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Abstract. We introduce fluctuating tableaux, which subsume many classes of tableaux
that have been previously studied, including (generalized) oscillating, vacillating, rational,
alternating, standard, and transpose semistandard tableaux. Our main contribution is the
introduction of promotion permutations and promotion matrices, which are new even for
standard tableaux. We provide characterizations in terms of Bender–Knuth involutions, jeu
de taquin, and crystals. We prove key properties in the rectangular case about the behavior of
promotion permutations under promotion and evacuation. We also give a full development
of the basic combinatorics and representation theory of fluctuating tableaux.

Our motivation comes from our companion paper, where we use these results in the de-
velopment of a new rotation-invariant SL4-web basis. Basis elements are given by certain
planar graphs and are constructed so that important algebraic operations can be performed
diagrammatically. These planar graphs are indexed by fluctuating tableaux, tableau promo-
tion corresponds to graph rotation, and promotion permutations correspond to key graphical
information.
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1. Introduction

Tableaux are elementary, yet powerful, objects. They are defined simply as ‘numbers in boxes
with rules’, yet they are central objects in algebraic combinatorics. Tableaux exhibit excellent
properties from many perspectives, including enumerative (hook and Jacobi–Trudi formulas),
algebraic (plactic monoid, crystals), dynamical (promotion, evacuation), and representation-
theoretic (bases of Specht and Schur modules, etc.). Many of the most important families of
tableaux are permuted by the action of a promotion operator (see, e.g., [Sch72, Pec14, Pat19]),
which will be our main focus in this paper. While promotion on tableaux of an arbitrary-shaped
partition may have large order, an amazing fact is that promotion on various types of rectangular
tableaux has order dividing n, the maximum allowed entry. This is not only true for standard
and semistandard Young tableaux (see, e.g., [Hai92, Rho10]), but also for generalized oscillating
tableaux [Pat19].

Our motivation for this project comes from combinatorial representation theory. Specif-
ically, in the companion papers [GPP+23a, GPP+24] we develop new rotation-invariant web
bases for the Specht modules S(d4) and S(2d), building on analogous constructions for S(d2)

(see [TL71, KR84]) and S(d3) [Kup96]. Web bases have basis elements given by certain pla-
nar graphs and are constructed in such a way that important algebraic operations can be carried
out diagrammatically. A guiding principle behind our new construction in [GPP+23a] is that
the long cycle c = (1 2 · · · n) ∈ Sn should act (up to signs) on basis elements as the permuta-
tion given by rotation of planar graphs. Moreover, the key bijection between web diagrams and
tableaux should carry the action of rotation to the promotion action on tableaux. In this paper,
we focus solely on tableau combinatorics without reference to webs.

To carry out the above program, we need to develop notions of promotion permutations and
promotion matrices. These ideas are the main contribution of the current paper and are new
even in the case of standard tableaux. For the sake of being able to make inductive arguments
in [GPP+23a], we need however to work in a setting that generalizes Patrias’ generalized oscil-
lating tableaux. To avoid the monstrous name ‘generalized generalized oscillating tableaux,’ we
propose the new name fluctuating tableaux for this class (see Definition 2.1) and work in that
generality throughout this paper. As discussed in Remark 8.19, fluctuating tableaux subsume
many classes of tableaux that have been previously studied, including standard, dual semistan-
dard, oscillating, generalized oscillating, vacillating, rational, and alternating tableaux.

Our main construction associates a promotion matrix to a fluctuating tableau of general
shape. Indeed, we give six different characterizations of this construction:

(1) Bender–Knuth involution swap positions (see Definition 5.14),

(2) decorated local rule diagrams (see Proposition 5.19),

(3) row slides in jeu de taquin (see Proposition 6.9),
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(4) antiexcedance sets (see Theorem 6.12),

(5) first balance point conditions (see Proposition 8.22), and

(6) a Kashiwara crystal raising algorithm (see Theorem 8.24).

When the shape is rectangular of r rows, we further transform the promotion matrix to an
(r − 1)-tuple (prom1, . . . , promr−1) of promotion permutations. The tableau may be uniquely
reconstructed from its promotion permutations. For example, for a standard tableau T , the values
appearing in the first i rows are exactly the antiexcedances of the permutation promi. Our main
result, Theorem 6.7, establishes important structural properties of these permutations, which are
critical to the companion paper [GPP+23a] and also likely of independent interest. We also show
in Theorem 6.5 that promotion has order dividing n even in the rectangular fluctuating setting,
unifying various special cases appearing throughout the literature on promotion.

For r = 2, prom1 is the involution seen diagrammatically as the noncrossing matching corre-
sponding to the 2-row standard Young tableaux via the usual Catalan bijection (see, e.g., [Sta99,
Tym12]). The promotion permutation prom1 of a 3-row rectangular standard Young tableaux
was defined and studied in [HR22], where it was further noted that prom2 could also be defined,
but that it would necessarily be the inverse of prom1. We show in Theorem 6.7 these properties
hold more generally for rectangular fluctuating tableaux with an arbitrary number r of rows:
promi is always the inverse of promr−i, and, when r is even, promr/2 is a fixed-point free involu-
tion. Theorem 6.12 shows that the antiexcedances of the promotion permutations determine the
entries of the corresponding tableau.

We give an example of promotion permutations for a rectangular standard Young tableau
below. Precise definitions appear later in the paper.

Example 1.1. Consider the standard Young tableau below. Its promotion permutations in one-
line notation are shown, with the antiexcedances highlighted in blue ■.

E =

1 2 5 6

3 4 7 10

8 9 11 14

12 13 15 16

prom2(E) = 14 9 16 15 11 8 13 6 2 12 5 10 7 1 4 3

prom1(E) = 4 3 14 10 9 7 8 16 13 11 12 6 5 15 2 1

prom3(E) = 16 15 2 1 13 12 6 7 5 4 10 11 9 3 14 8

The reader may check that the permutations prom1(E) and prom3(E) are inverses of each other
and that prom2(E) is a fixed-point free involution. Note also that the antiexcedances of promi(E)
are exactly the entries in the first i rows of E.

Section 7 illustrates our main results, Theorems 6.5 and 6.7, by showing in Corollary 7.1
that promotion and evacuation act as rotation and reflection on promotion permutation diagrams.
This yields a dihedral model of promotion and evacuation on rectangular fluctuating tableaux
(see Example 7.2). These diagrams are new even for standard tableaux.

Section 8 gives a crystal-theoretic interpretation of the purely combinatorial results of the
preceding sections. The main result (Theorem 8.24) is a crystal raising algorithm to compute



4 Christian Gaetz et al.

promotion permutations and matrices. We also use crystal techniques to prove the balance point
characterization, Proposition 8.22.

The rest of this paper is devoted to proving many other beautiful properties of tableaux in
the fluctuating setting, such as interpretations of promotion via growth diagrams (Section 3),
Bender–Knuth involutions (Section 4.1), jeu de taquin (Section 4.4), and crystals (Section 8).
Much of this material is known to experts in the semistandard setting. However, even for semi-
standard tableaux, it is hard or impossible to find explicit proofs in the literature for many of
these facts. We hope that in giving the technicalities needed for the general fluctuating case, our
paper can also serve as a useful compendium of these details in more traditional settings.

This paper is organized as follows. Section 2 defines fluctuating tableaux and relates these
tableaux to representation theory. Sections 3 and 4 give rigorous proofs of many standard facts
about tableaux at the level of generality of fluctuating tableaux. In Sections 5 and 6, we move
to ideas that are new even for standard Young tableaux: promotion matrices, promotion per-
mutations, and their properties. Section 7 applies promotion permutations to give a dihedral
model of promotion and evacuation for rectangular fluctuating tableaux. Section 8 relates the
constructions of this paper to Kashiwara’s theory of crystals.

An extended abstract describing part of this work appears in the proceedings of FPSAC 2023
[GPP+23b].

2. Fluctuating tableaux

Here we define fluctuating tableaux, describe their connections to representation theory, and
introduce some associated basic combinatorial notions.

2.1. Generalized partitions and fluctuating tableaux

A generalized partition with r rows is a tuple λ = (λ1, . . . , λr) ∈ Zr where λ1 ⩾ · · · ⩾ λr.
We visualize generalized partitions as diagrams, which are semi-infinite collections of cells (or
boxes) as in Figure 2.1, namely

{(i, j) ∈ Z× Z : 1 ⩽ i ⩽ r and j ⩽ λi}

using matrix indexing so that row 1 is on top. (Stembridge [Ste87] refers to generalized parti-
tions as staircases; we follow [Pat19] in preferring to avoid potential confusion with staircase
partitions (k, k − 1, . . . , 1).)

Let Ar be the collection of subsets of {±1, . . . ,±r} whose elements are all of the
same sign. We write ei for the i-th standard basis vector of Zr. If S ∈ Ar is a positive
subset of {±1, . . . ,±r}, we define eS =

∑
i∈S ei, while if S is a negative subset, we de-

fine eS = −
∑

i∈S e−i. We say two r-row generalized partitions λ, µ differ by a skew column
if λ = µ+ eS for some S ∈ Ar. For c ⩾ 0, we furthermore write µ c→ λ if λ is obtained from µ

by adding a skew column of c boxes and µ
−c→ λ if λ is obtained from µ by removing a skew

column of c boxes. We often write −c as c. We further write c = (c, . . . , c).
The following is the fundamental combinatorial object considered in this paper.
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λ = (2, 2, 1, 0,−2)

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2.1: A generalized partition with r = 5 rows. The right border has been drawn in bold.

T = 0000
2→ 1100

1→ 1101
3→ 2110

1→ 2210
2→ 2100

2→ 2111
1→ 1111

1 3 7

1 4 5

3 5 6

2 3 6

Figure 2.2: The visualization of our running example fluctuating tableau T with 4 rows, length 7,
shape 1 = (1, 1, 1, 1), and type (2, 1, 3, 1, 2, 2, 1). Cells in the (final) shape are in light grey. The
thick line indicates the outline of the initial shape 0 = (0, 0, 0, 0).

Definition 2.1. An r-row skew fluctuating tableau of length n is a sequence

T = λ0 c1→ λ1 c2→ · · · cn→ λn

of r-row generalized partitions such that λi−1 and λi differ by a skew column obtained by
adding ci or removing −ci cells for all 1 ⩽ i ⩽ n. The partition λ0 is called the initial shape
of T and λn is called the final shape of T . The sequence c = (c1, . . . , cn) ∈ {0,±1, . . . ,±r}n
is the type of T . When λ0 = 0 = (0, . . . , 0), we drop the adjective “skew” and refer to the
final shape as simply the shape. Let FT(r, n, µ, λ, c) be the set of skew fluctuating tableaux
with r rows, length n, initial shape µ, final shape λ, and type c. We will drop some parameters
from FT(r, n, µ, λ, c) as convenient.

Building on work of Patrias [Pat19], we visualize fluctuating tableaux by writing i in the
added cells of λi − λi−1 or i in the removed cells of λi−1 − λi; see Figure 2.2 for an example.
We indicate the outline of the initial shape with a bold line as in Figure 2.1.

Our main applications of fluctuating tableaux involve the natural fluctuating analogue of
rectangular standard tableaux.

Definition 2.2. A fluctuating tableau is rectangular if its shape λ is a generalized rectangle,
meaning λ1 = · · · = λr. We say a fluctuating tableau of type (c1, . . . , cn) is of oscillating type
if each cj ∈ {±1}.
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Remark 2.3. Fluctuating tableaux whose type consists of non-negative integers are row-strict or
“transpose semistandard” tableaux. Standard tableaux are fluctuating tableaux of type (1, . . . , 1).
In the context of semistandard tableaux, “type” is often referred to as “content.” For the purposes
of promotion matrices and permutations, the reader who is not interested in the full generality
of fluctuating tableaux will lose little by considering the transpose semistandard case.

Fluctuating tableaux of oscillating type are referred to as up-down staircase tableaux
in [Ste87] and as generalized oscillating tableaux in [Pat19]. We use the terminology
from [Pat19], but drop the word ‘generalized’ for brevity. In [PP23], the rectangular r = 3
cases with type consisting of 1’s and 2’s are called Russell tableaux after [Rus13]. Allowing
skew columns to be added or removed is essential our work in [GPP+23a] on applications of
fluctuating tableaux to webs and the representation category of SL4.

2.2. Fluctuating tableaux and GLr(C) representation theory

The irreducible rational representations of GLr(C) are naturally indexed by r-row generalized
partitions (see, e.g., [Ste87, §2]). Write V (λ) for the irreducible associated to λ. Consider the
tuples ωi = (1i, 0r−i) and ωi = ωi = (0r−i, 1

i
), which correspond to adding or removing a

column of size i. These tuples also correspond to exterior powers,

V (ωi) ∼=
∧i

V and V (ωi) ∼=
∧i

V ∗ (0 ⩽ i ⩽ r),

where V ∼= Cr is the defining representation and V ∗ is the dual of V . In particular,
V (1) = V (ωr) ∼= det and V (1) = V (ω∗

r)
∼= det∗ ∼= 1/ det = det−1. As a shorthand, we

write
∧−i V :=

∧i V ∗.
Given a type c = (c1, . . . , cn), let∧c

V =
∧c1

V ⊗ · · · ⊗
∧cn

V. (2.1)

The dual Pieri rule gives the following. A crystal-theoretic proof is described in Section 8.3.

Theorem 2.4. The multiplicity of the irreducible GLr(C) representation V (λ) in
∧c V is the

number of r-row fluctuating tableaux of shape λ and type c.

Example 2.5. Recall that V ⊗V ∗ may be identified with the set of r×r matrices. Thus
∧(1,−1) V

is the adjoint representation of GLr(C). When c = (1,−1, 1,−1, . . . , 1,−1) has length 2k,∧c V is the kth tensor power of the adjoint representation. Stembridge [Ste87, §4] refers to
the corresponding fluctuating tableaux as alternating tableaux, since they alternately add and
remove single cells. The GLr(C)-irreducible decomposition of (V ⊗ V ∗)⊗k may be computed
by enumerating all alternating tableaux of length 2k according to their final shape.

