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Abstract: The influenza M2 protein forms an acid-activated and drug-sensitive proton channel in

the virus envelope that is important for the virus lifecycle. The functional properties and
high-resolution structures of this proton channel have been extensively studied to understand the

mechanisms of proton conduction and drug inhibition. We review biochemical and

electrophysiological studies of M2 and discuss how high-resolution structures have transformed
our understanding of this proton channel. Comparison of structures obtained in different

membrane-mimetic solvents and under different pH using X-ray crystallography, solution NMR, and

solid-state NMR spectroscopy revealed how the M2 structure depends on the environment and
showed that the pharmacologically relevant drug-binding site lies in the transmembrane (TM) pore.

Competing models of proton conduction have been evaluated using biochemical experiments,

high-resolution structural methods, and computational modeling. These results are converging to a
model in which a histidine residue in the TM domain mediates proton relay with water, aided by

microsecond conformational dynamics of the imidazole ring. These mechanistic insights are

guiding the design of new inhibitors that target drug-resistant M2 variants and may be relevant for
other proton channels.

Keywords: solid-state NMR; magic angle spinning; drug inhibition; membrane protein structure

determination; protein dynamics

Introduction
The M2 protein of the influenza A virus was first dis-

covered as the protein target of the anti-influenza

drug, amantadine.1 This modular protein serves mul-

tiple functions, which are localized in different

domains of the short 97-residue sequence. Its highly

conserved N-terminal 23 residues are located on the

outside of the virus and assist M2 incorporation into

the virion.2 Following this region is a transmembrane

(TM) helix (Fig. 1) that serves as a tetramerization

and proton-conducting domain. Conduction of protons

into the virion acidifies the virus after endocytosis

and initiates viral uncoating.6,7 Residues 46–60 form
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the next module, which helps induce membrane cur-

vature and membrane scission to release newly

assembled viruses from the host cell.8 Finally, the C-

terminal tail of the protein interacts with the matrix

protein M1 and is essential for virus packaging and

budding.9 In some strains of the influenza A virus,

M2 is also important for equilibrating the pH of the

lumen of the Golgi apparatus with the cytoplasm,

preventing premature conformational change of the

viral hemagglutinin.10 The M2 protein has been

extensively studied because of its medical importance,

particularly following the emergence of widespread

resistance to M2-blocking drugs amantadine and

rimantadine.11 The small size and modular structure

of M2 also make it attractive for biophysical studies.

This review will focus primarily on the structure

and function of the TM domain of M2 (M2TM),

which contains the proton-conducting residue, histi-

dine 37 (His37),12 and the channel-gating residue,

tryptophan 41 (Trp41).13 The TM domain reproduces

most of the electrophysiological, pharmacological,

and biophysical features of the full-length protein,

such as low-pH activated proton conductivity, aman-

tadine sensitivity of the proton current, and tetra-

merization of the protein.14–16 Since its discovery

and until 2008, the mechanism of proton conduction

was extensively studied by electrophysiology, site-

directed mutagenesis, and molecular dynamics (MD)

simulations.3 However, while these studies estab-

lished the overall topology and approximate location

of key side chains, no high-resolution structures

were available. In 2008, this situation changed dra-

matically with the publication of solution NMR and

crystallographic structures.17,18 These were followed

by solid-state NMR (SSNMR) structures of phospho-

lipid-bilayer-bound M2.5,19 In this review, we first

summarize our understanding of M2’s mechanism of

proton conduction and inhibition based on biochemi-

cal and electrophysiological studies. We then discuss

how high-resolution structures have transformed

our understanding of this proton channel. At times,

high-resolution structures can give misleading

results if their conclusions are not supported by

functional data. Thus, to distinguish mechanistic

conclusions based on biochemical data versus mech-

anistic insights from high-resolution structures, we

review these subjects in separate sections. Because

structures are emerging from several experimental

methods, we also provide a brief technical descrip-

tion of the advantages as well as underlying uncer-

tainties of the different methods.

Finally, we point to remaining areas of disagree-

ment and open questions for future studies. Progress

in the area of M2 has been punctuated by competing

models of proton conduction and the site of pharma-

cological inhibition. Because these competing models

were well defined and articulated, they stimulated

new and more discriminating experiments and inter-

pretation. The first debate concerned the proton con-

duction mechanism. An early model envisioned a

continuous aqueous channel that was gated by pH

(shutter mechanism),20 versus the currently

accepted model in which protons diffuse along a

water wire until reaching His37, where they are

then ‘‘shuttled’’ by His37 through alternate protona-

tion and deprotonation events. A second debate

focused on whether drugs inhibited the channel by

binding to a site within the aqueous pore or on the

surface of the protein. This debate stimulated exten-

sive functional experiments21–25 and SSNMR inves-

tigations.5,26,27 The physiologically important site

was eventually shown by SSNMR to lie in the pore,

highlighting the utility of this atomic resolution

spectroscopy for structure determination of mem-

brane proteins in near-native lipid bilayers.

The primary remaining debate in the literature

centers on the mechanism by which charge is stabi-

lized in the His37 tetrad when it is protonated. One

early model focused on a low-barrier hydrogen bond

(LBHB) between His37 residues, which was moti-

vated by the observation of a high pKa for the first

two protonation steps.28 A more recent study, how-

ever, suggested that the His37 cluster is less basic

than originally anticipated.29 Magic-angle spinning

(MAS) SSNMR measurements of the His37 confor-

mation and dynamics,30 combined with crystal struc-

ture information,31 indicate that His37 residues

interact with each other indirectly via water mole-

cules in the dominant structure at equilibrium. We

present a model for conduction and inhibition that

Figure 1. (A) Functional model of the TM domain of the M2

tetramer, showing the positions of crucial side chains and

the drug amantadine. The model was obtained from

cysteine scanning mutagenesis.3,4 (B) High-resolution

structure of the amantadine-bound M2TM in DMPC bilayers

obtained from SSNMR (PDB: 2KQT).5 The overall shape of

the tetrameric bundle from the functional model is in

excellent agreement with the high-resolution structure;

however, specific differences exist such as the helix tilt

angle and the conformations of several side chains (e.g.,

Ser31 and Trp41). In both images, the ‘‘front’’ helix has

been removed for clarity.
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combines our understanding of the pharmacology

and the full ensemble of structural and functional

studies now accumulated for this proton channel.

