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Abstract 

 

Environmental and epidemiological research has linked exposure to air pollution and extreme 

temperatures during the prenatal period to the incidence of fetal and infant death, adverse birth 

outcomes, and worse outcomes in adulthood and across generations. To minimize these adverse 

effects, policymakers can reduce ambient exposures (i.e., mitigation) or intervene with some 

program that lessens the impacts (i.e., adaptation). The first two chapters focus on the effects of 

air pollution shocks and the efficacy of free prenatal care to lessen its adverse effects on health at 

birth. The last chapter focuses on the effects of extreme temperatures and the efficacy of free 

prenatal care and air conditioning to lessen its adverse effects on birth outcomes (e.g., birthweight, 

weeks of gestation, low birthweight rate).  

The first chapter shows that the estimates of sulfur dioxide (SO2) effects on birth outcomes are 

susceptible to the window used to measure exposure during the prenatal period. Measuring 

exposure from conception to birth, I find a negative impact of SO2 on birthweight. In contrast, the 

estimate is positive when exposure is measured from conception to 39 weeks. Using each county’s 

52-week lagged SO2 concentrations as a placebo, I find that using a fixed 39-week window from 

the date of conception is the most reliable methodology. However, this methodology's estimates 

indicate that higher SO2 concentrations increase birth weight. I present evidence suggesting that 

this counterintuitive result is caused by livebirth bias (i.e., the infants that survive pollution shocks 

are positively selected). I overcome this problem by using the number of infants born with non-

adverse outcomes per woman of reproductive age as the dependent variable instead of traditional 

outcomes (e.g., birthweight, low birthweight, or preterm birth rate). Applying this transformation, 

I find that SO2 worsens health at birth, and its effects increase with the pollutant’s concentration 

(i.e., the SO2-birth outcome damage function is convex). Furthermore, the effects are more 

prominent for blacks than whites.  

The second chapter tests whether access to free prenatal care lessens the adverse health effects of 

exposure to air pollution in utero. I study how the expansion of Medicaid (publicly-provided health 

insurance for low-income households) changed the effect of prenatal exposure to SO2 on fetal 
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death and birth outcomes. Theoretically, the effect is ambiguous: Even if free prenatal 

supplementation (i.e., vitamins, iron, calcium) lessens the biological impact of air pollution, there 

could be a substitution between access to prenatal care and pollution avoidance. High SO2 

concentrations increased fetal deaths, and Medicaid’s expansion attenuated this effect. Estimating 

the impact of Medicaid on the SO2-birth outcome relationship is empirically challenging because 

the infants marginally saved by Medicaid could be positively or negatively selected. The analysis 

of traditional outcome variables (e.g., birthweight, low birthweight rate) suggests that Medicaid 

had no impact or even intensified the damage of SO2 on health at birth. To account for the 

possibility of livebirth (i.e, sample selection) bias, I instead analyzed the number of non-low birth 

weight (i.e., healthy) infants per woman of reproductive age (nlbw/w). Using this dependent 

variable, I find that Medicaid mitigated the effect of SO2 on nlbw/w in low-pollution areas and at 

the national level. Furthermore, the reduction was larger for blacks than whites; thus, Medicaid 

improved environmental justice in the US by shrinking the gap in the health effects of in-utero air 

pollution between races. 

The third chapter tests whether access to free prenatal care and air conditioning lessens the adverse 

health effects of extreme temperatures in a non-rural setting. I study how the expansion of 

Medicaid changed the effect of extreme in-utero temperatures on birth outcomes in the US. In 

developed countries, physiological stress is the primary mechanism through which temperature 

affects pregnancy outcomes. In rural areas of the developing world, it can also do so indirectly 

through changes in real income, increased incidence of maternal disease, or increased conflicts. 

The results suggest that access to prenatal care did not lessen the impacts of extreme temperatures 

on birth outcomes. However, the diffusion of air conditioning reduced the effects of extremely hot 

days. 

 Overall, the results of these chapters suggest that providing low-income women with free prenatal 

care is a promising intervention to lessen the health impacts of in-utero air pollution but not those 

of extreme temperatures. On the other hand, air conditioning is a promising intervention to lessen 

the health effects of extreme heat on birth outcomes.   
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Essay 1 

 

Does prenatal air pollution affect fetal death and birth 

outcomes? 

 

1.1 Introduction 

Estimating the effects of air pollution on infant health is critical to identifying the concentrations 

that put human health at risk and the design of environmental regulation. The effects of prenatal 

air pollution on infants’ health have been studied using various methodologies; however, there is 

little research on how sensitive the pollutant effects’ estimates are to the window used to measure 

exposure. The results from this paper show that the estimates can be highly sensitive to the 

methodology used to measure exposure during the prenatal period. Measuring exposure from 

conception to birth, I find a negative impact of sulfur dioxide (SO2) on birthweight. In contrast, 

the estimate was positive when exposure was measured from conception to 39 weeks; both 

estimates are statistically significant. This paper explores the reasons behind this disparity and its 

implications. 

 

This paper’s main objective is to examine how sensitive the estimates of the pollutant’s effects on 

birth outcomes are to the window used to measure exposure. As a complement to  this objective, I 

also implemented a placebo test to choose the most reliable methodology. This test revealed that 

measuring exposure from conception to birth did not generate reliable estimates of the pollutant’s 

effects. However, using the most reliable methodology (i.e., conception-39 weeks), I found an 
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unanticipated and counterintuitive result: high SO2 concentrations were associated with higher 

birthweight. In theory, this result could be explained by at least two factors: endogeneity or 

livebirth (i.e., sample selection) bias. As a secondary objective, I try to determine the source of 

this bias and address it. I claim that the livebirth bias is the cause and  present supporting evidence, 

and I propose a novel methodology to overcome the livebirth bias.    

 

The empirical strategy relies on restricted US birth certificate data from the Center for Disease 

Control and Prevention (CDC) for 1982-1991, daily air pollution monitoring data from the 

Environmental Protection Agency (EPA), daily weather data taken from Deschenes & Greenstone 

(2011), and the monthly state unemployment rate from the Bureau of Economic Analysis (BEA). 

The effects of air pollution on fetal death and birth outcomes are identified using a panel fixed 

effects model that exploits changes in exposure to different concentration bins during the prenatal 

period. I include county-year-race fixed effects— thus, the effects are identified from changes 

across infants conceived within the same county, year, and race. Seasonal county-quarter-race and 

month-race fixed effects are also included. I control for in-utero weather (temperature and 

precipitation), the state’s unemployment rate during the pregnancy’s first trimester, and 

demographics (mother’s pregnancy history, marital status, high school dropout status, and 

newborn’s gender). For the birth outcome model, pollution is measured from the presumed date of 

conception1 to birth or over a fixed 39-week window starting from conception. For the fetal death 

model, only the latter is considered.    

 
1 Conception is assumed to be 15 days after the last menstrual period. It is the standard assumption in this literature. 
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As a first result, I find that sulfur dioxide (SO2), a precursor of fine particulate matter (PM2.5), 

measured over a fixed 39-week window increased fetal deaths in low-pollution areas2 but not in 

highly polluted ones. In low-pollution counties, an additional day in SO2’s second most polluted 

concentration bin3 during the pregnancy decreased the fertility rate by 0.029%, implying 1.53 

fewer annual births per county.4 The back-of-the-envelope calculation suggests that for the typical 

low-pollution county, there were 46 fetal deaths associated with SO2 every year. There were no 

significant effects in highly polluted counties. The null effect for the latter suggests that other 

factors mediate air pollution's effect on fetal death. For instance, high-pollution counties have more 

hospital beds per capita and fewer high school dropout women. Both could explain pollution’s 

smaller effect on this group. Alternatively, households in highly polluted counties may be better 

adapted to pollution. For example, buildings could be better insulated from outdoor pollution, or 

avoidance may always be higher. 

 

The estimates of the effect of SO2 on birthweight change drastically with the window used to 

measure exposure. If measured from conception-birth, an increase of 1 part per billion in the 

average SO2 concentration during the prenatal period decreases birth weight by 0.24% 

(Approximately 8 grams). In contrast, if measured from conception to 39 weeks –as suggested by 

the fetal shocks literature5— birthweight increases by 0.014%. In theory, this latter result could be 

explained by at least two factors: endogeneity or livebirth bias. 

 

 
2 Counties were categorized into high vs. low pollution categories based on the average level of SO2 over the first two years of data availability in 
the AQS (Air Quality System). 
3 SO2 concentration range per quintile (parts per billion): 𝑞1  (0 ≤  𝑆𝑂2 < 1.84)   𝑞2  (1.84 <  𝑆𝑂2 ≤  4.39), 𝑞3  (4.39 <  𝑆𝑂2 ≤  7.66), 

𝑞4  (7.66 <  𝑆𝑂2 ≤  13), 𝑞5  ( 𝑆𝑂2 >  13). 
4 For comparison, there are  4316 annual births per county in the low-pollution group. 
5 See for example, Persson & Rossin-slater (2018),  Currie & Rossin-Slater (2013), and  Currie et al. (2013) 



 

 

4 

 

The livebirth bias – an understudied sample selection bias— arises when the infants that survive 

prenatal pollution shocks are positively or negatively selected. I find that this bias affects the 

estimates of Sulfur dioxide’s effects on birthweight during 1981-1991 in the US. However, it is 

uncovered only when pollution exposure is measured from conception to 39 weeks instead of up 

to the birthdate. The analysis of the fertility rate and left tail of the birthweight distribution were 

consistent with the hypothesis that the fetuses who die due to SO2 shocks are negatively selected 

(i.e., would have been born with low weight). Furthermore, the point estimates associated with 

low SO2 concentrations (and potentially lower income) were positive, inconsistent with an 

omitted-variable-bias story. Thus, it was concluded that livebirth bias is the cause behind the 

counterintuitive results. 

 

I propose a novel approach to eliminate the livebirth bias from the estimate.6 The methodology 

consists of using the number of infants born with non-adverse birth outcomes per woman of 

reproductive age as a dependent variable –instead of traditional birth outcomes (e.g., birthweight, 

low birthweight, or premature rates)— and weighting the regressions by the number of women of 

reproductive age. Using this approach, I find that high SO2 concentration during the prenatal period 

worsens health at birth. 

 

Sulfur dioxide concentrations above 7.66 parts per billion (ppb) damaged newborn health 

outcomes in the US during 1981-1991, and the effects were stronger in low-pollution counties. At 

the national level, one additional day in the most polluted quintile (SO2>13 ppb) decreased the rate 

of non-low birth weight (i.e., healthy) infants per woman of reproductive by 0.0122%. 

 
6 I also tried to use a bounding approach analogous to Lee (2009), but it was ineffective in this context. After excluding the top and bottom 2% or 

5% of observations by birthweight, I still found a positive estimate for the impact of SO2 on birth outcomes (See section 1.5.2.3). 
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Consequently, a county’s annual number of infants born with a weight above 2500 grams 

decreased by 38.76 due to SO2.
7 For counties with an initial low baseline concentration,  the rate 

of non-low birth weight infants per woman of reproductive age decreases by 0.0231% per one 

additional day in the second dirtiest quintile (7.66<SO2<13 ppb), and there were 73.3 fewer infants 

born with weight above 2500 grams due to SO2. 

