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A B S T R A C T   

Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning 
of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection 
method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and 
operating a WBE program for disease surveillance and source identification. The performances of SBM and GA 
were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference 
among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in deter-
mining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling 
manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a 
regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to 
identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for 
the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic 
and technical elements of WBE including sampling site selection with required spatial resolution and a source 
identification method.   

1. Introduction 

In the 21st century, the world has been increasingly under threats 
posed by emerging infectious diseases such as severe acute respiratory 
syndrome (SARS), Middle East respiratory syndrome (MERS), and the 
coronavirus disease 2019 (COVID-19). In particular, the ongoing global 
pandemic of COVID-19 declared in March 2020 has caused more than 
264 million cases with more than 5.23 million confirmed deaths as of 
December 2021 (World Health Organization, 2003). The COVID-19 
pandemic also has a significant impact on the global economy, 
causing a decrease of 3.5% in the global gross domestic product (GDP) in 
2020 (World Bank Group, 2021). 

To avoid disastrous impacts of infectious diseases, early detection of 
emerging disease outbreaks in communities is critical as it enables rapid 
responses such as an early warning to the public and proactive 

transmission control activities. Accordingly, early detection of disease 
outbreaks is becoming increasingly important in recent decades due to 
increased frequencies of emerging and re-emerging infectious diseases 
including novel coronaviruses, tuberculosis, cholera, and poliovirus 
(Hui, 2006; Jones et al., 2008; World Health Organization, 2018). 
Response measures to infectious diseases generally rely on clinical sur-
veillance oriented to symptomatic patients, which might be ineffective 
for early detection of the spread of infectious diseases and revealing its 
true scale including subclinical infection, thus prohibiting preemptive 
quarantine activities. 

Environmental surveillance has been suggested as an alternative to 
clinical surveillance for monitoring the spread of infectious diseases 
(Brouwer et al., 2018; Andrews et al., 2020; Medema et al., 2020). In 
environmental surveillance, samples are collected from environmental 
matrices involved in pathogen transmissions such as drinking water, 
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sewage, air, and other media and tested for evidence of microbial/viral 
contamination (Asghar et al., 2014; Andrews et al., 2020). Proactive 
environmental surveillance can detect infection earlier than the 
recording of clinical cases. As such, it can provide an early warning of 
infectious disease outbreaks (Moran-Gilad et al., 2016). Alternatively, 
environmental surveillance can be reactively performed to assess the 
magnitude of infection after the identification of outbreaks (Hellmér 
et al., 2014; Brouwer et al., 2018; Ahmed et al., 2020). 

Environmental surveillance that systematically collects and analyzes 
sewage samples for pathogenic reagents or chemical compounds, called 
wastewater-based epidemiology (WBE), is recently drawing significant 
attention due to the global pandemic of COVID-19 (Sims and 
Kasprzyk-Hordern, 2020). WBE is considered an effective approach to 
monitoring community health and risk for infectious disease because 
sewage contains pathogens or causative agents (e.g. viral RNA of 
SARS-CoV-2 for COVID-19) of diseases excreted from both symptomatic 
and asymptomatic individuals in a catchment (Kim et al., 2015; Ahmed 
et al., 2020). Especially, WBE is regarded as a promising tool for the 
early warning of disease outbreaks and for assessing the efficacy of 
public health interventions. Previous studies have demonstrated the 
detection of influenza and enteric viruses such as influenza A virus, 
norovirus, hepatitis A virus, and poliovirus (Heijnen and Medema, 2011; 
Hellmér et al., 2014; Asghar et al., 2014). More recently, the global 
pandemic of COVID-19 has motivated active WBE applications for 
monitoring SARS-CoV-2 at different spatial settings across the world 
(Table S1). 

