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NOBIAS: Analyzing Anomalous
Diffusion in Single-Molecule Tracks
With Nonparametric Bayesian
Inference
Ziyuan Chen1, Laurent Geffroy2 and Julie S. Biteen1,2*

1Department of Biophysics, University of Michigan, Ann Arbor, MI, United States, 2Department of Chemistry, University of
Michigan, Ann Arbor, MI, United States

Single particle tracking (SPT) enables the investigation of biomolecular dynamics at a high
temporal and spatial resolution in living cells, and the analysis of these SPT datasets can
reveal biochemical interactions and mechanisms. Still, how to make the best use of these
tracking data for a broad set of experimental conditions remains an analysis challenge in
the field. Here, we develop a new SPT analysis framework: NOBIAS (NOnparametric
Bayesian Inference for Anomalous Diffusion in Single-Molecule Tracking), which applies
nonparametric Bayesian statistics and deep learning approaches to thoroughly analyze
SPT datasets. In particular, NOBIAS handles complicated live-cell SPT data for which: the
number of diffusive states is unknown, mixtures of different diffusive populations may exist
within single trajectories, symmetry cannot be assumed between the x and y directions,
and anomalous diffusion is possible. NOBIAS provides the number of diffusive states
without manual supervision, it quantifies the dynamics and relative populations of each
diffusive state, it provides the transition probabilities between states, and it assesses the
anomalous diffusion behavior for each state. We validate the performance of NOBIAS with
simulated datasets and apply it to the diffusion of single outer-membrane proteins in
Bacteroides thetaiotaomicron. Furthermore, we compare NOBIAS with other SPT analysis
methods and find that, in addition to these advantages, NOBIAS is robust and has high
computational efficiency and is particularly advantageous due to its ability to treat
experimental trajectories with asymmetry and anomalous diffusion.

Keywords: single-molecule tracking (SPT), nonparametric Bayesian statistics, hierarchical Dirichlet process (HDP),
hidden Markov model (HMM), recurrent neural network (RNN), anomalous diffusion

INTRODUCTION

The biophysical dynamics of biomolecules reflect the biochemical interactions in the system, and
these dynamics can be quantified within a dataset of single-particle trajectories obtained by tracking
individual molecules. The invention of the super-resolution microscope (Moerner and Kador, 1989;
Hell and Wichmann, 1994; Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006) and single-particle
tracking (SPT) methods (Yildiz et al., 2003; Deich et al., 2004; Elmore et al., 2005; Manley et al., 2008)
havemade possible investigations of biomolecular dynamics at a high temporal and spatial resolution
both in vitro and in vivo. Moreover, quantitative SPT algorithms can connect the real-time dynamics
from biophysical trajectories to biochemical roles to uncover whether a molecule interacts with other
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cellular components (Izeddin et al., 2014), freely diffuses
(Badrinarayanan et al., 2012), is actively transported (Park
et al., 2014), or is constrained to a certain region (Bayas et al.,
2018).

Conventionally, SPT trajectory datasets have been assumed to
be Brownian, such that the mean squared displacement, MSD, of
each track is linearly proportional to the time lag, τ, and the
diffusion coefficient, D, can be calculated from a linear fit to this
curve (Qian et al., 1991; Saxton, 1997). This Brownian motion
assumption works accurately for freely diffusing molecules in
solution. Despite the accessibility of this method, it has a
simplified assumption that the molecule is freely diffusing
with a single diffusive state (a single D value) for each
trajectory. In the complicated cellular environment, however,
multiple diffusive states, each characterized by an averageD, can
exist—for instance due to binding and unbinding events—and
molecules can transition between different states to produce
heterogeneity even within single trajectories. To reveal these
heterogeneous dynamics, probability distribution-based
methods such as cumulative probability distribution (Schütz
et al., 1997; Mazza et al., 2012), have been applied. Probability
distribution-based models use kinetic modeling with a
predetermined number of diffusive states and are fit to
histograms of displacements calculated at different time lags.
These probability-based kinetic models pool displacements
from the SPT dataset to estimate the D and weight fraction
for each diffusive state in the model. Probability distribution-
based analytical tools (Rowland and Biteen, 2017; Hansen et al.,
2018) have been widely applied to SPT datasets with extra
corrections that consider the experimental microscopy data
collection process. These corrections include localization
error (Michalet and Berglund, 2012), confinement (Kusumi
et al., 1993), motion blur (Berglund, 2010; Deschout et al.,
2012), and out-of-focus effects (Lindén et al., 2017) in the
probability model.

For some well-studied biological systems in which the
biochemical states of molecules have been determined through
other methods, a fixed-state number analytical tool can be
suitable for quantifying the dynamics and weight for each
state (Elf et al., 2007; Hansen et al., 2017). However, SPT can
also be used as the beginning step to investigate biomolecule
dynamics without prior knowledge of how many diffusive states
there supposed to be (Monnier et al., 2015; Sungkaworn et al.,
2017; Biswas et al., 2021). In these cases, how to objectively
determine the number of diffusive states is a great challenge.
Moreover, these models provide a D value for each
subpopulation, but they do not assign the diffusive state to
each individual single-molecule step, nor do they quantify the
transition probability between distinct diffusive states within one
trajectory. However, these transition probabilities can reveal
important biological meaning such as the presence of critical
biochemical intermediates (Biswas et al., 2021).

Bayesian statistics and Hidden Markov Models (HMMs) have
been applied to analyze SPT datasets without assuming a
predetermined number of diffusive states and to access the
probabilities of transitioning between distinct states (Persson
et al., 2013; Monnier et al., 2015; Karslake et al., 2020; Heckert

et al., 2021). vbSPT, which was one of the first applications of
HMM for SPT analysis (Persson et al., 2013), uses a maximum-
evidence criterion to select between models with different
numbers of diffusive states; within each model, a fixed-order
HMM is used to infer the diffusion coefficient, weight fraction,
and transition probabilities for each state. More recently,
nonparametric Bayesian models based on Dirichlet processes
were combined with HMM to recover the number of diffusive
states from SPT trajectory datasets, such as in SMAUG (Karslake
et al., 2020) and DSMM (Heckert et al., 2021). In these models,
the motion of the molecule is approximated to be symmetric and
Brownian, which is an oversimplification considering the
crowded environment and various interaction partners for
biomolecules in cells.