Conduction properties of M2
The rate and pH dependence of proton conductance

through M2 appear to be evolutionarily tuned to pro-

vide enough conductances to mediate acidification of

the virion when encapsulated in the endosome, but

not excessive or nonselective conductance that could

cause toxicity to the cell before it produces viral

progeny. M2 conducts protons � 105–106 times more

effectively than other ions such as sodium.32–35 The

selectivity, however, is not absolute, and Kþ ions,

which are at a much higher concentration than pro-

tons, are slowly conducted out of the virus as the

inside of the virus is acidified.36 This small Kþ con-

ductance prevents the formation of a large electrical

gradient that would otherwise counter proton flux

before acidification is complete. Classically, the con-

ductance of a channel is described by its radius,

length, ion selectivity, and most importantly, the

concentration of ions on the two sides of the bilayer.

Typically, the rate of an ion’s conductance scales lin-

early with its concentration on a given side of the

bilayer, and a net flux is observed only at asymmet-

ric ion concentration or in the presence of a TM elec-

trical potential. The proton conductance of M2 is rel-

atively small compared with Kþ or Naþ channels,

largely because the concentration of protons is very

low (10�5M at pH 5) relative to alkali metal ions

(0.15M) in a cell. Near neutrality, M2 conducts pro-

tons at a rate near what is expected for a channel

formed from a tetramer of a-helices;37 a second-order

rate constant of � 107–108M�1 s�1 can be computed

for the net diffusion of ions into and through the

channel. However, as the pH is reduced below pH 6,

the conductance fails to increase linearly and

instead levels off, which is reminiscent of the

Michaelis–Menton behavior seen in transporters.

This saturation behavior has also been observed in

studies of M2 reconstituted in phospholipid

vesicles.36,38

Therefore, M2 was proposed to work by a mech-

anism in which His37, the only ionizable residue in

the TM domain, served to shuttle protons through

the channel.3,34 Saturation was proposed to occur at

low pH as one or more His37 residues became fully

protonated. The conduction curve showed a midpoint

near pH 6,33,39 which was taken to be the pKa of the

conducting His37. The leveling seen at low pH is in-

dicative of the rate-limiting step switching from dif-

fusion into the channel (at high pH) to another step

at low pH. This step was assigned to proton dissocia-

tion from His37, given the known dissociation rate

of histidines in proteins. Histidines with a pKa near

6 have proton dissociation rates of � 104 s�1 at room

temperature.40 In a channel with a constricted diam-

eter like that of M2, the rate is expected to be one to

two orders of magnitude slower, 102–103 s�1.37 This

value is in good agreement with the experimentally

measured maximal conductance of M2, which is

about 10–1000 s�1.

The His37 shuttle hypothesis was further

refined following the report that the first two proto-

nation steps of this residue occurred with a pKa

near 8.2.28 This value has considerable uncertainty

because it was measured in dimyristoylphosphatidyl-

choline (DMPC)/dimyristoylphosphatidylglycerol

(DMPG) bilayers at a temperature where residual

peptide motion remained to broaden the 15N spectra.

More recently, the pKa’s of the His37 tetrad were

determined more accurately using samples reconsti-

tuted in a membrane whose lipid composition more

closely resembles that of a virus, and the first two

protonation steps were resolved, with pKa’s of 7.6

and 6.8.29 Both studies found that binding of the

third proton occurred near the midpoint of the pH/

current curve, suggesting that conduction occurs

when the His37 tetrad cycles between the þ2 and

þ3 states. In some variants, however, there is a sec-

ondary conductance near neutral pH that requires

consideration of a low-level of conductance for the

þ1 to þ2 cycle. More recent data suggest that the

þ3 to þ4 cycle might also lead to productive proton

flux at pH <5 (Chunlong Ma, Lawrence Pinto, perso-

nal communication).

Natural and artificial sequence variants of M2

While influenza A virus is a relatively fast evolving

virus that constantly mutates and shuffles its

genome, the M2 protein is largely conserved com-

pared with other proteins encoded by the genome.

There is an extensive record of sequence variation in

M2 from viruses dating back to 1918, which shows

particularly little variation in the TM region. From

a practical perspective, it is important to understand

why the protein is so conserved and how it tolerates

the few observed mutations to pore-lining residues,

since this information can guide the design of new

drugs and anticipate potential sources of new resist-

ance. From a more fundamental perspective, both

natural and artificial mutants of M2 provide valua-

ble information about the residues involved in pro-

ton conduction and inhibition. Fortunately, the tetra-

meric structure of M2 is simple that it was possible

to predict the probable location of these mutations

even before the availability of high-resolution

structures.

The first models for the structures of the TM

region of M2 arose from Cys-scanning mutagenesis

and unrestrained MD simulations.4,20,41 These

models guided the design and interpretation of elec-

trophysiological experiments for over a decade, until

crystallographic and NMR structures became avail-

able. These early models3 captured the overall shape
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of the pore seen in subsequent high-resolution struc-

tures [Fig. 1(A)]. Starting at the exterior of the vi-

rus, the N-terminal half of the sequence forms a

water-filled pore lined by Val27, Ala30, Ser31, and

Gly34. These sites are frequently mutated in aman-

tadine-resistant mutants. The pore is interrupted by

His37 and Trp41, which project to the center of the

channel. Asp44 defines the C-terminal end of the

pore. Below, we will first discuss mutations to the N-

terminal pore, which is important for diffusion of

protons to His37, followed by key residues His37,

Trp41, and Asp44, which are important for charge

storage and proton transfer.