Let Sn denote the symmetric group of permutations of [n] := {1, . . . , n}. The factors in the
tensor products

∧c V may be permuted without changing the isomorphism type. Consequently,
we have the following symmetry in fluctuating tableaux.

Corollary 2.6. For any permutation σ ∈ Sn,

#FT(r, n, λ, (c1, . . . , cn)) = #FT(r, n, λ, (cσ1 , . . . , cσn)).
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We give a direct combinatorial proof of Corollary 2.6 in Section 4.1 by defining Bender–
Knuth involutions on (skew) fluctuating tableaux. A crystal-theoretic argument is discussed in
Section 8.3.

It is well-known that the representations
∧c V contain all of the irreducible rational repre-

sentations V (λ) of GLr(C). For many purposes, one may study the
∧c V instead of the V (λ).

To make this statement precise, we first need an additional definition.

Definition 2.7. The extremal fluctuating tableau of type c is the unique fluctuating tableau ob-
tained by starting at ∅ and successively adding top-justified columns of size ci if ci ⩾ 0 or
removing bottom-justified columns of size −ci if ci ⩽ 0.

Example 2.8. The extremal fluctuating tableau of type (2, 1, 3, 2, 2, 2, 1) has shape (4, 4, 0, 3):

1 3 4 6

1 3 4 6

3 5

7 5 2

.

The shape of the extremal fluctuating tableau of type c is the generalized partition

ωc =
n∑

i=1

ωci .

Moreover, every generalized partition is of the formωc for some c. Define lexicographic order on
tuples of integers by c <lex d if the leftmost nonzero entry of d−c is positive. It is straightforward
to see that the extremal fluctuating tableau of type c is the unique fluctuating tableau of type c and
shape ωc, and that all other fluctuating tableaux of type c have smaller final shape. In particular,
we have the following.

Proposition 2.9. There is a unique copy of V (ωc) in
∧c V . Each other V (λ) in

∧c V
has λ <lex ωc.

2.3. Fluctuating tableaux and SLr(C) representation theory

We now summarize the role of fluctuating tableaux in the representation theory of SLr(C). The
rational representations are the same as for GLr(C), except that det ∼= 1, and more gener-
ally V (λ) ∼= V (µ) if and only if λ = µ+ c · 1 for some c ∈ Z. Consequently, we say the weight
of a fluctuating tableau is the image of the shape in the quotient Zr/1Z. Note that the weight 0
fluctuating tableaux are precisely the rectangular fluctuating tableaux.

Let InvSLr(W ) denote the subspace of SLr-invariant elements of the representation W .
Equivalently, this is the isotypic component of W with trivial SLr-action. By Theorem 2.4
and the preceding paragraph, we have the following.
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Proposition 2.10. The r-row rectangular fluctuating tableaux of type c index a basis of

InvSLr

(∧c
V
)
.

In particular, rectangular fluctuating tableaux with r rows and type (1n) are precisely
r × (n/r) rectangular standard tableaux, which index a basis for InvSLr(V

⊗n). This algebra
of invariants may also be identified with a graded piece of the homogeneous coordinate ring of
a Grassmannian with respect to its Plücker embedding.

2.4. Lattice words

Recall from Section 2.1, Ar is the alphabet consisting of subsets of {±1, . . . ,±r}
whose elements are all of the same sign. The lattice word associated to a skew fluctuating
tableau T ∈ FT(r, n) is the word L = L(T ) = w1 . . . wn in Ar, where λi = λi−1 + ewi

.
We may recover T from L(T ) and the initial shape λ0, so in the non-skew case we sometimes
identify T and L(T ). In our running example of Figure 2.2, L(T ) = {12}4{134}2{32}{34}1.
Here we have suppressed commas between elements and we have suppressed the curly braces
for singletons.

A word w is a lattice word of a (non-skew) fluctuating tableau if and only if for every
prefix w1 . . . wk and every 1 ⩽ a ⩽ b ⩽ r, we have

(ew1 + · · ·+ ewk
)a ⩾ (ew1 + · · ·+ ewk

)b. (2.2)

More concretely, in each prefix we require the number of a’s minus the number of a’s to be
weakly greater than the number of b’s minus the number of b’s. A fluctuating tableau is rect-
angular if and only if equality holds in (2.2) for all a, b with k = n; in this case, we call L
balanced.

2.5. Three fundamental involutions

We now define three fundamental involutions on fluctuating tableaux. They are responsible
for a pervasive 4-fold symmetry in many constructions. For example, the 14 growth rules of
Khovanov–Kuperberg [KK99] in fact may be grouped into six orbits under these symmetries,
with five of size 2 and one of size 4. See [RSSW01, §3] for a closely related 4-fold symmetry.

Definition 2.11. For any tuple α = (α1, . . . , αr), set rev(α) := (αr, . . . , α1). Let

τ
(
µ

c→ λ
)
:= λ

c→ µ

ϖ
(
µ

c→ λ
)
:= rev(−µ) c→ rev(−λ)

ε
(
µ

c→ λ
)
:= rev(−λ) c→ rev(−µ).

We call τ time reversal. Our notation for ϖ (“varpi”) is inspired by the natural involution ω
on symmetric functions that exchanges elementary and complete homogeneous symmetric func-
tions; ϖ corresponds to dualization on the level of rational GLr(C)-representations. We will
later relate ε to evacuation on rectangular tableaux. The following properties are clear.
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Lemma 2.12. The operators τ,ϖ, ε satisfy

♦ τ 2 = ϖ2 = ε2 = id;

♦ τ,ϖ, ε pairwise commute; and

♦ each is the composite of the other two.

That is, they form a representation of a Klein 4-group.

We extend the definitions of τ,ϖ, ε in the obvious way to apply to a fluctuating tableau T ,
obtaining fluctuating tableaux τ(T ), ϖ(T ), and ε(T ). Note that the initial and final shapes of
a fluctuating tableau are swapped by τ . In the rectangular case, we may subtract c throughout
to ensure the result begins with 0, in which case τ sends rectangular fluctuating tableaux with
final shape c to rectangular fluctuating tableaux with final shape −c. For ϖ, the initial and final
shapes are not swapped, but they are replaced by their negative reversals, so ϖ sends rectangular
fluctuating tableaux of final shape c to rectangular fluctuating tableaux of final shape −c. The
involution ε is the composite of these two and hence is an involution on rectangular fluctuating
tableaux with final shape c. Such constant shifts do not materially affect any of our arguments,
so we do not mention them further.

Example 2.13. Letting T be the rectangular fluctuating tableau in Figure 2.2, we have

τ(T ) =

7 1 5

7 3 4

2 3 5

5 6 2

ϖ(T ) =

6 2 3

3 5 6

4 5 1

3 7 1

ε(T ) =

2 5 6

2 3 5

3 4 7

1 5 7

.

The effects of τ,ϖ, ε on lattice words are as follows.

Definition 2.14. Consider a word L = w1 . . . wn in the alphabet Ar. Define

(i) τ(L) = wn . . . w1;

(ii) ϖ(L) = ϖ(w1) . . . ϖ(wn), where ϖ(w) replaces each element i in w with − sgn(i)(r −
|i|+ 1); and

(iii) ε(L) = ε(wn) . . . ε(w1), where ε(w) replaces each element i in w with sgn(i)(r− |i|+1).

It is easy to see that

L(τ(T )) = τ(L(T )), L(ϖ(T )) = ϖ(L(T )), and L(ε(T )) = ε(L(T )).
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Example 2.15. Given the fluctuating tableau T in Figure 2.2, the lattice word is

L(T ) = {12}4{134}2{32}{34}1.

We then have

τ(L(T )) = 1{43}{23}2{431}4{21},
ϖ(L(T )) = {43}1{421}3{23}{21}4, and
ε(L(T )) = 4{12}{32}3{124}1{34}.

Note that these lattice words correspond to the tableaux depicted in Example 2.13.

When T is rectangular, we declare the initial shape of τ(T ) and ε(T ) to be 0, so the resulting
rectangular fluctuating tableaux are precisely encoded by τ(L(T )) and ε(L(T )).

2.6. Oscillization

It will sometimes be convenient to reduce to the oscillating case. The following operation is the
natural extension of standardization to fluctuating tableaux. For our purposes, standardization
additionally involves applying the “switch” maps which will be encountered shortly in Defini-
tion 3.2.

Definition 2.16. Consider µ c→ λ. Let λ = µ + e{i1<···<ic}. The oscillization of µ c→ λ is the
sequence

osc(µ
c→ λ) := µ→ µ1 → · · · → µ|c|−1 → λ,

where
µj = µj−1 + eij

with µ0 := µ and µ|c| := λ.

Given a fluctuating tableau T = λ0 → λ1 → · · · → λn, let osc(T ) be the concatenation
of osc(λi−1 → λi) for 1 ⩽ i ⩽ n. A fluctuating tableau is in the image of oscillization if and
only if it is of oscillating type. Oscillization may be described easily in terms of lattice words.
To compute L(osc(T )), we simply erase the curly braces from L(T ), where elements of each
letter are written in increasing order, keeping the same initial and final shape. In our running
example from Figure 2.2, osc(T ) = 124134232341. Compare Figure 2.2 to Figure 2.3 for a
pictorial interpretation.

3. Local rules, promotion, and evacuation

There are many ways one may define promotion: via Bender–Knuth involutions, jeu de taquin,
growth rules, or cactus group actions based on Lusztig’s involution. We show all of these defi-
nitions are equivalent for fluctuating tableaux. These equivalences are known to experts for the
main special cases, such as for semistandard tableaux; such experts can probably safely skip this
section and the next one, as the extension to fluctuating tableaux behaves mostly as expected.
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osc(T ) =

1 4 12

2 7 9

5 8 10

3 6 11

Figure 2.3: The oscillization of the fluctuating tableau T from Figure 2.2.

We begin in this section with the most combinatorially simple definition of promotion and
evacuation using a direct description of local rules, borrowed from van Leeuwen [vL98]. In
Section 4, we then define the corresponding Bender–Knuth involutions tableau-theoretically and
describe jeu de taquin on fluctuating tableaux. We show there that all three combinatorial defi-
nitions of promotion are equivalent.

Our emphasis on local rule diagrams has many similarities with the approaches taken in
special cases by Chmutov–Glick–Pylyavskyy [CGP20, §3] and Westbury [Wes18, §5-6], which
in turn built on work of Lenart [Len08] and Henriques–Kamnitzer [HK06]; see also, [BPS16,
§2] and [Pat19].

3.1. Local rules

Fomin’s growth diagrams (see, e.g., [Sta99, Appendix 1]) can be used to define promotion,
evacuation, and jeu de taquin for (semi)standard tableaux. In [vL98, Rule 4.1.1], van Leeuwen
introduced certain explicit local rules generalizing those used to construct Fomin’s growth dia-
grams. Here, we apply van Leeuwen’s construction in the context of fluctuating tableaux, where
we allow both addition and removal of skew columns. The approach we take here is intended
to be as combinatorially direct and self-contained as possible, with no reference to Littelmann
paths, dominant weights, etc.

Given a tuple α ∈ Zr, let sort(α) denote the generalized partition that is the weakly decreas-
ing rearrangement of α.

Definition 3.1. A local rule diagram is a square

λ ν

κ µ

d

c

d

c (3.1)

where
µ = sort(ν + κ− λ) and λ = sort(ν + κ− µ), (3.2)

with pointwise addition and subtraction.
A local rule fills in a missing lower right or upper left corner in (3.1) with µ or λ as deter-

mined by (3.2). See Figure 3.1 for an application of local rules. We will shortly see that the two
conditions of (3.2) imply each other, so local rules result in local rule diagrams.
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22011 32000

11112 sort(21101) = 21011

3

4

3

4

Figure 3.1: An example of using a local rule to fill in the lower right corner of a local rule
diagram. Here, note that 21101 = 32000 + 11112− 22011.

In the standard case, the local rules are uniquely determined by the fact that there are at
most two ways to complete (3.1), since rank two intervals in Young’s lattice have either 1 or 2
intermediate elements. Given κ

1→ λ
1→ ν, we have µ = λ in the first case and µ ̸= λ in the

second.
We may typically reduce to the semistandard case using the following operators, which are

combinatorial shadows of the GLr(C)-isomorphisms
∧c V ∼=

∧r−c V ∗ ⊗ det.

Definition 3.2. The switch involution is given by

switch(µ
c→ λ) = µ

− sgn(c)(r−|c|)−−−−−−−−→ λ− sgn(c)1.

Example 3.3. Consider 2210 2→ 2100. Applying switch gives 2210 2→ 3211. Note that switch
has replaced taking away 2 boxes with instead adding the complementary 2 boxes. Similarly, we
have switch(1100 1→ 1101) = 1100

3→ 2210.

Lemma 3.4. Applying local rules results in local rule diagrams. That is, if κ c→ λ
d→ ν is given

and µ = sort(ν + κ− λ), then λ = sort(ν + κ− µ).

Proof. Say λ = κ + eS and ν = λ + eT . Then ν + κ − λ = κ + eT . Using switch operators,
we may assume without loss of generality that c, d ⩾ 0 andS, T ⊂ [r]. Let∆ = (S∪T )−(S∩T )
be the symmetric difference. Define an equivalence relation on ∆ where i ≡ j if and
only if κi = κj . Since λ and ν are generalized partitions, the equivalence classes of ∆ are
of the form {i + 1, . . . , i + a + b}, for some a, b ∈ N, where {i + 1, . . . , i + a} ⊆ S
and {i+ a+ 1, . . . , i+ a+ b} ⊆ T .

LetU be the union ofS∩T and intervals {i+1, . . . , i+b} for each equivalence class of∆, and
let V be the union of S ∩ T and the intervals {i + b + 1, . . . , i + b + a}, so
that eS + eT = eU + eV . We now find that sort(κ+ eT ) = κ+ eU and sort(κ+ eV ) = κ+ eS .
Hence, µ = sort(ν + κ − λ) = sort(κ + eT ) = κ + eU , ν = µ + eV , κ d→ µ

c→ ν,
and sort(ν + κ− µ) = sort(κ+ eV ) = κ+ eS = λ.

