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Abstract
Pure limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (pure LATE-NC) is a term used to 
describe brains with LATE-NC but lacking intermediate or severe levels of Alzheimer’s disease neuropathologic changes 
(ADNC). Focusing on pure LATE-NC, we analyzed data from the National Alzheimer’s Coordinating Center (NACC) 
Neuropathology Data Set, comprising clinical and pathological information aggregated from 32 NIH-funded Alzheimer’s 
Disease Research Centers (ADRCs). After excluding subjects dying with unusual conditions, n = 1,926 autopsied subjects 
were included in the analyses. For > 90% of these participants, apolipoprotein E (APOE) allele status was known; 46.5% had 
at least one APOE 4 allele. In most human populations, only 15–25% of people are APOE ε4 carriers. ADRCs with higher 
documented AD risk allele (APOE or BIN1) rates had fewer participants lacking ADNC, and correspondingly low rates of 
pure LATE-NC. Among APOE ε4 non-carries, 5.3% had pure LATE-NC, 37.0% had pure ADNC, and 3.6% had pure neocor-
tical Lewy body pathology. In terms of clinical impact, participants with pure LATE-NC tended to die after having received 
a diagnosis of dementia: 56% died with dementia among APOE ε4 non-carrier participants, comparable to 61% with pure 
ADNC. LATE-NC was associated with increased Clinical Dementia Rating Sum of Boxes (CDR-SOB) scores, i.e. worsened 
global cognitive impairments, in participants with no/low ADNC and no neocortical Lewy body pathology (p = 0.0023). 
Among pure LATE-NC cases, there was a trend for higher LATE-NC stages to be associated with worse CDR-SOB scores 
(p = 0.026 for linear trend of LATE-NC stages). Pure LATE-NC was not associated with clinical features of disinhibition or 
primary progressive aphasia. In summary, LATE-NC with no or low levels of ADNC was less frequent than pure ADNC but 
was not rare, particularly among individuals who lacked the APOE 4 allele, and in study cohorts with APOE 4 frequencies 
similar to those in most human populations.
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Abbreviations
ADNC  Alzheimer’s disease neuropathologic 

changes
ADGC  Alzheimer’s Disease Genetics Consortium
ADRC  Alzheimer’s disease research center
CDR-SOB  Clinical dementia rating sum of boxes
FTLD-TDP  Frontotemporal lobar degeneration with 

TDP-43 inclusions
LATE-NC  Limbic predominant age-related TDP-43 

Encephalopathy neuropathologic changes
LB  Lewy bodies
MCI  Mild cognitive impairment
NACC   National Alzheimer’s Coordinating Center
NP  Neuropathology
TDP-43  TAR DNA-binding protein 43
UDS  Uniform Data Set

Introduction

Limbic-predominant age-related TDP-43 encephalopathy 
neuropathologic changes (LATE-NC) and Alzheimer’s dis-
ease neuropathologic changes (ADNC) are two dementia-
associated pathologies that are highly prevalent in older 
brains. LATE-NC is characterized by TDP-43 proteinopa-
thy that is most prominent in the medial temporal lobes, i.e. 
amygdala and hippocampus [57]. The hallmarks of ADNC 
are Aβ amyloid plaques and tau neurofibrillary tangles 
[49], and these microscopic lesions are widely distributed 
in brains of severe ADNC cases. Both ADNC and LATE-
NC are associated independently with substantial cognitive 
impairment [51, 62]. The overall public health impact of 
ADNC is larger than LATE-NC, but in advanced old age 
the dementia-associated attributable risk of LATE-NC 
approaches or even surpasses the aggregate impact of ADNC 
according to high-quality data from large autopsy cohorts 
[10, 39, 47, 73].

It has become increasingly clear that ADNC, LATE-NC, 
and other dementia-associated pathologies frequently coexist 
in the same brains. Indeed, it is the rule and not exception 
for older persons’ brains to harbor more than one subtype of 
dementia-associated pathology [25, 59, 63, 66]. The concept 
of comorbid (“mixed”) pathologies – particularly for ADNC 
and LATE-NC – has important implications about clinical 
trials and clinical management. More specifically, the pres-
ence of both ADNC and LATE-NC as co-pathologies in the 
same brain is associated with a relatively swiftly progressing 
and severe disease course, in comparison to either LATE-NC 
or ADNC alone [27, 29, 52], and, theoretically, may impact 
therapeutic responses.

To gain perspective on how often the different patholo-
gies are comorbid in human populations requires an epide-
miologic perspective, which is challenging since no human 

population has 100% autopsy rate, and there may be differ-
ences between human subpopulations. Thus, we are forced 
to make inferences based on data from the known autopsy 
series, while hoping for more comprehensive data (includ-
ing better clinical biomarkers) in the future. With those 
caveats in mind a basic question is, how often do LATE-
NC and ADNC coexist in the same brains?