Despite the potential utility of WBE revealed by previous studies, 
strategic and technical elements for implementing a WBE program merit 
further research, including sampling sites, sample storage and transport, 
quantification methods, and data interpretation and its uncertainty 
management (Barceló, 2020; Medema et al., 2020; Yao et al., 2021; 
Wade et al., 2022). In addition, sufficient spatial and temporal resolu-
tion of a WEB program is required for timely and effective detection and 
warning of disease outbreaks (World Health Organization, 2003). 
Typical sampling sites are inlet points of wastewater treatment plants 
(WWTP) or sewer manholes. However, sampling sites need to be 
determined based on the size of the source population to be monitored 
(i.e., spatial resolution), high-risk areas, and costs including laboratory 
workloads. 

The spatial resolution of a WBE program can vary depending on the 
program purpose and target analytes. World Health Organization (2003) 
has recommended a size of 100,000–300,000 source population for 
regular monitoring of poliovirus circulation in a community. However, 
the spatial resolution of existing WBE studies varies including a building 
level (150–200 populations) (Betancourt et al., 2021; Davó et al., 2021; 
Gibas et al., 2021; Harris-Lovett et al., 2021), a zip code level (Barrios 
et al., 2021), and a catchment level (up to 1,500,000 populations) 
(Hellmér et al., 2014; Fumian et al., 2019; Ahmed et al., 2020) 
(Table S1). Too low spatial resolution would fail to collect representative 
samples (Medema et al., 2020), whereas too high spatial resolution in-
creases the dilution of target analytes (Foladori et al., 2020), presumably 
decreasing the sensitivity of detection. 

A few studies have recently proposed optimal site selection algo-
rithms for the sewer monitoring of an infectious disease or hotspot 
identification at a catchment level. Wang et al. (2020) developed a 
simulation model for optimal sewer monitoring site allocation to 
maximize the detection sensitivity of Salmonella Typhoid in a catchment 
considering shedding, loss, decay, and transport of the pathogen, 
demonstrating the proposed method in a hypothetical sewer network. 
Larson et al. (2020) proposed a Bayesian probability-based, binary 
searching algorithm for identifying the zero-patient location and the 
most infected spot neighborhood of SARS-CoV-2 using hypothetical 
hotspots and link probability flows in a sewer network of a small city. 
Calle et al. (2021) expanded the work of Larson et al. (2020) by defining 
the probability flows by the number of inhabitants, and proposed site 
searching methods for regular sewer monitoring and hotspot 

identification of SARS-CoV-2 based on the graph theory coupled with a 
greedy optimization algorithm; their proposed site selection method, 
however, may not completely cover the entire catchment area depend-
ing on the number of monitoring sites and site-specific sewer network 
structure. 

In this study, the concept of an effective monitoring area (EMA; i.e., 
the area exclusively monitored by a designated monitoring manhole) 
was applied to determine the spatial monitoring scale and the optimal 
sewer monitoring site allocation to support a WBE program. Based on 
the concept of EMA, two methods were proposed for optimal selection of 
sewer monitoring manholes for infectious disease surveillance that 
covers the entire catchment area—a spatial bisection method (SBM) and 
a global optimization algorithm (i.e., genetic algorithm, GA). The per-
formances of the two methods with a real-scale sewer network of a large 
catchment were illustrated and compared. Furthermore, SBM was pro-
posed as a follow-up practice for scaling down the infected area upon 
detecting disease outbreaks at a regular monitoring manhole, and its 
performance in a real catchment was demonstrated. The SBM-based site 
searching demonstration is an extension of the works of Larson et al. 
(2020) and Calle et al. (2021) by providing a computational method for 
selecting the best bisecting sites. That is, to realize SBM for site selection 
in this study, a recursive calculation algorithm with a binary matrix of 
manhole topology and local service areas of individual manholes of the 
sewer network was used for computing EMA (or spatial monitoring 
scale). 