The τ,ϖ, ε involutions of Definition 2.11 may also be applied to local rule diagrams.
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Lemma 3.5. Applying τ,ϖ, ε to local rule diagrams results in local rule diagrams:

λ ν

κ µ

d

c

d

c

λ ν

κ µ

d

c

d

c

rev(−λ) rev(−ν)

rev(−κ) rev(−µ)

d

c

d

c

rev(−λ) rev(−ν)

rev(−κ) rev(−µ)

d

c

d

c

τ

ε

ϖ

ε

τ

.

Proof. The result is clear for τ . For ϖ, it reduces to the fact that

sort(− rev(α)) = rev(− sort(α)).

Finally, by Lemma 2.12, ε is the composite of τ and ϖ.

For later use, it will be convenient to consistently orient growth diagrams with edges going
north or east. Consequently when applying τ or ε, we rotate all diagrams by 180◦:

τ


λ ν

κ µ

d

c

d

c

 =

µ κ

ν λ

d

c

d

c and ε


λ ν

κ µ

d

c

d

c

 =

rev(−µ) rev(−κ)

rev(−ν) rev(−λ)

d

c

d

c

3.2. Promotion and evacuation diagrams

Given a skew fluctuating tableau, we use local rules to fill certain diagrams, allowing us to
compute promotion, evacuation, and dual evacuation.

Definition 3.6. The promotion diagram of the skew fluctuating tableau

T = λ0 c1→ λ1 c2→ · · · cn→ λn

is obtained by applying the local rules to recursively fill the bottom row of the diagram

P-diagram(T ) :=

λ00 λ01 · · · λ0n

λ11 · · · λ1n λ1,n+1

c1

T

c2 cn

c2

c1

P(T )

cn

c1

c1

c1
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from left to right, subject to the boundary conditions

λ0i = λi, λ11 = λ0, and λ1,n+1 = λn.

The promotion of T is the bottom row of P-diagram(T ):

P(T ) := λ11 c2→ · · · cn→ λ1n c1→ λ1,n+1.

Definition 3.7. The evacuation diagram and dual evacuation diagram of the skew fluctuating
tableau

T = λ0 c1→ λ1 c2→ · · · cn→ λn

are obtained by recursively applying local rules to fill the triangles

E-diagram(T ) = E*-diagram(T ) =

λ00 λ01 · · · λ0n

λ11 · · · λ1n

. . .
...

λnn

c1

T

c2 cn

c2

c1

cn

c1 c1

cn

c2 c2

cn

λ−n,0

...
. . .

λ−1,0 · · · λ−1,n−1

λ00 · · · λ0,n−1 λ0,n

c1

c1

c1

cn−1

cn−1

cn−1

cn

c1

T

cn

cn−1

cn

cn

from upper left to lower right in the case of E-diagram(T ) and from lower right to upper left in
the case of E*-diagram(T ), subject to the boundary conditions

λ0i = λi, λii = λ0, and λi,n+i = λn.

The evacuation of T is the right column of E-diagram(T ):

E(T ) = λnn cn→ · · · c2→ λ1n c1→ λ0n.

Similarly, the dual evacuation of T is the left column of E*-diagram(T ):

E*(T ) = λ00 cn→ λ−1,0 cn−1→ · · · c1→ λ−n,0.

We combine promotion, evacuation, and dual evacuation diagrams in the following parallel-
ogram.
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Definition 3.8. The promotion-evacuation diagram of the skew fluctuating tableau
T = λ0 c1→ λ1 c2→ · · · cn→ λn

is obtained by recursively applying local rules to fill the parallelogram

PE-diagram(T ) :=

λ00 λ01 · · · λ0n

λ11 · · · λ1n λ1,n+1

. . .
...

...
. . .

λnn λn,n+1 · · · λn,2n

c1

T

c2 cn

c2

c1

cn

c1

c1

c1

cn

c2

c1

c2

c2

c2

c1

cn

c2

cn

cn

cn

from upper left to lower right subject to the boundary conditions
λ0i = λi, λii = λ0, and λi,n+i = λn.

Note that the ith power of promotion of T is the ith row of PE-diagram(T ), indexing from 0
at the top. In particular, the bottom row ofPE-diagram(T ) isPn(T ). The promotion-evacuation
diagram is the concatenation of evacuation and dual evacuation diagrams:

PE-diagram(T ) = E-diagram(T ) ∥ E*-diagram(Pn(T )). (3.3)
Example 3.9. For the fluctuating tableau T of Figure 2.2, PE-diagram(T ) is
0000 1100 1101 2110 2210 2100 2111 1111

0000 0001 1100 2100 2001 2100 1100 1111

0000 1110 2110 2101 2200 2100 2111 1111

0000 1000 1011 1101 1001 1100 1000 1111

0000 0011 1001 1011 1101 1001 1110 1111

0000 1100 1101 2111 2101 2210 2211 1111

0000 0001 1101 1111 2100 2110 1100 1111

0000 1100 1101 2110 2210 2100 2111 1111.
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In particular,

T = 0000→ 1100→ 1101→ 2110→ 2210→ 2100→ 2111→ 1111,

P(T ) = 0000→ 0001→ 1100→ 2100→ 2001→ 2100→ 1100→ 1111,

E(T ) = 0000→ 0001→ 1101→ 1011→ 1001→ 2100→ 1100→ 1111, and
E*(T ) = E(T ).

In terms of lattice words,

L(T ) = {12}4{134}2{32}{34}1,
L(P(T )) = 4{124}1{42}{24}1{34}, and
L(E(T )) = 4{12}{32}3{124}1{34}

= L(E*(T )).

In this particular case, Pn(T ) = T , E(T ) = E*(T ), and L(E(T )) = ε(L(T )). As we will see,
these properties are equivalent in general and moreover always hold when T is rectangular.

We will refer to promotion diagrams, evacuation diagrams, promotion-evacuation diagrams,
etc., as growth diagrams.
Remark 3.10. The literature is inconsistent regarding the definition of “promotion.” If we replace
P-diagram(T ) with the dual notion as in E*-diagram(T ), the corresponding dual version of
promotion is P−1. Some sources hence use “promotion” to refer to P−1.

The following properties are straightforward to verify from the definitions and the symmetry
of local rules.

Lemma 3.11. As operators on fluctuating tableaux, we have the following:

τ ◦ E-diagram = E*-diagram ◦ τ
ε ◦ E-diagram = E*-diagram ◦ ε
ϖ ◦ E-diagram = E-diagram ◦ϖ

τ ◦ E*-diagram = E-diagram ◦ τ
ε ◦ E*-diagram = E-diagram ◦ ε
ϖ ◦ E*-diagram = E*-diagram ◦ϖ

τ ◦P-diagram = P-diagram ◦ τ ◦P
ε ◦P-diagram = P-diagram ◦ ε ◦P
ϖ ◦P-diagram = P-diagram ◦ϖ

τ ◦PE-diagram = PE-diagram ◦ E ◦ E* ◦ τ
ε ◦PE-diagram = PE-diagram ◦ E ◦ E* ◦ ε
ϖ ◦PE-diagram = PE-diagram ◦ϖ .

For standard tableaux, the following is [Sta09, Theorem 2.1]. The proof for fluctuating
tableaux is essentially the same and we omit it.

Lemma 3.12. On length n skew fluctuating tableaux, we have the following:

(i) P is invertible;

(ii) E ◦ E = id, E* ◦ E* = id;
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(iii) E* ◦ E = Pn, E ◦ E* = P−n; and

(iv) P ◦E = E ◦P−1, P ◦E* = E* ◦P−1.

In particular, P and E give a representation of the infinite dihedral group, as do P and E*.

We also record the following consequence of Lemma 3.11.

Lemma 3.13. On skew fluctuating tableaux, we have the following:

(i) ϖ commutes with each of P , E , and E*;

(ii) τ ◦P = P−1 ◦ τ and τ ◦ E = E* ◦ τ ;

(iii) ε ◦P = P−1 ◦ ε and ε ◦ E = E* ◦ ε.

Finally, the following lemma will be useful to us in studying rectangular fluctuating tableaux.

Lemma 3.14. Let T be a length n skew fluctuating tableaux. The following are equivalent:

(i) E(T ) = ε(T ),

(ii) E*(T ) = ε(T ).

Moreover, they imply the following, which are also equivalent:

(a) E(T ) = E*(T ),

(b) Pn(T ) = T .

Proof. The equivalence of (i) and (ii) follows from ε ◦ E = E* ◦ ε and the fact that all three of
these operations are involutions (see Lemmas 2.12 and 3.12). Clearly (i) and (ii) imply (a). The
equivalence of (a) and (b) follows from E* ◦ E = Pn (see Lemma 3.12).

4. Bender–Knuth involutions and jeu de taquin

Our next goal is to encode the local rules in combinatorial manipulations on fluctuating tableaux.
In Section 5, we will use this description via jeu de taquin to define the main new objects of
interest in this paper, promotion matrices and promotion permutations.

4.1. Bender–Knuth involutions via local rules

Here we introduce Bender–Knuth involutions for fluctuating tableaux in terms of local rules and
give their basic properties. For the case of semistandard tableaux, these involutions were first
given in [BK72]. More precisely, our Bender–Knuth involutions are the transposes of the usual
ones from [BK72], since fluctuating tableaux generalize transpose semistandard tableaux.
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Definition 4.1. For 1 ⩽ i ⩽ n − 1, the ith Bender–Knuth involution BKi on skew fluctuating
tableaux is given by

BKi(λ
0 → · · · → λi−1 →λi → λi+1 → · · · → λn)

= λ0 → · · · → λi−1 →µi → λi+1 → · · · → λn,

where µi = sort(λi+1 + λi−1 − λi). Pictorially, we have

λi

λ0 · · · λi−1 λi+1 · · · λn

µi

ci+1

BKi
c1 ci−1

ci

ci+1

ci+2 cn

ci

. (4.1)

We also extend the switch operator to skew fluctuating tableaux. Recall that these operators
toggle signs in the type of the fluctuating tableaux.

Definition 4.2. Given a skew fluctuating tableau of length n and 1 ⩽ i ⩽ n, define switchi(T )
by replacing the ith step with its switch:

switchi(λ
0 c1−→ · · · ci−1−−→ λi−1 ci−→ λi ci+1−−→ λi+1 ci+2−−→ · · · cn−→ λn)

= λ0 c1−→ · · · ci−1−−→ λi−1 r−ci−−→λi − sgn(ci)1
ci+1−−→ λi+1 − sgn(ci)1

ci+2−−→ · · · cn−→ λn − sgn(ci)1.

Example 4.3. The fluctuating tableau T of Figure 2.2 is shown below, center. In Example 3.3,
we computed the local action of switch5 and switch2. Pictorially, we have

1 3 7

1 4 5

3 5 6

2 3 6

switch5⇐===⇒

1 3 5 7

1 4

3 6

2 3 5 6

switch2⇐===⇒

1 2 3 7

1 2 4 5

2 3 5 6

3 6

.

See also Figure 4.1 for further examples.

The following are direct consequences of the definitions and the symmetry of local rule
diagrams. All of the proofs are similar and straightforward, so we mostly omit them.

Lemma 4.4. On skew fluctuating tableaux of length n, BKi and switchj are involutions for which

BKi ◦ switchi = switchi+1 ◦BKi (1 ⩽ i ⩽ n− 1). (4.2)

Moreover,
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(i) BKi ◦BKj = BKj ◦BKi if |i− j| > 1;

(ii) BKi ◦ switchj = switchj ◦BKi for all 1 ⩽ i ⩽ n− 1, 1 ⩽ j ⩽ n with j ̸= i, i+ 1;

(iii) switchi ◦ switchj = switchj ◦ switchi if i ̸= j.

Lemma 4.5. On length n fluctuating tableaux, we have:

(i) P = BKn−1 ◦ · · · ◦ BK1;

(ii) E = BK1 ◦(BK2 ◦BK1) ◦ · · · ◦ (BKn−1 ◦ · · · ◦ BK1);

(iii) E* = (BKn−1 ◦ · · · ◦ BK1) ◦ · · · ◦ (BKn−1 ◦BKn−2) ◦ BKn−1.

Proof. The following diagram shows (i), by successively applying the Bender–Knuth involutions
to the fluctuating tableau T , producing the promotion diagram of T .

λ00 λ01 λ02 · · · λ0n

λ11 λ12 · · · λ1n λ1,n+1

T

BK1(T )

BKn−1 ◦ · · · ◦ BK1(T )

For a similar perspective on these diagrams, see [Spe14, §6].

Lemma 4.6. On length n fluctuating tableaux with r rows, we have:

(i) For 1 ⩽ i ⩽ n− 1,

BKi ◦ϖ = ϖ ◦BKi,

BKi ◦ τ = τ ◦BKn−i, and
BKi ◦ ε = ε ◦BKn−i .

(ii) For 1 ⩽ i ⩽ n,

switchi ◦ϖ = ϖ ◦ switchi,
switchi ◦ τ = τ ◦ switchn+1−i + sgn(cn+1−i)1, and
switchi ◦ ε = ε ◦ switchn+1−i + sgn(cn+1−i)1.

(iii) When i is taken modulo n,

switchi ◦P = P ◦ switchi+1,

switchi ◦ E = E ◦ switchn+1−i, and

switchi ◦ E* = E* ◦ switchn+1−i .
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4.2. Bender–Knuth involutions via tableaux

We next give a more direct, tableaux-theoretic description of BKi. We broadly follow Stem-
bridge’s account of the classical Bender–Knuth involutions on semistandard tableaux [Ste02],
extended to fluctuating tableaux. See Figure 4.1 and Example 4.10 for examples.

Definition 4.7. Let T ∈ FT(n, c) and fix 1 ⩽ i ⩽ n − 1. We call certain cells free, forced,
moving, or open as follows.

♦ If ci · ci+1 ⩾ 0, call a cell b free if it contains exactly one of i, i+1, i, or i+ 1 and no other
cell in b’s row contains any of i, i+ 1, i, or i+ 1.

♦ If ci · ci+1 ⩽ 0, call cells containing exactly one of i, i + 1, i, or i+ 1 forced. Call a cell
moving if it contains both i and i+ 1 or both i and i + 1. Additionally, for each row R
which does not contain any of i, i + 1, i, or i+ 1, we identify a cell bR in R and call it
open. Let j be the largest absolute value of an entry in R less than i, if any exist.

