

Supp. Fig. A.14: Junction density shows a trend similar to neighbor counts. (a) Junc-
tion density vs. A shows at low A, few cells are part of a junction. As A increases,
irreversible networks structures are formed where the ν = 0.5 systems exhibit a greater
capacity to form junctions - structures which produce greater neighbor counts. (b) Junc-
tion density vs. ϕ (or N ) increases as a function for all N when ν = 0.5. Junction density
begins to decrease at highest ϕ as the system begins to form more parallel strings in the
low ν case.

we begin to transition out of the dilute regime where we know ν = 0.1 dipoles will form

parallel strings. Tightly packed parallel strings will have a high neighbor count but no

junctions.

A.13 Experimental branch lengths

One of the metrics we have used to characterize the morphology of our simulated

dipole assemblies is branch length. While it is difficult to directly compare simulation to

experiment with branch lengths due to there not being a common length scale, we report

the branch lengths for two different seeding densities and post seeding times (Fig. A.15).

The branch lengths show a saturation in substrate stiffness.
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Supp. Fig. A.15: Average branch lengths of experimental systems at both low and high
seeding density show a saturation in substrate stiffness.

A.14 Branch length analysis of simulation box and a

larger composite box shows boundary errors are

minimal

We utilize skeletonization in ImageJ for branch length, junction count, ring count,

and robustness. ImageJ, however, does not account for the periodic boundary conditions

by which cells interact. These boundary errors could lead to an incorrect analysis for

the aforementioned metrics. To study the effect of these boundary errors, we report the

branch length histograms and average branch lengths for both the original simulation

box results and a box comprised of a 3x3 replication of the original simulation box in

order to reconstitute periodicity and minimize boundary errors. Supp. Fig. A.16 shows

that the errors due to the boundary effects are minimal which lets us use the original box

size for a computationally easier analysis.
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Original Simulation Box 3x3 Grid of Simulation Box

𝜈 = 0.1 = 2.83𝑑

𝜈 = 0.5 = 1.87𝑑

𝜈 = 0.1 = 2.95𝑑

𝜈 = 0.5 = 1.9𝑑

Supp. Fig. A.16: Branch length distributions for both the original simulation box and
a composite box reveal minimal boundary effects. (a) Branch length distribution for
A = 10 and N = 300 with average branch length for our original simulation box. (b)
Branch length distribution for A = 10 and N = 300 with average branch length when
the original simulation box is made into an identical 3x3 grid of the simulation snapshots
to reconstitute periodicity and study the effect of this boundary effect. Histograms are
qualitatively similar and the error for the average branch lengths for both ν = 0.1 and
ν = 0.5 is less than 5%. Thus, for computational feasibility of robustness studied in
Fig.7d, we use the original simulation box snapshots.



Appendix B

Code Availability

The code for simulating dipole networks, dipoles in spring meshes, and motile

dipoles under confinement found in the methods section of chapter 2, the model and

results section of chapter 3, and the methods section of chapter 4, respectively, can be

found at the following github repository.
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https://github.com/PatrickNoerr/Dissertation_Code/tree/main
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mut Löwen. How does a flexible chain of active particles swell? The Journal of
Chemical Physics, 142(12):124905, 2015.

[44] Guo-Jun Liao, Carol K. Hall, and Sabine H. L. Klapp. Dynamical self-assembly
of dipolar active brownian particles in two dimensions. Soft Matter, 16(9):2208–
2223, 2020.

[45] Nariaki Sakaı̈ and C Patrick Royall. Active dipolar colloids in three di-
mensions: strings, sheets, labyrinthine textures and crystals. arXiv preprint
arXiv:2010.03925, 2020.

[46] Francisca Guzmán-Lastra, Andreas Kaiser, and Hartmut Löwen. Fission and
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[61] Daniel Rüdiger, Kerstin Kick, Andriy Goychuk, Angelika M. Vollmar, Erwin
Frey, and Stefan Zahler. Cell-based strain remodeling of a nonfibrous matrix as
an organizing principle for vasculogenesis. Cell Reports, 32(6):108015, 2020.

[62] Joseph P. Califano and Cynthia A. Reinhart-King. A balance of substrate mechan-
ics and matrix chemistry regulates endothelial cell network assembly. Cellular
and Molecular Bioengineering, 1(2):122, Oct 2008.

[63] Katherine Copenhagen, Gema Malet-Engra, Weimiao Yu, Giorgio Scita, Nir Gov,
and Ajay Gopinathan. Frustration-induced phases in migrating cell clusters.
Science Advances, 4(9), 2018.