 

I also estimated the impacts across races and found that the damage caused by SO2 was larger for 

black than white newborns. For low pollution counties, one additional day in the fourth and fifth 

quintiles decreases the rates of non-low birth weight (i.e., healthy) infants per woman of 

reproductive by 0.0237% and 0.0562% for whites and blacks, respectively. These results are 

consistent with previous environmental research that found larger air pollution effects on African 

Americans' infant health than whites.8  

 

This paper makes three contributions. First, it contributes to the environmental literature showing 

that the window used to measure exposure to air pollution during the prenatal period has critical 

implications for the estimates of the effects of  on birth outcomes. This result could be relevant for 

other pollutants or prenatal shocks in general. Moreover, from the fetal shocks literature, we 

previously knew that endogeneity could arise when the shock affected the duration of the 

pregnancy (Persson & Rossin-slater, 2018), or because the probability of experiencing a negative 

shock during the pregnancy is an strictly increasing function of its duration when prenatal exposure 

is measured by a binary variable (Currie & Rossin-Slater, 2013; Currie et al., 2013). In this paper, 

 
7 As a reference, there were 4423 annual births per county at the national level. 
8 See Chay & Greenstone(2003a), Currie & Walker (2011) 
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exposure was measured by the mean of a continuous variable, and daily air pollution levels can 

move in either direction; however, endogeneity can still arise because the environmental factor has 

a trend. Thus, newborns with longer gestation are – on average— mechanically assigned a lower 

prenatal exposure to the pollutant.  

 

Second, I propose a novel approach to address the livebirth (i.e., sample selection) bias. The 

methodology consists of using the number of infants born with non-adverse birth outcomes per 

woman of reproductive age (nlbw/w ) as dependent variables and weighting the regressions by the 

number of women of reproductive age. Intuitively, the advantage of this variable is that pollution’s 

effects through the extensive and intensive margin go in the same direction. We start from the 

assumption that air pollution decreases birthweight (intensive margin). Let us suppose that 

pollution causes fetal deaths (extensive margin). If the infants who die due to pollution shocks 

were positively selected, nlbw/w  would decrease due to the effects through both margins. On the 

other hand, if the infants were negatively selected, nlbw/w would decrease due to the intensive 

margin effect and would be unaffected by the extensive one.  

 

Third, I departed from the linear effects assumption in the pollution-infant health relationship 

(Chay & Greenstone., 2003a, 2003b; Currie & Walker, 2011; Currie & Neidell, 2005; Currie et 

al., 2009) and estimated non-parametric effects by concentration quintiles. Doing so, I uncovered 

convex pollution-fetal death and pollution-birthweight damage functions (i.e., marginal damages 

increase with the pollutant’s concentration). Additionally, to my knowledge, this paper is the first 

to analyze the effects of prenatal exposure to SO2 on health at birth (fetal death and neonatal 

outcomes) for counties of all sizes in the US. Previous studies have analyzed the impacts of 
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pollution on infant health only in the largest counties (Woodruff et al., 1997; Woodruff et al., 

2008). I could include the small counties in the analysis by using restricted vital statistic data.  

 

The remainder of the paper provides  background (Section 2), describes the data used to estimate 

the results (Section 3), discusses the empirical methods (Section 4), lays out the results (Section 

5), and concludes (Section 6). 

 

1.2 Background  

This section summarizes the relevant concepts to understand air pollution and its societal impact. 

It discusses why finding unbiased estimates of the effects of pollution on human health is essential,  

reviews the methodological approaches to measure prenatal exposure, discusses the potential 

biases when estimating the effects of air pollution,  and reviews previous literature on the effects 

of sulfur dioxide and particulate matter on infant health.   

 

1.2.1 Air pollution, societal impacts and regulation 

Air pollution has significant impacts on society, including adverse effects on human health and 

the economy. Exposure to polluted air has been linked to respiratory diseases, cardiovascular 

problems, and increased cancer risk (World Health Organization, 2016). These impacts on health 

result in higher healthcare costs, reduced productivity, and premature deaths. Vulnerable 

populations, such as children, the elderly, and low-income communities, are particularly affected 

(Bell & Ebisu, 2012). Economically, air pollution leads to decreased labor productivity, increased 

healthcare expenses, and damage to agriculture. The World Bank estimated that the global cost of 
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air pollution in 2016 amounted to $5.7 trillion, equivalent to 4.4% of global GDP (World Bank, 

2016). 

 

Many governments around the world regulate air pollution. In the US, the Environmental 

Protection Agency (EPA) regulates air pollution primarily to protect public health and the 

environment. The EPA uses the estimates of the impacts of air pollutants on human health as input 

for designing environmental regulations (US EPA, 1982). Thus, biased estimates could impose 

high costs on human health. 

 

1.2.2 Methodologies to measure prenatal exposure 

This section introduces the methodologies most commonly used by researchers to measure 

ambient pollution exposure during the gestational period. The universe of methodologies can be 

summarized across two dimensions: Functional form and the window to measure exposure. 

Broadly, two functional forms have been used: parametric approaches assuming linearity in the 

pollutant’s effects and non-parametric approaches allowing for non-linear effects. As for the 

window, three major approaches have been used: from conception to birthdate,9 from conception 

to full length,10 or backward 39 weeks from the birthdate. In many cases, the choice has been 

driven by data availability since the date of the last menstrual period (LMP) is not always observed 

by the researcher. The date of conception is typically assumed to be 15 days after the LMP. 

Importantly, to the best of my knowledge, there is no previous research comparing the estimates 

of air pollution effects across these methodologies.   

 
9 This methodology also includes hybrid approaches like inferring the conception date from the birthdate and the doctor’s estimated gestational 
age and measuring exposure from such presumed gestational age to the birthdate. 
10 A 39-week window was assumed for a full length pregnancy.  
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A large share of the epidemiological literature estimates exposure from conception to birthdate; 

however, the fetal origins literature suggests using a 39-week window, irrespective of the 

newborn’s birthdate, because prenatal shocks could affect the duration of the pregnancy. Thus, the 

estimate of the shock’s effect would be biased. This latter strategy has been used in multiple studies 

to analyze the effects of shocks during the prenatal period on birth outcomes (Persson & Rossin-

Slater, 2018; Currie & Rossin-Slater, 2013; Currie et al., 2013). 

 

In addition, even if pregnancy duration is not affected, the estimate can be biased when there is a 

trend in the pollutant’s concentration. Measuring exposure from conception to birthdate can induce 

a mechanical correlation between gestational age and average exposure. For example, suppose the 

pollutant concentration has a decreasing trend. If this is the case, newborns with ex-ante better 

health (thus, a longer gestational age) will be assigned a lower level of in-utero pollution. 

Therefore, gestational age and prenatal pollution would be negatively correlated by construction. 

This would lead to overestimating the pollutant's effect on neonatal outcomes directly proportional 

to the gestational age (e.g., birth weight). Likewise, measuring exposure 39 weeks backward from 

the birthdate would be subject to the same bias because newborns with ex-ante better health would 

be assigned a lower exposure.11   

 

On the other hand, using a 39-week window could introduce a different bias because some 

pregnancies don’t reach full term; so, they will be assigned pollution measures that contain some 

days (or weeks) after birth. Ultimately, there is ex-ante a tradeoff when choosing the window to 

 
11 The point estimates generated using the  conception -full length and 39-weeks backward from the birthdate methodologies are very similar. 

results not shown, available upon request. 
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measure exposure: When the conception-birthdate window is used, pollution exposure could be 

endogenous. On the other hand, the noise introduced in pollution exposure when a fixed 39-week 

window is used for all newborns could also bias the estimate. In this paper’s empirical strategy 

section, I present the test used as a criterion to choose between both methodologies.  

 

1.2.3 Potential biases estimating the health effects of  pollution 

Estimating the effects of air pollution on health outcomes is subject to at least two sources of bias: 

(i) omitted variable bias due to unobserved determinants of health correlated with pollution and 

(ii) bias due to measurement error. Moreover, estimating the effects of prenatal pollution on birth 

outcomes adds another source of bias: the livebirth bias is a type of sample selection bias that 

arises when pollution affects the fetuses' survival rate. 

 

Studying the effects of prenatal interventions or shocks on infant health is challenging due to the 

livebirth bias. The problem arises because the intervention (or shock) can affect birth outcomes 

through two channels. On the extensive margin, it can change the number of pregnancies ending 

in live births; on the intensive one, it can affect the health outcomes of the newborns that would 

have been born, irrespective of the intervention. If an intervention (shock) reduces the incidence 

of fetal death and the marginal infants saved are positively or negatively selected, the estimate will 

be biased. It can even lead to a non-causal association between exposure and outcomes (Nguyen, 

2020). 

 

This problem is relevant for applied public and environmental economics. For instance, Currie & 

Moretti (2006) found that food stamps – a program that provides low-income households with 
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vouchers to buy food -increased the probability of low birth weight in California from 1960 to 

1974. Adverse environmental shocks have also been associated with health improvements; for 

example, Raz et al. (2018) found that prenatal air pollution reduced the risk of autism. Both 

findings are counterintuitive, raising concerns that another type of bias is at play (e.g., omitted 

variable bias). The potential positive correlation between income and pollution is a significant 

concern in environmental-health economics because income data are generally unavailable to the 

researcher. 

 

Previous research estimating the effects of prenatal air pollution on birth outcomes has focused on 

addressing omitted variable and attenuation bias. Different quasi-experimental research designs 

(i.e., difference-in-difference, instrumental variables, regression discontinuity) have been used to 

exploit plausible sources of exogenous variation in pollution. The possibility of livebirth bias has 

been acknowledged but has yet to be addressed. It is particularly challenging to do so because fetal 

death data in the US was underreported during the early 80s (NCHS, 1985; Kleinman, 1986). 

Moreover, traditional bounding methodologies to address sample selection, such as Lee (2009), 

are better suited for parametric functional forms that impose linearity in the effects. Thus, there is 

no straightforward recipe for addressing sample selection bias when using a non-parametric 

approach to estimate the non-linear effects of pollution. In the empirical strategy section, I propose 

a new approach to address a potential livebirth bias while simultaneously estimating the non-linear 

effects of the pollutant on birth outcomes. 
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1.2.4 Effects of sulfur oxides and particulate matter on infant health 

Sulfur oxide (SO2) is an umbrella term used to designate many oxygen-sulfur compounds, some 

gaseous and other solid; they are typically produced by burning fossil fuels (e.g., coal, oil). In the 

US, sulfur dioxide, SO2,  is the only compound occurring at significant atmospheric concentrations 

(US EPA, 1982). Hence, SO2  has been measured and regulated as a surrogate for all sulfur oxides. 

In addition,  SO2  reacts with other compounds in the atmosphere and contributes to acid rain and 

particulate matter12 formation. Therefore, in 1982, the EPA, following the recommendations of the 

World Health Organization, started updating the air quality criteria of particulate matter and sulfur 

oxides jointly. This decision was justified for two reasons. First, chemical processes in the 

atmosphere transform significant amounts of gaseous sulfur dioxide into particulate sulfate.13 

Second, it is difficult to separate the relative contributions of particulate matter and sulfur oxide 

on the mortality and morbidity effects observed in epidemiological studies (US EPA, 1982). 

 

The difficulty separating sulfur oxide from particulate matter's effects remains because few 

stations monitored particulate matter during the early 80s. The first records for PM10 appeared in 

1983 (21 counties). The monitoring network kept growing until reaching 48 in 1984 and 244 in 

1985. Thus, sulfur dioxide is a surrogate for sulfur oxides and particulate matter derived from its 

oxidation in the atmosphere in this paper. 