– If ci ⩾ 0, let bR be the cell immediately right of the cell containing j, or the cell
containing j, or if j does not exist then let bR be the cell immediately right of the
rightmost cell of the initial shape in R.

– If ci ⩽ 0, let bR be the cell containing j, or the cell immediately left of the cell
containing j, or otherwise the rightmost cell of the initial shape in R.

See Figure 4.1 for some examples.

1 2 3

1 3 4

1

2

1 2

1 2 3

1 3 4

2

2

1 2

2 3

3 4

1 2

2

1

1 3

1 2 3 4

1

2

1 3

1 2 3 4

1 2

1

2

2 3

3 4

1 2

1 2

2

1

3

2 3 4

2

1

2 1

3

2 3 4

1

1

2 1

BK1

switch2 switch1

BK1

switch2 switch1

BK1 BK1

Figure 4.1: Interactions between the BKi involutions and the switchj involutions. Free cells are
highlighted in light blue ■. Forced cells are pink ■, moving cells are light green ■, and open
cells are darker green ■.
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Definition 4.8. For 1 ⩽ i ⩽ n − 1, the ith Bender–Knuth involution BKi on skew fluctuating
tableaux of length n is defined combinatorially as follows.

♦ If ci · ci+1 ⩾ 0, the free cells in each column form a connected segment, with a copies of i
or i+ 1 at the top and b copies of i + 1 or i at the bottom. Apply BKi by replacing each
such segment with b copies of i or i+ 1 at the top and a copies of i+1 or i at the bottom,
leaving all other entries of T unchanged.

♦ If ci · ci+1 ⩽ 0, the collection of moving and open cells in each column forms a single
connected segment.

– If ci > 0, such a segment has a moving cells above b open cells. In this case, ap-
ply BKi by first moving all a copies of i, i+ 1 from moving cells to the bottom a
cells immediately left of the segment and then replacing these labels with i, i+ 1.

– If ci < 0, such a segment has a open cells above b moving cells. In this case, ap-
ply BKi by first moving all b copies of i, i + 1 from moving cells to the top b cells
immediately right of the segment and then replacing these labels with i, i+ 1.

Finally, in each forced cell, replace i with i+1, i+1 with i, i with i+ 1, and i+ 1 with i.

Lemma 4.9. The combinatorial BKi involutions are well-defined and agree with the local rule
definition.

Proof. When ci · ci+1 ⩾ 0, it is straightforward to see that the combinatorial description agrees
with the local rule description in the proof of Lemma 3.4. When ci · ci+1 ⩽ 0, the combinatorial
description agrees with that obtained by applying switch operators to the first case as in (4.2).

Example 4.10. Using the fluctuating tableau T from Figure 2.2, we compute P(T ) with the
following composite of Bender–Knuth involutions:

T =

1 37

1 45

356

23 6

2 37

2 45

356

13 6

2 37

2 45

356

12 6

2 37

2 45

456

12 6

2 37

245

6

1245 6

2 37

245

6

1245 6

2 36

245

7

1245 7

P(T ) =

BK1 BK2 BK3

BK4

BK5BK6

.

Here, we have used the same color-coding as in Figure 4.1.
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4.3. Oscillization and local rules

It is sometimes useful to oscillize growth diagrams. We begin by oscillizing local rules as fol-
lows. Recall osc(µ c→ λ) from Definition 2.16.

Definition 4.11. The oscillization of the local rule diagram (3.1) is the diagram:

osc


λ ν

κ µ

d

c

d

c

 :=

λ λ1 · · · λ|d|−1 ν

κ|c|−1 · · · · · ν |c|−1

...
... . .

. ...
...

κ1 · · · · · ν1

κ µ1 · · · µ|d|−1 µ

(4.3)

where the edges on the boundary of the large rectangle are osc(κ d→µ), osc(λ d→ν), osc(κ c→λ),
and osc(µ

c→ ν) and the cells are filled using local rules.

Note that we may fill the right-hand side of (4.3) from the upper left or from the lower right,
or some mixture of the two. Every edge in the right-hand side of (4.3) either adds or removes a
single cell.

In Lemma 4.13 we show the oscillization of a local rule diagram is well-defined. The proof
uses the following lemma.

Lemma 4.12. Consider the following refinement of the local rule diagram (3.1):

λ β ν

κ α µ

d1 d2

c

d1

c

d2

c . (4.4)

Here, κ d1→ α
d2→ µ and λ

d1→ β
d2→ ν have been obtained from osc(κ

d→ µ) and osc(λ
d→ ν) by

collapsing edges. Then both squares in (4.4) are local rule diagrams.

Proof. Let T =κ
c→ λ

d→ ν and S=BK1(T )=κ
d→ µ

c→ ν. Further let T ′=κ
c→ λ

d1→ β
d2→ ν

and S ′ = κ
d1→ α

d2→ µ
c→ ν. The lemma follows from showing that S ′ = BK2 ◦BK1(T

′). This
may be verified directly from the combinatorial description of the Bender–Knuth involutions.
Using switch involutions as necessary, we may reduce to the case that c, d ⩾ 0 and the free cells
of T form a single column with c copies of 1 above d copies of 2. Then, T ′ has c copies of 1
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above d1 copies of 2 above d2 copies of 3, so that BK2 ◦BK1(T
′) has d1 copies of 1 above d2

copies of 2 above c copies of 3. On the other hand, S has d copies of 1 above c copies of 2, so S ′

also has d1 copies of 1 above d2 copies of 2 above c copies of 3.

Lemma 4.13. The oscillization of a local rule diagram is well-defined.

Proof. Filling the right-hand side of (4.3) results in an upper-left-justified collectionA of squares
and a lower-right-justified collection B of squares that meet along a path traveling by north and
east steps from the lower-left corner to the upper-right corner. We must show A and B agree on
this path. By extending A to the full |c| × |d| rectangle and using symmetry of local rules, it
suffices to take B = ∅. That is, given the boundary edges osc(κ→ λ) and osc(λ→ ν), we must
show the remaining edges are osc(κ→ µ) and osc(µ→ ν). We may now induct on |c|+ |d| by
Lemma 4.12. The base case |c| = |d| = 1 is the fundamental symmetry from Lemma 3.4.

Definition 4.14. Let

osc


λ ν

λ

d

d

 := E-diagram(osc(λ
d→ ν)) (4.5)

and

osc


λ

κ λ

c

c

 := E*-diagram(osc(κ
c→ λ)). (4.6)

Definition 4.15. The diagrams osc(P-diagram(T )), osc(E-diagram(T )), osc(E*-diagram(T )),
and osc(PE-diagram(T )) are obtained by oscillizing each component.

The lemma below follows by Lemma 4.13.

Lemma 4.16. The operation osc commutes with applying P-diagram, E-diagram, E*-diagram,
and PE-diagram.

4.4. Jeu de taquin

In a local rule diagram
λ ν

κ µ

d

c

d

c

we may mark the |c| added or removed cells in the fluctuating tableaux κ
c→ λ and µ

c→ ν
with •’s if c ⩾ 0 or •’s if c ⩽ 0; see Example 4.17. Note that we may recover the full local rule
diagram from its top row λ

d→ ν together with the • or • markings. Roughly speaking, when
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computing P(T ), instead of directly computing BK1(T ),BK2 ◦BK1(T ), . . ., we may track the
positions of the •’s or •’s in the top row. To formalize this, we introduce jeu de taquin for fluctu-
ating tableaux. We again begin with a definition via local rules, and then give a tableau-theoretic
description, generalizing the description in the generalized oscillating case from [Pat19].

Example 4.17. In the following local rule associated to 11112
4→ 22211

3→ 33221, we mark
the 4 added cells in the vertical arrows with •’s:

•

•

•

•

•

•

•

•

.

3

3

4 4

Definition 4.18. Given a fluctuating tableau T = λ0 → · · · → λn, let jdti(T ) be the diagram
of BKi ◦ · · · ◦ BK1(T ), where the first i steps are labeled ±2, . . . ,±(i + 1)’s, the (i + 1)st step
is labeled with •’s or •’s, and the remaining steps are labeled with ±(i+ 2), . . . ,±n’s.

From this definition, we see immediately thatP(T ) is obtained from jdtn−1(T ) by replacing •
or • with n+1 or n+ 1, respectively, and then decreasing the absolute value of all entries by 1.

Example 4.19. For our fluctuating tableau T from Figure 2.2, first draw PE-diagram(T ) and
record the location of the added cells in the top row using two •’s as in Example 4.17.

∅
•

•

•

•

•

• •

•

•

•

•

•

•

•

∅
2 3 4

•

BK3 ◦BK2 ◦BK1(T )

5 6 7

.

The dashed path represents the fluctuating tableau BK3 ◦BK2 ◦BK1(T ). We encode this path in
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the following tableau jdt3(T ) using the labels 2, 3, 4, •, 5, 6, 7:

3 47

3 •5

•56

23 6
.

Putting these calculations together, we compute P(T ) as follows:

T =

1 37

1 4 5

3 5 6

2 3 6

• 37

• 45

356

23 6

• 37

• 45

356

23 6

3 •7

3 45

•56

23 6

3 47

3 •5

•56

23 6

3 47

35•

6

235• 6

3 47

356

•

2356 •

3 47

356

8

2356 8

2 36

245

7

1245 7

P(T ) =

jdt0 jdt1 jdt2 jdt3

jdt4

jdt5jdt6−1

.

We may encode the changes in the positions of the •’s or •’s using the following combina-
torial notion, which computes jdti−1(T ) from jdti−2(T ) roughly by swapping • < i for i < •.
Recall the notion of open cells from Definition 4.7.

Definition 4.20. Suppose T is a fluctuating tableau labeled by 2 < · · · < i − 1 < • < i <
· · · < n and their negatives. The jeu de taquin slides for T are given by the following rules. See
Figure 4.2 for schematic diagrams.

(a) •’s first move right to swap places with i’s, then move down as far as possible by swapping
places with i’s.

(b) •’s first move left to swap places with i’s, then move up as far as possible by swapping places
with i’s.

(c) •i pairs move down as far as possible into open cells, and then they move left one column
before becoming i• pairs.

(d) •i pairs move up as far as possible into open cells, and then move right one column before
becoming i• pairs.

All other entries are left unchanged.
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•i : • i i •

•

•

i

i

i

i

i

i

•

•

•i : i • • i

i

i

i

•

•

•

•

i

i

i

•i : • •

i i

•i

•i

i•

i•

•i : • •

i i

•i

•i

i•

i•

Figure 4.2: Jeu de taquin slides for jdti−1 on fluctuating tableaux. In each case, the thick line
indicates the boundary of the shape immediately before the •. One may interpret the •i rules as
first sliding •’s right one cell past i’s, and then sliding •’s down past i’s. The •i rules instead
“slide past” open cells and move left. The open cells in this case are simply those directly
below •i’s, immediately right of the thick line, and without • or i.



combinatorial theory 4 (2) (2024), #15 27

The following is straightforward to prove by comparing jeu de taquin slides, the tableau-
theoretic description of Bender–Knuth involutions, and the properties of local rule diagrams.

Lemma 4.21. For i− 1 ⩾ 1, applying jeu de taquin slides to jdti−2(T ) results in jdti−1(T ).

Lemma 4.22. Let T be a length n skew fluctuating tableau.

(i) P(T ) is the result of replacing ±1’s with ±•’s, using jeu de taquin slides jdt1, . . . , jdtn−1,
replacing ±•’s with ±(n+ 1)’s, and subtracting 1 from each entry’s absolute value.

(ii) E(T ) is the result of first replacing ±1’s with ±•n’s, sliding them past ±n’s, replacing
±2’s with ±•n−1’s, sliding them past ±n’s, etc., and finally replacing ±•i’s with ±i’s.

(iii) E*(T ) is the result of first replacing±n’s with±•1’s, sliding backwards past±1’s, replac-
ing ±(n − 1)’s with ±•2’s, sliding backwards past ±1’s, etc., and finally replacing ±•i’s
with ±i’s.

5. Promotion grids and promotion matrices

Hopkins–Rubey [HR22, §4] attached certain decorations to promotion-evacuation diagrams of
rectangular 3-row standard tableaux, which may be encoded as a permutation. We now extend
this approach to arbitrary fluctuating tableaux with any number of rows.

5.1. Local rule grids

Given a local rule diagram, we may encode it as in Section 4.4 as an application of jeu de taquin
involving •’s or •’s and i’s or i’s. We decorate the diagram as follows.

Definition 5.1. The local rule grid associated to an r-row fluctuating tableau local rule

λ ν

κ µ

d

c

d

c (5.1)

is a |c| × |d| grid M of intervals in {1, . . . , r− 1} defined as follows. First, encode the diagram
as a jeu de taquin slide S → T .

♦ If c ⩾ 0, number the •’s in S and T from bottom to top as •1, . . . , •c.

♦ If c ⩽ 0, number the •’s in S and T from top to bottom as •1, . . . , •−c.

♦ If d ⩾ 0, number the i’s in S and T from top to bottom as i1, . . . , id.

♦ If d ⩽ 0, number the i’s in S and T from bottom to top as i1, . . . , i−d.

Index rows of S and T from 0 to r − 1 from the top down. Consider cases based on the signs
of c and d:
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♦ (0 ⩽ c, d): If •a swaps vertically with ib, let Mab = {j} where j is the row of •a after the
slide.

♦ (c, d ⩽ 0): If •a swaps vertically with ib, let Mab = {j} where j is the row of •a before
the slide.

♦ (d ⩽ 0 ⩽ c): If •aib slides from row j in S to row k in T , let Mab = (j, k].

♦ (c ⩽ 0 ⩽ d): If •aib slides from row k in S to row j in T , let Mab = (j, k].

We draw a local rule grid by writing the matrix M in the center of the local rule diagram.

Example 5.2. Consider the following local rule diagram, its corresponding jeu de taquin dia-
gram, and the resulting local rule grid:

100001 000111

000011 001112

3

2

3

2

0 •2i3

1

2

3 i2

4 •1i1

5

i3•2

i2

i1•1

M =

(
{5} ∅ ∅
∅ ∅ {1, 2}

)

.