To move beyond Brownian motion, here we consider a more
general random walk family: anomalous diffusion. In anomalous
diffusion, MSD and τ are related by a power law distribution,
MSD ∼ τα, where α is the anomalous diffusion exponent (Metzler
et al., 2014). Brownian motion is a special case of anomalous
diffusion (α � 1), and other cases can be further divided into
subdiffusion (α> 1) and superdiffusion (α< 1). Biomolecules
have been reported to diffuse anomalously in many situations,
such as constrained membrane protein motion (Jeon et al., 2016),
the facilitated diffusion of DNA binding protein (Bauer and
Metzler, 2012), and active transportation of cargoes (Caspi
et al., 2002). Different designs of neural networks effectively
classify the diffusion type of trajectories (Bo et al., 2019;
Granik et al., 2019; Argun et al., 2021; Gentili and Volpe,
2021), however these analyses typically assume that each track
is dynamically homogeneous and is characterized by a single type
of diffusion and a single D value. It remains a challenge to classify
the diffusion type within a trajectory when considering the
possibility of changes in dynamics or diffusion types within a
single track.

Here we introduce the NOnparametric Bayesian Inference
for Anomalous diffusion in Single-molecule tracking (NOBIAS)
framework to address the assumptions and simplifications
discussed above and provide a more physiologically relevant
analysis algorithm to quantify the dynamics encoded in SPT
datasets (Figure 1). In particular, NOBIAS recovers the number
of diffusive states and predict the diffusion type for each
diffusive state, even in heterogeneous trajectories. The
NOBIAS framework consists of two modules. The first
module uses a Hierarchical Dirichlet Process Hidden Markov
Model (HDP-HMM) with multivariate Gaussian emission to
recover the number of diffusive states and infer their
corresponding diffusion coefficients and weight fractions.
This module also assigns each single-molecule step a
diffusive state label to provide the state label sequence and
the matrix of transition probabilities. In the second module, the
original trajectories are segmented by diffusive state label and a
pre-trained Recurrent Neural Network (RNN) is used to classify
these segments and assign the diffusion type (Brownian motion,
Fractional Brownian motion, Continuous Time Random Walk,
or Lévy Walk) for each diffusive state. We simulated trajectory
datasets with mixtures of heterogeneous dynamics and diffusion
types to validate the NOBIAS framework, and we analyzed the
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SPT dataset from experimental measurements of the SusG
outer-membrane protein in living Bacteroides
thetaiotaomicron to access its dynamics and anomalous
diffusion behaviors, which are consistent with its role in
starch catabolism in gut microbiome. This framework uses
nonparametric Bayesian statistics and Deep learning to
thoroughly analyze a single-molecule tracking dataset. It

provides an objective method to determine the number of
diffusive states in an SPT dataset and accesses the
multidirectional dynamics of each state. A further diffusion
type classification for each diffusive state is also included in the
framework. The NOBIAS framework overcomes some
oversimplified assumptions in SPT analysis and provides a
powerful tool to fully make use of single-molecule tracking data.

FIGURE 1 | NOBIAS workflow. (1) Single-particle tracking (SPT) trajectory datasets are processed in the NOBIAS HDP-HMM module: the observed data (the
displacements, Δx) are analyzed in the context of the emission parameters (the diffusion coefficients, D). The state sequence, z, indicates the diffusive state
corresponding to each step, and the transition matrix, π, is estimated with a Hierarchical Dirichlet process prior using concentration hyperparameters a and c and the
sticky parameter, κ. The HDP-HMMmodule provides D and the weight fraction for each diffusive state, the π for transition probabilities between these states, and a
state label assignment for each SPT step. (2) In the NOBIAS RNNmodule, trajectory segments of the same diffusive state are collected and put in a pre-trained Recurrent
Neural Network (RNN) with two long short-term memory (LSTM) layers to classify the diffusion type for each diffusive state.
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METHODS

Hidden Markov Model
A HMM infers a system with a discrete-valued sequence of
unobservable states that can be modeled as a Markovian
process (Rabiner, 1989). The HMM assumes that the observed
data have a hidden discrete-valued state sequence, and at each
observed time, the observed data only depends on its hidden state.
In our NOBIAS application of the HMM model, the observed
data is the single-molecule displacements and the hidden state is
the molecule’s distinct biophysical diffusive state.

Suppose zt is the hidden state of the Markovian chain at time t
and yt is the observed data at time t, the HMM follows the
following generative process:

z1 ∼ π(0), zt+1
∣∣∣∣∣zt ∼ π(zt ), yt

∣∣∣∣∣zt ∼ f (θ(zt )) (1)

Here, π refers to the transition matrix of a HMM and π(zt) is
the zt row of the transition matrix and is the transition
distribution for state zt . Given zt and the corresponding

emission parameter θ(zt), yt is independently generated from

the emission function f (θ(zt)). In NOBIAS, the observed data, yt ,
is the vector of single-step displacements, Δxt , and the emission
function is a zero-mean multivariate Gaussian distribution, and
the emission parameter is the set of diffusion coefficients, D(zt):

Δxt
∣∣∣∣zt ∼ Norm(0, 4D(zt )τ)

Dirichlet Process for Nonparametric
Bayesian
In NOBIAS, the Dirichlet Process (DP) is used in the prior for the
parameters of a mixture model with an unknown number of
components. A random probability measure,G0, on a measurable
space,Θ, is distributed according to a DP when (Ferguson, 1973):

(G0(B1), . . . ,G0(Bn))|c, H ∼ Dir((cH(B1), . . . , cH(Bk))
(2)

Here, Dir is a Dirichlet distribution, H is a base measurement,
c is a positive concentration parameter, and {Bi}ni�1 is a finite
partition of Θ. In this case, we write G0 ∼ DP(c,H).

From this definition follow two properties of Dirichlet
processes. First, if G0 ∼ DP(c,H), then G0 is atomic and can
be written as:

G0 � ∑∞
i�1

βiδθi (3)

Here, βi is a weight and δθi is a unit-mass measure at
observation θi|H ∼ H.