 

Prenatal exposure to sulfur dioxide affects health at birth; however, the direct biological pathways 

are not well understood. Previous research found effects on preterm birth (Sagiv et al., 2015), low 

 
12 Also known as particulate pollution. Defined as airborne solid particles and low vapor pressure liquid droplets with an effective diameter lower 

than a few hundred micrometers (US EPA , 1982) 
13 Sulfates are a family of chemicals that contain the fully oxidized ionic form of sulfur (𝑆𝑂4

−2), in combination with metal and/or hydrogen ions 

(US EPA, 1982) 
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birth weight (Maisonet et al., 2001; Bell et al., 2007),  very low birth weight (Rogers et al., 2000), 

and fetal death (Faiz et al., 2012). Most of these papers have analyzed small geographical areas of 

the US.14 In addition, experiments randomizing pollution exposure among mice have found that 

high concentrations of sulfur dioxide during the gestational period were associated with decreased 

offspring birthweight (Singh, 1982). In humans, inhaled sulfur is known to enter the blood rapidly 

after exposure, but there is no evidence of placental transfer of sulfur inhaled as SO2 (Rogers et 

al., 2000). Thus, sulfur dioxide may indirectly hurt the fetus through the health of the mother. 

 

Prenatal exposure to particulate matter15 also worsens birth outcomes. Previous research has found 

effects on birthweight (Colmer et al., 2021; Basu et al., 2004), preterm birth (Ritz et al., 2000; 

Huynh et al., 2006; Sagiv et al., 2015), low birth weight (Parker et al., 2005), very low birth weight 

(Rogers & Dunlop., 2006), and fetal death (Ebisu et al.,2018; DeFranco et al., 2015). Prenatal 

exposure to total suspended particles (TSP) has been linked to post-natal outcomes: infant 

mortality  (Chay & Greenstone, 2003a, 2003b). Fine particulate matter (PM2.5) is the most 

damaging to human health because these smaller particles can enter the bloodstream and spread 

through the whole body (Xu et al., 2008; Wang et al., 2013). However, the biological mechanisms 

that affect a fetus's health are poorly understood (Feng et al., 2016; Kanaan et al., 2006).  

 

PM2.5 is a mixture of many chemical constituents with different toxicities, which vary spatially 

and temporally (Bell et al., 2007). Cutting-edge research on the effects of PM2.5 on human health 

focuses on analyzing the effects of its constituents separately. Among them, the sulfate ion (𝑆𝑂4
−2), 

 
14 Mainly cities and counties of the eastern US. SO2 concentrations tend to be higher in the eastern coast due to utilities’ burning of fossil fuels for 

electricity generation. 
15 Different measures have been used: total suspended particles (TSP), particulate matter with diameter less than 10 micrometers (PM10),  less 

than 2.5 micrometers (PM2.5), and less than 1 micrometer (PM1) 
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derived from the oxidation of sulfur dioxide in the atmosphere, has been linked to fetal death 

(Ebisu et al., 2018). Secondary ammonium sulfate16 ((NH4)2SO4) has been linked to term low birth 

weight17 (Bell et al., 2010; Ng et al., 2017) and  increased risk of anemia in pregnant women during 

the third trimester (Xie et al., 2022). 

 

1.3 Data 

The empirical analysis relies on multiple data sources. First, birth outcomes and mother’s 

demographics were taken from restricted versions of the national vital statistical files from the 

National Center for Health Statistics (NCHS). Additionally, data from the Surveillance, 

Epidemiology and End Results Program (SEER) were used to create measures of birth outcomes 

per woman of reproductive age (15-44 yr old). Second, I created SO2, CO, NO2, O3, and PM10 

measures by forecasting and imputing missing obsenrvatios18 in the Air Quality System (AQS) 

raw monitoring data from the Environmental Protection Agency (EPA) and aggregating it at the 

county-day level. Finally, temperature and precipitation in-utero measures were built using county-

day weather measures following the methodology by Deschenes & Greenstone (2011), and 

additional controls at the county level were constructed using data from the Bureau of Economic 

Analysis (BEA). 

 

1.3.1 Vital statistics.  

Natality data files consist of the universe of all live births in the US. These databases are publicly 

available at the Center for Disease Control and Prevention (CDC). Birthweight, weeks of gestation, 

 
16 PM2.5 secondary ammonium sulfate is not directly emitted, it is formed through photochemical reactions of constituents that are mostly emitted 

by traffic and power plants (Hasheminassab et al., 2014a). 
17 Defined as birthweight less than 2500 grams, but conditional on the newborn reaching full term (37 weeks or more) 
18 Detailed methodology is presented in Appendix A. 
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last menstrual period and birth dates,  and mother’s demographics (age,19 educational attainment,20 

pregnancy history,21 marital status, and race (black, white, and other)) were obtained from 

individual birth certificates. However, from 1989 onwards, the public files do not disclose the 

county code for counties with a population smaller than 100 thousand according to the last 

available census.22 This paper uses the restricted version of the data files for 1989-1991; which 

was provided by CDC by signing a data use agreement. Hence, the county code is observed for all 

counties throughout the entire period of analysis. County-level is the smallest geographical unit 

provided by the CDC; mother’s zip code or address are not available in the restricted versions.  

Observations with missings in the date of conception, birth weight, or gestational age were dropped 

from the study (3.2%). In addition, non-singleton births were dropped from the sample (2.19%). 

The national sample contains about 35.6 million births during 1981-1991; Around 49% of them 

could be assigned prenatal exposure to SO2 based on the county of maternal residence and 

conception week. Pollution data was not available for the rest. Summary statistics for birth 

certificate data is summarized in Table 1.1. 

 

Four sets of measures of health at birth were built using this dataset. First, the fertility rate  

corresponds to the number of live births per county and week of conception divided by the number 

of women of reproductive age (i.e., women 15-44 yrs old)  per county and year; summarized in 

Table 1.2.  Second,  traditional birth outcomes: birthweight, low birth weight  (LBW) defined as a 

 
19 Age was modeled non-linearly with three dummy variables: teen pregnancy (age<=19), middle-age (20<= age<35), risky pregnancy (age>=36). 
20 Not all states reported education since the beginning of the period; consequently, there are many missings. A categorical variable with four 
categories was created:  Highschool dropout (yes, no, not reported, not answered). 
21 Pregnancy history consists of 6 dummy variables based on parity  (the total number of deliveries excluding the current one) and the individual 

fetal death rate (FDR): (1) first delivery, (2) 2nd delivery & FDR=0, (3) parity>=3 & FDR=0, (4) parity>=3 & FDR<=0.5, (5) parity<=2 & FDR=1, 
(6) parity>=3 & FDR>0.5. 

22 The CDC changed its policy in 1989 to prevent the unintentional disclosure of individuals or institutions. The main changes were: (1) the actual 

date of birth is not available (just the month and year), and (2)  the county code is only reported for counties with a population larger than 100 

thousand. In this paper, the exact day of birth is randomly generated from 1989 onwards. This could introduce classical measurement error in 

pollution exposure and bias the results downward.  Robustness tests excluding the period 1989-1991were run, and the results hold. 
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dummy=1 when birth weight is less than 2500 grams,  preterm birth  (PTB)  defined as a dummy=1 

when the gestational age is less than  37 weeks , and small for gestational age (SGA) defined as a 

dummy=1 when the birth weight is below the 10th percentile of the weight distribution for the 

respective gestational age, gender, and maternal race of the newborn. All variables are summarized 

in Table 1.1. Third, health-at-birth measures robust to livebirth bias: nlbw/w, nptb/w, and nsga/w 

correspond to the number of non-adverse cases (Non-LBW, Non-PTB, and Non-SGA) per county, 

race, and week of conception divided by the number of women of reproductive age (15-44 years 

old)  in the respective county, race, and year; summarized in Table 1.4. Lastly, the number of 

infants born with adverse health outcomes per woman of reproductive age (lbw/w, ptb/w, and 

sga/w) are summarized in Table 1.5. 

 

Due to the low quality of fetal death data during the early 80s, the baseline empirical strategy to 

estimate the effect of pollution uses the fertility rate as a surrogate to indirectly estimate SO2’s 

effects on the incidence of fetal death. Microdata on fetal death were obtained from the NCHS. 

This data contains the universe of clinically reported fetal deaths of 20 or more weeks of gestation; 

however, it is very noisy during the 80s. Fetal deaths of less than 20 weeks of gestation need not 

be reported, but it is estimated that 70% of all fetal deaths in the US occurred before 20 weeks 

during the early 80s (NCHS, 1985). Furthermore, there is substantial underreporting of fetal deaths 

between 20-27 weeks of gestation, and limiting the sample to late fetal death (28 or more weeks 

of gestation) is not satisfactory (Kleinman, 1986).  

 

Nevertheless, for supplementary analysis,  I computed the fetal death rate as the ratio of clinically 

reported deaths to the sum of live births and fetal deaths conceived in the same county and week. 
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Table 1.3 presents the summary statistics. The supplementary analysis is discussed in the results 

section. 

 

Figures 1.1-1.4 show the time series of fertility, low birthweight, preterm birth, and small for 

gestational age by conception month at the national level and for the counties with a balanced 

panel of SO2 data through 1981-1991. The trends and seasonality are very similar across both 

samples.  

 

1.3.2 Air pollution. 

Air pollution measures were created using raw data from the Air Quality System (AQS) at the 

monitor-day level. The first step consisted of imputing the missings by making forecasts using the 

rest of the monitors in the same county.23 The second step consisted of creating county-day 

measures of pollution based on a balanced panel of monitors within the county. Appendix A 

describes the methodology used to create county-day CO, SO2, NO2, O3, and PM10 measures from 

1981-1991. The final step consisted of assigning the prenatal exposure to each pollutant at the 

individual level based on the county of maternal residence and the newborn’s presumed week of 

conception. Two windows were used to measure exposure : (i) from conception to birthdate, 

summarized in Table 1.6,  and (ii) from conception to 39 weeks, summarized in Table 1.7. The 

correlations between both measures are shown in Table 1.8. I created two functional forms: (1) the 

average and (2) the fraction of days in which the county’s daily concentration falls in each quintile 

bin of the national distribution over the respective window. Quintile cutoffs24 were generated using 

 
23 This procedure builds up from the strategy used by Auffhammer & Kellogg (2011) to fill the missings at the station-day level in the weather 

monitoring network 
24 For SO2, the following cutoffs were used:  𝑞1 (𝑆𝑂2 ≤ 1.84 𝑝𝑝𝑏), 𝑞2(1.84 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 4.39 𝑝𝑝𝑏), 𝑞3(4.39 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 7.66 𝑝𝑝𝑏), 

𝑞4(7.66 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 13 𝑝𝑝𝑏), and 𝑞5(𝑆𝑂2 > 13 𝑝𝑝𝑏)). 
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all county-day records from 1981-1991. The latter is used to estimate the non-linear effects of air 

pollution. Lastly, Table 1.12 shows SO2 concentrations by race.  

 

Figure 1.5 shows the counties with SO2 data, and Figure 1.6  shows the set of counties  with a 

balanced panel25 of SO2 data through 1981-1991. Figure 1.7 shows the average prenatal exposure 

to SO2 of a  typical 39-week pregnancy nationally and by counties’ SO2 baseline level (low vs. 

high). Figures 1.8.1 and 1.8.2 show the average time a pregnancy spends in each of SO2’s 

concentration quintiles by baseline SO2 level and race, respectively. Figures 1.9.1 and 1.9.2 show 

the average fraction of days a 39-week pregnancy spends in the fourth and fifth concentration 

quintiles of SO2.  