According to the published literature, among people 
who die in advanced old age, i.e. > 85 years at death, at 
least incipient levels of ADNC was observed in ~ 80% 
of brains, and LATE-NC in ~ 30% or more [11, 47, 56]. 
Therefore, a substantial subset of brains should show both 
ADNC and LATE-NC even if the processes occurred inde-
pendently of each other. Yet the rate at which ADNC and 
LATE-NC have been observed together in the same brains 
is substantially higher than would be expected by chance. 
In community- and population-based autopsy cohorts, 
approximately 50% of brains with severe levels of ADNC 
have comorbid LATE-NC, whereas in brains that lack any 
ADNC, approximately 25% of brains have LATE-NC [1, 
15, 56]. The relatively high rates of co-pathology could 
occur via common upstream factors (e.g., shared risk fac-
tors), or downstream “pathologic synergy” [58, 82].

Perhaps the most impactful upstream factor in demen-
tia risk is genetics. Twin studies indicated that dementia 
risk is up to 80% heritable [28, 41, 72] but the under-
lying pathologies and affected pathogenetic pathways 
are complex. The dementia-associated apolipoprotein E 
(APOE) ε4 allele has been associated with increased risk 
for ADNC, LATE-NC, and other pathologic changes [19, 
68, 88, 90, 94]. Not all studies found evidence of a direct 
association between APOE genotype and risk for LATE-
NC [13, 43, 61, 65, 84]. Few individuals with the APOE 
ε4 allele survive into advanced old age without any Aβ 
plaques [74, 75], and it remains to be seen exactly how 
the APOE ε4 allele promotes TDP-43 proteinopathy (there 
may be multiple pathways involved). Genetic risk factor 
genes for ADNC are now known to include many genes 
other than APOE, and of these, genetic variation in and 
near the BIN1 gene is a particularly robust non-APOE 
genetic risk factor for clinical AD and ADNC [6, 32, 77].

Although mixed pathology phenotypes are the norm in 
old people’s brains, questions remain about the frequency 
and correlative impacts of pathologic changes among the 
individuals that have only one (“pure”) subtype of pathol-
ogy. The focal-point of the present work is pure LATE-
NC—cases with LATE-NC that lack comorbid intermedi-
ate or severe ADNC. There remain unanswered questions 
about the frequency of pure LATE-NC and its cognitive 
impact. Comparing and contrasting the findings across 
different research centers, mindful of covariates involved, 
may elucidate reasons why different cohorts may find 
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apparently different results, i.e., why some autopsy cohorts 
seem to show more and some less of this brain pathology.

To gain more insights into pure LATE-NC, we exam-
ined data from the National Alzheimer’s Coordinating 
Center (NACC) which provides extensive granular data 
from dozens of U.S. NIH/NIA-funded Alzheimer’s Dis-
ease Research Centers (ADRCs) [4, 8, 9]. ADRCs that 
contribute data to NACC follow participants to autopsy 
whenever possible. By analyzing this data set we found 
clues about the frequency and impact of pure LATE-NC, 
and uncovered strong evidence that APOE ε4 (and the 
BIN1 risk allele) are important covariates to be considered 
in studying the phenomenon of pure LATE-NC.

Materials and methods

Participants, data source, and inclusion/exclusion 
criteria

Data were obtained from NACC, which is the data reposi-
tory for past and present National Institute on Aging (NIA) 
funded ADRCs located at medical institutions across the 
United States. Participants are assessed using the stand-
ardized Uniform Data Set (UDS) at their local ADRC 
approximately annually. The UDS collects a robust set 
of data including participant demographics, health his-
tory, family history, medications, physical and neurologi-
cal exams, clinical diagnoses, AD and related dementias 
symptomology, neuropsychological test scores (from 
a battery of 12 neuropsychological tests), the Clinical 
Dementia Rating (CDR®) Dementia Staging Instrument 
plus NACC frontotemporal lobar degeneration (FTLD) 
Behavior & Language Domains. Standardized data col-
lected on neuropathological features present at the time 
of death are available for participants who were assessed 
with the UDS and who consented to autopsy [5, 9]. ADRC 
participants are enrolled from various sources including 
clinic samples, other existing studies, and referrals from 
clinicians and other participants. Data are maintained 
and actively curated by NACC and are freely available 
to researchers. NACC has been in existence since 1999. 
Additional details about the UDS are described elsewhere 
[4, 5, 8, 9, 50]. Participants who met the study’s eligibil-
ity criteria were selected from the June 2024 data freeze, 
which included data from the participant’s initial and most 
recent UDS visits, collected from September 2005 to June 
2024. Participants who had at least one disease listed out 
in Supplementary Table 1, died at age of younger than 
75 years, or had missing data on NP category were then 
excluded (Supplementary Fig. 1).

Neuropathology data

The NACC neuropathology (NP) data (https:// www. alz. 
washi ngton. edu/) were derived from the June 2024 data 
freeze and measured via the NACC NP v10-11 forms; this 
included data from 39 different NIA-funded ADRCs. Brain 
autopsies were performed on site at each of the contributory 
ADRCs. ADNC evaluated with an “ABC” score including 
Aβ Phase ratings (A score), Braak neurofibrillary tangle 
(NFT) stage (B score), and Consortium to Establish a Reg-
istry for Alzheimer’s Disease (CERAD) ratings (C score) 
according to NIA and Alzheimer’s Association (NIA-AA) 
guidelines. TDP-43 pathologies were measured as the pres-
ence of inclusions in three brain regions: amygdala, hip-
pocampus. Lewy body pathology (LBP) data were dichoto-
mized: 0 = none or present in non-neocortical regions and 
1 = present in neocortical region. Hippocampal sclerosis 
was dichotomized as 0 = none and 1 = unilateral, bilateral 
or present but laterality not assessed. Brain arteriolosclerosis 
was measured as ordinal data (0 = none, 1 = mild, 2 = mod-
erate, and 3 = severe) and aging-related tau astrogliopathy 
(ARTAG) pathology as binary data (0 = no and 1 = yes).