Second, based on the conjugacy of the finite Dirichlet
distribution, given a set of observations θ1, . . . , θN where
θi ∼ G0, the posterior distribution for a Dirichlet process G0 is:

G0|θ1, . . . , θN , H, c ∼ DP⎛⎝c + N ,
c

c + N
H + 1

c + N
∑N
i�1

δθi⎞⎠
(4)

A stick-breaking process is used to construct the weight
parameter βi as follows:

βi � ]i ∏i
l�1

(1 − ]l) , ]l
∣∣∣∣c ∼ Beta(1, c) , i � 1, 2, . . .

In this process, the weight βi comes from a unit stick according
to a weight that is beta-distributed based on the remaining stick
length after the last breaking. This stick-breaking process is also
called a Griffiths-Engen-McCloskey (GEM) distribution
(Ishwaran and James, 2001; Pitman, 2006) and the weights
from this construction, which is denoted β ∼ GEM(c), have
been proven (Sethuraman, 1994) to be the weights βi of a
Dirichlet process as in Eq. 3.

For each value of θi, a random indicator variable zi is used to
denote that θi � θzi′, and then a predictive distribution of z can be
written as:

p(zN+1 � z|z1, . . . , zN , c)� c

c + N
δ(z,K + 1) + 1

c + N
∑K
k�1

Nkδ(z, k)

(5)

Where K is the current unique number of values of z and Nk is the
number of zi that take value k. This predictive distribution implies
that a new observation takes the value of a seen observation θzk with
probability proportional to Nk or takes a unseen value θK+1 with
probability proportional to concentration parameter c. When a
seen observation θzk is chosen for the new observation, the
indicator zN+1 � k, or if unseen value θK+1 is taken, the
indicator zN+1 � K + 1. This “the rich get richer” property is
essential for inferring a finite generated mixture model. Because
the DP posterior nonparametrically converges to parameters of a
mixturemodel for a finitemixture dataset (Ishwaran and Zarepour,
2002), the DP is an appropriate prior for the parameters of a
mixture model with an unknown number of components.

Hierarchical Dirichlet Process and Sticky
Extension
In NOBIAS, the different single-molecule trajectories of multiple
molecules under different biological condition and from different
cells, so the groups of data are related but generated
independently. Therefore, the DP is extended to a Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006). In the HDP, a first
Dirichlet process, G0, is the base measure of a new Dirichlet
process, Gj:

Gj ∼ DP(a,G0), G0 ∼ DP(c,H)
To apply a HDP as prior for a HMM model, a HDP-HMM

model is generated according to:

β ∼ GEM(c), πj ∼ DP(a, β), θ(j)
∣∣∣∣∣λ ∼ H(λ) j � 1, 2, . . .

zt
∣∣∣∣{π}, zt−1 ∼ πzt−1 , yt

∣∣∣∣{θ}, zt ∼ F(θ(zt )) t � 1, 2, . . . ,T

In the NOBIAS parameter setting, the observed data yt would
be the single-step displacement Δxt , the emission parameter θ
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would be the diffusion coefficient D, and the hyperparameter λ
for θ would be the Normal-inverse-Wishart distribution (NIW)
with four prior hyperparameters {κ, ϑ, ],Δ} as stated below in the
Multivariate Normal Model section.

A common issue for the HDP-HMM model is that if the
algorithm artificially divides a set of observations into an
alternating pattern of rapid switching between several different
states, then this alternating pattern will be reinforced by the DP
(Fox et al., 2008). This assignment would result in an artificial
over-splitting of one state into multiple substates characterized by
a high probability of transitions between the substates. Because
we would not expect such rapid transitions back and forth
between two distinct but similar dynamical states in the
single-molecule trajectory data studied here, a sticky parameter
κ, is introduced which enforces self-transitions and avoids this
over-splitting of states. With this new hyperparameter, the πj can
be sampled as:

πj ∼ DP(a + κ,
aβ + κδj
a + κ

), j � 1, 2, . . . (6)

Which add a self-transition bias to the jth components of the
DP. The effects of κ on the results are shown in Supplementary
Figure S1D: if κ is too small, the over-splitting of states still
occurs and if κ is too large, the model will underestimate the
number of states.

Different Markov Chain Monte Carlo (MCMC) sampling
methods such as Direct Assignment Sampling, Beam
Sampling, and Blocked Sampling have been developed for the
HDP-HMM model (Teh et al., 2006; Fox et al., 2007; Van Gael
et al., 2008). In NOBIAS, we apply the most computationally
efficient Blocked Sampling method (Fox et al., 2007), which uses a
fixed-order truncation with weak-limit approximation HDP-
HMM. In this approach, the DP is L-degree approximated as:

β ∼ GEML(c) ∼ Dir(c/L, . . . , c/L) (7)

πj ∼ DPL(a + κ,
αβ + κδj
α + κ

) ∼ Dir(aβ1, . . . , aβj + κ, . . . , aβL )
(8)

with a truncation level, L, that is larger than the expected total
number of mixture components. Increasing L does not affect the
posterior results, but L does affect the running time
(Supplementary Figure S1C). The Blocked Sampling method
algorithm is detailed in the Supplementary Note, which describes
how the state sequence is generated and how the parameters for
each state are sampled.

Multivariate Normal Model
Bayes’ rule states that the posterior distribution is proportional to
the product of the prior probability and the likelihood,
i.e., P(θ|y) ∼ P(θ) P(y|θ). It is crucial to build conjugacy in
order to elegantly and concisely express the posterior
distribution. If we choose an appropriate prior distribution
class for P(θ) given a known sampling distribution P(y|θ),
then the posterior distribution P(θ|y) will have the same
distribution class as the prior distribution. This choice of a

prior distribution is called a conjugate prior, and this property
that the posterior and prior distributions are in the same class is
called conjugacy.

In NOBIAS HDP-HMM module, we assume 2D Brownian
motion trajectories. In this case, the displacements follow a zero-
mean 2D Gaussian and the diffusion coefficientsD determine the
variance, Σ, of the 2D Gaussian. Without loss of generality, the
mean, µ, is also included in the model, θ � {μ, Σ}, and the data
distribution is written as:

p(y|θ) � 1

(2π)|Σ|
1
2

exp{ − 1
2
(Δx − μ)T |Σ|−1(Δx − μ)}

(9)

In the 2D case, the observed data,Δx, is a 1 × 2 vector of the 2D
displacements, μ is a 1 × 2 vector and Σ is the 2 × 2 covariance
matrix.