 

1.3.3 Additional controls 

Exposure to in-utero temperature and precipitation are modeled non-linearly using the county-day 

level series from Deschênes, Greenstone & Guryan (2009). For temperature, bins were created 

using the same thresholds (<25 F, 25-45 F, 45-65 F, 65-85 F, and >85 F); Table 1.11 summarizes 

the correlations between temperature and SO2 bins. For precipitation, quintiles were created based 

on the distribution of daily rainfall during 1981-1991 for the entire US. In-utero weather variables 

were assigned based on the mother’s county of residence and the newborn’s week of conception.  

Exposure is measured by the fraction of days during the chosen window in which the county’s 

mean falls in each bin.  Finally, the unemployment rate during the pregnancy’s first trimester was 

built using state-level data from the Bureau of Economic Analysis.  

 
25 A county belongs to the SO2 Balanced panel if the fraction of daily missing observations for a 39-week forward looking rolling window was 
less than 50% every week-year during 1981-1991. This threshold is more stringent than the one used in other studies. For instance Bell et al. 

(2007) uses 75%.  
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1.4 Empirical strategy 

Broadly, the empirical strategy to identify the effects of air pollution on the fertility rate and birth 

outcomes relies on the changes in the distribution of ambient levels of air pollution during the 

pregnancy across newborns conceived in the same county and year.  I present two figures to 

visualize the variation used to identify the effects of air pollution on health. First,  Figure 1.10 

shows the seasonal variation in sulfur dioxide by conception month. Then,  Figure 1.11 shows the 

variation I used to identify the effects of SO2 (i.e., residual variation after removing county-year, 

county-quarter, and calendar month fixed effects).  

 

One crucial remark, this paper does not attempt to estimate the biological effect of air pollution on 

infant health. Instead, the estimate should be interpreted as the reduced-form effect of ambient air 

pollution on health after factoring in any  possible behavioral response (e.g., pollution avoidance) 

Thus, the estimates will be smaller than the pollutant’s biological effects.  

 

1.4.1 Methodology to estimate the effect on fetal death 

 

𝐹𝑅𝑐𝑤𝑦 = 𝛼𝑐𝑦 + 𝛼𝑚 + 𝛼𝑐𝑄 + ∑ 𝛽𝑗 𝑞𝑗(𝑃𝑐𝑤𝑦
39 )

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑤𝑦 + 𝜃 𝑈𝑄1 𝑠𝑚𝑦 + 𝑣𝑐𝑤𝑦  [1.1] 

 

This model uses the fertility rate (FR) instead of the fetal detah rate (FDR)  to indirectly estimate 

the pollutant’s effects on the incidence of fetal death. FR is defined as the number of live births 

per county (c) and week(w)-year(y) of conception divided by the number of women of reproductive 
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age (i.e., women 15-44 yrs old)  per county and year.26 FDR corresponds to the ratio of clinically 

reported fetal deaths to the sum of live births and clinically reported fetal deaths conceived in the 

same county and week-year. Model [1.1] recovers the effect of pollution on fetal death under some 

conditions. First, pregnancy decisions in t do not react to sulfur dioxide shocks in t+s, s>0. Second, 

abortions do not correlate with the pollutant’s concentration after controlling for the 

unemployment rate during the first trimester.  

 

Model [1.1] includes a wide range of fixed effects: County-by-year fixed effects (𝛼𝑐𝑦) control for 

fixed unobserved factors and limit the potential bias caused by migration driven by environmental 

quality concerns.27 Monthly seasonal fixed effects (𝛼𝑚) control for national-level seasonality in 

fertility decisions and environmental factors (Currie & Schwandt., 2013; Bodnar & Simhan., 

2008). County-by-quarter fixed effects (𝛼𝑐𝑄) guarantee that  the pollutant’s effect is estimated 

from shocks beyond the regular (expected) local seasonal variation.28 Table 1.13 shows the 

remaining variation in the fertility rate after removing all the fixed effects.  

 

𝑞𝑗(𝑃𝑐𝑤𝑦
39 ) corresponds to the fraction of days during a 39-week pregnancy in which the mean daily 

concentration of pollutant P in county c for a pregnancy started in week w of year y fell in the j-th  

concentration bin. The third quintile corresponds to the omitted category. Table 1.14 summarizes 

the remaining variation after removing all the fixed effects in [1.1].  𝑊𝑐𝑤𝑦  corresponds to a vector 

of weather controls (temperature and precipitation)  in county c during a 39-week window started 

 
26 Also known as conception survival rate in epidemiological research. Corresponds  
27 Previous research has shown that higher-income households migrate in response to environmental quality in the US (Crowder & Downey, 

2010; Pais, Crowder & Downey, 2014). 
28 For example, suppose costal county A experiences both an increase in local income and pollution during the summer; while county B, in the 

interior, may experience it during the fall driven by their local industry (e.g., smeltery).  
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on week w of year y. 𝑈𝑄1 𝑠𝑚𝑦, the state-level unemployment rate29 during a pregnancy’s first 

trimester controls for the correlation between the unemployment rate and abortions (Blank et al., 

1996). I used the first trimester only because, during the early 80s, about 90% of all abortions 

occurred during the first 12 weeks of gestation (Atrash et al., 1986). Mothers’ demographic 

controls were excluded from [1.1] because they may be affected by air pollution shocks (i.e., bad 

control in econometric jargon).  

 

1.4.2 Methodologies to estimate effects on neonatal outcomes. 

For neonatal outcomes (Birthweight,  low birth weight (LBW), small for gestational age (SGA), 

and preterm birth (PTB)), two models were used: in [1.2] pollutant  exposure is assigned at the 

newborn’s level and measured from the presumed date of conception30 to the birthdate, in [1.3] it 

is assigned by county and week of conception and measured over a fixed 39-week window starting 

from the presumed week of conception. Therefore, any two pregnancies in the same county whose 

last menstrual period dates fall in the same week were assigned the same exposure.  

 

𝑦𝑖𝑐𝑘𝑏 = 𝛼𝑐𝑦𝑟 + 𝛼𝑚𝑟 + 𝛼𝑐𝑄𝑟 + ∑ 𝛽𝑗 𝑞𝑗
(𝑃𝑐𝑘𝑏)

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑘𝑏 + 𝜃 𝑈𝑄1 𝑠𝑚𝑦 + 𝛾𝑋𝑖𝑐𝑘𝑏 + 𝑢𝑖𝑐𝑘𝑏  [1.2] 

 

where 𝑦𝑖𝑐𝑘𝑏 represent the neonatal outcome for newborn i, conceived in date k and born on date b 

and county c.31 𝑞𝑗(𝑃𝑐𝑘𝑏)  corresponds to the fraction of days in which the pollutant’s concentration 

in county c fell in the j-th concentration quintile of pollutant P during dates k and b. 𝑋𝑖𝑐𝑘𝑏 

 
29Ideally, the unemployment rate at the county level would have been used, but this variable is only produced at the state-month level, for the 

period under study, by the bureau of economic analysis.  
30 Two weeks after the last menstrual period.  
31 The observations for which the county of residence and birth differ were dropped from the analysis.  
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correspond to a vector of individual-level controls from the birth certificates (mother’s age, 

pregnancy history, marital status, high school dropout, and gender32). 𝛼𝑐𝑦𝑟 , 𝛼𝑚𝑟 , 𝑎𝑛𝑑 𝛼𝑐𝑄𝑟 

correspond to county-year-race, conception month-race, and county-trimester-race fixed effects. 

Three racial categories were included: white, black, and other. 𝑢𝑖𝑐𝑘𝑏 correspond’s to the error term.  

The unemployment rate during the pregnancy’s first trimester33 was included in this model because 

the economic environment affects birth outcomes through compositional changes (i.e., women 

self-selecting into pregnancy) and improvements in health behaviors in periods of high 

unemployment (Dehejia & Lleras-Muney, 2004). Standard errors are clustered at the county level.  

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑚𝑟 + 𝛼𝑐𝑄𝑟 + ∑ 𝛽𝑗 𝑞𝑗(𝑃𝑐𝑤𝑦
39 )

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑤𝑦𝑟 + 𝜃 𝑈𝑄1 𝑠𝑚𝑦 + 𝛾𝑋𝑥𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [1.3] 

 

where 𝑦𝑐𝑤𝑦𝑟 represent the average neonatal outcome of newborns whose mothers reside in county 

c, were conceived in week w of year y and who belong to racial group r (i.e., white, black, other). 

𝑞𝑗(𝑃𝑐𝑤𝑦
39 ) corresponds to the fraction of days in which the pollutant’s concentration in county c fell 

in the j-th concentration quintile of pollutant P during a fixed 39-week window starting from week 

w of year y. 𝑋𝑥𝑤𝑦𝑟 correspond to the mean of a vector of individual-level controls from the birth 

certificates (mother’s age, pregnancy history, marital status, high school dropout, and gender ratio) 

by county, week-year, and race cells. 𝑢𝑐𝑤𝑦𝑟 corresponds to the error term. Regressions are weighted 

by the number of births in each cell, and the standard errors clustered at the county level.  

 

 
32 Sanders & Stoecker (2015) found that increases in Total Suspended Particles –which can be formed by the oxidation of SO2 in the 

atmosphere— decrease the fraction of male newborns. For the pollutants analyzed in this paper, I did not find a significant impact on the gender 

ratio. The results for models [1.2] and [1.3]  are essentially identical when the gender ratio is excluded. 
33 Controlling for the unemployment rate during the second or third trimesters does not alter the results in a significant way.  
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1.4.3 Choosing the most reliable methodology for birth outcomes 

As previously discussed, this paper’s main objective is to establish how sensitive the pollutant 

effect’s estimates are to the window used to measure exposure. In [1.2], exposure is measured from 

conception to birthdate, and in [1.3] is measured using a 39-week fixed window starting from 

conception. The results differ across methodologies, but how do we choose the best one? In section 

1.2.2, I argued that there is an ex-ante tradeoff when choosing the window to measure exposure:   

When the conception-birthdate window is used,  the estimate could be biased due to the induced 

endogeneity in pollution. If a fixed 39-week window is used, there could be a bias because not all 

pregnancies reach full term.  

  

In order to test how reliable both methodologies are, I used a placebo test. For each window, I built 

measures of exposure using each county’s  52-week lagged pollutant concentration to estimate the 

effect on birth outcomes. Tables 1.9 and 1.10 show the correlation between the real and placebo 

measures when exposure is measured from conception-birth and conception-39 weeks, 

respectively.  

  

Lastly, to evaluate the potential bias caused by using a fixed 39-week window for all newborns, I 

ran a robustness test measuring exposure from conception to 26 weeks. Notably, only 72.47% of 

the births reached 39 or more weeks; however,  99.6 % of all births reached at least 26 weeks.  

 

 

1.4.4 Strategy to address the livebirth bias 
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As discussed in section 1.2.3, the  livebirth bias poses a potential threat when estimating [1.2] and 

[1.3]. The pollutant effect’s estimate could be biased because birth outcomes are observed only for 

the population that survives the shocks. Appendix B explains this problem in greater detail. 

Equation [B1] decomposes SO2’s reduced-form coefficient separately for two populations. First, 

the fetuses that transition from live birth to fetal death due to the shock (i.e., extensive margin). 

Second, the fetuses that would have been born irrespectively of the shock; this population would 

be affected only through the intensive margin (i.e., decrease in weight or the gestational age). The 

estimate of air pollution’s effect in [1.2] and [1.3] could be negative if the fetuses surviving the 

shock were positively selected. 