Here, the moving cells have been shaded in light green ■ and the open cells have been shaded
in darker green ■. The pair •2i3 moved from row 0 to row 2, so M23 = (0, 2] = {1, 2}.

We will generally draw this local rule grid as:

100001 000111

000011 001112

3

2

3

2
5 · ·
· · {1, 2}

drawing M in the center of its local rule diagram, dropping brackets on singleton sets, and
shrinking empty sets to dots.

Definition 5.3. The triangular grids U and L associated to the r-row fluctuating tableau dia-
grams

∅ ν

∅

c

c and
∅

κ ∅
c

c

(5.2)

are defined as follows. The triangular grid U is an upper triangular grid with c rows and c
columns whose entries are elements of {0, . . . , r}. Conversely, L is a lower triangular grid that
also has c rows and c columns and entries that are elements of {0, . . . , r}.
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If c = 4, we have

U =

0 1 2 3
0 1 2

0 1
0

and L =

r
r − 1 r
r − 2 r − 1 r
r − 3 r − 2 r − 1 r

while in general, for c ⩾ 0, we have Uij = j − i whenever 1 ⩽ i ⩽ j ⩽ c, and Lij = r − i + j
whenever 1 ⩽ j ⩽ i ⩽ c. If c = −4, we have

U =

r r − 1 r − 2 r − 3
r r − 1 r − 2

r r − 1
r

and L =

0
1 0
2 1 0
3 2 1 0

while in general, for c ⩽ 0, we have Uij = r− j + i whenever 1 ⩽ i ⩽ j ⩽ −c, and Lij = i− j
whenever 1 ⩽ j ⩽ i ⩽ −c.

Lemma 5.4. Given κ
c→ λ and M in (5.1), we can infer the rest of the local rule diagram.

Similarly, the upper triangular grid U in (5.2) uniquely determines c and ν, while the lower
triangular grid L in (5.2) uniquely determines c and κ.

Proof. For the first claim, we know the location of •a’s or •a’s in S. If •a or •a does not move,
then Mab = ∅ for all b. If •a or •a does move, we may infer where it moves by examining Mab

for all b. Hence we know the locations of the ±•’s in S and T , and thereby the locations of
the ±i’s in S and T . Thus we may infer ν, which lets us infer µ. The other claims are similar
but easier.

5.2. Promotion grids

We now glue together some local rule grids and triangular grids to form a single block grid.

Definition 5.5. Let D be a growth diagram for an r-row non-skew fluctuating tableau T , for
example P-diagram(T ), E-diagram(T ), E*-diagram(T ), or PE-diagram(T ). The D-grid of D
is the block gridMD whose blocks are the local rule grids ofD and appropriately-sized triangular
grids.

This definition can be extended to handle skew fluctuating tableaux; however, the definitions
of the triangular grids needed become significantly more complicated and we do not currently
have an application of the extra generality such a definition would give, so we omit the details
here.

Notation 5.6. We use the abbreviations MP(T ) = MP-diagram(T ), ME(T ) = ME-diagram(T ),
ME*(T ) = ME*-diagram(T ), and MPE(T ) = MPE-diagram(T ). We will also use the names promo-
tion grid, evacuation grid, etc., with the obvious meanings.
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Example 5.7. For the fluctuating tableau T from Figure 2.2, we write the blocks of MPE(T ) in
PE-diagram(T ):

0000 1100 1101 2110 2210 2100 2111 1111

0000 0001 1100 2100 2001 2100 1100 1111

0000 1110 2110 2101 2200 2100 2111 1111

0000 1000 1011 1101 1001 1100 1000 1111

0000 0011 1001 1011 1101 1001 1110 1111

0000 1100 1101 2111 2101 2210 2211 1111

0000 0001 1101 1111 2100 2110 1100 1111

0000 1100 1101 2110 2210 2100 2111 1111.

0 1
0

·
·

· 2 ·
· · ·

·
1

3 ·
· ·

· ·
2 ·

·
·

4
3 4

4 · · 3 · · 2 · · 1 · · 0

0 1 2
0 1
0

·
·
·

· ·
· ·
· ·

· 3
· ·
· ·

·
·
·

· ·
2 ·
· ·

·
·
1

4
3 4
2 3 4

0 · · 1 · 2 · 3 · · · · 4

4 3
4

· 2
· ·

·
3

1 ·
· ·

·
2

· · ·
· · ·

·
·

0
1 0

0 1
0

·
·

· 2
· ·

·
·

· · ·
1 · ·

3
·

· ·
2 ·

4
3 4

4 · · 3 · · · 2 · 1 · · 0

The lemma below follows directly from the definitions.

Lemma 5.8. Consider reading a row of MPE(T ) either from left to right if the label on
the first arrow is positive or from right to left if the label on the first arrow is negative,
skipping empty entries. The result is a sequence of intervals [0, i1], (i1, i2], . . . , (ik, r]
where 0 ⩽ i1 < i2 < · · · < ik ⩽ r − 1.

Since in Example 5.7, all nonempty intervals are single elements, the above lemma says
all nonempty entries in a row of the promotion-evacuation grid are sequentially 0, 1, 2, 3, 4
or 4, 3, 2, 1, 0, according to whether boxes are added or removed in the first step.

Evacuation grids may be used as alternate encodings of fluctuating tableaux as follows. We
will shortly use a similar encoding in the rectangular case, with particularly desirable properties.

Theorem 5.9. The map T 7→ (ME(T ), type(T )) is injective.

Proof. We may infer the block sizes ofME(T ) from the type of T . We may fill E-diagram(T ) di-
agonal by diagonal by Lemma 5.4. Finally, we may read off T from the top row of E-diagram(T ).

Note that we may infer type(T ) from ME(T ) if we track the blocks of ME(T ). In this sense,
we may entirely encode fluctuating tableaux of a fixed shape in terms of the block grid ME(T ).

We now consider the effect on a D-grid of oscillizing the growth diagram D.

Lemma 5.10. If D is a skew fluctuating growth diagram, then

MD = Mosc(D) .
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Proof. One may check that theD-grids in (5.1) have been defined so that theD-grid agrees with
the D-grid of its oscillization. It is easy to see that the same is true for (5.2).

We now describe the effect of various diagram involutions on D-grids. We will need these
observations to determine the order of promotion on rectangular fluctuating tableaux.

Definition 5.11. Given any grid M , let M⊤ be the transpose of M and let M⊥ be the anti-
diagonal transpose of M .

Note that the composite of the transpose and anti-diagonal transpose is rotation by 180◦.
Recall that by convention τ and ε act on growth diagrams by applying τ and ε to each edge and
rotating the result by 180◦.

Lemma 5.12. Suppose D is an r-row fluctuating growth diagram. Then:

(i) MD⊥ = M⊥
D,

(ii) Mτ(D) = M⊤⊥
D ,

(iii) Mϖ(D) = r −MD,

(iv) Mε(D) = r −M⊤⊥
D .

Here for a matrix N we set (r −N)ab := {r − i : i ∈ Nab}.

Proof. For (i), the roles of •, i and S, T are interchanged between the two diagrams. The result
then follows by examining the symmetry in the definition of the promotion grid.

For (ii), after applying τ to the local rule, we rotate the diagram 180◦. If we encode
the original diagram in jeu de taquin with S → T , the new diagram encoded via jeu
de taquin as S ′ → T ′ where S ′ is the same as T and T ′ is the same as S after the repla-
cements •a ↔ •c+1−a and ib ↔ id+1−b. The indices {j} and (j, k] are preserved. Hence
τ(M)ab = Mc+1−a,d+1−b = (M⊤⊥)ab.

For (iii), applying ϖ to a local rule diagram has the effect of rotating each individual gen-
eralized partition 180◦. Correspondingly, S ′′ is the same as S and T ′′ is the same as T but
rotated 180◦ and with the replacements •a ↔ •a, ib ↔ ib. Moreover, row indices are reversed
according to j ↔ r − j.

For (iv), we compose τ and ϖ.

The lemma below follows straightforwardly from Lemma 5.12.

Lemma 5.13. On r-row skew fluctuating tableaux, we have the following:

(i) ME(E(T )) = ME(T )
⊥, ME*(E*(T )) = ME*(T )⊥

(ii)
ME(τ(T )) = ME*(T )⊤⊥

ME(ϖ(T )) = r −ME(T )

ME(ε(T )) = r −ME*(T )⊤⊥

ME*(τ(T )) = ME(T )
⊤⊥

ME*(ϖ(T )) = r −ME*(T )

ME*(ε(T )) = r −ME(T )
⊤⊥

(iii) MPE(ϖ(T )) = r −MPE(T )
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5.3. Promotion matrices

Next we encode MPE(T ) in a square block matrix.

Definition 5.14. The promotion matrix of an r-row fluctuating tableau T of length n is the n×n
block matrix M(T ) whose upper triangle is ME(T ) and whose lower triangle is ME*(E* E(T )).
Entries on the main diagonal are the union of the entries from the main diagonals of the two
triangles, reduced modulo r (and hence are always 0).

We visualize M(T ) by “wrapping around” PE-diagram(T ) to form a square matrix:

λ00 λ01 · · · λ0n

λ00

λ11 · · · λ1n

λ10 λ11

. . .
...

...
...

. . .

λnn

λn0 λn1 · · · λnn

U1 M12 M1n

U2 M2n

Un

L1

M21 L2

Mn1 Mn2 Ln

.

Here,U i is upper triangular andLi is lower triangular, as in Definition 5.3, and they are combined
inM(T ). We will refer to the square grid constructed fromU i andLi asM ii for consistency with
the indexing of the other blocks of M(T ). Note that the entries in MPE(T ) cyclically increment
or decrement when reading across any given row in the sense of Lemma 5.8.

Example 5.15. For the fluctuating tableau T in Figure 2.2, type(T ) = (2,−1, 3, 1,−2, 2,−1)
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and the promotion matrix is:

M(T ) =



0 1 · · 2 · · 3 · · · ·
3 0 · · · · 1 · · 2 · ·
· · 0 · · 3 · · 2 · · 1
· · · 0 1 2 · · · · 3 ·
2 · · 3 0 1 · · · · · ·
· · 1 2 3 0 · · · · · ·
· 3 · · · · 0 · · 1 · 2
1 · · · · · · 0 3 · 2 ·
· · 2 · · · · 1 0 · · 3
· 2 · · · · 3 · · 0 1 ·
· · · 1 · · · 2 · 3 0 ·
· · 3 · · · 2 · 1 · · 0



.

By Lemma 5.13(iii), we have

M(ϖ(T )) = r −M(T ). (5.3)

The effects of the other fundamental involutions in general are more complex. They can however
be easily described in the case that evacuation and dual evacuation coincide.

Lemma 5.16. The following are equivalent on r-row fluctuating tableaux:

(i) E(T ) = E*(T ),

(ii) M(E(T )) = M(T )⊥,

(iii) M(E*(T )) = M(T )⊥,

(iv) M(τ(T )) = M(T )⊤⊥,

(v) M(ε(T )) = r −M(T )⊤⊥.

Proof. By (3.3) and Theorem 5.9, we have (i) if and only if

MPE(T ) = ME(T ) ∥ME*(T ), (5.4)

where ∥ denotes concatenating the grids and identifying the column where equality holds. By
Lemma 3.13, we may replace T in (5.4) with τ(T ) or ε(T ) while remaining equivalent to (i).
Using Lemma 5.13, we obtain

ME(τ(T )) ∥ME*(τ(T )) = ME*(T )⊤⊥ ∥ME(T )
⊤⊥

= (ME(T ) ∥ME*(T ))⊤⊥

= M(T )⊤⊥.

In this way, (i), (iv), and (v) are equivalent. The argument for (ii) and (iii) is essentially identical.
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Lemma 5.17. The following are equivalent on r-row skew fluctuating tableaux:

(i) E(T ) = ε(T ),

(ii) E*(T ) = ε(T ),

(iii) M(T ) = r −M(T )⊤.

Proof. We have seen the equivalence of (i) and (ii) in Lemma 3.14. For the rest, by (3.3) we
have (iii) if and only if

ME*(E* ◦ E(T )) = r −ME(T )
⊤.

Take the anti-diagonal transpose of both sides. Now

ME*(E* ◦ E(T ))⊥ = ME*(E(T ))

by Lemma 5.13, and likewise

(r −ME(T )
⊤)⊥ = r −ME(T )

⊤⊥ = ME*(ε(T )).

Note that, by Theorem 5.9, ME*(E(T )) = ME*(ε(T )) is equivalent to (i), completing the proof.

5.4. Reduced promotion matrices

We now describe an alternate encoding of the promotion matricesM(T ). This encoding directly
corresponds to a crystal-theoretic interpretation given in Section 8.5.

Definition 5.18. The reduced promotion matrices of an r-row fluctuating tableau T of length n

are the n× n matrices Mi
(T ) (for 0 ⩽ i ⩽ r − 1) with entries in Z⩾0 defined by

M
i
(T )uv = #{entries in the block Muv of M(T ) containing i}.

We have the following direct characterization of M(T )iuv off the main diagonal.

Proposition 5.19. Suppose we have a local rule diagram:

λ ν

κ µ
M

i

where λ = κ+eA, ν = µ+eB, and M
i are the reduced promotion matrix entries. Then the Mi

are uniquely characterized by

eB = eA +
r−1∑
i=1

M
i
(ei+1 − ei). (5.5)
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Proof. Consider the jeu de taquin slides associated with this local rule diagram. Recall that the
rows of fluctuating tableaux are indexed top-down from 0 to r − 1. Note that all elements of A
and B have the same sign. If A,B consist of positive numbers, the •’s begin in the rows indexed
by {a− 1 : a ∈ A} and end in the rows indexed by {b− 1 : b ∈ B}. If A,B consist of negative
numbers, the •’s begin in the rows indexed by {−a − 1 : a ∈ A} and end in the rows indexed
by {−b−1 : b ∈ B}. In the former case, Mi counts the number of times a • slides from row i−1
to row i, which effectively removes ei from eA and adds ei+1 to eB. In the latter case, Mi counts
the number of times a • slides from row i to row i− 1, which effectively removes ei+1 = −ei+1

from eA and adds ei = −ei to eB. The net effect is the same in either case, and (5.5) follows by
summing. Uniqueness follows from the fact that the ei+1 − ei are linearly independent.