As derived in reference Gelman (2004), the general conjugate
prior model for this multivariate normal model is the prior for the
mean and the variance of the step displacement follow a Normal-
inverse-Wishart distribution (NIW):

p(μ,Σ) ∼ NIW(κ, ϑ, ],Δ) (10)

Specifically, the variance, Σ, follows an inverse-Wishart prior
distribution IW(],Δ), and the mean, μ, has a conditional Normal
distribution: p(μ

∣∣∣∣Σ) ∼ N( ϑ, Σ/κ).
The posterior updates for this normal model with NIW prior

follows (Gelman, 2004):

p(μ(zt ),Σ(zt)|Δx(zt )) ∼ NIW(κ, ϑ, ],Δ) (11)

Where Δx(zt) is the entire displacement dataset in state zt, and for
each state zt, we update these parameters as:

κ � κ + N , κϑ � κϑ +∑N
n�1

Δxn, ] � ] + N ,

]Δ � ]Δ +∑N
n�1

ΔxnΔxTn + κϑϑT − κϑϑ
T
.

To decrease the running time, we apply the conjugate prior for
the Multivariate Normal Distribution, though a non-conjugate
prior is permissible. For further discussion of choice of prior see
(Gelman, 2004).

Trajectory Simulation
A state label sequence was firstly simulated with a given transition
matrix through a Markov chain process. Then according the state
label and the D of corresponding diffusive state, the 2D
displacement step is generated, and cumulatively summed to
get a single trajectory. Standard trajectory datasets are simulated
by generate 2D Gaussian random variable where mean is 0 and
variance is determined by the set diffusion coefficients with
symmetry and no correlation in two directions.

Motion blur trajectory datasets are generated by simulating a
state label sequence that is Texp times of the desired length with a
transition matrix that self-transit enhanced Texp times. Also
according to the label of this Texp times longer label sequence
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a true trajectories with Texp times more steps can be generated as
in the standard dataset case. 2D localization error is added to the
average position of every Texp steps in the true trajectory and
saved to create a motion-blur trajectory with desired length. In
the motion blur trajectory datasets used in this study, Texp was set
to 10.

Anomalous Diffusion
In the NOBIAS RNN module, trajectory segments of the same
diffusive state (identified by the HDP-HMM module) are
evaluated to classify the diffusion type for each diffusive state.
In Brownian Motion, the mean squared displacement (MSD) is
linearly proportional to the time lag, τ. In anomalous diffusion,
MSD is related to τ according to a power law (Metzler et al., 2014):

MSD∝ τα (12)

Here, α is the anomalous exponent. When α � 1, this relation
describes Brownian motion; when α> 1, Eq. 12 describes
superdiffusion; and when α< 1, Eq. 12 describes subdiffusion.
The NOBIAS framework includes the three specific types of
anomalous diffusion types that are most common in biology:
Fractional Brownian motion (FBM) (Mandelbrot and Van Ness,
1968), Continuous Time Random Walk (CTRW) (Scher and
Montroll, 1975), and Lévy Walk (LW) (Klafter and Zumofen,
1994).

FBM is a Gaussian process with correlated increments such
that MSD is related to τ according to: MSD � 2DHτ2H

(Mandelbrot and Van Ness, 1968; Jeon and Metzler, 2010).
Here, the Hurst exponent, H, is related to α in Eq. 12 by
α � 2H. The DH is the generalized coefficients with physical
dimension m2s−2H . The correlation between two time points
for FBM is x(t1)x(t2) � DH(t2H1 + t2H2 − |t1 − t2|2H). When this
correlation is positive, H > 0.5 and the motion is
superdiffusive; when the correlation is negative, H < 0.5 and
the motion is subdiffusive.

CTRW defines a random walk family in which the particle
displacement, Δx, follows a wait at its current position for a
random waiting time t that is a stochastic variable (Scher and
Montroll, 1975). NOBIAS considers the case where t follows a
power-law distribution, ψ(t) ∝ t−σ , and the following
displacement is sampled from a zero-mean Gaussian with
fixed variance. In this case, the σ in CTRW is related to α in
Eq. 12, by α � σ − 1. This CTRW can only be subdiffusion,
i.e., 0< α≤ 1.

LW is a special case of CTRW in which the waiting time, t, still
follows power law, but the displacement is not Gaussian, and is
instead determined by the waiting time (Klafter and Zumofen,
1994). The displacement will have a constant speed, v � |Δx|/t, and
this process can only be superdiffusive with exponent 1≤ α≤ 2.

We simulated these three types of anomalous diffusion with
the open-source Python package from the recent AnDi challenge
(Muñoz-Gil et al., 2020).

Recurrent Neural Network for NOBIAS
All segments 40 steps or greater identified in the HDP-HMM
module were further analyzed by the NOBIAS Recurrent Neural

Network (RNN) consisting of two long short-term memory
(LSTM) layers (Hochreiter and Schmidhuber, 1997). We
trained this RNN to classify trajectory segments identified to
have the same diffusive state from the HDP-HMM module. We
implemented this architecture, which is based on the design of the
RANDI package classification task (Bo et al., 2019; Argun et al.,
2021) with the MATLAB Deep Learning Toolbox™. The two
LSTM layers have 100 and 50 units, respectively, and these two
LSTM layers are followed by a fullyconnected layer, and the
output classification layer order is given in Figure 1.

The input to the network is the set of 2D coordinates from the
track segments; these coordinates are normalized to have zero
mean and unit variance. Despite a much higher classification
performance when using tracks > 50 steps long to train and
validate (Argun et al., 2021; Gentili and Volpe, 2021; Muñoz-Gil
et al., 2021), we trained two networks with 20-step tracks and with
40-step tracks, respectively, after considering the typical segment
lengths from real biological trajectories. The training data of
750,000 trajectories were simulated with the open-source Python
package from the AnDi challenge (Muñoz-Gil et al., 2020).
Regression networks with similar two LSTM layers
architecture were also trained for FBM and CTRW to estimate
the anomalous exponent α for the experimental data. The
performance of the classification network with 40-step data is
shown in the confusion matrix which was made with 10,000 test
trajectories (Supplementary Figure S2). However, although the
RNN module can classify CTRW and LW motion
(Supplementary Figure S2), because our HDP-HMM module
assumes Brownian motion, this first module cannot predict the
correct state label for these two diffusion types. We therefore test
a mixture of FBM and BM motion in Figure 3.