Neuropathological Category Definition

Pure LATE-NC was operationalized to indicate LATE-NC 
with either ADNC = Not or ADNC = Low severity according 
to the NIA-AA consensus-based criteria [49]. We defined 
the presence of ADNC as intermediate ADNC or high 
ADNC of NIA-AA Alzheimer’s disease neuropathologic 
change (i.e., NPADNC = 2 or 3), LATE-NC as distribu-
tion of TDP-43 immunoreactive inclusions at least in hip-
pocampus (i.e., NPTDPC = 1), and LB as LB pathology in 
neocortical region (i.e., NACCLEWY = 3 or NPLBOD = 3). 
We then categorized participants into seven groups: “pure 
ADNC” = ADNC positive ( +), LATE-NC negative ( −), 
and LB − , “pure LATE-NC” = ADNC − , LATE-NC + , 
and LB − , “pure LB” = ADNC − , LATE-NC − , and LB + , 
“ADNC + LATE-NC” = ADNC + , LATE-NC + , and 
LB − , “ADNC + LB” = ADNC + , LATE-NC − , and LB + , 
“ADNC + LATE-NC + LB” = ADNC + , LATE-NC + , and 
LB + , and “others”. (Supplementary Table 2).

Clinical data

Clinical diagnosis of dementia was defined using cognitive 
status at UDS visit (NACCUDSD = 4). Disinhibition in the 
last month was measured at the UDS visit with 0 = No and 
1 = Yes under Neuropsychiatric Inventory Questionnaire 
(NPI-Q). Diagnosis of primary progressive aphasia was 
determined using the NACCPPA variable.

https://www.alz.washington.edu/
https://www.alz.washington.edu/
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Genetic data

The number of APOE ε4 allele data (0 = no ε4 allele, 1 = one 
copy of ε4 allele, and two copies of ε4 allele) were obtained 
from the NACC Genetic Data (NACCNE4S). The BIN1 
rs6733839 (which was reported by Bellenguez et al. 2022 
[6]) single nucleotide polymorphism (SNP) data came from 
the Alzheimer’s Disease Genetics Consortium (ADGC) gen-
otype data (PLINK format file sets) which were provided by 
ADGC collaborators. The allele frequencies of the APOE 
and BIN1 risk alleles are shown in Supplemental Table 3 
and their associations with ADNC, LATE-NC, and LBD are 
shown in Supplemental Table 4.

Statistical analysis

We used analysis of covariance (ANCOVA) including age at 
death, sex, APOE ε4, and ordinal arteriolosclerosis variables 
as a covariate to estimate adjusted means of standard clini-
cal dementia rating  (CDR®) sum of boxes (CDR-SOB) by 
LATE-NC status and its association with LATE-NC stages 
[60]. To estimate probability of pure LATE-NC over age 
at death in a general population, we employed the survey 
weighting method implemented with the “pewmethods” R 
package (https:// github. com/ pewre search/ pewme thods). We 
first estimated marginal population distributions of APOE 
ε4 and the T allele of BIN1 rs6733839 by the “create_rak-
ing_targets” function using the 1000 Genomes Project Phase 
3 [21] (1000 g) in European (EUR) population. The APOE 
ε4 status was determined by rs429358 and rs7412. We then 
calculated the sample weights using the “rake_survey” func-
tion so that the weighted distributions of APOE ε4 and the 
T allele of rs6733839 in our study samples became identical 
with those in the 1000 g EUR population. Since the range of 
the weights was 0.27 to 1.42, we did not apply weight trun-
cation. The estimated probabilities of pure LATE-NC were 
finally computed for the unweighted and weighted samples 
using the “glm” and “svyglm” (the “survey” R package ver-
sion 3.5) functions, respectively.

Results

Exclusion and inclusion criteria, and the numbers of par-
ticipants excluded using them, along with other definitional 
criteria, are depicted in Supplemental Table 1 and Supple-
mental Fig 1. Following the application of exclusion criteria, 
a total of 1,926 participants were included from 32 differ-
ent ADRCs in the NACC NP Data Set (Table 1). Of these 
participants, 52.9% were female, and 92.4% were White. 
In terms of cognitive status, 69.1% were documented to 
have dementia, 12.1% were MCI, leaving 18.7% Normal or 
impaired-not-MCI prior to death.