The reduced promotion matrix analogue of Theorem 5.9 holds.

Theorem 5.20. The map T 7→ (M
1
(T ), . . . ,M

r−1
(T ), type(T )) is injective.

Proof. It suffices to show that Lemma 5.4 remains true given only the number of entries of
each type in the promotion grids rather than the full promotion grids. We know the positions of
the ±•’s and ±i’s in S as well as the number of times some ±• slides past each particular row.
We may hence infer the final row of the bottommost • or topmost •, and iteratively we may infer
all final locations of ±•’s. The arguments for the other diagrams are similar.

Example 5.21. For the fluctuating tableau T from Figure 2.2, we have:

M
0
(T ) =



2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1


M

1
(T ) =



1 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 2 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 1 0 0



M
2
(T ) =



0 0 1 0 0 1 0
0 0 0 0 1 0 0
1 0 2 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 1 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0


M

3
(T ) =



1 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 2 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 1 0 0 0 0 0



.

These matrices should be compared to the matrix M(T ) from Example 5.15.
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6. Promotion permutations

We begin by transforming promotion matrices into promotion functions. We then show they
have particularly nice properties in the rectangular case and prove our main result, Theorem 6.7.

Definition 6.1. The promotion functions of an r-row fluctuating tableau T of type c are defined
as follows. Let t =

∑
i |ci|, so that M(T ) is t× t. For all 0 ⩽ i ⩽ r− 1, each row of M(T ) has

a unique entry containing i. Set

promi(T ) : [t]→ [t],

promi(T )(a) = b whenever i ∈M(T )ab.

For symmetry, we define promr(T ) := prom0(T ).

Example 6.2. For the fluctuating tableau T from Figure 2.2 with promotion matrix found in
Example 5.15, all the promotion functions are permutations. Specifically, we have

prom0(T ) = prom4(T ) = id

prom1(T ) = (1 2 7 10 11 4 5 6 3 12 9 8)

prom2(T ) = (1 5)(2 10)(3 9)(4 6)(7 12)(8 11)

prom3(T ) = (1 8 9 12 3 6 5 4 11 10 7 2).

Remark 6.3. Note that prom0(T ) = id = promr(T ) are always trivial; they are included for
overall consistency. Since the diagonal of M(T ) is all zeros, all other promi(T ) are fixed-point
free. Note that M(T ) can be recovered from the collection (promi(T ))

r−1
i=1 of all promotion

functions. We will shortly see that, in the rectangular case, each promi(T ) is a permutation. In
the rectangular case, we will therefore refer to promotion functions as promotion permutations.

We have the following relation between the promotion functions of T and the promotion
functions of P(T ).

Lemma 6.4. We have

promi(T )(u+ |c1|) = v + |c1| ⇐⇒ promi(P(T ))(u) = v

for all 1 ⩽ u, v ⩽ t− |c1| and all 0 ⩽ i ⩽ r.

Proof. By construction, the promotion-evacuation diagram of P(T ) is obtained from that of T
by cutting off the top row. Hence, the promotion matrix is obtained by cutting away the top c1
rows and leftmost c1 columns. The lemma follows.

It is well-known that the nth power of promotion on rectangular standard tableaux with n
cells is the identity. Moreover, the effect of evacuation on such rectangular standard tableaux
is the reverse-complement (see, e.g., [Hai92] for both of these facts), which in our terminology
using lattice words is phrased as L(E(T )) = ε(L(T )). These properties extend to rectangular
fluctuating tableaux; for an example, see Figure 6.1.
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Theorem 6.5. Let T be a rectangular fluctuating tableau of length n. Then

(a) Pn(T ) = T ,

(b) L(E(T )) = ε(L(T )).

Proof. In terms of tableaux, (b) is equivalent to E(T ) = ε(T ). By Lemma 3.14, (b) implies (a).
As for (b), we may use the switchi involutions and Lemma 4.6 to reduce to the case when T

is (transpose) semi-standard. In this case, (b) is a well-known consequence of the RSK algo-
rithm; see, e.g., [PP23, Lemma 3.1] for details. An alternate crystal-theoretic proof is given in
Section 8.6.

We obtain the following as a corollary.

Corollary 6.6. All of the equivalent conditions in Lemma 5.16 and Lemma 5.17 hold for rect-
angular fluctuating tableaux.

The following is the main result of the present work. Let σ = (1 2 · · · t) be the long cycle,
and let w0 = (1, t)(2, t− 1) · · · be the longest element in the symmetric group St.

Theorem 6.7. Let T be an r-row rectangular fluctuating tableau of type (c1, . . . , cn)
where |c1|+ · · ·+ |cn| = t. Then for all 0 ⩽ i ⩽ r:

(i) promi(T ) is a permutation,

(ii) promi(T ) = promr−i(T )
−1,

(iii) promi(P(T )) = σ−|c1| promi(T )σ
|c1|,

(iv) promi(E(T )) = w0 promi(T )w0.

Proof. By Corollary 6.6, we have all the equivalent conditions of Lemma 5.16 and Lemma 5.17.
Lemma 5.17(iii) implies (i) and (ii). Lemma 6.4 implies (iii). Finally, (iv) follows from applying
Lemma 5.16(v) and the fact that, for any matrix M , we have M⊤⊥ = w0Mw0, where w0 is
viewed as a permutation matrix.

Corollary 6.8. If T is a rectangular fluctuating tableau with r rows and 1 ⩽ i ⩽ r − 1,
then promi(T ) is a fixed-point free permutation. Moreover if r is even, then promr/2(T ) is a
fixed-point free involution.

Proof. This is an immediate consequence of (i) and (ii) in the above theorem and Remark 6.3.

We now describe how to obtain promotion permutations directly from a tableau without
reference to promotion matrices.

Proposition 6.9. Let T ∈ FT(r, n) be a fluctuating tableau and 1 ⩽ i ⩽ r − 1.
Then promi(T )(b) ≡ |a| + b − 1 (mod n) if and only if a is the unique value that crosses the
boundary between rows i and i+1 in the application of jeu de taquin promotion toPb−1(osc(T )).



38 Christian Gaetz et al.

Proof. First, suppose T is of oscillating type. Consider repeatedly performing promotion
on T via jeu de taquin with the convention that we do not relabel entries after promotion.
Then MPE(T ) records an i in row a, column b, when letter a or a crosses the boundary be-
tween rows i and i + 1 during the bth application of promotion to T . Since promotion actually
decreases the absolute value of all entries by 1, the result follows in this case.

If T is not of oscillating type, we may instead consider osc(T ). By Lemma 5.10, MPE(T ) =
MPE(osc(T )), so the theorem follows from the previous case.

We end this section by describing properties of promotion permutations that determine the
entries of the corresponding tableau. We will use the following lemma.

Lemma 6.10. Given an r-row fluctuating tableau T and 0 ⩽ i ⩽ r, promi(T ) = promi(osc(T )).

Proof. Lemma 5.10 directly implies that M(T ) = M(osc(T )), so the conclusion follows.

Definition 6.11. Let π ∈ Sn be a permutation. A number i ∈ [n] is an antiexcedance of π
if π−1(i) > i. We write Aexc(π) for the set of antiexcedances of π. We say i ∈ [n] is an
excedance of π if it is neither an antiexcedance nor a fixed point.

Theorem 6.12. Let T ∈ FT(r) be a rectangular fluctuating tableau. Suppose 1 ⩽ i ⩽ r − 1.
Then a is an antiexcedance of promi(T ) if and only if either a appears in the top i rows of osc(T )
or a appears in the bottom r − i rows of osc(T ). In particular, if T is a standard tableau, then
the antiexcedances of promi(T ) are exactly the numbers in the first i rows of T .

Proof. By Lemma 6.10, we may assume T = osc(T ). We start by characterizing the excedances
of promi(T ) instead of the antiexcedances. Since promi(T ) is fixed-point free by Corollary 6.8,
the antiexcedances are the complementary set to the excedances.

If we write a permutation π ∈ Sn as a permutation matrix by placing 1 in each posi-
tion (a, π(a)), then the excedances of π are exactly the values π(a) such that (a, π(a)) appears
strictly above the main diagonal.

The upper triangle of M(T ) is ME(T ). Consider repeatedly performing promotion on T
via jeu de taquin with the convention that we do not relabel entries after promotion and we
do not replace • or • by a new number at the end of promotion. Then ME(T ) records an i
in row a, column b, when letter a or a crosses the boundary between rows i and i + 1 during
the bth application of promotion to T . Note that during jeu de taquin, unbarred entries only
move weakly up, while barred entries only move weakly down. But the entry a must eventually
exit out the top if it exists. Otherwise, a exists and must exit out the bottom. Hence, ME(T )
will have an i in row a if any only if a appears strictly below row i in T or if a appears weakly
above row i in T . Thus, a is an excedance of promi(T ) if and only if a fails the hypotheses of
the theorem. Thus, a is an antiexcedance of promi(T ) if and only if either a appears in the top i
rows of T or a appears in the bottom r − i rows of T .

Corollary 6.13. Suppose T ∈ FT(r, c) is rectangular. Then T is uniquely determined by its
type together with the promotion permutations (promi(T ))

⌊r/2⌋
i=1 .

Proof. This follows by combining Theorem 6.7 with Theorem 6.12 after oscillizing the tableau.
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S =
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= P−1(S)

P P P

P

PPP
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P P P

Figure 6.1: The full promotion orbit of S := osc(T ), where T is the fluctuating tableau from
Figure 2.2.

Example 6.14. For T the fluctuating tableau from Figure 2.2, Figure 6.1 gives the full pro-
motion orbit of S := osc(T ), which we use to illustrate Proposition 6.9 and Theorem 6.12.
Proposition 6.9 allows us to write the promotion permutations of S by tracking entries that
move between rows in applications of promotion. For example, prom1(T )(1) = 2 because in
the first promotion of Figure 6.1 the label 2 moves from row 2 to row 1 (and then becomes a 1).
Similarly, prom1(T )(2) = 7 because in the second promotion, the label 6 moves from row 2 to
row 1 (and then becomes 5). More interestingly, prom1(T )(3) = 12 because in the third pro-
motion, the label 10 moves from row 1 to row 2 (and then becomes 9). Finally, we observe that
prom2(T )(1) = 5 because in the first promotion, the label 5 moves from row 3 to row 2 (and then
becomes 4). The reader may enjoy recomputing the rest of Example 6.2 by analyzing Figure 6.1
and applying Proposition 6.9.

The antiexcedances of prom1(T ) are 1, 3, 4, 8, 9. Note that 1 and 4 are the positive entries in
row 1 of S, while 3, 8, and 9 are the negative entries in rows 2, 3, and 4 of S. The antiexcedances
of prom2(T ) are 1, 2, 3, 4, 7, 8. Note that 1, 2, 4 and 7 are the positive entries in rows 1 and 2,
while 3 and 8 are the negative entries in rows 3, and 4. Finally, the antiexcedances of prom3(T )
are 1, 2, 3, 4, 5, 7, 10. Note that 1, 2, 4, 5, 7, 10 are the positive entries in rows 1, 2, and 3, while 3
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is the negative entry in row 4.

Remark 6.15. For r > 2, we do not know of a characterization of the tuples (promi(T ))
r
i=0 that

can arise for T an r-row rectangular fluctuating tableau. Necessary conditions include the fixed
point conditions in Corollary 6.8, the row increasing conditions from Lemma 5.8, the symmetry
Theorem 6.7(ii), and the nesting of the antiexcedance sets

{a ∈ Aexc(promi(T )) : a > 0} ⊆ {a ∈ Aexc(promi+1(T )) : a > 0},
{a ∈ Aexc(promi+1(T )) : a < 0} ⊆ {a ∈ Aexc(promi(T )) : a < 0}

from Theorem 6.12. See Remark 7.3 for further related discussion.

7. Dihedral models of promotion and evacuation

Recall that P and E generate an infinite dihedral action on the set of skew fluctuating tableaux
(see Lemma 3.12). By Theorem 6.5, Pn = id on rectangular fluctuating tableaux of length n, so
there is a non-obvious action of the dihedral group of order 2n on such tableaux by promotion
and evacuation. In this section, we use the preceding constructions to give a pictorial model of
this dihedral action where P corresponds to rotation and E corresponds to reflection.

Let
⟨rot, refl | rotn = refl2 = 1, rot ◦ refl = refl ◦ rot−1⟩

be the dihedral group of symmetries of the regular n-gon, where rot acts as rotation by 2π/n
and refl acts as reflection through a fixed axis which passes through the midpoint of an edge. For
a given type c = (c1, . . . , cn) with |c1| + · · · + |cn| = t, this group acts on the set of tuples of
maps

(fi : [t]→ [t])ri=0

by

rotk ·(fi) := (σ−|c1|−···−|ck| ◦ fi ◦ σ|c1|+···+|ck|) if 1 ⩽ k ⩽ n

refl ·(fi) := (w0 ◦ fi ◦ w0)
r−1
i=0 .

Combining Theorem 5.9 and Theorem 6.7 gives the following.

Corollary 7.1. The inclusion
Φ(T ) := (promi(T ))

r
i=0

from r-row rectangular fluctuating tableaux of length n and type c to tuples of permutations
intertwines promotion and evacuation with the action of the dihedral group of order 2n:

Φ(P(T )) = rot ·Φ(T )
Φ(E(T )) = refl ·Φ(T ).
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We may encode Φ(T ) in terms of a diagram on a disk as in the following example. Place t
vertices on the circumference in n equally-spaced groups of size |c1|, . . . , |cn| in clockwise order.
Place a directed edge from a to b with color i if promi(T )(a) = b. Promotion corresponds to
counterclockwise rotation by 2π/n and evacuation corresponds to reflection across the diameter
passing midway between the 1st and nth groups.

Example 7.2. For the fluctuating tableau T from Figure 2.2, the diagrams of the promotion
permutations of T are as follows:

1
2

3

4
5

6

7

9
8

10

12

11

⑭

⑭

·#⑭

⑭

⑭ ·
⑭

1
2

3

4
5

6

7

9
8

10

12

11

⑭ ⑭

⑭

⑭

⑭
⑭

⑭
⑭

⑭
⑭

⑭

⑭

1
2

3

4
5

6

7

9
8

10

12

11

⑭

⑭

·#⑭

⑭

⑭ ·
⑭ .