Single-Molecule Tracking in Living
Bacteroides thetaiotaomicron Cells
B. thetaiotaomicron cells expressing SusG-HaloTag fusions at the
native SusG promoter were grown as previously described
(Karunatilaka et al., 2014). Briefly, cells were cultured
overnight in 0.5% tryptone-yeast-extract-glucose medium and
incubated at 37°C under anaerobic conditions (85% N2, 10% H2,
5% CO2) in a Coy chamber. Approximately 24 h before imaging,
cells were diluted into B. thetaminimal medium (MM) (Martens
et al., 2008) containing 0.25% (wt/vol) amylopectin. On the day of
the experiment, cells were diluted into fresh MM and
carbohydrate and grown until reaching OD600 nm 0.55–0.60
(Tuson et al., 2018).

Before labeling, 900 μL of cells were washed twice by pelleting
(6,000 G, 2 min) followed by resuspension in MM. Cells were
then incubated in MM supplemented with 100 nM PAJF549 dye
(Grimm et al., 2016) for 15 min in the dark. Cells were then
washed five times in MM, transferring to a new tube on every
step, to remove excess dye (Lepore et al., 2019). Finally, 100 μL
cells were resuspended in MM containing 0.25% (wt/vol)
amylopectin for 30 min in the dark. 1.5 μL labeled cells were
pipetted onto a pad of 2% agarose in MM and placed between a
large and a small coverslip. The two coverslips were sealed
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FIGURE 2 | Validation of the NOBIAS HDP-HMM module with simulated trajectories. (A–H) The HDP-HMM module identifies distinct mobility states (colored
clusters). All scatter plots include at least 500 uncorrelated samples. Each point represents the average apparent single-molecule diffusion coefficient vs. weight fraction
in each distinct mobility state at each iteration of the Bayesian algorithm saved after convergence. The black crosses indicate the ground truth input for these simulated
trajectories. (A–D) Results for two-state mixture simulated trajectories results: (A) Standard (no motion blur) and abundant (500 100-step trajectories) simulations,
(B) Standard and sparse (2,000 10-step trajectories) simulations, (C)Motion blur and abundant simulations, and (D)Motion blur and sparse simulations. (E,H) Results

(Continued )
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together with epoxy (Devcon 31345 2 Ton Clear Epoxy, 25 ml) to
keep the media anaerobic (Karunatilaka et al., 2014).

Cells were imaged on an Olympus IX71 inverted
epifluorescence microscope with a 1.45 numerical aperture,
100× oil immersion phase-contrast objective (Olympus
UPLXAPO100XOPH) and a 3.3× beam expander. Frames
were collected continuously on a 512 × 512 pixel electron-
multiplying charge-coupled device camera (Photometrics
Evolve 512) at 50 frames/s. In this microscopy geometry, one
camera pixel corresponds to 48.5 nm PAJF549 dyes were photo-
activated one at a time with a 200–400 ms exposure by a 406-nm
laser (Coherent Cube 405-100; 0.1 μW/μm2) and imaged with a
561-nm laser (Coherent-Sapphire 561-50; 1 μW/μm2) using
appropriate filters as previously described (Tuson et al., 2018).

In each movie, each cell was analyzed separately by using an
appropriate mask. The collected frames were processed with
SMALL-LABS (Isaacoff et al., 2019) to detect single molecules
frame-by-frame and localize their position with typically ∼30 nm
uncertainty. Single molecules were identified as non-overlapping
punctuate spots of diameter larger than seven pixels and with
pixel intensities larger than the 92nd percentile intensity of the
fame. The punctate spots were fit to a 2D Gaussian and true
single-molecule localizations satisfied the following conditions: 1)
standard deviation > 1 pixel and 2) fit error ≤ 0.06 pixel.
Localizations in each cell over time were connected into
trajectories using a merit value: trajectories were selected for
further analysis based on their highest merit ranking.

RESULTS

The NOBIAS HDP-HMM Module Recovers
the Number of Diffusive States and the
Associated Diffusion Parameters
We first validated the NOBIAS HDP-HMM module with
simulated single-molecule tracks, beginning from the most
basic case: a mixture of Brownian motion trajectories.
Figures 2A–D depicts the results for a mixture of two
distinct diffusive states with D1 � 0.135 µm2/s and D2 �
1.8 µm2/s (Supplementary Table S1). A sequence of state
labels (1 or 2) was first simulated with a given transition
matrix (probability of transitioning from state 1 to 2 or from
state 2 to 1) through a Markov chain process (Methods). Then,
according the state label and the apparent diffusion coefficient,
D, of the corresponding diffusive state, each 2D displacement
step was generated, and cumulatively summed to get a single
trajectory. Similar state label sequences were simulated to
generate other trajectory datasets with four diffusive states
(Figures 2E–G; Supplementary Table S2).

The posterior results of the HDP-HMM module are shown in
scatter plots of the inferred D and weight fraction from each
iteration after the inferred number of states converges. Figure 2A
shows the result for a dataset of 500 trajectories eachwith 100 steps.
Here, the black crosses indicate the ground truth diffusion
coefficient and weight fraction for each diffusive state; the
posterior samples of the HDP-HMM model for the two states
after convergence are distributed around the true values. Based on
the posterior sample autocorrelation function (ACF) analysis
(Supplementary Figure S3), the posterior samples are thinned
by saving every 10 iterations; this setting is the same for all results in
this paper and was chosen by considering the effective sample sizes
and the ACF analysis for all the diffusive states. The number could
be updated accordingly depending on the correlation of posterior
samples from output. The mean values and standard deviations for
the estimation ofD and weight fractions for the two states are listed
in Supplementary Table S1. The estimated number of unique
states for this simulated dataset converges quickly over the course
of iterations to the true number of states and remains mostly stable
at that number (Supplementary Figure S4). Next, we considered
the less ideal case that often occurs experimentally: much shorter
trajectory lengths (10 steps) and many fewer total steps (2,000 10-
step trajectories). We refer to the 2,000 10-step trajectories as a
sparse dataset and the 500 100-step trajectories are an abundant
dataset. Figure 2B shows that the HDP-HMM model still
successfully converges to the true number of states (two) for
this dataset, and the posterior samples of the diffusive
parameters are still distributed near the true inputs (black crosses).