2. Methods 

2.1. Study area and data preparation 

The study catchment was a sewershed section (Seoho sewershed) in 
Suwon City, Republic of Korea. The catchment has a total building area 
of 2,705,586 m2, serving a total population of 220,993. The catchment 
has a combined sewer system with a total of 5,424 manholes, inter-
connecting storm-drain pipes and sewer pipes with many closed-loops. A 
public WWTP with a treatment capacity of 47,000 m2/d is located at the 
outlet of the catchment. 

Spatial data of sewer pipes and manholes (2020) were obtained in 
ESRI Shapefile format from Suwon City. A land use feature layer (2018) 
was obtained from the Ministry of the Environment, Korea. We modified 
the existing sewer structure such that features of pipe networks that only 
carry stormwater and any closed-loops that are uninvolved in the dry 
weather sewer flow were removed; In this way, only gravity-induced 
unidirectional flow of sewage water during dry days was considered to 
characterize the sewer network structure for WBE. Features for the 
buildings from the land use layer were extracted and corresponding 
local service areas for individual manholes were calculated. All area 
calculations were based on the footprint area of buildings. All spatial 
processing and mapping were performed using Quantum GIS 3.10 (QGIS 
development team). 

The numbers of daily confirmed cases of COVID-19 in the study area 
were obtained from Suwon City (https://www.suwon.go.kr/web/safes 
uwon/corona/PD_monitor.do, accessed on Sep. 1, 2021). The past 
data on COVID-19 prevalence from the date of the first case report to 
recent time (Feb. 2, 2020–Aug. 31, 2021) allow us to develop a strategy 
in a retrospective way for operating a WBE program. To demonstrate the 
searching algorithm for the source area of infection, a nursing home in 
the study area that has experienced multiple outbreak events since the 
beginning of the COVID-19 pandemic was considered a known hotspot 
to be identified through WBE. 

2.2. Calculation of the effective monitoring area 

A single monitoring manhole can be operated at the outlet point of a 
catchment, or inlet point of a public WWTP to monitor the entire 
catchment area. However multiple monitoring manholes may be 
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required in a large catchment depending on the maximum possible 
spatial resolution (monitoring area or population) associated with the 
detection sensitivity of the target analytes. In this case, it is ideal to 
evenly distribute the monitoring area or population served by each 
monitoring manhole. This is an optimization problem for determining 
the best locations of the monitoring manholes as a different set of 
monitoring manholes would result in different monitoring areas (or 
populations) for each manhole depending on the structure of the sewer 
pipe network. 

Calculating the monitoring area of a manhole requires information 
on manhole connectivity and the local service area (LSA) of each man-
hole—an area that drains into a manhole via no other upstream man-
holes. Fig. 1a shows a simple sewer network example, illustrating the 
topology of the manholes. An ideal sewer network has a dendric struc-
ture without a closed-loop so that sewage can flow through a pipe uni-
directionally, thus uniquely defining the catchment area served by each 

manhole. It encompasses the entire upstream area that drains into the 
manhole (called “cumulative service area (CSA)” hereafter, and illus-
trated in Fig. 1b). The connectivity information between adjacent pairs 
of the upstream and downstream manholes is stored in a squared binary 
matrix (“topology matrix of the manholes”) whose elements are 1’s in 
case of direct connection and 0’s otherwise. Based on the topology 
matrix of manholes, the CSA of each manhole is computed by searching 
for connected manholes in the upstream direction and their LSAs using a 
recursive calculation in the upstream direction as follows (see Fig. 1b for 
illustration): 

CSAi = LSAi +
∑ni+

i+=1

CSAi+ (1)  

where CSAi and LSAi are CSA and LSA of the manhole i, respectively, 
CSAi+ is CSA of the adjacent upstream manhole at the i+ th upstream 

Fig. 1. Concepts of manhole topology database, the cumulative service area, and the effective monitoring area for a hypothetical sewer network: (a) Construction of 
a binary matrix representing the manhole topology. Direct connection and no direct connection (or no connection) between two manholes are indicated by 1 and 0, 
respectively; (b) Illustration of the cumulative service area (CSA); (c) illustration of the effective monitoring area (EMA). 
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branch of the manhole i, and ni+ is the total number of the adjacent 
manholes in the upstream branches of the manhole i. 