Here we have drawn the promi diagrams separately for clarity and included only i = 1, 2, 3
from left to right, though they rotate and reflect simultaneously. The action of P corresponds to
counterclockwise rotation by an angle of 2π/7, while that of E corresponds to reflection across
the vertical axis. The fundamental involution ϖ corresponds to reversing the direction of the
arrows, ε agrees with E , and the time reversal involution τ corresponds to both reflecting the
diagrams and reversing the direction of the arrows.

To reduce the number of vertices and edges, one could choose to combine the vertices in
each group into a single vertex, and then additionally delete any loops formed by this process.
This simplification is related to the reduced promotion matrices of Section 5.4.
Remark 7.3. This graphical model allows one to directly “see” the dihedral action of promo-
tion and evacuation on rectangular fluctuating tableaux, something that has long been desired by
combinatorialists even in the standard case. When r = 2, the map from rectangular fluctuating
tableaux to fixed-point free involutions given by T 7→ prom1(T ) is injective. Indeed, after com-
bining vertices as described above the image is precisely the non-crossing matchings. For r = 3,
a very similar model for semistandard tableaux was considered by Hopkins and Rubey [HR22].

For representation-theoretic purposes, it would be nice to have such a diagrammatic model
that naturally extends the dihedral action to a full Sn-action. Recall from Remark 6.15 that we
do not have a characterization of promotion permutations in general. Therefore, for general r,
we do not know how to use this model to define a natural Sn-action that extends promotion
and evacuation on the span of tableaux. For r = 3, the model can be enriched to a web basis
for SL3 [Kup96], which carries a full Sn-action (see also, [PPR09, PP23]). In [GPP+23a], we
similarly use this model with r = 4 as a starting point to construct a web basis for SL4, which
again has a full Sn-action with σ acting by rot and w0 acting by refl. See Figure 7.1 for an
example.
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Figure 7.1: The SL4-web corresponding to the fluctuating tableau T from Figure 2.2, as con-
structed in our companion paper [GPP+23a].

8. Connections to crystals

We now give a representation-theoretic interpretation of the promotion functions from Sec-
tion 6 and reduced promotion matrices from Section 5 by relating fluctuating tableaux to ver-
tices in crystal graphs. Crystal bases were first introduced by Kashiwara [Kas90] (see also,
Lusztig [Lus90a]) and are a combinatorial tool to study representations of quantum groups as-
sociated to Lie algebras. See [HK02, BS17] for textbook accounts.

8.1. Crystal basics

We largely follow [BS17]. Let Φ be a root system for a Euclidean space with positive-
definite inner product ⟨−,−⟩, Φ+ a choice of positive roots, Λ ⊃ Φ a weight lattice,
and Σ = {αi : i ∈ I} ⊂ Φ+ a set of simple roots with index set I as in [BS17, §2.1]. We re-
quire only finite seminormal Kashiwara crystals, which simplifies the exposition.

Definition 8.1. A (finite, seminormal, Kashiwara) crystal is a nonempty finite set B together
with maps

ei, fi : B → B ⊔ {0} ∀i ∈ I,

wt : B → Λ

where 0 ̸∈ B is an auxiliary element and which satisfy the following axioms.

(A1) If x, y ∈ B, then ei(x) = y ⇔ fi(y) = x and

wt(y) = wt(x) + αi.

(A2) For x ∈ B, the i-root string through x is the collection {eki (x), fk
i (x) : k ⩾ 0} ∩ B. If x

is the maximal element in its i-root string, i.e. ei(x) = 0, we require the i-string length,
i.e. the maximal k such that fk

i (x) ̸= 0, to be ⟨wt(x), α∨
i ⟩ where α∨ := 2α/⟨α, α⟩.

In type A, axiom (A2) says that a basis element x ∈ B of weight wt(x) = µ which is
maximal in its i-root string has i-string length µi − µi+1 ⩾ 0. In particular, if x is of highest
weight, meaning ei(x) = 0 for all i ∈ I , then µ1 ⩾ · · · ⩾ µr and µ is dominant.
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Definition 8.2. If B is a crystal, the crystal graph of B is the labeled, directed graph with vertex
set B and edges x i→ y whenever y = fi(x) ∈ B.

The maps ei may be recovered from the crystal graph and (A1), so the crystal graph together
with the weight function wt entirely encodes the crystal. The edges of B are oriented “down-
wards” with respect to the partial order on Λ. One may infer wt from the weights of the set of
highest weight elements,

hw(B) := {x ∈ B : ∀i ∈ I, ei(x) = 0}.

A strict morphism of crystals is a partially defined map B → C which preserves wt and sends
i-root strings bijectively onto i-root strings. See [BS17, §4.5] for the formal, general definition.
We will only encounter strict morphisms.
Remark 8.3. For the sake of completeness we briefly describe the correspondence between crys-
tals and representation theory. We will not discuss the technical assumptions necessary to make
this correspondence precise.

♦ Connected components of B ←→ irreducible decomposition of W ,

♦ Highest weight elements of B ←→ dominant weights of the irreducible components of
W ,

♦ Weight generating function of B ←→ character of W ,

♦ Tensor product of crystals←→ tensor product of representations,

♦ Isomorphic crystals←→ isomorphic representations.

In particular, connected crystals coming from representation theory are entirely determined by
their unique highest weight element, and B is uniquely determined by hw(B).

The following crystals correspond to the GLr(C)-representations
∧k V and

∧k V ∗;
see [BS17, §2.2]. These are the representations that are important for fluctuating tableaux (see
Section 2.2).

Example 8.4. In type Ar−1, the crystal graph B(V ) of the r-dimensional standard representa-
tion V of GLr(C) is:

1
1→ 2

2→ · · · r−1→ r , where wt
(
i
)
= ei.

The unique highest weight element is 1 of weight e1.

Example 8.5. The crystal graph B(V ∗) of the dual V ∗ is:

r
r−1→ r − 1

r−2→ · · · 1→ 1 , where wt
(
i
)
= −ei.

The unique highest weight element is r of weight −er.
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Example 8.6. The crystal graph of the exterior power
∧k V of the standard representation

of GLr(C) has vertex set:

B
(∧k

V
)
=


j1

j2
...

jk

: 1 ⩽ j1 < j2 < · · · < jk ⩽ r

 .

Given a column C ∈ B(
∧k V ), we can apply fi to C by changing i into i+ 1 as long as C does

not already contain i + 1. The weight of C is
∑

j∈C ej . The unique highest weight element is
the column consisting of 1, 2, . . . , k with weight ωk := e1 + · · ·+ ek.

Example 8.7. The crystal graph of the dual exterior power
∧k V ∗ of the standard representation

of GLr(C) has vertex set:

B
(∧k

V ∗
)
=


jk
...

j2

j1

: 1 ⩽ j1 < j2 < · · · < jk ⩽ r

 .

Given a column C ∈ B(
∧k V ∗), we can apply fi to C by changing i+ 1 into i as long as C does

not already contain i. The weight of C is
∑

j∈C −ej . The unique highest weight element is the
column consisting of r, r − 1, . . . , r − k + 1 with weight ωk = −er − · · · − er−k+1.

Example 8.8. When r = 4, k = 2, the crystal graph B(
∧2 V ) is:

1

4

1

2

1

3

2

4

3

4

2

3

1

2

3

1

2

3

.

In general, the dual of a crystal graph is obtained by reversing the arrows and negating the
weights; see [BS17, Def. 2.20].

8.2. Tensor products of crystals

Crystals have the following combinatorial tensor product due to Kashiwara [Kas90, Prop. 6].
For a crystal B and x ∈ B, set

φi(x) := max{k ∈ Z⩾0 | fk
i (x) ̸= 0} and εi(x) := max{k ∈ Z⩾0 | eki (x) ̸= 0}.
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Hence, φi(x) + εi(x) is the length of the i-string through x.

Definition 8.9. Suppose B, C are crystals for Φ. The tensor product B ⊗ C is the crystal with
vertex set {x⊗ y : x ∈ B, y ∈ C}, weight function wt(x⊗ y) := wt(x) + wt(y), and maps

fi(x⊗ y) :=

{
fi(x)⊗ y if φi(x) > εi(y),

x⊗ fi(y) if φi(x) ⩽ εi(y),

ei(x⊗ y) :=

{
ei(x)⊗ y if φi(x) ⩾ εi(y),

x⊗ ei(y) if φi(x) < εi(y).

(8.1)

Proposition 8.10 (See [BS17, Prop. 2.29]). If B and C are crystals, then B ⊗ C is a crystal.

Remark 8.11. We use the original tensor product convention due to Kashiwara, which is com-
patible with the lattice words from Section 2.4. In combinatorics (e.g. [BS17, Def. 2.3]), it is
common to write the tensor factors in the opposite order.

See Example 8.12 and Example 8.13 for examples of tensor products.

8.3. Crystals and fluctuating tableaux

Recall the notation of Section 2.2, in particular the tensor products of exterior powers
∧c V

from (2.1). The bracketing rule gives a crystal structure on the tensor product:

B
(∧c

V
)
:= B

(∧c1
V
)
⊗ · · · ⊗ B

(∧cn
V
)
.

To apply ei or fi to w1 ⊗ · · · ⊗ wn ∈ B(
∧c V ) where each wi is a subset of Ar

(where 1 ⩽ i ⩽ r − 1), we apply the following combinatorial algorithm (bracketing rule).

(1) Place [ below each letter containing i but not i+ 1, or i+ 1 but not i.

(2) Place ] below each letter containing i+ 1 but not i, or i but not i+ 1.

(3) Match brackets from the inside out.

(4) Now fi acts on the letter with the left-most unmatched [ by replacing the i with i+ 1 or the
i+ 1 with i.

(5) Similarly ei acts on the letter with the right-most unmatched ] by replacing the i + 1 with i
or the i with i+ 1.

Example 8.12. Over GL3(C), consider B(V )⊗8 = B(
∧c V ) where c = (1, . . . , 1) = (18). We

have:

f2( 3 2 1 2 2 3 3 1 ) = 3 f2(2) 1 2 2 3 3 1

] [ [ [ ] ] = 3 3 1 2 2 3 3 1

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
.
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Example 8.13. Over GL4(C), consider

B
(∧2

V ⊗ V ∗ ⊗
∧3

V ⊗ V ⊗
∧2

V ∗ ⊗
∧2

V ⊗ V ∗
)
,

which is B(
∧c V ) for c = (2, 1, 3, 1, 2, 2, 1). We have:

f1( {12} 4 {134} 2 {32} {34} 1 ) = 0

[ ] [ ]

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ .

Here, we have written columns C or C as sets for brevity. The root strings in B(
∧k V ) are each

of length 1, so we only need to consider single brackets in each tensor factor here. This basis
element is simultaneously highest and lowest weight, i.e. all fi, ei send it to 0. This example is
based on the fluctuating tableau from Figure 2.2.

We may drop the tensor product symbols and identify elements of B(
∧c V ) with words

whose letters are subsets of Ar, which appeared in Section 2.4 and Section 2.5. Under this
identification, as we now show, highest-weight elements of B(

∧c V ) are precisely the lattice
words of fluctuating tableaux of type c whose weight and final shape coincide. This perspective
gives a crystal-theoretic proof of Theorem 2.4.

Proposition 8.14. Let c = (c1, . . . , cn) with ci ∈ {0,±1, . . . ,±r}. Then:

hw
(
B
(∧c

V
))

= L(FT(r, n, c)).

Proof. Recall that lattice words L of fluctuating tableaux are characterized by the inequali-
ties (2.2). Concretely, in each prefix of L, we require the number of a’s minus the number of a’s
to be weakly greater than the number of b’s minus the number of b’s for all 1 ⩽ a ⩽ b ⩽ r. We
may equivalently restrict these conditions to the case where a = i, b = i+ 1 for 1 ⩽ i ⩽ r − 1.

Now, consider a highest-weight word L. In order for ei to result in 0, the bracketing rule
must result in no unmatched ]’s. Equivalently, in each prefix of the sequence of brackets, there
must be at least as many [’s as ]’s. The [’s arise precisely from letters containing (i but not i+1)
or (i+ 1 but not i). The ]’s arise precisely from letters containing i+1 but not i or i but not i+ 1.
It is straightforward that these conditions are equivalent to the conditions on lattice words.

The same argument shows that the lowest weight elements of B(
∧c V ) are precisely the

reverse lattice words, namely those where in every suffix the number of i’s minus the number
of i’s is at most the number of i + 1’s minus the number of i+ 1’s. In particular, rectangular
fluctuating tableaux are special in the following sense.

Corollary 8.15. The isolated vertices of B(
∧c V ), i.e. the simultaneous highest and lowest

weight elements, are precisely the rectangular fluctuating tableaux of type c.
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8.4. Crystals, oscillization, and switch

We may interpret oscillization from Section 2.6 as arising from a crystal morphism. First, we
have a map

B
(∧k

V
)
→ B(V )⊗k

given by sending {i1 < · · · < ik} to i1 ⊗ · · · ⊗ ik. There is an analogous dual notion sending
{i1 < · · · < ik} to i1⊗· · ·⊗ ik with highest weight {r, · · · , r − k + 1} 7→ r⊗· · ·⊗ r − k + 1.
We leave the proof of the following to the reader.

Lemma 8.16. Let c = (c1, . . . , cn) with ci ∈ {0,±1, . . . ,±r} and let osc(c) be the sequence
where ci is replaced by |ci| copies of 1 if ci ⩾ 0 and 1 if ci ⩽ 0. The oscillization map

osc : FT(r, λ, c))→ FT(r, λ, osc(c))

is the inclusion on highest-weight elements induced by the crystal inclusion

B
(∧c

V
)
→ B

(∧osc(c)
V

)
.

The switch maps from Definition 3.2 similarly arise from the crystal isomorphisms

B
(∧c

V
)

∼→ B
(
det(V )⊗

∧r−c
V ∗

)
{i1 < · · · < ic} 7→ {1, . . . , r} ⊗ {j1 < · · · < jr−c}

B
(∧c

V ∗
)

∼→ B
(
det(V ∗)⊗

∧r−c
V
)

{i1 < · · · < ic} 7→ {r, . . . , 1} ⊗ {j1 < · · · < jr−c}

where {i1, . . . , ic} ⊔ {j1, . . . , jr−c} = [r]. In terms of lattice words, we may freely add or
remove the letters {1, . . . , r} or {r, . . . , 1} without materially altering the combinatorics of the
preceding sections.