Our primary interest was in pure LATE-NC, for which 
there is no consensus-based operational definition, but the 
implication of the term is that LATE-NC is present in a brain 
that lacks intermediate- or high-level ADNC (as ADNC is 
formally defined [49]). We note that low severity of ADNC 
is not associated with substantial cognitive impairment [24, 
55]. A preliminary assessment of pure LATE-NC versus 
ADNC + LATE-NC and ADNC + LATE-NC + LB pathol-
ogy indicated that there was a trend for pure LATE-NC cases 
to be older at death, with a possible trend to have a higher 
frequency of comorbid hippocampal sclerosis (Table 2).

We wanted to evaluate the correlation between ADNC 
risk alleles (as a reflection of presumed recruitment bias 
favoring persons with risk of AD per se) and the detected 
frequencies of pure versions of non-ADNC pathologies. We 
hypothesized that ADRCs with higher levels of genetic risk 
for ADNC would have lower percentage of participants that 
lack ADNC, and thus could have pure LATE-NC. We found 
that among included participants in the NACC NP Data Set 
with known genotypes, the frequencies of AD risk alleles 
related to APOE and BIN1 were highly enriched in com-
parison to human populations: 46.5% of participants had at 
least one APOE ε4 allele, and 64.2% had at least one BIN1 
AD risk allele (T allele of rs6733839). The reason that we 
evaluated BIN1 in addition to APOE is that we wanted to 
test whether the ADNC-related genetic risk factors that may 
influence recruitment bias (the enrichment for research par-
ticipants with ADNC genetic risk factors in ADRC cohorts, 

Table 1  Characteristics of included research participants

* n = 184 had no APOE genetic data (NACCNE4S) in the NACC UDS 
dataset
** n = 513 did not have BIN1 genetic data in the Alzheimer’s Disease 
Genetics Consortium (ADGC)
MCI Mild cognitive impairment

Characteristic n (%)

Overall
(n = 1,926)

APOE ε4*

No
(n = 932)

At least one ε4 allele
(n = 810)

Female 1,019 (52.9) 492 (52.8) 433 (53.5)
White 1,780 (92.4) 867 (93.0) 746 (92.1)
Cognitive status
 Normal/

Impaired-
not-MCI

361 (18.7) 262 (28.1) 76 (9.4)

 MCI 234 (12.1) 144 (15.5) 61 (7.5)
 Dementia 1,331 (69.1) 526 (56.4) 673 (83.1)

BIN1 (rs6733839)**

 C/C 506 (35.8) 282 (37.0) 224 (34.4)
 T/C 673 (47.6) 352 (46.2) 321 (49.4)
 T/T 234 (16.6) 128 (16.8) 105 (16.2)

https://github.com/pewresearch/pewmethods
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and the corresponding lack of non-ADNC cases in those 
cohorts) pertained to genotypes other than APOE; BIN1 
was chosen for this analysis because variation at the BIN1 
locus appears to be the second-strongest driver of ADNC 
[6]. Looking across ADRCs with sufficient numbers of 
participants to be included in the analyses (n = 29 different 
ADRCs with 5 or more participants), there was a robust 
negative correlation between the allele frequencies for both 
APOE and BIN1 and the proportion of participants from 
those individual ADRCs that lacked ADNC (Fig. 1). The 
data strongly indicate the existence of recruitment bias into 
ADRCs (some more than others), which generally favors 
recruitment of people at high genetic risk. This bias is asso-
ciated with an artifactually high frequency of ADNC, and a 
correspondingly low frequency of pure LATE-NC.

Given the above considerations, we sought to visual-
ize the data in a manner that enables better discrimination 
of results among APOE ε4 non-carriers. Table 3 shows 
the numbers of participants stratified by APOE ε4 status, 
LATE-NC status, and ADNC severity. Note that overall 
4.3% (75/1,742) participants had pure LATE-NC (LATE-NC 
but No/Low ADNC), but among the APOE ε4 non-carriers, 
6.4% (60/932) participants had pure LATE-NC.

To query the actual (in the NACC data set) and predicted 
(more generalizable to human populations) probabilities of 
pure LATE-NC across the lifespan, we performed an analy-
sis of NACC data without and with a correction for APOE ε4 
and BIN1 (rs6733839) T risk allele frequencies. The graph in 
Fig. 2 depicts estimated probabilities of pure LATE-NC by 
age at death in unweighted samples (blue) (i.e., directly esti-
mated from the NACC NP Data Set) and weighted samples 
with APOE ε4 allele frequency of 15.5% and BIN1 T allele 
of 38.0% (red). Consistent with the data shown in Table 3, 
Fig. 2 indicates that, age-for-age, there is approximately 
50% increase of predicted pure LATE-NC, based only on 
the assumption of more population-generalizable APOE and 

BIN1 allele frequencies. The model indicates a possible nar-
rowing of the gap between actual and estimated pure LATE-
NC rates, with advancing age.

We developed neuropathologic cutoff criteria for defining 
pure and mixed subtypes of LATE-NC, ADNC, and LB; see 
Supplemental Table 2. We compared the frequency of pure 
LATE-NC with pure neocortical LB and pure ADNC. In 
this subsample lacking APOE ε4, pure LATE-NC (lacking 
neocortical LB, as well as substantial ADNC) was found in 
5.3% of participants, whereas pure neocortical LB was 3.6%, 
and pure ADNC was 37.0% (Table 4).