 

In order to overcome this bias,  I use the number of non-adverse (i.e., healthy) birth outcomes per 

woman of reproductive age (nlbw/w, nptb/w, nsga/w). Intuitively, the advantage of this variable is 

that pollution’s effects through the extensive and intensive margin go in the same direction34. For 

example, let us start by assuming that pollution affects health negatively through the intensive 

margin (e.g., decreases birthweight) and causes fetal deaths (extensive margin). Then, if the infants 

who die due to pollution shocks were positively selected, nlbw/w would decrease due to the effects 

through both margins. On the other hand, if the infants were negatively selected (i.e., infants who 

die would have belonged to the left tail of the birthweight distribution), nlbw/w would decrease 

due to the intensive margin but would not be affected by the extensive one. Appendix B discusses 

this approach in greater detail. 

 

 
34 With traditional outcome variables (e.g., birthweight) the impacts through the intensive and extensive margin can cancel eath other out.  
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Finally, the effects of pollution on health at birth are estimated using  nlbw-w, nptb-w, nsga-w  as 

outcome variables in [1.3]. The regressions are weighted by the number of women 15-44 years old 

from race r in the respective county and year, and the standard errors are clustered at the county 

level.  

 

1.5 Results 

This section presents the estimates of sulfur dioxide’s effect on fetal death and birth outcomes in 

sections 1.5.1 and 1.5.2, respectively. In the latter, I compare the estimates of the effect of SO2 on 

birthweight when exposure is measured from conception to birth vs. conception to 39 weeks. I 

selected the most robust methodology based on a placebo test. Finally, I show the estimates of the 

effect of SO2 on newborns’ health using a new approach robust to livebirth bias (i.e., sample 

selection bias). 

 

1.5.1 Fetal death 

Table 1.16. shows the results of  estimating [1.1]. The first (last) three columns impose a linear 

(non-linear) functional form in SO2’s effects.  Under the assumptions described in section 1.4.1, a  

negative coefficient is interpreted as evidence that high SO2 concentrations increase fetal death. 

Column (5) shows that ambient concentrations of SO2 between 7.66 and 13 ppb (fourth quintile)  

increased fetal deaths in counties with a low baseline level of SO2 (i.e., low-pollution counties35). 

On the contrary, there is no significant effect in high-pollution counties (Col 6). This 

counterintuitive result suggests that other factors mediate air pollution’s health effect. For instance, 

 
35 Low pollution counties correspond to those whose average SO2 concentration during the first two years of available data is lower that the 

median of all counties with available data.   
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low-pollution counties have a larger fraction of pregnant women who are white and high school 

dropouts and have fewer hospital beds per capita. Alternatively, there could be an adaptation story: 

perhaps individuals in high-pollution counties are better insulated from outdoor air pollution.  

 

The result in column 5 suggests that an additional day in SO2’s second-highest concentration bin 

(4th quintile) during the pregnancy decreased the fertility rate by 0.029%36,  implying 1.5337 fewer 

annual births per county.38 I transformed this estimate to measure the effect of one additional day 

in the fourth quintile of SO2 on the relative odds of fetal death, and the odds of fetal death increase 

by 0.17%.39 Similarly, Sarovar et al. (2020) estimate that, in California, a 3 parts per billion (ppb) 

increase in SO2 during one day increases the odds of fetal death between 0.15% and 5.45% four 

days later.     

 

Additionally, the back-of-the-envelope calculation suggests that 4640 fetal deaths were associated 

with the fourth quintile of SO2 every year for the typical low-pollution county . In contrast, the 

linear model predicts 27.1441 for the same group (Col 2), although not statistically significant. 

Nevertheless, it is essential to highlight that these estimates are upper bounds since they implicitly 

assume that 1-day effects can be extrapolated to longer periods. However, we would expect larger 

behavioral responses (i.e., adaptation) to longer pollution episodes. Therefore, the marginal effect 

of one additional high-pollution day is likely decreasing. I did not find evidence that the effects 

 
36 0.029%=(0.1/273)/1.25. Where 0.1 is the coefficient for the 4th quintile of SO2 in Table 1. 1.25 corresponds to the average weekly birth rate per 

thousand woman of reproductive age in low-pollution counties (See Table 1) 
37 1.53= (0.1/273)*80.38*52. Where 80.38 corresponds to the average women of reproductive age (in thousadns) in low-pollution counties in 
Table’s 1 sample. The expression is multiplied by 52 to get an annual estimate (i.e., the coefficients were estimated with weekly data) 
38 For comparison, there are on average 4316 annual births per county in the low-pollution group.  

39 0.17% = 100 ∗ (
𝑂𝑅ℎ𝑖𝑔ℎ−𝑂𝑅𝑜

𝑂𝑅𝑜
). 𝑂𝑅𝑜 =

1061

7075−1061
. 𝑂𝑅ℎ𝑖𝑔ℎ =

𝐹𝐷ℎ𝑖𝑔ℎ

7075−𝐹𝐷ℎ𝑖𝑔ℎ
. 𝐹𝐷ℎ𝑖𝑔ℎ=1061+1.53. where 1061 is taken from footnote 66 and 1.53 

from footnote 60.  
40 46=0.1*0.11*80.38*52. Where 0.11 corresponds to the average time a pregnancy in low-pollution counties is exposed to SO2 concentrations in 
the fourth quintile. 
41 27.14=0.00158*4.11*80.38*52. Where 4.11 corresponds to the mean SO2 concentration a pregnancy in low-pollution counties is exposed to.  
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were statistically different for one high-pollution day in isolation vs. in a 3-day episode of high 

pollution.42 However, not many of these longer episodes were in the data, so this result should not 

be considered robust evidence against decreasing effects during longer pollution episodes.  

 

Lastly, the magnitude of the back-of-the-envelope estimate presented above leads to sizeable 

estimates of the fraction of fetal deaths caused by sulfur dioxide.  In 1990, 61% of all pregnancies 

ended in a live birth, 15% in fetal loss, and 24% in induced abortions in the US (Ventura et al., 

2008). Consequently, there would have been  106143 annual fetal deaths per county for the low-

pollution group. Therefore, based on estimates from Column 5, SO2 would have caused 4.33% of 

all fetal deaths for this set of counties.  

 

Table 1.17 shows the effect of SO2 on the fetal death rate are consistent with the SO2 effects on 

the fertility rate (Table 1.16). As discussed in the empirical strategy section, the fertility rate is 

used instead of the fetal death rate because fetal death data were very noisy during the 80s. Since 

reporting fetal deaths before 20 weeks of gestation is not mandatory, the preferred specifications 

in this table would be (1)-(3); however, the result in column (3) is counterintuitive. On the other 

hand, it is reassuring that the estimates in column (5), where fetal deaths of all gestational ages are 

included, are similar in magnitude to those of Col 5 of Table 1.16.  

 

Table 1.18 presents the results of the placebo test; which show that the 39-week window used to 

measure exposure to SO2 generates reliable estimates.  In columns 2,4, and 6, I estimated the 

 
42 Results not shown, available upon request. 
43 1061=( N Pregnancies)*0.15.  𝑁 𝑃𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑖𝑒𝑠 =

4316

0.61
= 7075.   Where 4316 corresponds to the mean annual number of births per county for 

the low-pollution group (See Table A2).  
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impact of 52-week lagged SO2 concentrations on the fertility rate for [1.1]. The estimates are 

statistically  insignificant and much smaller in magnitude when the placebo measures are used. 

The estimates are also robust to controlling by co-pollutants (Carbon monoxide (CO), Nitrogen 

dioxide (NO2), Ozone (O3),  and 10-microgram particulate matter (PM10)).
44 

 

1.5.2 Birth Outcomes 

This section is split into four sub-sections. In the first one, I compare SO2’s estimates when 

exposure is computed from conception to birth vs. conception to 39 weeks. Additionally, I test the 

robustness of both methodologies using a placebo test. In the second section, I present and discuss 

the estimates for SO2’s effect on traditional birth outcomes (birthweight, LBW, PTB, SGA)  when 

exposure is measured from conception to 39 weeks— the preferred methodology based on the 

placebo test. In the third section, I estimate the effects of SO2 on newborn’s health using a novel 

approach robust to livebirth bias. The last section shows the heterogeneity analysis by race.   

 

1.5.2.1 Comparing results across windows to measure exposure  

In this section, I contrast the results from the two models to estimate SO2 effects on birthweight. 

Model [1.2] measures exposure from conception to birth and is estimated in Columns 1-2 of Table 

1.19; Columns 3-4 are presented for comparison purposes. The estimate in Column 1, which 

imposes linear effects, suggests that an increase of 1 part per billion in the average SO2 

concentration during the prenatal period decreases birth weight by 0.24% (Approximately  8 

grams45). The non-linear effects estimates in Column 2 suggests one additional day in the most 

 
44 Regression tables not shown, available upon request. 
45 8=0.24% *3362.5. where 3362.5 corresponds to the average birthweight in counties with SO2 data (seet Table 1.1) 
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polluted quintile of SO2 decreases birth weight by 0.022%46. The back-of-the-envelope 

computation suggests that birthweight decreases on average 1.1 %47 due to SO2. 

 

Notably, we observe that the sign of the effect of SO2 on birthweight switches from negative to 

positive in the last two columns when exposure is measured from conception to 39 weeks. Thus, 

the window chosen to measure exposure during the prenatal period is critical for the estimates. At 

this point the reader may be wondering which is the most reliable methodology to measure 

exposure. I used the placebo test explained in section 1.4.3 to answer this question. 

 

Model [1.3] measures exposure from conception to 39 weeks and is estimated in Columns 3-4 of 

Table 1.20. In this table, data has been collapsed in cell by county, week of conception and race.  

Columns 1-2, are presented for comparison purposes. The estimate in Column 3, which imposes 

linear effects, suggests that an increase of 1 part per billion in the average SO2 concentration during 

the prenatal period increases birthweight by 0.014%. The non-linear effects estimates in Column 

4 suggest that one additional day in the second most polluted quintile of SO2 increases  birthweight 

by 0.0021%. The back-of-the-envelope computation suggests that birthweight increases on 

average by 0.1 % due to SO2. 

 

Using aggregated data, the sign of both estimates is positive irrespective of the window used to 

measure exposure.  The change in the sign of the estimate in Column 1 between tables 1.19 and 

1.20 raises concerns about the reliability of the conception-birth methodology. Furthermore, Table 

 
46 0.022%=100(0.06/273).  
47 1.1%=100(0.06*0.18). where 0.18 corresponds to the fraction of time the average pregnancy is exposed to the fith concentration quintile (see 

Table 1.6) 
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1.15 shows evidence of an intra-annual negative trend in the concentration of sulfur dioxide. 

Gestational age and prenatal pollution could negatively correlate by construction when exposure 

is measured from conception to birth (see section 1.2.2). 

The reliability of both methodologies was tested with the placebo test discussed in section 1.4.3. 

In Table 1.21, exposure was measured from conception to birth. We observe that placebo estimates 

are statistically significant and about half the size in magnitude compared to the estimates with the 

actual concentration (Column 1 vs. 3). This suggests that measuring pollution from conception to 

birth leads to biased estimates. On the other hand, In Table 1.22, exposure was measured from 

conception to 39 weeks, and the placebo effects (Columns 3 and 4) were close to zero and 

statistically insignificant.  