The N-terminal aqueous pore. Early studies of

the mechanism of amantadine resistance focused on

the selection of viruses that could replicate in cell

culture in the presence of the pore-blocking drug

amantadine. Mutations that cause resistance

occurred at Val27, Ala30, Ser31, and Gly34, which

line the N-terminal aqueous pore.1,42 A subset of

these mutations are found in infected patients fol-

lowing treatment with amantadine,43 and reverse-

engineered viruses harboring various pore-lining

mutations are able to replicate in vitro and in a

mouse model.44 However, many of these mutations

give rise to somewhat attenuated viruses that are

less transmissible than wild-type (WT) and tend to

revert in the absence of drug pressure.42,45 Indeed,

large-scale sequencing of transmissible viruses from

1918 to 2010 showed that mutations to pore-lining

residues are allowed only within the first turn of the

TM helix at positions 26, 27, and 31 [Fig. 1(A)].

S31N has long been the dominant amantadine-re-

sistant mutation in M2,46–49 accounting for 98–100%

of the transmissible amantadine-resistant H1N1,

H5N1, and H3N2 strains isolated from humans,

birds, and swine in the last decade.11,50–60 V27A and

L26F are less frequent and generally have been

found in nonpandemic amantadine-resistant

H1N1.48,61,62

Extensive studies of point mutations to the

pore-lining residues of M2 have been carried out to

probe the conductance mechanism and to identify

additional sites that might impart amantadine-re-

sistance.21,63 A surprisingly large number of

mutants in the N-terminal aqueous pore retained

the ability to conduct protons selectively over other

ions, although the magnitude and pH dependence of

their conductance varied. Functional channels were

generally observed so long as the mutation did not

disrupt the tetrameric structure of the channel64 or

introduce a large hydrophobic residue that could

block the aqueous pathway leading to His37. While

these ‘‘functional’’ mutations gave proton-selective

channels, they differed from WT in the magnitude of

their proton conduction and the shape of their pH–

current curves. Only a few mutations—V27A, S31N,

and L26F—had properties very similar to WT. These

are also the same mutants that comprise more than

99.9% of reported resistance in transmissible

viruses. The stringency of sequence conservation in

M2 reflects tight functional constraints of the pore-

lining residues, where a single mutation to a mono-

mer causes four changes within a very constricted

area of the tetrameric pore.

The proton-selective and gating residues: His37,

Trp41, and Asp44. Mutations to the invariant res-

idue, His37, increase the conductance of the channel

and eliminate its stringent proton selectivity.12,32,65

Interestingly, the proton selectivity of H37G can be

restored by adding exogenous imidazole, which pre-

sumably binds to the site normally occupied by

His.65

Mutations to Trp41 have identified this residue

as the ‘‘proton gate.’’13 Most strains of influenza

have M2 proteins that conduct protons asymmetri-

cally—when pHout is less than pHin, there is a

robust inward proton flux, which is much greater

than the outward current observed when the situa-

tion is reversed. This asymmetry is lost when Trp41

is replaced with other side chains except Tyr, which

also has an electron-rich aromatic ring capable of

stabilizing cation-p interactions.66,67 These data sug-

gest that Trp41’s side chain is a gate that can block

diffusion of protons from the inside but not from the

outside of the virus. So long as this gate is closed,

protons cannot rapidly access His37 from the inside

of the virus, explaining why outward flux is slow

under low pHin and high pHout. However, protons

coming from the outside can access the His37 tetrad,

allowing it to reach a threshold protonation state,

which is now known to be the þ3 state. This leads

to opening of the Trp41 gate and inward proton flux.

Asp44, the final residue in the conduction path of

the channel, influences the proton conductance in the

pH range 5–7. The Rostock virus has the more con-

ducting variant, D44N.68,69 This virus has a particu-

larly acid-labile hemagglutinin, which M2 protects by

preventing the acidification of the late Golgi. Other

substitutions at residue 44 also lead to larger proton

flux, suggesting that Asp44 helps to stabilize Trp41 in

the closed form, and disruption of this interaction

results in enhancement of the proton flux.

High-resolution structures of M2

High-resolution structures elevated mechanistic

understanding of the M2 protein to the atomic level.

All three major high-resolution techniques, X-ray

crystallography, solution NMR, and SSNMR have

been used to determine the structure of M2. Because

of the differing sample requirements of these techni-

ques, the structures were solved in different mem-

brane-mimetic solvents, making M2 a rare case for

understanding the conformational dependence of
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membrane proteins on the environment.70,71 So far,

the high-resolution structures of M2 include three crys-

tal structures of the TM domain in the detergent octyl

glucoside from pH 5.3 to pH 7.5;18,31 solution NMR

structures of influenza A M2(18–60)17 and an AM2-BM2

chimera72 in dihexanoylphosphatidylcholine (DHPC)

micelles at pH 7.5; SSNMR orientational structure of

M2(22–62) in dioleyolphosphatidylcholine (DOPC)/dio-

leoylphosphatidylethanolamine (DOPE) bilayers at pH

7.519 and M2(22–46) in DMPC bilayers at both acidic73

and neutral pH;74 and MAS SSNMR structure of

M2(22–46) in DMPC bilayers5 and dilauroylphosphati-

dylcholine (DLPC) bilayers26 at neutral pH. Except for

the M2(22–62) orientational structure, the other

SSNMR structures were solved in the presence of the

antiviral drug amantadine.