We further considered the true form of collected microscope
experimental data by including the localization error due to finite
photon counts and noise and motion blur due to the finite image
acquisition time (Methods). We refer these datasets “Motion blur
dataset” in contrast with the more ideal “Standard” dataset. In the
case of motion blur, the sticky parameter is increased to avoid
oversampling a single diffusive state into multiple state with similar
dynamics. The hyperparameter settings for this sticky HDP-HMM
model are listed in Supplementary Table S3. For both the
abundant dataset (Figure 2C: 500 100-step trajectories) and the
sparse dataset (Figure 2D: 2,000 10-step trajectories), the true
number of states (two) is recovered with our sticky HDP-HMM
model, and despite these added errors, the estimated parameters
deviate only slightly from the true inputs (black crosses).

We extended our simulations of standard and motion blur
Brownian motion track mixtures to a more complicated 4-state
scenarios for abundant (500 100-step trajectories) and sparse
(2,000 10-step trajectories) datasets (Figures 2E–H). Even with
four diffusive states, the performance of the HDP-HMM module
is still excellent for the standard mixture (Figures 2E,F). For the 4-
state mixture simulation that includes localization error and motion
blur, the HDP-HMM still successfully recovers the true number of

FIGURE 2 | for four-state mixture simulated trajectories results: (E) Standard (no motion blur) and abundant (500 100-step trajectories) simulations, (F) Standard and
sparse (2,000 10-step trajectories) simulations, (G) Motion blur and abundant simulations, and (H) Motion blur and sparse simulations. (I) The normalized Hamming
distance (NHD) decreases and converges with the number of iterations. All 100 chains use the same dataset under the settings in panel (E). (J) The final label assignment
accuracy increases with the track length for three- and four-state mixture datasets. The number of trajectories decreases as the track lengths increase such that the total
amount of steps is 30,000 for all track lengths.
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states, and the parameters for the four distinct states are still
estimated well, though the posterior samples have increased
variance and deviation from the true value (Figures 2G,H). The
statistics of the posterior samples for estimated parameters of the 4-
state simulation result are listed in Supplementary Table S2, and the
transition matrices for all the simulations in Figure 2 are shown in
Supplementary Tables S1, S2.

The NOBIAS HDP-HMM module also assigns diffusive state
labels to each single-molecule step within the trajectories dataset;
we call this the state sequence for each track. We quantified the
performance of the state sequence assignment relative to the
ground truth simulated state sequence with the Hamming
distance: the Hamming distance between two 1D sequences
with equal length is the number of points where the
components are different (Hamming, 1950). The resulting
distances were normalized to the total length to demonstrate
the Normalized Hamming Distance (NHD) convergence over
iterations (Figure 2I). The NHD decreases with increasing
iteration number and converges to approximately 0.18. This
final converged NHD depends on the dataset size, the true

transition matrix, and how separable the diffusive state are
from one another.

The true number of diffusive states can be recovered for
datasets of both abundant and sparse tracks, but the HDP-
HMM module performance depends strongly on the length of
the individual tracks. Using the overall state sequence assignment
accuracy (1 −NHD) as a performance evaluator for datasets with
the same total amount of steps (30,000), we found that the
assignment accuracy is considerably worse for tracks shorter
than 20 steps and almost linearly increases with the track
length till asymptotes for longer tracks (>20 steps; Figure 2J).
This trend is shared for a 3-state and 4-state dataset, but the
overall accuracy for 3-state dataset is higher than 4-state one for
all the track length.

The NOBIAS RNN Module Predicts the
Diffusion Type for Each Diffusive State
To analyze anomalous diffusion in an SPT dataset, NOBIAS
includes a second module: we built an RNN to classify the type of

FIGURE 3 | Validation of the NOBIAS-RNN module with simulated trajectories containing mixtures of different diffusion types. (A,C) The HDP-HMM module
identifies distinct mobility states (colored clusters). Each point represents the average apparent single-molecule diffusion coefficient,D, vs. weight fraction in each distinct
mobility state at each iteration of the Bayesian algorithm saved after convergence. The black crosses indicate the ground truth input for these simulated trajectories. (A)
Two-state mixture comprising a subdiffusive Fractional Brownian Motion (FBM) state with lower D and a Brownian Motion (BM) state with higher D. (B) The
NOBIAS-RNN determines the probability that the diffusion type for each diffusive state in (A) is classified as BM, FBM, Continuous Time Random Walk (CTRW), or Lévy
Walk (LW). The final probability for each diffusive state is the average of the classification probability of its track segments weighted by the segment length. The color of
each pie chart indicates the diffusive state corresponding to the color in (A). (C) Four-state mixture comprising a subdiffusive FBM state, two BM states, and a
superdiffusive FBM state with D in ascending order. (D) Diffusion type classification probability pie chart for each diffusive state in (C). The final probability for each
diffusive state is the average of the classification probability of its track segments weighted by the segment length and the color of each pie chart indicates the diffusive
state corresponding to the corresponding color in (C).
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motion [Brownian motion (BM), Fractional Brownian motion
(FBM), Continuous Time RandomWalk (CTRW), or Lévy Walk
(LW)] corresponding to the track segments within each diffusive
state identified by HDP-HMMmodule. The RNN consists of two
LSTM layers, a fullyconnected layer, and data input/output layer
(Methods). Although the HDP-HMM module is based on BM,
for some anomalous diffusion types, for example FBM, if the
dynamics level for each state is distinct, the HDP-HMM module
still performs well.