Given the information on CSAs of the monitoring manholes, the 
effective monitoring area (EMA) of a monitoring manhole is defined as 
an area monitored by that manhole excluding the CSAs of the nearest 
monitoring manholes at its upstream branches as follows (see Fig. 1c for 
illustration): 

EMAj = CSAj −
∑nj+

j+=1

CSAj+ (2)  

where EMAj and CSAj are EMA and CSA of the monitoring manhole, j, 
respectively, CSAj+ is CSA of the nearest upstream monitoring manhole 
at the j+ th upstream branch of the monitoring manhole j, nj+ is total 
number of the upstream branches of the monitoring manhole j that have 
upstream monitoring manholes. 

2.3. Selection of the best monitoring manhole locations using a global 
optimization algorithm 

The best strategy for locating a given number of monitoring man-
holes across the catchment is to assign equal EMAs to all monitoring 
manholes, and the approximate solution is achieved by minimizing the 
maximum value among the EMAs of the manholes selected as the 
monitoring stations. Therefore, determining the optimal locations of a 
given number of the monitoring manholes can be formulated as an 
integer optimization problem as follows: 

minimize : max j∈U
U⊂S, n(U)=N

(EMAj) (3)  

where S is a set of all monitoring manholes in the catchment as elements, 
U is a subset of S with N number of required monitoring manholes. N is 
determined by dividing the entire catchment area (or total population) 
by the ideal EMA for each monitoring manhole (or the maximum 
possible monitoring area). 

Although any global optimization algorithm can be used to solve the 
optimization problem in Eq. (3), a genetic algorithm (GA) was applied to 
compare its performance with that of SBM. A GA is a heuristic search 
reflecting the natural selection process such as mutation, crossover, and 
selection (Mitchell, 1996). GAs have been used to solve nonlinear 
optimization problems in many environmental applications including 
pipe network optimization (Haghighi and Bakhshipour, 2012; Gupta 
et al., 1999), optimization of pollutant control strategies (Srivastava 
et al., 2002; Arabi et al., 2006) and parameter estimation of environ-
mental models (Fazal et al., 2005; Massoudieh et al., 2008). 

Different numbers of monitoring manholes ranging from 2 to 16 
were selected using the GA. For each case, the population size (i.e., 
number of candidate solutions) of the GA was 200, where each indi-
vidual contained a vector of input variables (chromosome) consisting of 
integer values (genes) that represent selected monitoring manholes. For 
each generation, 5% elite individuals were selected and subject to 
crossover (with 0.8 of crossover fraction) and mutation to produce the 
next generation. The GA was terminated when the average change in the 
penalty fitness function value (Kalyanmoy, 2000) became less than 10− 6 

or the number of generations reached 100 times the number of input 
variables (i.e., the number of monitoring manholes). Computer codes for 
implementing the GA and SBM were written in MATLAB R2020b 
(Mathworks, Massachusetts, USA). 

2.4. Stepwise selection of sewer monitoring manholes using spatial 
bisection 

As an alternative to the global optimization algorithm for monitoring 
manhole placement, we employed a bisection method that can be 
applied to spatial pipe network data. The bisection method is a mathe-
matical approximation method to find the root of any continuous 

function by repeatedly bisecting the interval of independent variables 
and then selecting the subinterval that contains the root (Burden and 
Faires, 1985). We adopted the core idea of the mathematical bisection 
for the spatial data of the sewer network, called SBM. SBM repeatedly 
bisects the catchment until a spatial resolution required by a WBE pro-
gram is obtained or the infected area is found, similar to the root 
searching procedure in the mathematical bisection method. 