It is important to examine the type and number

of experimental restraints and the underlying

assumptions for the various M2 structures. For the

crystal structures, the crystals diffracted to 3.5–1.65

Å, the highest resolution of which allowed the detec-

tion of bound water molecules in the pore31 whereas

the lowest resolution could not pinpoint the direction

of the polar amine of amantadine.18 For the solution

NMR structure of M2(18–60), the most important

restraints were 27 intermonomer and drug-protein

NOEs, 23 side chain dihedral angles, and 27 resid-

ual N-H dipolar couplings.17 The SSNMR experi-

ments and structural constraints fall into two cate-

gories. Oriented-membrane SSNMR experiments

involve glass-plate-aligned or bicelle-aligned mem-

branes that are kept static during data acquisi-

tion.75,76 15N-1H dipolar couplings, which reflect the

NAH bond orientations and in turn the helix orien-

tation from the bilayer normal, are measured from

2D correlation spectra. In the solid state, the 15N-1H

dipolar couplings exhibit the full range of possible

values, compared with the much smaller range in

weakly aligned molecules in solution;77 thus, the

SSNMR extracted N-H dipolar couplings are more

sensitive to protein orientation. Compared with ori-

ented-membrane SSNMR, MAS NMR experiments

utilize unoriented hydrated proteoliposomes that are

spun fast around an axis tilted by 54.7� from the

magnetic field. MAS SSNMR gives a wide variety of

structural information, including interatomic distan-

ces, torsion angles, rotamer structure, oligomeric

number, molecular motion, and chemical struc-

ture.75,78–82 The inputs for the MAS SSNMR struc-

ture of amantadine-bound M2(22–46)5 [Fig. 1(B)]

included drug-protein distances, side chain

rotamers,83,84 chemical shifts,85 intermonomer dis-

tances,84 as well as NAH bond orientations.74 In

general, SSNMR structures have fewer constraints

than solution NMR and crystal structures, but these

sparse constraints are measured in the more native

environment of lipid bilayers and usually have high

precision and accuracy.

Although various environmental factors such as

pH, membrane-mimetic solvent, and drug differed

among the various high-resolution studies, the over-

all shape of the TM domain is largely preserved

(Fig. 2). All structures showed four helices

assembled into a left-handed parallel bundle, with a

tilt angle of 30�–35� for the N-terminal half of the

helix in most cases. The only exception is the

DHPC-micelle bound solution NMR structure, which

showed a much smaller tilt angle of � 15�.17 The tilt

angle of the C-terminal half of the helix differs by

about 10� between the low-pH crystal structure and

the high-pH SSNMR structures. All structures

agreed on the relative positions of pore-facing versus

lipid-facing side chains; however, key differences

exist about the rotameric states of His37 and

Trp41.17,30,31,84 It is worth noting that side chain

conformations cannot be obtained from oriented-

membrane SSNMR experiments, as they only mea-

sure backbone NAH bond orientations. The His37

and Trp41 rotamers in the recent oriented-mem-

brane SSNMR structure of M2(22–62) were based on

computational modeling.19

Compared with the TM domain, much larger

structural variations are seen for the cytoplasmic

helix between the solution NMR structure17 and the

oriented-membrane SSNMR structure.19 In DHPC

micelles, the four cytoplasmic helices form a helical

bundle that is well separated from the TM domain

and from the putative micelle surface by a dynamic

loop.17 In contrast, in DOPC/DOPE bilayers, this

cytoplasmic helix is tightly connected to the TM

domain by a rigid Leu46–Phe47 turn19 and lies at

Figure 2. Structures of the TM domain of M2. (A) The N-

terminal pore is lined by the hydroxyl of Ser31 and

backbone carbonyl groups (pictured structure is the 1.65 Å

crystal structure at pH 6.5, PDB: 3LBW). The molecular

surface of the channel is color-coded with the oxygen

atoms in red, carbon in gray, and nitrogen in blue. The

‘‘front’’ helix has been removed for clarity. (B)

Superimposed solid-state NMR structure at pH 7.5 (2L0J,

yellow), the 1.65-Å crystal structure at pH 6.5 (3LBW, blue),

and the 3.5-Å crystal structure at pH 5.3 (3C9J, red). His37

and Trp41 side chains (sticks) and Gly34 Ca (ball) are

shown.
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the membrane-water interface. The interfacial loca-

tion is consistent with earlier H/D exchange data

showing very slow exchange for the hydrophobic res-

idues in this domain.86

Mechanism of proton transfer from

high-resolution structures

The availability of the high-resolution structures has

provided atomic-level understanding of the struc-

tural and dynamic basis of proton conduction. With

these structural data, we can now address how pro-

tons are transported through the aqueous pore to

the His37 tetrad, how charge is stabilized in the

His37 cluster, and how protons are released into the

virus interior.

The N-terminal aqueous pore. The structures of

the TM domain show that the pore is replete with

H-bond acceptors but deficient in H-bond donors.

The pore is lined by small side chains (Val27, Ala30,

Ser31, and Gly34) that allow substantial exposure of

the main chain atoms to the pore. Carbonyl groups

in helices are able to accept two hydrogen bonds,

one from the main-chain amide NH and one from

solvent water or a Ser/Thr located one turn away,

whereas the amide NH group can donate only a sin-

gle hydrogen bond. The walls of the N-terminal

aqueous pore are therefore positioned to accept, but

not donate, hydrogen bonds. In the neutral state of

the tetramer, the His37 tetrad has the lone pair of

its Ndd projecting toward the pore, ready to accept a

hydrogen bond [Figs. 1(B) and 2(A)]. By contrast,

water is at its lowest energy state when forming

equal numbers of H-bond donors and acceptors.

Thus, water in the channel experiences a deficit of

H-bond donors when His37 is neutral, which pro-

vides a strong driving force for binding H-bond

donors, such as ammonium groups in drugs or hy-

dronium ion-like species during proton conduction.

This provides a rationale for the elevated pKa of the

first two protonation events of the His37 tetrad,

which introduces H-bond donors into the system.