8.5. Crystals and promotion

We now describe crystal-theoretic interpretations of the Bender–Knuth involutions (following
Lenart [Len08]) and promotion (following Pfannerer–Rubey–Westbury [PRW20]). We then give
a different crystal-theoretic “balance point” description of promotion (Proposition 8.22), as well
as a crystal-theoretic interpretation of reduced promotion matrices (Theorem 8.24).

Although B⊗C ∼= C ⊗B, the naive map x⊗ y 7→ y⊗x does not respect the bracketing rule
and is not generally a morphism of crystals. Henriques–Kamnitzer [HK06] introduced crystal
commutors

σB,C : B ⊗ C → C ⊗ B.
These are natural involutive crystal isomorphisms that make the category of crystals into a
coboundary category. There is a corresponding action of the n-fruit cactus group on n-fold
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tensor products of crystals. See [Len08, §2.4] for details. We will not require the specifics of
these constructions until Section 8.6.

Lenart [Len08] interpreted the local rules of van Leeuwen [vL98] in terms of crystal com-
mutors. Specifically, we have the following.

Theorem 8.17 ([Len08, Thm. 4.4]). The bijection on highest weight elements induced by

σB(
∧c V ),B(

∧d V ) : B
(∧c

V
)
⊗ B

(∧d
V
)

∼→ B
(∧d

V
)
⊗ B

(∧c
V
)

is given by the |c| × |d| growth diagram

λ ν

∅ µ

d

c

d

c
.

Proof. One may reduce to the transpose semistandard case using the switch involutions and the
naturality of the crystal commutor. In that setting, the theorem is a direct restatement of [Len08,
Thm. 4.4] into our terminology.

In particular, promotion has the following crystal-theoretic description, which was observed
in [PRW20, §4]. Recall we may identify a fluctuating tableau T with its lattice word L(T ).

Corollary 8.18. Let c = (c1, d) and c′ = (d, c1). The bijection on highest weight elements
induced by:

σB(
∧c1 V ),B(

∧d V ) : B
(∧c

V
)
→ B

(∧c′

V

)
is given by promotion P on fluctuating tableaux of type c.

Remark 8.19. Let G be a Lie group with a representation U and corresponding crystal graph B.
A more general version of Corollary 8.15 (cf. [Wes18]) states that a basis of InvG(U⊗n) is in-
dexed by the isolated vertices in the crystal B⊗n, which are often identified with various kinds
of tableaux. In particular,

♦ for the adjoint representation of GLr, these vertices are Stembridge’s alternating tableaux
[Ste87];

♦ for the vector representation of Sp2r they are Sundaram’s r-symplectic oscillating tableaux
[Sun90];

♦ for the vector representation of SO(2r + 1) they are vacillating tableaux [Jag19];

♦ and the spin representation of Spin(2r + 1) they are r-fans of Dyck paths [PPSS24].
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Corollary 8.18 motivates a definition of promotion on such kinds of tableaux using the crystal
commutor σB,B⊗(n−1) . A description of promotion in terms of local rules using Theorem 8.17 is
then possible whenever the representation U can be embedded in a tensor product of minuscule
representations. In the definition from Equation (3.2) of the local rules, sort needs to be replaced
with the function that maps a weight to the unique dominant representative in its Weyl group
orbit. All of the families of tableaux listed above may be embedded in the set of fluctuating
tableaux using identifications coming from virtual crystal morphisms. Hence, promotion on
fluctuating tableaux extends promotion on all of the other families listed above. See [Wes18,
PRW20, PPSS24, HSW24] for further discussion of promotion in other Lie types.

It will be convenient to 0-index some lattice words, contrary to our earlier convention.

Proposition 8.20. Let w0 . . . wn−1 ∈ FT(n, r, c). To compute P(w0 . . . wn−1), do the following.

(i) Delete w0.

(ii) Apply raising operators ei to w1 . . . wn−1 to reach a highest weight element w′
1 . . . w

′
n−1.

(iii) Append the unique element w′
n ∈ B(

∧c1 V ) such that the weight of w0 . . . wn−1 agrees with
the weight of w′

1 . . . w
′
n−1w

′
n.

Proof. Corollary 8.18 explains the relation between promotion of fluctuating tableaux and crys-
tal commutors. The rest of the proposition is a special case of the description from [PRW20,
Cor. 4.19] of crystal commutors on highest weight elements of tensor products of crystals.

The intermediate steps of the “raising algorithm” in Proposition 8.20 do not obviously corre-
spond to the intermediate steps in the computation of promotion via Bender–Knuth involutions
as in Example 4.10. Nonetheless, using the bracketing rule, we may give a more explicit com-
binatorial description of this crystal-theoretic promotion algorithm when |c1| = 1.

Definition 8.21. Let w0 . . . wn−1 ∈ FT(n, r, c) be the lattice word of a fluctuating tableau and
let 0 ⩽ a ⩽ n − 1. An i-balance point starting from a is an index j ⩾ a such that, in the
subword wawa+1 . . . wj , the number of i’s minus the number of i’s equals the number of i+ 1’s
minus the number of i+ 1’s. We call the difference #i−#i−#(i+ 1) +#i+ 1 the slack of
the the index j with respect to i and a. The index j is an i-balance point starting from a if and
only if its slack with respect to i and a is 0.

Proposition 8.22. Let w := w0 . . . wn−1 ∈ FT(n, r, c) with |c1| = 1. Suppose the raising
operators in Proposition 8.20 acting on w1 . . . wn−1 and resulting in the highest weight ele-
ment w′

1 . . . w
′
n−1 are, in order, ei1 , . . . , eik , acting on positions j1, . . . , jk.

Then we have the following:

♦ If c1 = 1, then i1, . . . , ik = 1, 2, . . . , k and w′
n = k + 1.

♦ If c1 = −1, then i1, . . . , ik = r − 1, r − 2, . . . , r − k and w′
n = r − k.
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For convenience, set j0 := 0 and ik+1 := k + 1 if c1 = 1 and ik+1 := r − k − 1 if c1 = −1.
Then, for each 1 ⩽ h ⩽ k, jh is the first ih-balance point of w starting at jh−1. There is
no ik+1-balance point of w starting at jk. In particular, the sequence 1 ⩽ j1 ⩽ · · · ⩽ jk ⩽ n−1
weakly increases, and in the rectangular case, k = r − 1.

Proof. Let w = w0w1 . . . wn−1 ∈ FT(n, r, c). We assume c1 = 1, the case c1 = −1 being
similar. Consider applying ei to w by writing [i’s and ]i’s below appropriate letters. Since w is a
highest weight word, every ]i is matched with a [i. In particular, the number of [i’s in any prefix
is at least as great as the number of ]i’s. The difference between these two numbers is the slack,
as in Definition 8.21. Since w0 = 1 has [1, it is matched in w with the ]1 at the first 1-balancing
point of w, say j1 ⩾ 1, if it exists. Cutting away w0, the brackets [i and ]i for w′ := w1 . . . wn−1

with i > 1 are unchanged from those in w, hence fully matched, and the only raising operator
which may possibly apply to w′ is e1. Indeed, e1 applies to w′ precisely at position j1, which we
may assume exists, since otherwise we are done.

Let w′′ be the result of applying e1 to w′ at wj1 . We have two cases.

♦ Suppose wj1 has 2 ∈ wj1 , 1 ̸∈ wj1 , and is decorated with ]1 and [2 in w. Applying e1
results in 1, which is decorated with [1 in w′′.

♦ Suppose wj1 has 1 ∈ wj1 , 2 ̸∈ wj1 , and is decorated with ]1 and [2 in w. Applying e1
results in 2, which is decorated with [1 and ]2 in w′′.

In particular, we see that w′′ has no unmatched ]1’s or ]i’s for i > 2, since w has none. As
for i = 2, the [2’s and ]2’s in w′′ are the same as those in w except that the [2 at wj1 has been
deleted and possibly replaced with ]2. Since e2 applies to the rightmost unmatched ]2, in either
case we see that e2 applies tow′′ at the ]2 matched with the [2 ofwj1 inw if it exists, which is at j2,
the first 2-balance point starting at j1. Continuing in this way, we see inductively that i1, . . . , ik,
j1, . . . , jk, and k are as described.

In the rectangular case, the reverse word is also a lattice word, so the reverse lattice condition
implies that, for all i, each suffix wawa+1 . . . wn−1 has an i-balanced subword wawa+1 . . . wj , so
the necessary balance points always exist.

When applying the raising algorithm in Proposition 8.20 when |c1| = 1, Proposition 8.22
shows that there is a unique crystal raising path. When |c1| > 1, however, there are generally
multiple possible paths. Nonetheless, we may oscillize the

∧c1 V and repeatedly apply Propo-
sition 8.22, which gives a deterministic calculation, as in the following example.

Example 8.23. Let w = {12}4{134}2{32}{34}1 be the lattice word of the fluctuating tableau
from Figure 2.2, where r = 4. Oscillizing the first letter and applying each of Proposition 8.20
and Proposition 8.22 twice yields
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{12}4{134}2{32}{34}1
osc→124{134}2{32}{34}1
cut→24{134}2{32}{34}1
e1→14{134}2{32}{34}1
e2→14{124}2{32}{34}1
e3→14{124}2{42}{34}1

app.→14{124}2{42}{34}14

14{124}2{42}{34}14
cut→4{124}2{42}{34}14
e1→4{124}1{42}{34}14
e2→4{124}1{42}{24}14
e3→4{124}1{42}{24}13

app.→4{124}1{42}{24}134
osc−1

→ 4{124}1{42}{24}1{34}.

Here, we have highlighted in blue each tensor factor that is being acted on.
Consequently, P({12}4{134}2{32}{34}1) = 4{124}1{42}{24}1{34}, in agreement with

the calculation from Example 3.9 by Bender–Knuth involutions.
Alternatively, we could cut away {12} entirely and apply the raising algorithm in Proposi-

tion 8.20 directly. The corresponding crystal operations occur in a crystal isomorphic to Exam-
ple 8.8, where two possible paths could be taken. The analogue of the path from the oscillization
calculation is the path that applies e2, e3, e1, e2 in that order to w1 . . . w6 = 4{134}2{32}{34}1
at positions 2, 4, 3, 5, respectively.

By the next result, we may use the this path to determine the non-diagonal entries in the top
rows of the reduced promotion matrices M1

(T ), M2
(T ), and M

3
(T ) from Example 5.21. For

example, the e2 is applied at positions 2 and 5, resulting in 1’s in those columns (indexed starting
at 0) of the top row of M2

(T ) and 0’s elsewhere.

We now give a crystal-theoretic interpretation of reduced promotion matrices, strengthening
the link between crystals and promotion permutations.

Theorem 8.24. Let T be an r-row fluctuating tableau of length n. Fix 1 ⩽ j ⩽ n − 1.
Then M

i
(T )u,u+j (with the column index u + j taken modulo n) is the number of times the

raising operator ei is applied at index j of the lattice word L(Pu−1(T )) when computing the
promotion of Pu−1(T ) by the raising algorithm in Proposition 8.20.

Proof. It suffices to consider a single local rule diagram as in Proposition 5.19:

λ ν

κ µ
M

i

where λ = κ + eA, ν = µ + eB, µ = κ + eU , ν = λ + eV and M
i are the reduced promotion

matrix entries.
Now, the top edge corresponds to the letter V in a crystal word and the bottom edge corre-

sponds to the letterU . If ei is applied to V a total ofmi times during the crystal raising algorithm,
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then

eV = eU +
r−1∑
i=1

mi(ei+1 − ei). (8.2)

The entries of M
i are uniquely determined from A and B by (5.5) in Proposition 5.19.

Since eB − eA = eV − eU , the theorem then follows by the uniqueness in Proposition 5.19,
comparing (5.5) to (8.2).

8.6. Crystals and a fundamental involution

The involution ε from Section 2.5 may be interpreted in terms of crystals using Lusztig’s invo-
lution. We sketch this connection here.

Lusztig’s involution [Lus90b] is a certain involution η on crystals that sends elements
of weight α to elements of weight rev(α); see [HK06, §2.2] or [PRW20, §4.1] for details.
In particular, η acts on B (

∧c V ) by “complementing” elements, i.e. by sending ±S ⊆ [r]
to ±{r + 1 − s : s ∈ S}. Lusztig’s involution interchanges the unique highest and lowest
weight elements of a connected crystal.

Theorem 8.25. On lattice words of r-row fluctuating tableaux, we have:

η ◦ E = ε = E* ◦ η . (8.3)

Proof. Henriques–Kamnitzer [HK06] defined an action of the n-fruit cactus group on n-fold
tensor products of crystals. The n-fruit cactus group is a certain group generated by elements sp,q
for intervals [p, q] ⊆ [n]. By [HK06, p.207], the action can be defined on words by:

sp,q(w1 · · ·wn) = w1 · · ·wp−1η(η(wq) · · · η(wp))wq+1 · · ·wn.

The involution ε reverses words and complements letters. Thus,

sp,q(w1 · · ·wn) = w1 · · ·wp−1η(ε(wp · · ·wq))wq+1 · · ·wn.

In particular, s1,n = η ◦ ε on B (
∧c V ).

The special case sp,p+1 corresponds to acting on the pth and (p + 1)st factors of
∧c V by

the crystal commutors from Section 8.5, fixing the other factors. By [PRW20, Lem. 4.2] and
Lenart’s Theorem 8.17, s1,n(L) = E(L) when L is the lattice word of a fluctuating tableau of
length n. Hence E = η ◦ ε, so η ◦ E = ε. Using Lemma 3.13(iii), we also have

E* = ε ◦ E ◦ ε = ε ◦ η .

The theorem follows.

Since Lusztig’s involution is the identity on isolated vertices, which are precisely the rect-
angular fluctuating tableaux, an alternate proof of Theorem 6.5 is as an immediate corollary
of (8.3).
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