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Abstract 
We assessed the potential of global positioning system (GPS)-equipped mobile phones for 
health-related studies. We demonstrated the use of GPS data as a means of collecting 
individuals’ activity patterns for personal exposure assessments and public health 
surveillance. The widespread use of mobile phones has enabled investigators to conduct 
exposure studies and to detect infectious disease at the individual level on a massive scale. 
However, still substantial uncertainties are present in converting raw GPS data into relevant 
information. To address these issues, we proposed three algorithms for pre-processing and 
classification of raw GPS data, and demonstrated their applications to real world data in a 
case study.  

1. Introduction 
Exposure models typically impose unrealistic assumptions such that subjects within a 

neighborhood are equally exposed to air pollution and/or most individuals spend their time at 
their residences. Similarly, a lack of understanding of human movement, which is an 
important component of disease transmission, has been considered as an obstacle to develop 
effective national communicable disease control programs. In exposure modelling, some 
improvements have been achieved by adopting a microenvironment (ME) approach where 
individuals’ time spent at MEs, such as outdoors, residence, and workplace, was explicitly 
taken into account. However, collecting the information on individuals’ time-activity patterns 
has been cost-, time-, and labor-intensive with limited reliability and accuracy. Comparably, 
aggregated data have limited efforts to reconstruct the complex and dynamic nature of real-
world contact networks, which plays a critical role of contact network in an outbreak of 
dangerous infectious disease. The emergence of lightweight, low-cost, and accurate GPS 
devices has provided a promising tool for objectively assessing the geographic positions of 
the environmental context in which health-related behaviors take place (Schipperijn et al. 
2014). GPS technology enabled investigators to capture daily trajectories of individuals with 
higher temporal resolution at increasing locational precision (Gerharz et al. 2013, Dias & 
Tchepel 2014), although the use of GPS data in health research is not without challenges. As 
reviewed by Krenn et al. (2011), the positional accuracy of GPS data collected in real world 
is often unacceptable in health studies, especially, over longer study periods. The data quality 
of GPS traces depends on the amount of data lost from signal drop-outs, loss of device 
battery power, and poor adherence of participants to following the specific research protocol. 
Despite the advancement in GPS technology, signal acquisition is still affected by the 
presence of tall buildings and significant uncertainties associated with the processing and 
classifying raw data are present.  

In this study we focus on the GPS data collected from a mobile phone with and without 
data connection. Our primary goal is to identify major MEs associated with health-related 
activities using GPS data. First we developed and applied a “selective resampler” to raw GPS 
data for pre-processing. Using the processed data, we identify significant places and travel 
modes using the two automated classification schemes. 
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2. Study Area and Data 
The GPS data are collected from Mobile phone (Moto X with Android 5.1) in a highly 
urbanized environment, Sydney in Australia, for 9 days in February 2016. We collected data 
for a week and two randomly selected weekdays from one subject (Figure 1). We used GPS 
Logger for Android (GPS Logger 2016), which is a lightweight, battery efficient app to log 
GPS coordinates at 1-minute interval to a file. This app runs in the background of the phone 
and upload the data to a cloud server every 30-minutes with varying positional accuracy. 

      
Figure 1. Activities identified by MEclassifier for weekday (left) and weekend (right) 
 

3. Methods 
3.1 Pre-processing raw GPS data  
We cleaned raw GPS data by excluding data points with high positional error (e.g., above 
100m) to avoid spurious results. Followed by the elimination of extreme outliers, we applied 
resampling to non-moving objects, i.e., GPS point associated with static activities. Our 
algorithm (“selective resampler”) is different from the previous work (Dodge et al., 2009), 
which enables us to avoid making unrealistic assumptions about human movement, such as it 
being linear, by performing resampling only on static activities. Our selective resampling 
algorithm requires the specification of two parameters: distance and time thresholds. These 
two parameters determine if any successive GPS points belong to a static activity with 
missing data points by comparing their separation distance and time interval to the specified 
thresholds. That is, resampling will be performed only if the distance and time interval 
between any two consecutive points is less than the distance threshold and greater than the 
time threshold, respectively.  

3.2 Extracting significant places from GPS traces  
We classified GPS traces to extract the information on static MEs using “MEclassifier”, 
which is an extension of the density-based spatio-temporal clustering algorithm, ST-
DBSCAN (Birant & Kut 2007). ST-DBSCAN detects non-linearly shaped clusters by 
separating clusters from noises by taking into account both spatial and temporal attributes. 
The unique feature of MEclassifier lies in the ability of discerning GPS-inherent error from 
true noise. We explicitly accounted for temporal continuity of GPS data by re-defining GPS 
noise, while defining moving activity as the GPS points between clusters. We developed a 
merging procedure to address acceptable GPS error and to simultaneously avoid situations 
where a single space-time cluster is divided into two MEs. We achieved this goal by defining 
two additional parameters to determine if any discrete cluster would be merged into a single 
cluster if both the minimum spatial distance between their centroids and the time interval are 
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smaller than the specified merge parameters. Lastly, we contextualized the space-time 
clusters by matching with the information from a baseline survey, such as home and work 
address of individuals, and digital parcel data. 