Dynamic, water-mediated stabilization of

charge in the His37 tetrad. The 1.65 Å crystal

structure at pH 6.531 provides a very high-resolution

snapshot of the protein at intermediate pH where it

appears to be in the þ2 state (Fig. 3). The structure

shows residues essential for conduction interspersed

with layers of well-ordered water molecules. The N-

terminal portion of the channel shows a region of

diffuse density, suggestive of disordered water mole-

cules [mesh in Fig. 3(A)]. Below this region, three

layers of water clusters are found between pore-fac-

ing Gly34, His37, Trp41, and Asp44 to form a contin-

uous pathway for proton conduction. The four side

chains of His37 are packed into a box-like structure.

The imidazoles are not connected by direct hydrogen

bonds but by highly structured water molecules

above and below, supporting the His37-water model

for proton shuttling. Two bridging water molecules

are seen between His37 and Trp41. As the channel

is roughly in the þ2 state at pH 6.5, these bridging

water molecules are hypothesized to delocalize the

excess protons, thus reducing the energy barrier for

proton storage in the hydrophobic part of the lipid

membrane. The crystal structure was obtained at

cryogenic temperatures where water is frozen. Com-

plementary SSNMR30,87 and two-dimensional IR

experiments88 carried out at ambient temperature,

as well as MD simulations,89,90 were also reported

and showed that the water molecules near His37 are

in fact dynamic. Even water molecules between

His37 and Trp41 are found to be dynamic based on

Figure 3. (A) The proton conduction pathway seen in a 1.65-Å resolution crystal structure including three clusters of

crystallographic waters. (B–D) A second perspective of the outer (B), bridging (C), and exit (D) clusters viewed normal to the

membrane plane. (E) The surface of the pore (light blue shading) is shown along with the crystallographic waters (red

spheres). Val27, His37, and Trp41 residues are rendered in blue, orange, and magenta, respectively. Pore radius profiles are

plotted for the high-resolution crystal structure (3LBW, blue solid line), low-pH (3C9J, blue dash-dotted line), and amantadine-

inhibited (red dashed line) structures.
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2D 15N-1H correlation SSNMR spectra.30 These

dynamic water molecules likely solvate the Cu2þ

that was recently determined to bind within this

His-Trp aromatic cage.91 Two-dimensional MAS

SSNMR spectra showed that water interaction with

M2 is pH dependent: the water–protein cross-peaks

build up faster at low pH than at high pH, and the

different buildup rates indicate that the water-

exposed surface area of the tetramer is � 33% larger

at low pH (open state) than at high pH (closed

state).87 Thus, the channel pore widens at low pH,

which is consistent with the observed increase of the

helix tilt angle at low pH.18,31,73,74 Taken together,

these results depict a highly solvated His37 tetrad

in the multiply charged states.

SSNMR experiments yielded three conclusive

pieces of evidence that His37 rapidly exchanges pro-

tons with the surrounding water molecules. First,
15N spectra showed that the imidazolium nitrogens

interchange between the unprotonated and proto-

nated states, manifested as 15N intensities halfway

between the limiting frequencies of the N and NH

peaks.29 The linewidths of the 15N exchange peaks

indicate an exchange rate of 4.5 � 105 s�1. This

N <–> NH exchange rate is about two orders of

magnitude larger than the proton conduction rate,

indicating that most exchange events do not result

in conduction of protons into the virus, but rather

occur between multiple His37 residues through the

intervening water (vide infra). The larger His-water

proton exchange rate compared with the proton con-

duction rate supports the delocalization of the pro-

tons over the His37 tetrad and the surrounding

water. The 15N exchange peaks are the highest

between pH 5 and 6, the pH range of the endosome,

where the þ2 and þ3 states dominate.29 Second, as

the 15N exchange peaks do not in themselves indi-

cate that the exchange partner of His37 is water,

the chemical shifts of the imidazole HN protons were

recently measured, and were found to lie at the

water frequency at high temperature.92 This obser-

vation indicates that the proton-exchange partner of

His37 is water, rather than another histidine. Third,

the NAH bond lengths of the imidazole rings were

found to be elongated (1.11 Å) from the covalent

bond length at low pH,30 whereas at high pH, the

Ne2-H bond of neutral His37 remains short and

strongly covalent (1.03 Å). Thus, the low-pH imida-

zolium forms hydrogen bonds with water molecules.

The microsecond His37-water proton exchange

is accompanied by reorientation of the imidazolium

rings at acidic pH.30 In a cholesterol-containing com-

plex lipid membrane that immobilizes the backbone

of the TM helix, the imidazolium side chains show

motionally averaged dipolar couplings. The reduced

order parameters, which depend on the reorientation

angles of motion, indicate that the imidazolium reor-

ients around the Cb-Cc bond by � 45�. This motion

points the unprotonated nitrogen to the acidic N-ter-

minal side and the protonated nitrogen to the high-

pH C-terminal side to facilitate proton transfer with

water.30 The ring reorientation occurs at least 105

times per second, and the energy barrier was

measured to be at least 60 kJ mol�1 based on the

temperature dependence of the dipolar couplings.

This minimum barrier is consistent with the energy

barrier of 50–120 kJ mol�193,94 for 180� ring flips of

imidazole model compounds. Moreover, the mini-

mum energy barrier is consistent with the proton

conduction barrier of � 100 kJ mol�1 estimated from

temperature-dependent single-channel proton con-

ductivities,95 indicating that the conformational

change of the His37 side chain constitutes the high-

est energy barrier in the conduction process.