To provide a spatial resolution required for regular sewage moni-
toring, a spatial bisection-based stepwise selection strategy for moni-
toring manholes is proposed as shown in Fig. 2. In a given catchment 
with an outlet monitoring manhole, the addition of one monitoring 
manhole at any location inside the catchment results in two subcatch-
ments (the added manhole is called “inside monitoring manhole” 
hereafter): an upstream one that drains to the inside monitoring 
manhole and a downstream one that drains to the outlet monitoring 
manhole without passing through the inside monitoring manhole 
(Fig. 2a). These two subcatchment areas correspond to EMAs of the in-
side monitoring manhole and the outlet monitoring manhole (EMAup 
and EMAdown). The location of the inside monitoring is determined to 
minimize the difference between EMAs of the two subcatchments, thus 
providing a consistent spatial resolution of a WBE program. This optimal 
selection of the monitoring manhole is achieved using the Brute Forth 
approach to scan through all inside manholes within a given catchment 
(Fig. 2b). The manhole selection procedure is repeated for each sub-
catchment resulting from the previous manhole selection step until the 
required number of monitoring manholes or the spatial resolution of the 
monitoring is obtained (Fig. 2b). The spatial resolution is estimated as 
follows: 

Ades =
Atot

N
=

Atot

2p (4)  

where Ades and Atot are the spatial resolution of the WBE (or monitoring 
population) and total catchment area (or total population), respectively, 
and p is the number of spatial bisections. Note that in this study, the 
quantification of the spatial resolutions including Ades, Atot, CAS, LSA, 
and EMA is based on the total footprint area of buildings, although 
different spatial units such as populations can be used if available; If the 
population census data with sufficiently high spatial resolution (such as 
building level) are available, EMA can be calculated based on the pop-
ulation rather than the building footprint area. For example, areas and 
buildings with large population density or visitors such as nursing 
homes and community centers might be given priority when selecting 
monitoring manholes. Designers can choose different numbers of 
monitoring manholes depending on target analytes, their quantification 
sensitivity, and cost. 

SBM was applied to select different numbers of the monitoring 
manholes in the study area ranging from 2 to 24. For the case of 4 and 8 
monitoring manholes, the percent difference between the maximum and 
minimum EMAs among the selected manholes was compared with the 
those of a global optimization algorithm (genetic algorithm, GA) to 
evaluate the relative performance of SBM in selecting the optimal places 
of the monitoring manholes. 

2.5. Identification of infected areas 

When regular monitoring at multiple manholes is infeasible in many 
cases due to limited budget, a single monitoring location typically at the 
outlet point of the entire catchment (e.g., inlet point of a WWTP) might 
be a more practical situation. In this case, SBM or GA can be used to 
further identify the source areas of an infectious disease in the catch-
ment upon detecting disease outbreaks at the outlet point. That is, 
additional samplings can be simultaneously conducted at the inside 
manholes selected by SBM or GA to identify hotspots upon detection at 
the outlet of the entire catchment; a stepwise binary search (Larson 
et al., 2020) may be impractical due to the time requirements for the 
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sampling and measurement. The number of inside monitoring manholes 
(and spatial resolution of the monitoring) for identifying the infected 
areas depends on the program budget and resources. The infected 
catchments can be identified based on the measurement outcome at the 
inside monitoring manholes and selected for further scaling down the 
infected area by adding more samplings in the upstream subcatchments; 
here we presumed that the level of infection in a catchment can be 
estimated by the pathogen/virus detection intensity at the outlet 
(Medema et al., 2020; McMahan et al., 2021). In this study, a nursing 
home in the study area was considered a known source location to 
demonstrate the performance of SBM in identifying the source area of an 
infectious disease. 