Applying these same pathology-based diagnostic crite-
ria, we queried what percent of included participants died 
with dementia, stratifying by the various subtypes of pathol-
ogy – pure and “mixed types”. These data are presented in 
Table 5. Across all the subtypes of pathology, pure subtypes 
tended to have died with dementia diagnosis – among APOE 
ε4 non-carrier participants, with pure LATE-NC 56% died 
with dementia, versus ADNC 61%, and pure LB 70% died 
with dementia. Notably, people who died with mixed pathol-
ogies were even more likely to die with dementia (> 86% of 
ADNC + LATE-NC and 100% of ADNC + LATE-NC + LB 
died with dementia).

In terms of other phenomena associated with pure LATE-
NC, 47% with pure LATE-NC had moderate or severe brain 
arteriolosclerosis, 53% had hippocampal sclerosis, and 
38% had been given during life the presumptive diagnosis 
of “Probable AD”. Using ANCOVA that took into account 
covariates including age at death, sex, brain arteriolosclero-
sis, and APOE ε4, the presence of LATE-NC among people 
with no/low ADNC and no LB in neocortical region was 
associated with significantly increased CDR-SOB scores 
(p < 0.0023), that is, worsened global cognitive impairments 
(Fig. 3).

Among the participants with pure LATE-NC and having 
available neuropathologic data on amygdala, hippocampal, 

Table 2  Characteristics in 
people with LATE-NC by 
pathology-based disease 
categories

* n = 166 had the aging-related tau astrogliopathy (NPARTAG) data available
ADNC = Alzheimer’s disease neuropathologic change, LATE-NC Limbic-predominant age-related TDP-43 
encephalopathy neuropathologic change, LB Lewy bodies

Characteristic Pure LATE-NC ADNC + LATE-NC ADNC + LATE-
NC + LB

Female, n (%) 35 (53.0) 232 (56.4) 37 (53.6)
Age at death, mean (SD) 90.7 (7.5) 87.3 (6.9) 84.8 (6.3)
Arteriolosclerosis, n (%)
 None 16 (24.2) 39 (9.7) 5 (7.4)
 Mild 19 (28.8) 113 (28.1) 18 (26.5)
 Moderate 20 (30.3) 169 (42.0) 28 (41.2)
 Severe 11 (16.7) 81 (20.1) 17 (25.0)

Hippocampal sclerosis, n (%) 35 (53.0) 173 (43.0) 24 (35.3)
Aging-related tau astrogliopathy 

(ARTAG), n (%)*
15 (57.7) 67 (57.3) 10 (43.5)
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and middle frontal gyrus TDP-43 pathology (to enable stag-
ing of LATE-NC distribution), there was a trend for higher 
LATE-NC stages to be associated with higher (i.e., worse) 
CDR-SOB scores (p = 0.026 for linear trend of LATE-NC 
stages) as shown in Table 6. There was no evidence that pure 
LATE-NC was associated with clinical features of FTLD-
TDP, namely disinhibition or primary progressive aphasia 
(Table 7); these clinical findings were more likely to have 
been reported with severe ADNC (bottom row of Table 7), 
with or without comorbid LATE-NC.

Discussion

Data were analyzed from the multicenter-derived NACC 
Neuropathology Data Set, focusing on the frequency and 
clinical impact of pure LATE-NC, i.e. brains with LATE-
NC but lacking intermediate or severe ADNC. Prior 
scholarship has been published analyzing NACC Neu-
ropathology Data Set data related to TDP-43 pathology 
and LATE-NC phenotypes [9, 14, 18, 20, 23, 29–31, 33, 
45, 48, 70, 89, 93], but as far as we know this is the first 
study with an emphasis specifically on pure LATE-NC in 
this data set. As expected, most participants evaluated had 
“mixed” pathology, so that, whereas “pure ADNC” was 
the most common single “pure” pathologic group in this 
cohort, the pure subtypes were < 50% overall.

Using APOE and BIN1 alleles as proxies for ADNC 
genetic risk, we predict that the frequency of pure LATE-
NC in a representative human population would com-
prise > 3% of participants over 80  years of age. This 
frequency (~ 1:30 presumed lifetime risk) for pure LATE-
NC can be compared to other pathologies. For example, 
there is ~ 1:3 lifetime risk for pure ADNC [56] (the most 
common subtype of pure dementia-related pathology), 
and ~ 1:1000 lifetime risk for FTLD-TDP [16, 37] (rare). 
Given these data, pure LATE-NC is neither particularly 
common, nor is it rare in comparison to other neurode-
generative diseases, but is of intermediate prevalence in 
aging brains. The coexistence of LATE-NC and ADNC 
was highly frequent and many combinatorial mixtures 
(high ADNC/low LATE-NC, vice versa, &c.) exist along 
the pathological severity spectrum [56].

Beyond a description of the frequency of pure LATE-
NC in the NACC Neuropathology Data Set, we sought 
to address several other pertinent questions: 1 > What is 
a credible hypothesis to explain why different research 
centers have large apparent differences in terms of the per-
centage of participants with pure LATE-NC? 2 > Is pure 
LATE-NC likely to have an impact on cognition?; and, 
3 > What are some of the other clinical and pathological 
correlates of pure LATE-NC?