3.3 Detecting travel mode  
We developed a travel model detection algorithm, named as “TMdetector”, by combining 
statistical methods with machine learning algorithms. Any GPS trace connecting significant 
places (MEs identified from 3.2) was defined as a moving activity, which was further 
partitioned into multiple segments based on the mean and variance of speed. More 
specifically, we used a Pruned Exact Linear Time optimization method (Killick et al. 2012) 
to compute a modified Bayesian Information Criterion as a penalty function (Zhang & 
Siegmund 2007). The prediction of travel mode was obtained using random forest classifier 
based on speed, acceleration, and travel distance information.  

4. Results 
The GPS logger was programmed to record the location of the mobile device every minute, 
which yields a total of 1,440 GPS points per day. We quantified the amount of GPS data loss 
during the nine days of the study period, which varies day-to-day depending on the 
participant’s activity patterns (see Table 1). The performance of MEclassifier is sensitive to 
missing GPS data because density-based clustering algorithms rely on the number and the 
location of GPS traces. Table 1 shows percentage of missing data associated with static 
activities, to which the resampling algorithm was applied. We selected two resampling 
parameter values based on the sensitivity analysis, which indicates that non-trivial amount of 
data was lost: all activities from 7.30% to 21.60% and static activities from 1.32% to 8.48% 
(sensitivity analysis results are not reported due to the limited space). After resampling, we 
re-examined the percentage of missing data for static activities, which shows that 
improvement was made on the four days— week days (day 4,8) and weekend (day 6, 7)—on 
which the subject participated on non- routine activities than routine activities of “home-
work-home” as shown in Figure 1. 
 
Table 1. Missing data (%) in all activities (All), static activities alone (Static), and static 

activities after resampling (Re-static)  
Day 1 2 3 4 5 6 7 8 9 
All 7.30 16.28 10.42 8.26 12.44 17.44 10.22 10.56 21.60 
Static 2.62 6.11 2.64 6.81 1.32 7.44 8.48 5.77 6.25 
Re-Static 2.62 6.11 2.64 0.90 1.32 0.90 0.63 1.18 6.25 

 
We assessed the effects of resampling on classification by comparing the extracted 

information on MEs from raw GPS data and resampled data on day 4. Classification results 
were compared to the activity diary for validation, and the results are summarized in Table 2 
and and Figure 1(Right). The classification of the raw GPS data failed to reproduce Event 2 
while the Resampled data reproduce all the events. 

 
Table 2. The effects of resampling on classification results (Day 4)  

   Activity Diary Before 
Resampling 

After 
Resampling 

Event ME-Type TM-Type Start End Start End Start End 
1 Home  00:00 10:20 00:00 10:20 00:00 10:20 
  Walk 10:20 10:39 10:20 12:40 10:20 10:36 
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2 Other Indoor  10:39 12:00   10:36 12:02 
  Walk 12:00 12:40   12:02 12:40 
3 Home  12:40 14:31 12:40 14:31 12:40 14:31 
  Walk 14:35 14:45   14:31 14:43 
4 Other Indoor  14:45 16:36 14:43 16:36 14:43 16:36 
  Walk 16:36 16:45   16:36 16:50 
5 Home  16:45 23:59 16:50 23:59 16:50 23:59 

 

5. Discussion and Conclusion 
The importance of pre-processing of raw GPS data was highlighted for the applications in 
epidemiological studies, particularly when they are collected from mobile phones with 
potentially irregular data connection. The consequence of using missing GPS data may lead 
to biased or incorrect inference on the environments in which activities related to health 
outcomes occurred. Both the pre-processing and classification algorithms are an adjustment 
of existing methods, whereas the adjustment has critical implications to address research 
questions in epidemiological studies using GPS data collected from mobile phone. This paper 
presented a subset of our on-going project where the performance of the proposed algorithms 
has been tested using data collected from different regions over different periods. In near 
future we plan to integrate the extracted ME information with the air pollution concentrations 
to estimate personal exposure to air pollution. In addition, the identified time-activity patterns 
will be used to provide information on individuals’ interactions and travel behaviours, which 
are the crucial information to capture dispersion process of influenza. 
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