A low-barrier hydrogen bond between His37

residues? While the above experimental data indi-

cate that the His37 forms hydrogen bonds with

water, a second model suggests that His37 instead

hydrogen bonds directly to one another, through a

LBHB between Nd1 of a neutral imidazole and

Ne2—H of a cationic imidazolium in the þ2 state of

the channel.19,28 The primary rationale for this

model is the early observation of a high pKa (8.2) for

the first two protonation steps of the His37 tetrad,

suggesting high basicity of the His residues and

prompting the need to explain how the excess pro-

tons are stabilized before conduction occurs. How-

ever, the measured phenomenological pKa values not

only reflect the intrinsic basicity of the side chains

but also include a statistical factor due to the num-

ber of energetically degenerate permutations for

arranging the protons in a tetramer. In particular,

the first protonation can occur at any of the four his-

tidines; thus, each His37 is in fact less protonatable

than the tetrad pKa suggests. The statistical factor

for the first pKa is log(4) ¼ 0.6, so that the basicity

of the individual His37 decreases to 7.6, which is

within one standard deviation of the average pKa

(6.6 6 1.0) for partially or fully buried histidines in

proteins.96 For the first tetrad pKa of 7.6 measured

in the virus-mimetic membrane, the modified value

would be 7.0, even closer to the average histidine

pKa in proteins. We suggest that the stabilizing

interactions of water molecules polarized by amide

carbonyls, cation-p interactions between His37 and

Trp41, and electrostatic interactions from Asp44,

explain the modest increase in the first pKa of

His37.

While these energetic and statistical considera-

tions largely remove the need for proposing a His–

His LBHB, experimental data also indicate an ab-

sence of LBHB. The original 15N MAS NMR spectra

lack specific peaks that are required for LBHB.28

The orientational NMR structure of M2(22–62) con-

taining the LBHB was computed without

1626 PROTEINSCIENCE.ORG Structure and Function of the TM Domain of M2



experimental side chain constraints,19 and the puta-

tive LBHB was used as a starting distance restraint

to enforce the expected geometry during MD simula-

tions. The measured His37 rotamer was trans–trans

for both v1 and v2,30 which places the Nd1-Ne2 vec-

tor parallel to the channel axis, thus making it

impossible to establish an Ne2-H. . .Nd1 hydrogen

bond. Finally, in the þ2 state proposed to contain

the LBHB, no imidazole-imidazolium 13C-13C cross-

peaks were observed in 2D spectra,29 indicating that

the His37 rings are not closely packed. Therefore, all

experimental evidence so far indicates that the

LBHB-stabilized dimer model, while interesting,

does not represent the dominant equilibrium struc-

ture of M2 in the þ2 charged state.

Release of protons into the virus interior. The

final step in proton conduction involves release of

protons from the His37 cluster into the viral interior.

This step occurs through the transient formation of

a conformational form that ‘‘opens’’ the Trp gate and

then closes upon diffusion of proton into the interior

of the virus. Solution and SSNMR spectra show that

M2 becomes increasingly dynamic17,30,97,98 and the

pore increasingly hydrated87,88 with decreasing pH,

supporting a conformational exchange model in

which the helices move apart as the degree of proto-

nation increases. As proton flux down the electro-

chemical gradient is a dynamic process in which the

protein cycles between different protonation states,

protein conformational changes can be expected for

proton conduction. Examination of the multiple

high-resolution structures of M2 suggests possible

main chain motions that might assist proton move-

ment out of the channel. The aligned structures in

Figure 2(B) show a trend for the C-terminus of the

channel to dilate with decreasing pH. For example,

solution NMR, SSNMR, and X-ray structures in the

protonation states between 0 and þ2 show a closed-

off C-terminus, whereas the crystal structure at

more acidic pH shows a more open C-terminus. In

the most dilated structure, the TM helix is straight,

causing the helices to diverge beyond a common

point of closest approach near the N-terminus,

resulting in dilation near the C-terminus. This C-

terminal dilation is consistent with the increased

hydration and dynamics of the protein at low pH. In

the less dilated structures, a slight bend near Gly34

is present, which keeps the helices close together at

the C-terminus. It has been suggested that the dila-

tion in the low pH structure of the M2 bundle is a

crystallographic artifact arising from packing

between bundles, but recent crystal structures from

lipidic cubic phases confirmed this structure in crys-

tals devoid of interbundle contacts (unpublished

results).

Asymmetric bundles of the TM domain have

been observed18 that have hybrid characteristics

between the fully dilated and more restricted bun-

dles. Thus, only a single helix might transiently

change conformations to release a proton. SSNMR

spectra, both oriented98 and MAS,97 showed the ex-

istence of multiple conformations for key residues

such as His37, Gly34, and Val27. The exact nature

of these conformations and the rates of interconver-

sion between them are not yet well understood and

require further studies. So far, the larger line broad-

ening of the low-pH spectra suggests small-ampli-

tude conformational dynamics on the microsecond

timescale, whereas large-amplitude motion between

very different states, which should exhibit large

chemical shift differences, have not been detected.

In addition to the backbone structural differen-

ces at different pH, significant variations in the

Trp41 side chain conformation were observed from

different structures. In the rimantadine complex

solved by solution NMR at pH 7.5,17 the six-mem-

bered benzenoid rings of the indole point to the cen-

ter of the pore, and pack tightly together to occlude

the C-terminal end of the channel [Fig. 4(A)]. This

rotamer (t-105, with v1 at the trans conformation

and a v2 of ca. �120�) was obtained from residual

Ne1-He1 dipolar coupling and NOEs.17 In compari-

son, the pH 6.5 crystal structure shows a more open

Trp gate31 due to a t90 rotamer (v2 ¼ þ80�, which is

ca. 180� flipped from the t-105 rotamer). This proj-

ects the polar five-membered pyrrole ring into the

channel [Fig. 4(B)]. This t90 rotamer was also found

from 19F-19F distances measured between Hf3-fluori-

nated Trp41 using SSNMR.84 However, these 19F

SSNMR experiments were carried out at high pH,

thus contradicting the solution NMR result. This

discrepancy could result from the different solvents

Figure 4. The Trp41 rotamer and Trp41-Asp44 contact in

the (A) high pH, drug-bound solution NMR structure (2RLF),

and (B) the pH 6.5 X-ray crystal structure (3LBW). A larger

pore radius at Trp41 is found in B due to the 180� v2 angle

change. The Trp41 side chains are shown in spheres for

Trp41 (green for C, blue for N), and in ball-and-stick for

Asp44 (pink C, blue O). His37 is shown as spheres with

orange for C, blue for N. His37’s side chain is almost fully

occluded by Trp41 in (A); in (B), it has slightly more

accessibility. Crystallographically defined water molecules

are shown in small red spheres in B, with hydrogen bonds

shown in dashed lines.
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(detergents vs. lipid bilayers) used in the solution