3. Results and discussion 

3.1. Optimal manhole selection using GA and SBM 

Considering the ideal unidirectional flow of sewage water, the sewer 
network structure of the study area was idealized for WBE, with a total 
of 669 representative manholes extracted out of 5,424 manholes. The 
resulting sewer network and building footprints are shown in Fig. 3. The 
green circle is the location of the public WWTP and the inlet point of the 
WWTP was always selected as the monitoring site for the entire study 
area. The red star symbol is the location of the nursing home as a known 
hotspot of the COVID-19. The black dots are the extracted manholes for 
the unidirectional flow of sewage. 

Fig. 4 illustrates the convergence of the fitted objective function (Eq. 
(3)) as the GA progressed in selecting optimal places of 3 and 8 the 
monitoring manholes (including the inlet point of the WWTP). In this 
case, the GA terminated after 98 and 280 generations for 3 and 8 
monitoring manholes, respectively. As the number of monitoring man-
holes increased, the required generation and computation time for the 
convergence proportionally increased. Although the GA may provide 
acceptable manhole selection particularly for a few monitoring man-
holes, the global convergence was hardly achieved as indicated by a 
large gap between the mean and the best values of the penalty function. 

Fig. 5 is the box plots showing the distributions of % differences between 
maximum and mean EMA values from 10 repeated runs of GA for each of 
the different numbers of the monitoring manholes. As shown in Fig. 5, a 
large variability among different runs for a given number of the moni-
toring manholes and the relative difference between the maximum and 
the mean values of EMA increased as the number of the monitoring 
manholes increased. 

Fig. 6 visualizes the locations of selected monitoring manholes and 
their monitoring areas in different colors by the SBM and the GA for 
regular monitoring with different spatial resolutions. For the SBM, one 
to four repetitions of spatial bisection were conducted to select 2, 4, 8, 
and 16 manholes including the inlet point of the WWTP, respectively 
(Fig. 6a to d). As shown in Fig. 6a–d, subcatchments with selected 
manholes monitored were divided with approximately equal spatial 
resolutions. From the first selection step (Fig. 6a), EMAs of the two 
monitoring manholes were 1,363,313 m2 and 1,342,273 m2, respec-
tively, revealing a successful division of the entire catchment into equal 
areas with the SBM. Similarly, the other three cases of additional 
manhole selection (n = 4, 8, and 16) divided the EMA of the catchment 
(Fig. 6b–d and Table S2) almost equally. Fig. 6e and f shows the loca-
tions of 3 and 8 manholes selected by the GA, respectively. Except for the 
case of two monitoring manholes (n = 2, Fig. 6a), the GA and the SBM 
selected different locations for a given number of monitoring manholes. 
In general, the SBM was superior to the GA to obtain consistent spatial 
resolution for the monitoring (compare Fig. 6d and f). 

The GA was more flexible in selecting varying numbers of the 
monitoring manholes compared to the SBM, but it suffered from 
convergence to a local minimum, resulting in large variabilities in the 
site selection options for individual runs of the algorithm with an 
inconstant spatial resolution (i.e., unequal EMAs). This shortcoming of 
global optimization is because the penalty function of the optimization 
problem in this study is highly discontinuous with many local minima in 
the searching space. To illustrate the existence of a significant number of 
local minima in the search space, the degree of equality among the EMAs 
(i.e., the ratio between mean and the maximum values of EMA) as a 
function of different choices of two additional monitoring manholes 

Fig. 2. Selection procedure of monitoring manholes based on the spatial bisection method: (a) Conceptual example; (b) Flow chart.  
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with an outlet monitoring manhole is shown in Fig. 7. As illustrated in 
Fig. 7, due to this discontinuous nature of the penalty function, the 
global minimum is hardly obtained particularly for a large number of the 
monitoring manholes using the GA. On the other hand, the SBM requires 
less computational cost (e.g., computation times of the SBM and the GA 
for selecting 8 manholes using a 3.3 GHz CPU computer were 0.74 s and 
1251 s, respectively) and provides a better selection strategy for the 
monitoring manholes than the GA, as illustrated in Fig. 5, comparing the 
% different between maximum and minimum EMAs from the GA and the 
SBM. Therefore, the SBM can be an alternative to the GA when only a 
few monitoring manholes are needed to obtain the required spatial 
resolution of the sewer monitoring. 