Prior work on TDP-43 pathology and LATE-NC pheno-
types in the NACC Neuropathology Data Set [14, 20, 23, 
29–31, 33, 48, 70, 93] laid the foundation for the present 
study. Previous studies from around the world (includ-
ing ADRCs and many other sources) have touched on the 
presence, frequency, and correlative impacts of LATE-NC 
found at autopsy, while prior reviews have been written on 
the subject of LATE-NC and ADNC co-pathologies [46, 
58, 81]. The present study helps to demonstrate why there 
may be different perspectives on pure LATE-NC accord-
ing to the study design of the research cohort. The fre-
quency of various pathologic combinations differed across 

a

General popula�on ~15.5%

b

General popula�on ~38%

Fig. 1  Associations between APOE ε4 allele status A and BIN1 
rs6733839  T allele status B and lack of ADNC frequency in NIA-
funded AD Research Centers (ADRCs). Each data point represents 
aggregated data from a single ADRC; n = 29 ADRCs were included 
which  each had ≥ 5 participants with APOE genotype data. Norma-
tive allele frequency levels risk alleles in most human populations 
(~ 15.5%) are shown with a dotted vertical line A. Normative allele 
frequency levels for BIN1 rs6733839  T (risk)  allele in most human 
populations (~ 38%) are shown with a dotted vertical line B. Note that 
there is a strong negative correlation between the allele frequency of 
both APOE ε4 and the BIN1 risk allele, and the frequency of partici-
pants that lack ADNC. Only participants that lack ADNC can have 
pure LATE-NC, so the high ADNC-specific risk allele frequency in 
some ADRCs is linked to lower apparent LATE-NC frequency
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the contributory research centers, as described previously 
[20]. Of relevance to the topic of pure LATE-NC, ADRCs 
with research participants who on average had lower 
genetic vulnerability to ADNC (as demonstrated with 
APOE and BIN1 genotypes) were more likely to have no/
low-ADNC participants and that tendency was correlated 
with increased frequency of pure LATE-NC. Our inclusion 
of BIN1 analyses are to underscore that the ADRCs’ (and 
probably other dementia clinic-based cohorts’) recruitment 
bias in terms of ADNC genetic risk extends beyond the 
APOE risk alleles. In other words, recruitment bias helps 

to explain some of the findings, which reflects the fact 
that persons at higher genetic risk for certain pathologies 
are more likely to be recruited into some studies in com-
parison to their representation in the general population. 
More specifically, in European populations, the preva-
lence of risk alleles in APOE is ~ 25%, and risk allele in 
BIN1 is ~ 50%. However, in the NACC Neuropathology 
Data Set, the risk alleles for these genes were both pre-
sent in > 40% and > 60%, of participants respectively, an 
indication of recruitment bias in the contributory research 
centers. Furthermore, given the basic nature of ADRCs, 
heritable risk may not be the only recruitment bias perti-
nent to this sample that favor enrichment of participants 
with ADNC underlying the clinical features. For example, 
many were recruited while already symptomatic with AD-
type dementia [20].

The findings of disparate results when comparing between 
the ADRC cohorts in the present study provided a basis to 
interpret the findings in published studies from around the 
world. Table 8 shows the results for the present study for 
comparison to prior published work; published papers used 
for this table necessarily included breakdowns of LATE-NC 
status by amyloid plaque data. Note that otherwise excellent 
prior published studies that lacked APOE allele frequency 
[1, 63, 86], or that focused on normal subjects [3, 53] or on 
chronic traumatic encephalopathy (CTE) [36, 64], were not 
included in this table. Considered together were community-
based cohorts contributory to the combined study that rep-
resents the third data row in Table 8 [47, 79, 87]. The com-
munity-based studies included Adult Changes in Thought 
(ACT) [40]; Brazilian Biobank for Aging Studies (BAS) of 
the University of Sao Paulo [80]; Cambridge City over-75 s 
Cohort (CC75C) [12]; Medical Research Council Cognitive 
Function and Ageing Study (CFAS) [91]; Duke/University 
of North Carolina AD Research Center (Duke/UNC-ADRC) 
[22]; Honolulu Asia-Aging Study (HAAS) [92]; Mayo 
Clinic Study of Aging (MCSA) [67]; Nun Study[85]; Rush 
University Religious Orders Study/Memory and Aging Pro-
ject (ROS-MAP) [7]; University of California Irvine The 

Table 3  Numbers of participants stratifying by APOE ε4 carrier status, ADNC severity, and LATE-NC (presence of absence of LATE-NC 
Stage > 1)

ADNC Alzheimer’s disease neuropathologic change, LATE-NC Limbic-predominant age-related TDP-43 encephalopathy neuropathologic 
change

NACC NP Data set
samples

Weighted samples
(popula
on-representa
ve
APOE ε4 and BIN1 T allele frequencies)