and SSNMR samples or from the different lengths of

the M2 construct, thus additional experiments are

necessary to clarify the Trp41 rotameric state. Even

with the same t90 rotamer, the crystal structure

solved at pH 5.3 shows larger separations among

the indole rings than at pH 6.5 due to the backbone

dilation [Fig. 2(B)]. These changes support the origi-

nal model that Trp41 acts as a gate that moves out

of the way when His37 reaches a critical protonation

state, thus allowing protons to enter the virus.

Asp44 appears to play a critical role in stabilizing

the Trp41 indole in distinct conformations. In the

high-pH solution NMR structure, Asp44 is positioned

to interact directly with the indole proton in about

half of the members of the structural ensemble.17 In

the pH 6.5 crystal structure, the Asp44 side chains

interact indirectly with Trp41 via a small cluster of

water molecules.31 Thus, Asp44 may contribute to

gating by stabilizing the Trp41 gate in the fully closed

and/or partially closed states until a critical number

of protons accumulate on the His37 tetrad. In addi-

tion, the negative charge of Asp44 might stabilize the

positive charge accumulated on the His37 tetrad.

These conclusions are consistent with electrophysio-

logical data showing that Asp44 mutations resulted

in proton-selective and amantadine-sensitive chan-

nels with enhanced conductance in the physiological

pH range,21,68,69 indicating that His37, Trp41, and

Asp44 all interact to regulate both the pH dependence

of conductance and channel gating.

Drug-binding site and inhibition mechanism

from high-resolution structures

As described above, mutagenesis and whole-cell elec-

trophysiology have long suggested the N-terminal

pore to be the drug-binding region, as amantadine-

resistant mutations such as V27A, A30T, S31N, and

G34E21,99 are all located in this region. Thus, it was

a major surprise when the solution NMR structure

of M2(18–60) showed rimantadine NOEs to lipid-fac-

ing residues between Leu40 and Arg45 near the C-

terminus of the TM domain, but no NOEs to the N-

terminal pore residues.17 In contrast, the crystal

structure of M2TM at pH 5.3 found electron den-

sities of the right shape and size for the drug in the

pore, surrounded by Val27, Ala30, Ser31, and

Gly34.18 Subsequent structural and functional

experiments showed that the pore site was the phys-

iologically relevant site, whereas the surface site is

nonspecific and has low affinity, and much was

learned in the process of resolving this controversy.

Because both solution NMR and crystal struc-

tures were obtained using samples reconstituted in

detergent micelles, which is an imperfect mimic of

lipid bilayers, it was important to show how the

drug bound to M2 in a true bilayer environment by

SSNMR. Measurement of 13C-2H distances between

13C-labeled M2TM and perdeuterated amantadine in

lipid bilayers revealed how the drug concentration

affected the binding site.5 At the stoichiometric ratio

of one drug per tetramer, only N-terminal residues

(Val27, Ser31, and Gly34) showed REDOR dipolar

dephasing by the deuterium spins. Only when excess

amantadine was added did Asp44 in the surface site

show dipolar dephasing. Thus, the first equivalent of

drug binds to the N-terminal pore, while excess

drugs bind to the surface site with lower affinity. As
2H-quadrupolar splitting is sensitive to molecular

motion and orientation, the 2H-spectra of the per-

deuterated amantadine revealed the orientation of

the drug at the two binding sites. The Ser31-proxi-

mal drug is mostly upright, with the threefold mo-

lecular axis parallel to the channel axis [Fig. 1(B)],

whereas the Asp44-bound drug is tilted by 37� or

80� from the membrane normal. The same tilted ori-

entation is also adopted by lipid-bound drug in the

absence of the protein; thus, the surface binding site

results from nonspecific association of excess drugs

from the lipid membrane. Quantitative analysis of

the 13C-2H REDOR data resulted in six distance con-

straints between the perdeuterated adamantane

cage and the Val27 side chain, Ser31, and Gly34.

These protein-drug distances provided the crucial

constraints for a high-resolution structure that uti-

lized only bilayer-based SSNMR data [Fig. 1(B)].5

While these data clearly showed that the drug

bound to the N-terminal pore in lipid bilayers with

high affinity, there remained the possibility that the

results were skewed by the fact that the TM construct

lacked the cytoplasmic amphipathic helix. This moti-

vated a series of more biological experiments using

truncations and site-specific mutations, which ulti-

mately showed that the cytoplasmic helix was unim-

portant for channel function but very important for

stabilizing membrane curvature during virus bud-

ding.8,16,24 The results suggested that under condi-

tions used for structure determination, the cytoplas-

mic helix was actually destabilizing the TM

conformation required for drug binding. Supporting

this conclusion, Chou and coworkers solved a struc-

ture of a chimeric protein consisting of the N-terminal

region of M2 and the C-terminal helical region of a

homologue of the influenza B virus, in which rimanta-

dine was observed to bind in the pore only.72 The same

pore-binding site was found in the longer M2 con-

struct in phospholipid bilayers, as long as the mem-

brane does not contain cholesterol and sphingomy-

elin.100 These results reveal a complex interaction

between the cytoplasmic helix and the membrane-mi-

metic solvent. 31P NMR spectra and lipid–protein cor-

relation MAS experiments indicate that the amphi-

pathic helix, cholesterol, and sphingomyelin together

promote an isotropic membrane domain with diame-

ters less than � 30 nm.101 This high curvature likely

perturbed the TM helix assembly, which in turn
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interfered with drug binding to the pore. A correlation

is found between high membrane curvature and less

drug binding to the pore. Thus, the amphipathic helix

exerts an allosteric effect on the drug-competent con-

formation of the TM helical bundle.