3.2. Scaling down to the source area based on SBM 

One advantage of SBM over GA is its ability to rapidly search for 
additional sampling manholes to scale down to the source area of 
infection. Fig. 8 illustrates how additional samplings aided by SBM scale 
down to the known source area of infection in the study area. In this 

example, upon detection at the outlet point of the catchment (which is 
the inlet point of the WWTP), 15 additional manholes were determined 
by four stepwise bisections of SBM to scale down to the infected area 
until a required spatial resolution is achieved; the selected source area of 
infection was colored in red in Fig. 8. In this case, the source area was 
identified with a spatial resolution of around 0.16 km2 (or 13,800 
people) with additional 15 samplings upon detection at the outlet 
manhole. 

3.3. Considerations and limitations for practical applications 

The proposed SBM or GA can help with flexible selection of the sewer 
monitoring manholes in accordance with the prevalence dynamics. 
Fig. 9 illustrates the numbers of daily confirmed cases of COVID-19 in 
the Seoho sewershed. In the Seoho sewershed, after the first case was 
reported in February 2020, the daily cases were maintained under five 
for around 10 months until December 2020 (defined as ‘low prevalence 
stage’). The daily cases significantly increased thereafter maintaining 
relatively high numbers of daily cases with the continued increase of the 

Fig. 3. Sewer network and building footprints of the Seoho sewershed.  
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cases and larger daily variabilities until recently (defined as ‘high 
prevalence stage’). 

In the low prevalence stage, detection of infection occurrences for an 
early warning and identification of hotspots would be the primary goal 
of a WBE program. In normal times, a single manhole at the catchment 
outlet can be regularly monitored for an early warning, and upon 
detection at the outlet, additional sampling can be conducted in the 
upstream manholes to identify the infected area. SBM or GA can help 
select the required numbers of regular or additional sampling manholes 
to provide a required spatial resolution for the disease surveillance or 
source area identification upon detection at the outlet. The detection 
sensitivity of a monitoring manhole can be site-specific depending on 
the catchment area served by the manhole (i.e., CSA), sampling method 
(e.g., grab or composite), sewage characteristics, the recovery efficiency 
of the quantification method, and detection limit of the instrument (Zhu 
et al., 2021). Currently, a few studies reported detection sensitivity of 
the viral RNA of SARS-CoV-2: Hart and Halden (2020) reported the 
theoretically possible ranges of detection sensitivity as 5 × 10− 5%–1% 
(1 individual among 100 to 2,000,000 persons) based on a computa-
tional analysis; and Ahmed et al. (2020) reported a detection sensitivity 
ranging from 0.028% to 0.18% (170–1090 individuals in 600,000 per-
sons) based on the Monte Carlo simulation and detection limit of 
RT-qPCR technique. In the Seoho sewershed, the outlet manhole may 

successfully detect the low prevalence present in the entire catchment 
area if the detection sensitivity is greater than 4.5 × 10− 4%, which is in 
the possible detection range by Hart and Halden (2020). Due to smaller 
CSA with less dilution effect, the detection sensitivity of additional 
sampling manholes in the upstream is typically greater than that of the 
outlet manhole, enabling promising outcomes for source area identifi-
cation by additional samplings upon detection at the outlet. 