[64] Subhaya Bose, Kinjal Dasbiswas, and Arvind Gopinath. Matrix stiffness
modulates mechanical interactions and promotes contact between motile cells.
Biomedicines, 9(4), 2021.

[65] Subhaya Bose, Patrick S. Noerr, Ajay Gopinathan, Arvind Gopinath, and Kinjal
Dasbiswas. Collective states of active particles with elastic dipolar interactions.
Frontiers in Physics, 10, 2022.

[66] Yousef Javanmardi, Huw Colin-York, Nicolas Szita, Marco Fritzsche, and Emad
Moeendarbary. Quantifying cell-generated forces: Poisson’s ratio matters.
Commun. phys., 4(1):237, November 2021.

[67] Dietrich Stauffer. Scaling theory of percolation clusters. Physics reports, 54(1):1–
74, 1979.

[68] Fumiko Yonezawa, Shoichi Sakamoto, and Motoo Hori. Percolation in two-
dimensional lattices. i. a technique for the estimation of thresholds. Physical
Review B, 40(1):636–649, July 1989.

[69] Scott Kirkpatrick. Percolation and conduction. Reviews of Modern Physics,
45(4):574–588, October 1973.

[70] M. F. Sykes and J. W. Essam. Some exact critical percolation probabilities for
bond and site problems in two dimensions. Physical Review Letters, 10(1):3–4,
January 1963.



116

[71] Heiko Schmidle, Carol K. Hall, Orlin D. Velev, and Sabine H. L. Klapp. Phase
diagram of two-dimensional systems of dipole-like colloids. Soft Matter, Dec
2011.

[72] Rumi De, Assaf Zemel, and Samuel A. Safran. Dynamics of cell orientation.
Nature Physics, 3:655, Jul 2007. Article.

[73] Justin R. Tse and Adam J. Engler. Preparation of hydrogel substrates with tunable
mechanical properties. Current Protocols in Cell Biology, 47(1), June 2010.

[74] Ramaswamy Krishnan, Darinka D Klumpers, Chan Y Park, Kavitha Rajendran,
Xavier Trepat, Jan Van Bezu, Victor WM Van Hinsbergh, Christopher V Carman,
Joseph D Brain, Jeffrey J Fredberg, et al. Substrate stiffening promotes endothe-
lial monolayer disruption through enhanced physical forces. American Journal
of Physiology-Cell Physiology, 300(1):C146–C154, 2011.

[75] E. M. Huisman and T. C. Lubensky. Internal stresses, normal modes, and non-
affinity in three-dimensional biopolymer networks. Phys. Rev. Lett., 106:088301,
Feb 2011.

[76] Alessio Zaccone. Elastic deformations in covalent amorphous solids. Modern
Physics Letters B, 27(05):1330002, 2013.

[77] Nicoletta I Petridou, Bernat Corominas-Murtra, Carl-Philipp Heisenberg, and
Edouard Hannezo. Rigidity percolation uncovers a structural basis for embry-
onic tissue phase transitions. Cell, 184(7):1914–1928, 2021.

[78] Lia Papadopoulos, Pablo Blinder, Henrik Ronellenfitsch, Florian Klimm, Eleni
Katifori, David Kleinfeld, and Danielle S Bassett. Comparing two classes of
biological distribution systems using network analysis. PLoS Comput. Biol.,
14(9):e1006428, September 2018.

[79] Henrik Ronellenfitsch and Eleni Katifori. Global optimization, local adapta-
tion, and the role of growth in distribution networks. Physical Review Letters,
117(13):138301, Sep 2016.

[80] Cody O Crosby and Janet Zoldan. Mimicking the physical cues of the ECM in
angiogenic biomaterials. Regenerative Biomaterials, 6(2):61–73, 02 2019.

[81] Brooke N. Mason, Alina Starchenko, Rebecca M. Williams, Lawrence J. Bonas-
sar, and Cynthia A. Reinhart-King. Tuning three-dimensional collagen matrix
stiffness independently of collagen concentration modulates endothelial cell be-
havior. Acta Biomaterialia, 9(1):4635–4644, 2013.

[82] Anthony J. Berger, Kelsey M. Linsmeier, Pamela K. Kreeger, and Kristyn S. Mas-
ters. Decoupling the effects of stiffness and fiber density on cellular behaviors via



117

an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials,
141:125–135, 2017.

[83] David B. Brückner, Nicolas Arlt, Alexandra Fink, Pierre Ronceray, Joachim O.
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