 

Lastly, to evaluate the potential bias caused by using a fixed 39-week window, I ran a robustness 

test measuring exposure from conception to 26 weeks in Table 1.23. Notably, only 72.47% of the 

births reached 39 or more weeks; however,  99.6 % of all births reached at least 26 weeks. The 26-

week estimates were smaller in magnitude and statistically insignificant, which suggests that the 

39-week estimates are not attenuated relative to the 26-week ones. Additionally, it could be 

hypothesized that the effects of high SO2 days are larger during the third trimester.48  

 

Based on the previous analysis, I selected the 39-week window as the preferred methodology to 

measure exposure. 

 

 

 
48 Effects were not disaggregated by trimester due to the high collinearity of the different SO2 bins and lack of power to identify the additional 

parameters when disaggregating by trimester.  
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1.5.2.2 Estimates for traditional birth outcomes  

The estimates of the effect of SO2 on birthweight using a 39-week window to measure exposure 

(preferred empirical strategy) are counterintuitive. The results suggest that increases in SO2 

improve birth outcomes. As discussed in section 1.4.4 (Empirical strategy), this counterintuitive 

result might be caused by livebirth bias. Alternatively, it could be caused by omitted variable bias 

(e.g., income), as discussed in section 1.2.3 (Background). Nevertheless, as discussed below, a 

holistic review of the results indicates that the livebirth bias drives the positive correlation between 

sulfur dioxide and birthweight. 

  

Tables 1.24 and 1.25 estimate [1.3] for birthweight and the fraction of adverse birth outcomes 

across several samples based on the county’s average SO2 concentration. The national-level 

estimates –driven by low-pollution counties— show that  higher SO2 prenatal concentrations are 

associated with better neonatal outcomes. It is important to recall that high SO2 concentrations 

increase fetal death in low-pollution counties (Table 1.16). Thus, the results from Tables 1.24 and 

1.25 vs. the ones from Table 1.16 are consistent with the possibility that the fetuses who survive 

pollution shocks are positively selected.   

 

Admittedly, there may be lingering concerns regarding the exogeneity of air pollution due to 

omitted variable bias (e.g., income). However, these concerns are lessened once we consider that 

a significant fraction of local concentrations of pollutants come from sources elsewhere. For 

instance, in the eastern US, around 77% of each state’s Ozone and PM2.5 concentrations are caused 

by NOx and SO2 emissions in other states (Bergin et al., 2007). In addition, it is essential to consider 

the sources of emissions. According to the EPA, around 97% of man-made annual SO2 emissions 
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during 1978 in the US were from stationary point sources. From these, 70% were from utilities 

burning coal and oil for electricity generation, and 20% were from industrial processes (e.g., 

smeltery). We would expect this variation to be captured by the local seasonal effects and weather 

controls in [1.3].  Therefore, the main concern would be a nationwide income shock that 

systematically correlates income and SO2 emissions. For example, demand for electricity in the 

commercial and industrial sectors falls during economic downturns (Thoma, 2004). Nevertheless, 

using county-year-race fixed effects and controlling for the state-level unemployment rate during 

the pregnancy’s first trimester mitigates this concern49. 

 

The joint review of the fetal death and birth outcome estimates indicates that the livebirth bias 

causes the positive correlation between sulfur dioxide and birthweight. First, we observe that SO2 

increases fetal death in low-pollution counties (Col 4 of Table 1.16, ), then  we observe that low-

pollution counties are the source of the positive correlation between SO2 and birthweight in Table 

1.24. Additionally, I estimate [1.3] using the number of adverse cases per woman of reproductive 

age as the outcome variable in Table 1.26. Altogether, these results are consistent with the 

hypothesis that fetuses who die due to SO2 shocks are negatively selected (i.e., thus surviving are 

positively selected) in low-pollution counties and nationally. Lastly, if income and pollution were 

still correlated despite the controls in [1.3], we would expect the estimates from the first and second 

quintiles of SO2 to be negative in Table 1.24. However, we observe the opposite; low SO2 

concentrations are associated with better birth outcomes in low-pollution counties and nationally, 

although the estimates are not statistically significant.   

 

 
49 Controlling for the unemployment rate during the entire pregnancy leads to quantitatively similar estimates of SO2’s effects.   
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1.5.2.3 Estimates robust to livebirth bias 

The analysis from the previous section indicates that the estimates of the effects of SO2 on birth 

outcomes are affected by livebirth bias (i.e., sample selection). I attempted to address this problem 

using a bounding approach, as in Lee (2009), but the results were unsatisfactory. Thus, I 

implemented the novel approach proposed in section 1.4.4 (empirical strategy). 

 

Table 1.27 shows the results from the bounding approach. In Columns 1-2 (3-4), the top and 

bottom 2% (5%) of observations were excluded. The point estimates decreased in magnitude, 

suggesting a sample selection problem, but were still positive and statistically significant. 

 

Table 1.28 shows the results of the novel approach to overcome the livebirth bias. [1.3] is estimated 

using the number of non-adverse cases per woman of reproductive age as the dependent variable 

and weighting the regressions by the number of women of reproductive age from the respective 

race, county, and year. The results show that high SO2 levels decrease the number of infants born 

with non-adverse (i.e., healthy) neonatal outcomes.  These estimates are robust to controlling by 

Co-pollutants (CO, NO2, O3, and PM10).
50 Notably, I also find that high SO2 concentrations 

decrease the number of infants born non-premature (i.e., with 37 or more weeks of gestation51). 

Which is an additional reason against measuring exposure from conception to birth (see section 

1.2.2)  

 

 
50 Regression tables not shown, available upon request. 
51 There is no significant impact on the gestational age, most likely caused by livebirth bias. Results not shown, available upon request.  
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The estimates in Column 1 suggest that the rate of non-low birth weight (i.e., healthy) infants per 

woman of reproductive decreases by 0.0122%52 for one additional day in the fifth quintile (most 

polluted). Consequently, a county’s annual number of infants born with a weight above 2500 

grams decreases by 38.7653 due to SO2 . As a reference, at the national level, there were 4423 

annual births per county (see Table 1.2). The effect is larger in low-pollution counties. The rate of 

non-lbw infants per woman of reproductive age decreases by 0.0231% per one additional day in 

the fourth quintile (second dirtiest), and there are 73.3 fewer infants born with weight above 2500 

grams due to sulfur dioxide.  

 

1.5.2.4 Heterogeneous effects by race 

Table 1.29 shows the estimates of the effect of SO2 on the number of infants born non-low 

birthweight (birthweight>2500g)  per thousand woman of reproductive age (15-44 yrs. old) by 

race. We observe that the point estimate for the fifth quintile (i.e., most polluted) is larger for 

blacks than whites, although statistically significant only for low-pollution counties. The standard 

errors are much larger for blacks than whites, which is likely a consequence of the smaller sample 

size. For low pollution counties, one additional day in the fourth and fifth quintiles decreases the 

rates of non-low birth weight (i.e., healthy) infants per woman of reproductive by 0.0237%54 and 

0.0562%55 for whites and blacks, respectively. These results are consistent with previous 

 
52 -0.0122%= 100*((-0.0487/293)/1.363).  Where 0.0487 is the coefficient associated with the 5th quintile of SO2 in Col 1, and  1.363 corresponds 
to the mean of the dependent variable.  
53 -38.76= -0.0487*0.18*85.03*52. Where 0.18 correspond to the fraction that the average 39-week pregnancy spends in the 5th quintile (see col1 

of Table 1.7). 85.03 corresponds to the number of women of reproductive age. 52 corresponds to the number of weeks in a year. 
54 0.0237% =100*(0.0826/293)/1.189) Where 0.0826 is the coefficient associated with the 4th quintile of SO2 in Col 2, and  1.189 corresponds to 

the mean of the dependent variable for whites.  
55 0.0562% =100*((0.218/293)/1.324)Where 0.218 is the coefficient associated with the 5th quintile of SO2 in Col 4, and  1.324 corresponds to the 
mean of the dependent variable for blacks.  
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environmental research that found larger air pollution effects on African Americans’ infant health 

than whites (Chay & Greenstone, 2003a; Currie & Walker, 2011). 

 

1.6 Conclusion 

This paper’s objective is to test how sensitive are the estimates of the effects of air pollution on 

birth outcomes to the window used to measure exposure during the gestational period. To do so, I 

compared the results of two methodologies to measure prenatal exposure to sulfur dioxide (SO2). 

The results show that the estimates of the effects of SO2 on birth outcomes are highly sensitive to 

the window chosen to measure exposure. When exposure was measured from conception to birth, 

I found a negative and significant impact of SO2 on birthweight. In contrast,  the estimate was 

positive and significant when exposure was measured from conception to 39 weeks.  

 

In order to choose the most reliable methodology, I created placebo measures using each county’s 

52-week lagged SO2 concentrations to compute prenatal exposures. When exposure was measured 

from conception to birth, SO2’s estimate from the placebo was significant and about half the size 

compared to the estimate from the actual exposure. In contrast, when exposure was measured from 

conception to 39 weeks, the estimates from the placebo were close to zero and statistically 

insignificant.  

 

Measuring exposure from conception to birth leads to endogenous measures of prenatal exposure 

that overestimate the effect of SO2 on birth outcomes. This bias can be explained by the decreasing 

trend in SO2 concentrations during 1981-1991. This trend holds intra-annually for the average 

county. Consequently, infants with ex-ante better health are assigned lower measures of prenatal 
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exposure. Thus,  gestational age –or any other birth outcome directly proportional to it (e.g., birth 

weight)—and prenatal pollution are negatively correlated by construction. This mechanical 

correlation disappears when exposure is measured over a fixed 39-week window. Furthermore, the 

results show that the number of infants born non-preterm (i.e., with 37 or more weeks of gestation) 

per woman of reproductive age decreases high with SO2 concentrations. Thus, the date of birth is 

itself an outcome affected by pollution. 

 

Using the most reliable methodology (i.e., conception-39 weeks), I found an unanticipated and 

counterintuitive result: A positive estimate of the effect of  SO2 on birthweight (i.e., high pollution 

associated with better health outcomes). Understanding this results was a challenge, and it required 

developing a new methodology to address the sample selection bias (i.e., livebirth bias) in this 

context. In theory, this result could be caused by at least two factors: (i) endogeneity bias, perhaps 

due to omitted variables (e.g., income), or (ii) the livebirth bias. The analysis of the fertility rate 

and left tail of the birthweight distribution were consistent with the hypothesis that the fetuses who 

die due to SO2 shocks are negatively selected (i.e., would have been born with low weight). 

Furthermore, the point estimates of low SO2 concentrations were inconsistent with an omitted-

variable-bias story. Thus, it was concluded that livebirth bias was the cause behind the 

counterintuitive results.  

 

The livebirth bias was addressed by using the number of infants born with non-adverse birth 

outcomes per woman of reproductive age as the dependent variable and weighting the regressions 

by the number of women of reproductive age.  Using this approach, I find that high SO2 

concentration during the prenatal period worsens health at birth. Finally, I estimate the impacts 
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separately across races and find that the damage caused by SO2 was larger for black than white 

newborns.    
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1.7 Figures 

Figure 1.1: Fertility rate by conception month  

 

Note:  Units on y-axis correspond to 1000*(N live births)/ N women 15-44 yr. old. BR_US (All counties in the US), BR_SO2 (Counties with a 

balanced sample of SO2 data through 1981-1991) 

 

Figure 1.2: Low birthweight rate (LBW) by conception month. 

 

 
Note: A newborn is considered low birthweight if its weight at birth is 2500 grams or less. All US (All counties in the US), SO2  sample(Counties 

with a balanced sample of SO2 data through 1981-1991) 
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Figure 1.3: Small for gestational age rate (SGA)  by conception month.  