Fig. 2  Estimated probabilities of pure LATE-NC across the aging 
spectrum in the samples from the NACC Neuropathology dataset 
(blue) and after being weighted  statistically to be population-rep-
resentative for APOE ε4 and BIN1 risk alleles (red). The weighted 
samples had the APOE ε4 allele frequency of 15.5% and BIN1 
(rs6733839 T allele) frequency of 38.0%. The weighted frequency 
predicts a ~ 50% increase in pure LATE-NC in a population with 
more population-representative genetic markers for APOE ε4 and 
BIN1 risk alleles. Note that this estimation ignores the many addi-
tional genetic factors that are associated with variability in AD-type 
dementia risk (see Bellenguez et al., 2022 [6])
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90 + Study (The 90 + Study) [34]; University of Kentucky 
AD Research Center (UK-ADRC) [76]; Vantaa 85 + Study 
[35]; and, Vienna Trans-Danube Aging (VITA) study [38]. 
As Table 8 indicates, findings in the NACC NP Cohort 
show lower frequency of pure LATE-NC in comparison 
to prior results in community-based cohorts. We also note 
that the observed and predicted frequencies of pure LATE-
NC tended to more closely correspond in advanced old age 
(the trend lines appear to converge in Fig. 2). We speculate 
that this may reflect that as ADNC risk factors other than 
APOE and BIN1 recede in advanced old age, the frequency 
of pure LATE-NC is more predictable. However, more work 
is required to understand the age- and senescence-related 
factors that contribute to pure LATE-NC.

Our analyses also showed that, in persons lacking 
ADNC, LATE-NC was associated with cognitive impair-
ment, compatible with results of prior work [26, 44, 54, 
73, 78, 93, 95]. Dementia is a clinical syndrome defined 
by progressive impairment that compromises a person’s 
abilities to perform activities of daily living [71] and most 
pure LATE-NC participants had premortem dementia 

documented; however, operationalizing dementia as a 
dichotomous variable ignores highly prevalent, subtler 
impairment that still may be disturbing to individuals and 
caregivers. Our abilities to discriminate subtle changes 
and cognitive gradations in the current study was not ideal, 
because we employed the relatively blunt instrument of 
CDR scores which are indicative of functional impairment 
and dementia [17]. Further, there was considerable bio-
logic variation on both sides of the clinical-pathological 
correlation: there were many participants with other sub-
types of pathology (e.g., the strong influence of vascular 
pathologies for which there are not yet optimal rubrics for 
the purposes of clinical-pathological correlation), and also 
variation in terms of the severity of TDP-43 proteinopathy 
that is not fully captured by LATE-NC staging (LATE-NC 
grades the distribution but not the densities of TDP-43 
proteinopathy[60]). There also were not very large sam-
ple sizes for some of the subgroupings. With those cave-
ats in mind, there was a statistically significant trend for 
lower functioning in pure LATE-NC, versus appropriate 
controls.

Table 4  Numbers of APOE ε4- participants stratifying by neocortical Lewy bodies (present/absent), ADNC severity, and LATE-NC (presence or 
absence of LATE-NC Stage > 1)

ADNC Alzheimer’s disease neuropathologic change, LB Lewy bodies, LATE-NC Limbic-predominant age-related TDP-43 encephalopathy neu-
ropathologic change

Table 5  Numbers of participants stratifying by documented dementia status and various subtypes and combinations of pathology

ADNC Alzheimer’s disease neuropathologic change, LATE-NC Limbic-predominant age-related TDP-43 encephalopathy neuropathologic 
change, LB Lewy bodies
* See Supplemental Tables 2 and 3 for pathology-based category definitions

Pathology-based disease  categories* APOE ε4

No
(n = 932)

At least one ε4 allele
(n = 810)

Not 
demented (n)

Demented (n) Demented % Not 
demented (n)

Demented (n) Demented %

Pure ADNC 134 211 61.2 72 335 82.3
Pure LATE-NC 22 28 56.0 4 10 71.4
Pure LB 10 23 69.7 0 7 100.0
ADNC + LATE-NC 19 124 86.7 16 212 93.0
ADNC + LB 12 46 79.3 7 59 89.4
ADNC + LATE-NC + LB 0 16 100 4 43 91.5
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In terms of other clinical correlates, we did not find evi-
dence that pure LATE-NC is associated with clinical fea-
tures of FTLD-TDP. More specifically, in this cohort both 
disinhibition and primary progressive aphasia were associ-
ated with severe ADNC, but not with pure LATE-NC. It is 

important to note that pathologically-confirmed FTLD cases 
were excluded from the sample. However, concordant with 
prior studies [29, 69, 93], these results again underscore that 
LATE-NC is a very different condition than FTLD-TDP. 
Whereas pure LATE-NC did not tend to resemble FTLD-
TDP clinically, the clinical findings in many pure LATE-NC 
cases did resemble AD-type dementia, given that 38% of 
pure LATE-NC cases were diagnosed during life as Prob-
able AD. It is important to keep in mind that the diagnoses 
were all made in state-of-the-art ADRCs, among the most 
resource- and expertise-rich academic centers in the world. 
A community hospital would not necessarily have access to 
the same diagnostic assets. LATE-NC masquerading clini-
cally as AD dementia is a potential confounder to keep in 
mind for clinicians, but the misdiagnosis of Probable AD in 
participants of pure LATE-NC will presumably become less 
common as clinical diagnostics continue to improve.