We simulated a mixture of BM and FBM with distinct
apparent diffusion coefficients for the two states
(D1 � 0.045 μm2/s andD2 � 0.90 μm2/s) to validate the
performance of NOBIAS on mixtures of different diffusion
types. Figure 3A shows the HDP-HMM posterior results for
this 2-state BM-FBM mixture (500 100-step trajectories) where
the FBM state is anomalous subdiffusion with α � 0.5 (Eq. 12)
and with lower diffusion coefficient. Then, based on the state
sequence labels from the HDP-HMMmodule, we generated track
segments for the two diffusive states and put them into the trained
NOBIAS RNN network to predict the diffusion types. NOBIAS
RNN successfully predicts the diffusion types for both states
(Figure 3B; Supplementary Table S4).

We further simulated a 4-state mixture (500 100-step
trajectories) corresponding to subdiffusive FBM, BM, BM, and
superdiffusive FBM (in order of increasing D). The HDP-HMM
module still successfully recovers the four states and make

excellent estimations for D and weight fraction for each state
(Figure 3C). The NOBIAS RNN module also predicts the true
diffusion type for the segments from each of the four states
(Figure 3D; Supplementary Table S4). Note that all track
segments are normalized before being put into the RNN to
avoid dynamics information bias in the diffusion type
prediction (Methods). One limitation for this RNN
classification analysis methodology is that only track segments
with at least certain length (20 or 40 in our analysis depending on
the trained network) could be classified with high accuracy; it is
very challenging to use very short track segments to identify these
modes of diffusion. Therefore, when the overall trajectory length
is short (∼10 steps), the network classification module might not
be usable. Another limitation of the HDP-HMM module is that
the current implementation is based on BM displacement
distributions, thus it would fail for anomalous diffusion types
like LW, which does not have a similar Gaussian distribution of
displacements.

Performance of NOBIAS on Experimental
Data for the Diffusion of SusG-HaloTag in
Bacteroides thetaiotaomicron Cells
After validating the performance of the two NOBIAS modules on
simulated data, we applied this framework to experimental single-
molecule trajectories. The SusG amylase recognizes and binds

FIGURE 4 | Application of NOBIAS to single-molecule trajectories of the SusG protein in living Bacteroides thetaiotaomicron cells. (A) Single-molecule trajectories
of SusG-HaloTag overlaid on the phase-contrast image of the corresponding B. thetaiotaomicron cells, scale bar: 1 μm. The long axis of the phase mask for each cell
was detected and a rotation transform was applied to all the trajectories in each cell such that the x-axis is the cell long axis for all cells. (B) The NOBIAS HDP-HMM
module identifies three diffusive states for SusG (colored clusters). Each point represents the average apparent singlemolecule diffusion coefficient vs. weight
fraction in each distinct mobility state at each iteration of the Bayesian algorithm saved after convergence. The blue and red points clusters average the x- and y-diffusion
coefficients as they are symmetric (Supplementary Table S4); the asymmetric fast state (purple) shows a different Dx and Dy. (C) The NOBIAS-RNN determines the
probability that the diffusion type for each diffusive state in (B) is classified as Brownian Motion (BM), Fractional Brownian Motion (FBM), Continuous Time RandomWalk
(CTRW), or Lévy Walk (LW). The color of each pie chart indicates the diffusive state corresponding to the color in (B). The fast state (purple) is predicted with high
probability to be BM; the two slower states (red and blue) are predicted to be FBM or CTRW.
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starch on the surface of B. thetaiotaomicron cells to enable starch
catabolism (Koropatkin and Smith, 2010). We measured the
motion of 7,897 trajectories (minimum length of 6 and
average length of 64) of single SusG molecules in 226 movies
of 149 B. thetaiotaomicron cells based on imaging
photoactivatable fluorescently labeled SusG-HaloTag fusions
(Methods).

We analyzed this data with NOBIAS to infer the number of
diffusive states and to estimate the diffusion coefficient, weight
fraction, and type of motion for each state as was done for the
simulated data (Figures 2, 3). Additionally, NOBIAS analyzes 2D
trajectories with a 2D Gaussian function and can therefore infer
the diffusion coefficients for the x and y directions separately and
estimate the potential correlation between the two directions.
Though the simulations used symmetric tracks in an unbound
domain, the experiments measure motion on the surface of cells
with a long axis and a short axis, which may create an asymmetry
in the diffusion. We rotated the cell orientations to orient the long
axis in the x direction without rescaling (Figure 4A).We analyzed
this rotated dataset with NOBIAS and found that it converged to a
3-state model, with a very small (1.8%) fast state fraction
(Figure 4B). Interestingly, we found that the Dx and Dy values
were similar for each of the two slower states (Supplementary
Table S5), while they were significantly different for the fastest
state (Dx � 0.68 µm2/s vs. Dy � 0.45 µm2/s). This asymmetry for
the fast state indicates that it corresponds to free diffusion that is
constrained by the cell shape (and therefore is more constrained
in the short-axis y direction), while the symmetry for the two
slower states implies molecules that only diffuse regionally and
are not affected by the cell shape. Compared with previous SPT
analysis methods, NOBIAS provides a two-dimensional analysis
of the dynamics of experimental single-molecule trajectories.

We separated the track segments by the state sequence label
from the HDP-HMM module and placed each group into the
RNN classification module. The fastest state was predicted with
high probability (80%) to be Brownian motion (Figure 4C;
Supplementary Table S4), consistent with the asymmetry
between Dx and Dy that was attributed to free diffusion
(Figure 4B). The two slower states were predicted to be either
FBM or CTRW.We used a RNN regression network (Methods) to
estimate the anomalous exponent α for the track segments of the
two slower states and both were found to be subdiffusion
(α1 � 0.38, α2 � 0.46), consistent with the symmetry between Dx

and Dy found (Supplementary Table S5). This finding of
subdiffusion is also consistent with the role of SusG in starch
catabolism: we have previously found that SusG motion slows in
the presence of its amylopectin substrate, as well as when it
transiently associates other outer-membrane proteins, indicating
starch-mediated Sus complex formation (Karunatilaka et al., 2014).