In the high prevalence stage (Fig. 9), forecasting patient trends can 
be more important than an early warning or hotspot identification. 
Because of a larger number of infected individuals within a time window 
of active viral shedding, a smaller number of monitoring manholes with 
more frequent samplings will be needed. Here, we assumed that the viral 
shedding rate of an infected individual stays constant for a week 
(although it is not true) and the prevalence level is defined by cumula-
tive cases during the preceding seven days. In the case of the Seoho 
sewershed (Fig. 9), the daily prevalence level is mostly greater than 10. 
Thus, the outlet monitoring manhole can efficiently detect the level of 
disease prevalence at a detection sensitivity of 4.5 × 10− 3% during the 
high prevalence stage in the study area. 

The suggested design and operation method of sewer monitoring 
stations based on SBM or GA can be optimized by offsetting cost, 
considering the required resolution of the detection (spatial monitoring 
scale and sampling frequency), the prevalence stage, the predetermined 
threshold of prevalence level (i.e., detection sensitivity), sampling and 
experimental method, and total budget for the WBE program. In addi-
tion, more weights can be given to the areas of high infection risk such as 
hospitals, nursing homes, or districts with vulnerable classes during the 
determination of the spatial scale in the spatial bisection procedure. 

Despite the potential utility of the proposed site allocation methods 
in a WBE program, successful implementation of these methods might be 
limited by uncertainties in measurement quality and data interpretation 
originating from various site-specific factors such as leakage or dilution 
of the sewer, sewer characteristics, temperature and time driven decay 
of the analytes, temporally and individually varying shedding rates, and 
population mobility (Wade et al., 2022). Therefore, a WBE program 
needs techniques for handling these uncertainties and correct preva-
lence estimation based on the measured data to ensure practical feasi-
bility of the proposed site allocation methods, which is beyond the scope 
of the current study. 

4. Conclusions 

This study aimed to provide an efficient tool to better design a WBE 
program. Performances of a global optimization algorithm, GA, and SBM 
were compared in determining the optimal locations of the monitoring 

Fig. 4. Convergence of the penalty function with the generation in the genetic algorithm. (a) N = 3; (b) N = 8.  

Fig. 5. Percent difference between maximum and mean values of the effective 
monitoring area for different numbers of monitoring manholes. Boxplots are 
from 10 repeated runs of the genetic algorithm and diamonds indicate the 
values obtained from the spatial bisection method. 
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Fig. 6. Selection of optimal places of the monitoring sites up to 24 manholes in the Seoho sewershed for regular monitoring: (a) Fist step selection using SBM (n = 2); 
(b) Second step selection using SBM (n = 4); (c) Third step selection using SBM (n = 8); (d) Fourth step selection using SBM (n = 16); (e) Selection of three manholes 
by GA; (f) Selection of eight manholes by GA. Black solid circles indicate selected manholes. Subcatchments (effective monitoring areas) are in different colors. 

K. Kim et al.                                                                                                                                                                                                                                     



Journal of Environmental Management 320 (2022) 115806

9

manholes. Although GA allowed more flexible selection of the total 
number of the monitoring manholes and spatial resolution of the 
monitoring, it was less efficient in evenly assigning the monitoring areas 
to the monitoring manholes and required greater computational cost 
compared to SBM. SBM was demonstrated as an efficient approach to 
rapidly scale down to source areas of infectious disease. The proposed 
methods provide options for WBE designers to determine the most 
appropriate locations of sewage surveillance with a required source 
population or spatial resolution in a large catchment, or identifying 
hotspots with the least number of additional samplings upon detection 
from regular sewage surveillance. Designers can offset between sample 
representativeness (i.e., monitored source population) and quantifica-
tion accuracy by adjusting spatial resolutions with different numbers of 
monitoring manholes. The proposed methods can support WBE for early 
detection and warning of the (re)emerging infectious diseases out-
breaks; identifying hotspots to be designated for quarantine and 

forecasting the dynamics of the prevalence level in the community prior 
to the medical diagnostic reporting; and thereby allowing preparedness 
of the healthcare facilities against disease outbreaks. A WBE program 
can have more than one objective among the objectives described above, 
or focus more on one objective over another depending on the progress 
status or level of the disease prevalence. 
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