All US vs counties with SO2 data. 

 

 
Note: A newborn is considered small for its gestational age if the weight at birth is less than the 10th percentile of birthweight for its gestational 

age, gender, and maternal race. Cutoff values for the 10th percentile were generated using all births in the US during 1982-1991. All US (All 

counties in the US), SO2  sample(Counties with a balanced sample of SO2 data through 1981-1991) 
 

Figure 1.4: Preterm birth rate (PTB) by conception month.  
 

 
Note: A newborn is considered preterm if is born with less than 37 weeks of gestation. All US (All counties in the US), SO2  sample(Counties with 

a balanced sample of SO2 data through 1981-1991) 
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Figure 1.5: Mean sulfur dioxide concentration for all counties with monitoring data 

  

 
Note: Author’s calculations from AQS (pollution monitoring data).  Concentrations measured in parts per billion (ppb) 

 

Figure 1.6: Mean sulfur dioxide concentration for counties in the balanced panel. 

 

 
Note: Author’s calculations from AQS (pollution monitoring data).  Concentrations measured in parts per billion (ppb). A county belongs to the 
SO2 Balanced panel if the fraction of daily missing observations for a 39-week forward looking rolling window was less than 50% every week-

year during 1981-1991.   
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Figure 1.7: Average concentration of SO2 (ppb) in the US during 1981-1991 

 

 
Note: Author’s calculations from AQS (pollution monitoring data).  Counties whose average  level of SO2 during their first two years was lower 
than the median in the SO2 Balanced panel were assigned to the low Basleine category.  

 

 

 

Figure 1.8.1: Distribution of SO2 concentration for a standard 39-week pregnancy  

 

 
Note: Author’s calculations from AQS (pollution monitoring data). Counties whose average  level of SO2 during their first two years was lower 

than the median in the SO2-Balanced panel were assigned to the low basleine category. Concentration range per quintile: 𝑄1 (𝑆𝑂2 ≤ 1.84 𝑝𝑝𝑏), 

𝑄2(1.84 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 4.39 𝑝𝑝𝑏), 𝑄3(4.39 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 7.66 𝑝𝑝𝑏), 𝑄4(7.66 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 13 𝑝𝑝𝑏), and 𝑄5(𝑆𝑂2 > 13 𝑝𝑝𝑏)). 
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Figure 1.8.2: Distribution of SO2 concentration for a standard 39-week pregnancy by race 

 

 
Note: Author’s calculations from AQS (pollution monitoring data), CDC public birth files 1982-1988 and restricted-use birth files 1989-1991.  

Concentration range per quintile: 𝑄1 (𝑆𝑂2 ≤ 1.84 𝑝𝑝𝑏), 𝑄2(1.84 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 4.39 𝑝𝑝𝑏), 𝑄3(4.39 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 7.66 𝑝𝑝𝑏), 

𝑄4(7.66 𝑝𝑝𝑏 < 𝑆𝑂2 ≤ 13 𝑝𝑝𝑏), and 𝑄5(𝑆𝑂2 > 13 𝑝𝑝𝑏)). 
 

 

Figure 1.9.1: Average fraction of  a 39-week pregnancy spent in the fifth concentration quintile 

(SO2>13 ppb)  in the US by county’s baseline pollution level 

 

 
Note: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Counties whose average  level of SO2 

during their first two years was lower than the median in the SO2 Balanced panel were assigned to the low basleine category.  
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Figure 1.9.2: Average fraction of  a 39-week pregnancy spent in the fourth concentration quintile 

(7.66<SO2<13 ppb)  in the US by county’s baseline pollution level 

 

 
Note: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Counties whose average  level of SO2 
during their first two years was lower than the median in the SO2 Balanced panel were assigned to the low Basleine category.  

 

 

Figure 1.10: Distribution of SO2 concentration for a standard 39-week pregnancy: 

  two counties in two different years. 
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Note: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The thresholds for the quintiles were 

generated using all the county-day concentrations of SO2 for all counties in the unbalanced SO2 panel during 1981-1991. 

 

 

Figure 1.11: Fraction of a 39-week pregnancy spent in the 4th quintile of the distribution of SO2 

for the county of Jefferson, Texas (Figure 6) vs residual variation. 

 

 
Note: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The residual is computted by regression 
the original series (Share 39w in Q4) on the right hand side variables of model [1] (County-year FE, County-Quarter FE, month FE, in-utero 

temperature, in-utero precipitation, and unemployment rate during the first trimester of pregnancy) 
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1.8 Tables 

Table 1.1:  Summary statistics for birth certificate data   

 

  US 

SO2 

Unbalanced 

SO2 

Balanced 

SO2 

Low Baseline 

SO2 

High Baseline 

Birth Outcomes (means) 

Birthweight (grams) 3369.8 3362.5 3358.8 3377.1 3347 

Low Birth Weight (LBW) 57.87 51.72 52.83 47.43 55.62 

Small for Gestational age (SGA) 98.98 90.64 91.89 88.52 92.57 

Preterm birth (PTB) 93.02 94.56 95.35 92.77 96.45 

Note: LBW, SGA, and PTB are expressed as number of cases per thousand births.   

Demographics of the mother (means) 

Share white (%) 80.0% 77.5% 77.1% 80.6% 74.7% 

Share black  (%) 15.9% 18.1% 18.3% 13.5% 22.3% 

Share other  (%) 4.2% 4.4% 4.6% 6.0% 3.1% 

Share age<=19  (%) 12.9% 12.1% 11.8% 12.4% 11.8% 

Share 20<=age<=35  (%) 81.9% 82.3% 82.3% 82.1% 82.5% 

Share age>=36  (%) 5.2% 5.7% 5.8% 5.5% 5.8% 

Share unmarried  (%) 24.0% 26.7% 27.3% 25.0% 28.3% 

High school dropout  (%) (means)     

No 64.04 59.91 59.52 43.56 74.81 

Yes 17.8 16.75 17.07 14.08 19.18 

Not reported 16.71 21.78 21.78 41.47 3.83 

Not Answered 1.44 1.56 1.63 0.89 2.17 

High school dropout from 1989 onwards  (%) (means)     

No 72.12 70.40 69.80 67.62 73.04 

Yes 22.59 23.70 23.95 27.84 19.77 

Not reported 3.56 3.82 4.04 3.65 3.99 

Not answered 1.73 2.07 2.22 0.88 3.20 

Pregnancy history (means)     

First delivery 35.0 35.4 35.3 36.1 34.6 

Second delivery & fetal death rate =0 25.2 24.7 24.5 25.7 23.8 

Delivery>=3 & fetal death rate =0 18.1 18.0 18.0 19.5 16.7 

Delivery>=3 & fetal death rate <0.5 12.0 11.9 12.0 10.7 13.0 

Delivery=2 & fetal death rate =1 5.3 5.3 5.4 4.5 6.1 

Delivery>=3 & fetal death rate>0.5 4.4 4.7 4.8 3.6 5.7 

      

Controls at the county-year level (means) 

Per capita income   $   15,548   $   16,774   $   17,007   $  16,651   $  16,887  

Per capita Gov transfers (Except Medical & SSI)  $   157.65   $   164.47   $   172.54   $  146.42   $  188.80  

Per capita UI transfers  $     81.93   $     93.45   $     95.08   $    86.92   $  100.16  

Hospital beds per capita  4.8 5.1 5.1 4.6 5.7 

Unemployment rate during Q1 (%) 7.1 7.1 7.0 7.0 7.1 
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Fraction of births by Urban- Rural Classification for counties (NCHS -1990) (means) 

Large central metropolitan  32.36% 47.58% 59.75% 46.09% 49.15% 

Large fringe metropolitan 18.12% 18.06% 16.41% 11.53% 24.99% 

Medium metropolitan 21.86% 25.06% 18.86% 31.31% 18.41% 

Small metropolitan 7.97% 5.15% 3.66% 5.87% 4.38% 

Micropolitan 9.10% 2.76% 0.81% 3.27% 2.22% 

Non-core 10.59% 1.4% 0.51% 1.93% 0.84% 

      

N births 35,610,573 17,443,247 14,064,208 8,071,791 9,371,456 

Counties 3,138 533 222 294 239 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. 

 

Table 1.2: Summary statistics for the average annual fertility rate and number of births  

 
   SO2 SO2 SO2 SO2 

  US Unbalanced Balanced Low Baseline High Baseline 

All races 

Fertility rate (mean) 58.1 53.1 55.6 55.1 51.4 

N Births 1,047 4,423 5,993 4,316 4,525 

Women 15-44  (mean) 18021 83311 107743 78269 88107 

Whites 

Fertility rate (mean) 56.0 50.9 53.4 53.7 48.4 

N Births 841 3426 4617 3475 3379 

Women 15-44 (mean) 15027 67291 86500 64671 69784 

Blacks 

Fertility rate (mean) 70.2 63.3 66.2 62.8 63.5 

N Births 167 802 1097 584 1009 

Women 15-44 (mean) 2380 12672 16582 9292 15887 
Note: Fertility rate corresponds to the ratio between the  number of births and thousand women 15-44 yrs olds. Statistics at the county-year level. 
Author calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Women 15-44 year old per county-year was 

sourced from SEER data. 

 

 

Table 1.3: Summary statistics for the fetal death rate  

 

  
 SO2 SO2 SO2 SO2 

 US Unbalanced Balanced Low Baseline High Baseline 

FDR 20+ (mean) 0.0059 0.0057 0.0057 0.0055 0.0059 

FDR All (mean) 0.012 0.0114 0.0115 0.0075 0.0146 

County-Week Cells 1,647,521 193,392 118,249 92,591 100,801 
Notes: Author calculations from CDC public fetal death files 1982-1991.  FDR All (FDR 20+) corresponds to all fetal deaths (fetal deaths of 20 

or more weeks of gestation)  per week conception week and  thousand women in reproductive age in the respective county. These statistics were 

computed after collapsing fetal death  data by county and year.  
 

 

 

 

 

 

 



 

 

47 

 

Table 1.4: Average annual number of infants born with non-adverse health outcomes per woman 

of reproductive age 
  SO2 SO2 SO2 SO2 

  Unbalanced Balanced Low Baseline High Baseline 

 All races (means) 

Nlbw-w 49.33 51.60 51.49 47.51 

Nsga-w 46.98 49.18 48.96 45.31 

Nptb-w 47.83 49.97 49.78 46.19 

 White (means) 

Nlbw-w 47.92 50.19 50.61 45.55 

Nsga-w 45.07 47.23 47.70 42.75 

Nptb-w 46.67 48.82 49.08 44.55 

 Black (means) 

Nlbw-w 55.43 57.86 55.57 55.35 

Nsga-w 55.84 58.38 55.78 55.87 

Nptb-w 52.68 54.95 52.83 52.59 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Women 15-44 year old per county-
year was sourced from SEER data. Nlbw/w , nsga/w, and nptb/w  correspond to the number of non-low birthweight (birthweight>2500g), non-

small for gestational age (birthweight > P10) where P10 is the 10th percentile of birthweight computed for every gestational age-gender-maternal 

race, and non-preterm birth (gestational age>=37 weeks) per thousand woman of reproductive age (15-44 yrs. old) from the respective race, county, 
and year.  Obsrevations for which  SO2 data was missing more than 50% of the time during the 39-week window to measure exposure were 

excluded.    