Mutations that place hydrophobic residues in

the water-filled pore of the channel physically

occlude the channel and drastically decrease its con-

ductance. In a similar manner, the adamantane moi-

ety of amantadine fits into the channel with excel-

lent geometric complementarity, doubtlessly

contributing to blocking of protons. Drug binding

causes a cascade of structural and dynamical

changes to the channel. Water–protein cross-peak

significantly decreased in intensity, indicating chan-

nel dehydration.87 The unprotonated 15N peak of

His37 persisted to lower pH, indicating decrease of

the His37 pKa.28 The 15N exchange peak at low pH

was lost upon drug binding. Backbone chemical

shifts of the low-pH protein adopt high-pH values.

Finally, imidazole dipolar couplings revert to rigid-

limit values, indicating immobilization of the His37

side chain.28 Thus, drug binding dehydrates the

channel, which prevents protonation and chemical

exchange of the His37, which in turn prevents back-

bone dilation, thus stopping side chain reorientation.

All these effects abolish proton relay into the virus.

Design of broader-spectrum drugs with high

affinity. There is an urgent need for new drugs

that inhibit drug-resistant mutants, particularly

S31N. The design of new drugs has been greatly

advanced by the above structural studies as well as

numerous computational studies that probe both the

location and the driving force for bind-

ing.21,25,31,90,102–110 Amantadine and rimantadine

have amphiphilic structures with a polar amine

head and an apolar adamantyl or adamantylethyl

group. Structure–activity relationships have shown

that a variety of apolar substituents can replace the

adamantyl substituent, and that a cationic primary

ammonium group is optimal for high-affinity bind-

ing, as tertiary amines, alcohols, and other neutral

groups tend to have lower affinity (secondary amines

can be tolerated in some cases).111 The effectiveness

of primary amines suggested that the charged amine

(ammonium) group might mimic hydronium ions,

formed as protons percolate through the outer pore

to His37. Indeed, MD simulations of amantadine in

the channel showed that, on average, its ammonium

group was hydrated by four water molecules in a

square planar array, and this hydrate was further

stabilized by hydrogen-bonding to four carbonyl

groups from Ala30.25,90,107

Thus, we can now understand the affinity of

amantadine for the channel in terms of the properties

of carbonyl groups on the surface of helices. About

half of the solvent-accessible carbonyls in helices have

an additional hydrogen bond to water. They can

receive hydrogen bonds to waters to stabilize

hydrated ammonium or hydronium ions. However,

they can be easily dehydrated to hydrophobically sta-

bilize the binding of an adamantyl substituent. The

apolar isopropyl group of Val27 caps the site, result-

ing in geometric and physiochemical complementarity

with amantadine and rimantadine in the WT.

MD simulations of other complexes indicated

the presence of additional sites capable of stabilizing

ammonium or hydronium one turn up in the helix

from Ala30, at a site formed by the carbonyl of

Val27 and the hydroxyl of Ser31, or one turn down

where a set of four water molecules are strongly

hydrogen-bonded by the carbonyl groups of Gly34

and the imidazoles of His37. By targeting the ammo-

nium group to the lower putative hydronium-binding

site deeper in the pocket (Fig. 5), it was possible to

engineer spiro-compounds with greater affinity for

WT M2.107

Figure 5. Snapshot from a simulation of amantadine with WT (far left). Water molecules (red) associate with carbonyl groups

(green/red sticks) in a square planar array. This array of water molecules can stabilize the bound ammonium group of

amantadine (green and blue bound drug) or a centrally located water molecule (magenta). The remaining panels show vertical

slices of the channel in schematic form, showing how a longer inhibitor than amantadine places its ammonium group deeper

in the channel and displaces more water molecules.
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For drug-resistant mutants, MD simulations

suggested that V27A and L26F had wider openings

near the top of the channel, leading to a poorer fit

and decreased hydrophobic burial of the adamantyl

group of amantadine.107 The water structure in the

central and lower portion of the channel, however,

appeared to be retained. This led to the design of

spiro-bicyclic and spiro-adamantane amines107 that

targeted not only WT, but also V27A and L26F

mutants with IC50s similar to or better than that of

amantadine inhibition of the WT channel. In MD

simulations, these drugs shifted upward in V27A, to

allow their alkyl groups to fill the larger cavity near

the channel entrance; their ammonium groups

occupy the upper site in V27A but the lower aqueous

site in WT. SSNMR data confirmed that the drugs

bound directly to the targeted site.107 The potencies

of these inhibitors were further demonstrated in

binding and plaque reduction assays. These results

demonstrate the power of MD simulations to probe

the mechanism of drug binding and to guide design

of inhibitors of targets that had previously appeared

to be undruggable.

In addition to adamantane drugs, other inhibi-

tors of M2 have been studied functionally, and some

of these inhibitors were characterized structurally.

Among divalent metal ions, Cu2þ displayed signifi-

cant inhibitory effects, with an equilibrium dissocia-

tion constant of � 2 lM4 (cf. amantadine’s IC50 of �
16 lM22). Cu2þ inhibition exhibits similar functional

features as amantadine: it is sensitive to pH and

applied voltage, is competitive with the hydrophobic

drug BL-1743,112 and inhibits both inward and out-

ward currents.4 SSNMR studies of Cu2þ-bound

M2TM using paramagnetic relaxation enhancement

effects showed that the Cu2þ binding site is His37

Ne2, between His37 and Trp41, which explains the

relatively slow dissociation of the Cu2þ ion.91 There-

fore, compared with amantadine, Cu2þ directly tar-

gets the heart of the proton-conducting His37

instead of the N-terminal pore-facing residues,

which suggests new routes for inhibitor design to

target the S31N mutant.
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