There were some limitations to the current study. In terms 
of disease-related pathological cutoffs for group-level crite-
ria designation, different categorizations could be used, e.g. 
using CERAD neuritic amyloid plaque scores rather than 
Aβ phase scores for operationalizing ADNC, and therefore 
for delineating pure LATE-NC. Our rationale for using Aβ 
phases rather than neuritic plaque scores (or Braak NFT 
stages) is that the Aβ phases were used in the NIA-AA cri-
teria as the most specific feature of ADNC [49]—by defini-
tion, a brain with Aβ plaques but no tau pathology is still 
ADNC, whereas, by contrast, a brain with tau pathology 
but no Aβ plaques is not ADNC [49]. (The consensus-based 
ADNC criteria [49] specify that Aβ plaques without neuritic 
plaques is still “Low” ADNC, but leave unspecified what the 
implications are of neuritic plaques without Aβ).

There are limitations of using the NACC data sets in 
terms of recruitment bias and generalizability—ADRCs tend 
to be enriched for high socioeconomic Caucasians who are 
at risk for AD-type dementia [2, 9, 20, 48]. One strategy to 

LATE-NC status among
parcipants with low or no ADNC 

(all without neocorcal LB pathology)

Fig. 3  Adjusted means of Clinical Dementia Rating Sum of Boxes 
(CDR-SOB) scores, by LATE-NC in people with no or low ADNC 
(i.e., NPADNC = 0 or 1) and no-neocortical Lewy bodies. Analysis 
of covariance including age at death, sex, APOE ε4, and brain arte-
riolosclerosis as a covariate was used. Among those with not or low 
ADNC and no neocortical Lewy bodies, the presence of LATE-NC 
was associated with deficits in terms of activities of daily living as 
measured by the CDR-SOB (p = 0.0023). Comparison was according 
to a two-tailed test and error bars represent 95% confidence interval

Table 6  Adjusted means of CDR sum of boxes scores by LATE-
NC pathological staging in pure LATE group with data available on 
amygdala, hippocampus, and middle frontal gyrus TDP-43 pathology 
(n = 62)

LATE-NC Limbic-predominant age-related TDP-43 encephalopathy 
neuropathologic change, CDR Clinical dementia rating, SE Standard 
error, ANCOVA Analysis of covariance

LATE-NC stage

1 2 3 p = 0.079
(ANCOVA)
p = 0.026
(Linear trend)

n (%) 5 (7.6) 45 (68.2) 12 (18.2)
CDR sum 

of boxes, 
mean ± SE

2.4 ± 2.2 6.3 ± 0.9 8.8 ± 1.6

Table 7  Numbers of participants stratifying by documented clinical 
disinhibition and primary progressive aphasia diagnoses and subtypes 
of pathology – ADNC and LATE-NC

ADNC Alzheimer’s disease neuropathologic change, LATE-NC Lim-
bic-predominant age-related TDP-43 encephalopathy neuropathologic 
change

ADNC 
severity

n (%)

Disinhibition Primary progressive 
aphasia

LATE-NC − LATE-NC + LATE-NC − LATE-NC + 

No 17 (7.1) 2 (1.7) 1 (3.6) 0 (0)
Low 24 (10.1) 10 (8.3) 0 (0) 0 (0)
Intermedi-

ate
48 (20.2) 18 (15.0) 1 (3.6) 0 (0)

High 149 (62.6) 90 (75.0) 26 (92.9) 14 (100)
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overcome some of these biases is to limit the analyses to 
community- and population-based cohorts; this strategy has 
been successful in prior work [56, 63]. However, to under-
stand how the different autopsy cohorts may come to differ-
ing conclusions, and the covariates that may help explain 
those differences, it is useful to leverage the multicenter 
nature of NACC and its contributory ADRCs. ADRCs vary 
in their recruitment practices and protocols while provid-
ing standardized assessment instruments across the different 
institutions. The hypothesis of there being recruitment bias 
at clinic-based cohorts such as ADRCs, increasing AD risk 
in comparison to most human populations, was supported by 
our results displaying the high frequency of AD risk alleles 
in APOE and BIN1 in the NACC Neuropathology Data Set. 
The ADRC system thus provided a useful context to assess 
the relationships between study designs, recruitment prac-
tices, and reported outcomes related to dementia research. 
As such, some of the current study’s results could not have 
been arrived at by analyzing data derived from any single- or 
even several-center study cohort.

Conclusions

Mixed pathologies are the norm in old people’s brains, but 
pure LATE-NC is still fairly common (approximately as fre-
quent as “pure” neocortical LB), particularly among indi-
viduals who lack the APOE ε4 allele, and when analyzing 
data from autopsy cohorts with lower APOE ε4 allele rates. 

In terms of clinical impact, pure LATE-NC was associated 
with increased likelihood of global cognitive impairments, 
and tended to be associated with dementia, but not with 
clinical features of FTLD-TDP. Taking all of these results 
together, among people that live to beyond age 85, the fre-
quency of LATE-NC with no or scant ADNC, is predicted 
to be approximately 5%, most of whom would be expected 
to be demented before death.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 024- 02821-y.
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