DISCUSSION

Single-molecule tracking measures dynamics in biological
systems at high spatial and temporal resolution, but how to
make the best use of these tracking data for a broad set of
experimental conditions remains an analysis challenge in the

field (Shen et al., 2017; Elf and Barkefors, 2019). Here, we have
introduced NOBIAS to quantify single-molecule dynamics and to
associate these biophysical measurements with the underlying
biochemical function and biological processes. NOBIAS handles
complicated live-cell SPT datasets for which: 1) the number of
diffusive states is unknown, 2) mixtures of different diffusive
populations may exist, even within single trajectories, 3)
symmetry cannot be assumed between the x and y directions,
and 4) anomalous diffusion is possible. These features are enabled
based on applying Nonparametric Bayesian statistics (Teh et al.,
2006; Fox et al., 2008; Johnson andWillsky, 2013) to SPT datasets
that have the same means but different variance with a HDP-
HMM module that has a 2D Gaussian as the emission function
and then by further investigating the anomalous diffusion types
in the RNN module of NOBIAS.

Compared with previous applications of nonparametric
Bayesian statistics in this field (Persson et al., 2013; Karslake
et al., 2020; Heckert et al., 2021), the NOBIAS HDP-HMM
module is more robust and has high computational efficiency
(Supplementary Table S6). NOBIAS and SMAUG both consider
motion blur effects and their estimation of D for each state is
closer to the ground truth then other methods. As Bayesian
method with similar principle NOBIAS is almost 10 times
faster than SMAUG. This HDP-HMM module also provides a
multivariate output to quantify and correlate dynamics in
multiple directions instead of assuming symmetry
(Supplementary Table S7). We observed that for asymmetric
simulated trajectories, vbSPT overestimates the true number of
states, and SMAUG can only provide the average D of for each
diffusive state while NOBIAS provides the respective diffusion
coefficients in two directions. The high accuracy of step state
sequence prediction also enables the classification of anomalous
diffusion type in the NOBIAS RNN module. We also applied
SMAUG and vbSPT on the experimental dataset
(Supplementary Table S8): SMAUG ran slow on large
datasets and suggested four diffusive state, while vbSPT
suggested the best model to be 10 diffusive state which is hard
to explain their corresponding biological meanings.

A further advantage of NOBIAS lies in its ability to treat sets of
relatively short trajectories (10-step trajectories in the simulated
data of Figures 2, 3 and minimal 6-step trajectories in the
experimental data of Figure 4). The recent AnDi (Anomalous
Diffusion) Challenge (Muñoz-Gil et al., 2021) demonstrated that
Deep Learning and Neural Network methods are currently the
most powerful tools to study anomalous diffusion (Argun et al.,
2021; Gentili and Volpe, 2021). However, in this challenge, the
target dataset was an ideal collection of simulated anomalous
diffusion trajectories with 100–1,000 steps, and only the simple
case of one state transition in the middle part of a track was
considered. There are also probability-based models that consider
confinement and anomalous diffusion (Robson et al., 2013) and
Bayesian methods that directly predict the diffusion type (Thapa
et al., 2018; Cherstvy et al., 2019), but these analyses, like the
neural network-based methods, are used for very long trajectories
or assume a single diffusive state in each track. To apply a deep
learning-based diffusion type classifier to realistic simulated
trajectories and real experimental trajectories, NOBIAS
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segments the raw trajectories into collections of track segments
that belong to the same diffusive state (as identified by the HDP-
HMM module) and then predicts the diffusion type of the long
segments in the RNN module. Since different biophysical
diffusive states correspond to different biochemical functions
which will exhibit different diffusion types due to interactions
like confinement, binding, directional motion, NOBIAS enables a
thorough investigation of these biochemical roles by revealing the
diffusion coefficients, the transition probabilities between states,
and the anomalous diffusion behaviors. Ultimately, NOBIAS will
enable investigators to extract a complete information set from
SPT data and to understand the role of each tracked molecule,
even in the living cell.

Despite these strengths, NOBIAS has several limitations.
Firstly, as an HMM-based method, NOBIAS is limited by the
length of each track. Under the extreme case where only very
short trajectories (∼2–5 steps) are available, the HDP-HMM
module may suggest a number of states and posterior results
with extremely high uncertainty; probability-based models
(Rowland and Biteen, 2017; Hansen et al., 2018) or the
histogram-based Bayesian method DPMM (Heckert et al.,
2021) should be applied for these short trajectories. The track
length also limits the RNN module, as the trained network need
tracks with at least 20 steps for good classification performance
because some anomalous diffusion types are characterized by
memory of previous steps (Metzler et al., 2014). Therefore the
application of the RNN module is limited for short experimental
tracks. Secondly, NOBIAS performs the diffusive state estimation
based on apparent diffusion coefficient in the HDP-HMMmodule
and then carries out the anomalous diffusion classification in the
RNN module. NOBIAS therefore assumes that each biochemical
state has a unique average apparent diffusion coefficient. Although
the RNN module can classify the diffusion types of two different
diffusive states with the same diffusion coefficient, the HDP-HMM
module would fail to separate these processes. Furthermore, for
some diffusion types like LW, the trajectory displacements may
exhibit different types of dynamics even though the trajectories are
generated from one process. Finally, even for Brownian trajectories,
a single biochemical state might not be represented by a single
diffusion coefficient value. Thus, the actual number of biochemical
states may not be equal to the number of diffusive states. Future
development of NOBIAS could use spatial filtering to distinguish
between these similar biochemical states.

NOBIAS provides a pioneering and compatible framework for
the analysis of dynamical mixtures that also classifies the
anomalous diffusion types. Future development of NOBIAS
could include more types of diffusion and could integrate
the anomalous distributions directly into the Bayesian
framework for more accurate prediction of the stepwise
state labels and the diffusion types. Furthermore, extra
experimental corrections corresponding to the specific

microscope setting (Berglund, 2010; Lindén et al., 2017;
Hansen et al., 2018) could also help adapt NOBIAS more
broadly to different types of SPT datasets. Overall, NOBIAS
has provided a powerful framework to analyze of SPT dataset
with unknown number of diffusive states and potential
asymmetric diffusion, and to access the anomalous
diffusion type for each diffusive state. The combination of
nonparametric Bayesian statistics and Deep learning enables
NOBIAS to fully extract the rich dynamics information from
the SPT dataset.
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