 

 

Table 1.5: Average number of infants born with adverse health outcomes per woman of 

reproductive age  

 
  SO2 SO2 SO2 SO2 

  Unbalanced Balanced Low Baseline High Baseline 

 All races (means) 

Lbw-w 2.68 2.87 2.55 2.79 

Sga-w 5.04 5.29 5.09 4.99 

Ptb-w 4.19 4.50 4.27 4.12 

 White (means) 

Lbw-w 1.96 2.09 2.04 1.88 

Sga-w 4.81 5.05 4.95 4.68 

Ptb-w 3.21 3.46 3.57 2.88 

 Black (means) 

Lbw-w 6.47 6.89 5.98 6.75 

Sga-w 6.06 6.38 5.78 6.22 

Ptb-w 9.22 9.81 8.72 9.50 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Women 15-44 year old per county-
year was sourced from SEER data. Lbw/w , Sga/w, and Ptb/w  correspond to the number of Low birthweight (birthweight<=2500g), Small for 

gestational age (birthweight <= P10) where P10 is the 10th percentile of birthweight computed for every gestational age-gender-maternal race, and 

Preterm birth (gestational age<37 weeks) per thousand woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. 

Obsrevations for which  SO2 data was missing more than 50% of the time during the 39-week window to measure exposure were excluded.    
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Table 1.6:  Summary statistics for SO2 concentrations 

 Exposure measured from conception to birth 

 

  

SO2 

Unbalanced 

SO2 

Balanced 

SO2 

Low Baseline 

SO2 

High Baseline 

Mean SO2 7.935 8.208 4.106 11.424 

SO2-Sh(q1) (%) 0.230 0.216 0.383 0.091 

SO2-Sh(q2) (%) 0.182 0.176 0.234 0.134 

SO2-Sh(q3) (%) 0.203 0.205 0.193 0.212 

SO2-Sh(q4) (%) 0.206 0.215 0.135 0.271 

SO2-Sh(q5) (%) 0.179 0.189 0.056 0.292 

N (live births) 17,584,134 14,177,608 8,384,824 9,199,310 

Counties 533 222 294 239 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. Statistics computed using newborn-level data. Units:  parts per billion (ppb). Observations for which SO2 was missing more than 50% of 

the days were dropped from the analysis. Mean SO2 corresponds to the average SO2 concentration from the newborn’s presumed date of conception 

to the date of birth. SO2-Sh(q j) (%) corresponds to the fraction of days between the conception and birth dates in which the county’s SO2 

concentration lies in the j-th quintile of national distribution of SO2. 

 

Table  1.7:  Summary statistics for SO2 concentrations 

 Exposure measured from conception to 39-weeks 

 

  

SO2 

Unbalanced 

SO2 

Balanced 

SO2 

Low Baseline 

SO2 

High Baseline 

Mean SO2 7.935 8.208 4.103 11.427 

SO2-Sh(q1) (%) 0.194 0.167 0.360 0.043 

SO2-Sh(q2) (%) 0.198 0.196 0.278 0.125 

SO2-Sh(q3) (%) 0.219 0.229 0.211 0.226 

SO2-Sh(q4) (%) 0.210 0.222 0.114 0.298 

N (live births) 17,584,134 14,177,608 8,384,824 9,199,310 

Counties 533 222 294 239 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. Statistics computed using newborn-level data. Units:  parts per billion (ppb). Observations for which SO2 was missing more than 50% of 

the days were dropped from the analysis. Mean SO2 corresponds to the average SO2 concentration from the newborn’s presumed week of 

conception to 39 weeks. SO2-Sh(q j) (%) corresponds to the fraction of days during the conception-39 weeks window in which the county’s SO2 

concentration lies in the j-th quintile of national distribution of SO2. 
 

 

Table 1.8: Correlations between SO2 Measures. 

Conception to Birth vs. Conception to 39 weeks. 

 

Mean SO2 0.9985 

SO2-Sh(q1) (%) 0.8977 

SO2-Sh(q2) (%) 0.6499 

SO2-Sh (q3) (%) 0.6172 

SO2-Sh(q4) (%) 0.8182 

SO2-Sh(q5) (%) 0.9575 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 
the AQS. Correlations estimated using individual-level data for the unbalanced SO2 panel. Observations for which SO2 was missing more than 50% 

during either window to measure exposure were dropped from the analysis (N=17,973,734) 
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Table 1.9: Correlations - placebo test for conception-birth 

 

  
Raw  

correlation 

Partial  

correlation 

Mean SO2 0.9453 0.0802 

SO2-Sh(q1) (%) 0.831 -0.092 

SO2-Sh(q2) (%) 0.5743 -0.0009 

SO2-Sh(q3) (%) 0.5081 0.0129 

SO2-Sh(q4) (%) 0.7301 -0.02 

SO2-Sh(q5) (%) 0.9028 0.0934 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. Correlations estimated using individual-level data for the unbalanced SO2 panel. Observations for which SO2 was missing more than 50% 
of the days in either series (Current or Lagged SO2 Concentrations) were  dropped from the analysis (N=16,802,912). The value reported in “Raw 

correlation” is the pearson correlation coefficient between the newborn’s actual in-utero exposure to SO2 and the analogous placebo (one-year 

lagged SO2 concentration in the same county) measure. Partial correlation refers to the correlation of the residuals from regressing each SO2 variable 
on county-year-race FE, county-quarter-race FE,  month-race FE, mother’s demographics, newborn’s gender, in utero weather, and the 

unemployment rate during the pregnancy first trimester. Lagged values of temperature and precipitation were used to estimates the residuals for 

placebo measures. Mean SO2 corresponds to the average SO2 concentration from the newborn’s presumed date of conception to the date of birth. 
SO2-Sh(q j) (%) corresponds to the fraction of days between the conception and birth dates in which the county’s SO2 concentration lies in the j-th 

quintile of national distribution of SO2. 

 

 

 

Table 1.10: Correlations - placebo test for conception-39 weeks 

 

  
Raw  

correlation 

Partial  

correlation 

Mean SO2 0.9451 0.0708 

SO2-Sh(q1) (%) 0.9210 -0.1283 

SO2-Sh(q2) (%) 0.8349 -0.0233 

SO2-Sh(q3) (%) 0.8392 -0.0374 

SO2-Sh(q4) (%) 0.8673 -0.0013 

SO2-Sh(q5) (%) 0.9323 0.0883 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 
the AQS. Correlations estimated using data aggregated by county-race-year and weighted by the number of obsrevations in each cell. Observations 

for which SO2 was missing more than 50% of the days in either series (Current or Lagged SO2 Concentrations) were  dropped from the analysis  

(Cells 342,840). The value reported in “Raw correlation” is the pearson correlation coefficient between the newborn’s actual in-utero exposure to 
SO2 and the analogous placebo (one-year lagged SO2 concentration in the same county) measure. Partial correlation refers to the correlation of the 

residuals from regressing each SO2 variable on county-year-race FE, county-quarter-race FE,  month-race FE, mother’s demographics, newborn’s 

gender, in utero weather, and the unemployment rate during the pregnancy first trimester. Regressions were weighted by the number of livebirths 

in each cell. Lagged values of temperature and precipitation were used to estimates the residuals for placebo measures. Mean SO2 corresponds to 

the average SO2 concentration from the newborn’s presumed week of conception to 39 weeks. SO2-Sh(q j) (%) corresponds to the fraction of days 
during the conception-39 weeks window in which the county’s SO2 concentration lies in the j-th quintile of national distribution of SO2. 
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Table 1.11: Correlations between SO2 and Temperature bins 

Exposure measured from conception to 39-weeks 

 

  SO2-Q1 SO2-Q2 SO2-Q3 SO2-Q4 SO2-Q5 T<=25F 25<T<=45F 65<T<=85F  T>85F   

SO2-Q1 1.00         

SO2-Q2 0.18 1.00        

SO2-Q3 -0.54 0.16 1.00       

SO2-Q4 -0.71 -0.58 0.27 1.00      

SO2-Q5 -0.53 -0.62 -0.27 0.41 1.00     

T<=25F -0.37 -0.26 0.06 0.37 0.34 1.00    

25 F<T<=45F -0.53 -0.37 0.08 0.48 0.53 0.63 1.00   

65 F<T<=85F 0.29 0.27 -0.02 -0.28 -0.35 -0.55 -0.76 1.00  

T>85F 0.28 0.06 -0.09 -0.21 -0.19 -0.22 -0.29 0.21 1.00 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. All counties with SO2 data were included (i.e, unbalanced panel of SO2). SO2-Qj corresponds to the fraction of days during the conception-

39 weeks window in which the county’s SO2 concentration lies in the j-th quintile of national distribution of SO2. A <T<= b corresponds to the 

fraction of days during the conception-39 weeks window in which the county’s average temperature falls between a and b Fahrenheit degrees.  

 

Table 1.12: Summary statistics for SO2 concentrations by race. 

Exposure measured from conception to 39-weeks 

 
  SO2 Unbalanced SO2 Balanced Low SO2 Baseline High SO2 Baseline 

Maternal race White Black White Black White Black White Black 

Mean SO2 7.72 9.22 8.05 9.28 4.08 4.45 11.30 11.85 

SO2-Sh(q1) (%) 20.56% 12.60% 17.65% 10.80% 36.50% 31.19% 4.86% 2.40% 

SO2-Sh(q2) (%) 20.38% 16.53% 20.31% 15.94% 27.63% 28.32% 13.24% 10.00% 

SO2-Sh(q3) (%) 21.60% 23.36% 22.56% 24.41% 20.77% 23.50% 22.42% 23.28% 

SO2-Sh(q4) (%) 20.26% 25.24% 21.38% 26.82% 11.27% 12.87% 29.11% 32.04% 

SO2-Sh(q5) (%) 17.18% 22.23% 18.08% 21.97% 3.81% 4.09% 30.35% 32.21% 

N (live births) 13,916,363 3,247,815 11,160,795 2,644,179 6,902,615 1,153,437 7,013,738 2,094,378 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. Mean concentration is measured as parts per billion (ppb). Mean SO2 corresponds to the average SO2 concentration from the newborn’s 

presumed week of conception to 39 weeks. SO2-Sh(q j) (%) corresponds to the fraction of days during the conception-39 weeks window in which 

the county’s SO2 concentration lies in the j-th quintile of national distribution of SO2. 

 

 

Table 1.13: Remaining variation in birth outcomes  

 

 

SO2 

Unbalanced 

SO2 

Balanced 

SO2 

Low Baseline 

SO2 

High Baseline 

Log(birthweight) 0.719 0.749 0.654 0.753 

LBW rate 0.338 0.373 0.213 0.392 

PTB rate 0.368 0.392 0.272 0.437 

Fertility Rate (FR) 0.656 0.687 0.634 0.628 

Nlbw/w 0.840 0.748 0.706 0.890 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Reported values correspond to the R-

squared of a regression of each variable on county-year-race FE, county-quarter-race FE, and month-race FE. Regressions were weighted by the 

number of livebirths in each cell in rows 1-3 and by the number of women or reproductive age per county, race and year in rows 4-5. 
Log(birthweight) is the natural logarithm of weight at birth; LBW and PTB rate correspond to the fraction of infants born with weight below 2500 

grams and less than 37 weeks of gestation, respectively;  The fertility rate corresponds to the number of livebirths per thousand woman of 

reproductive age. Nlbw/w corresponds to the number of non-low birthweight infants per thousand woman of reproductive age.  
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Table 1.14: Remaining variation in SO2 and temperature  

 

 

SO2 

Unbalanced 

SO2 

Balanced 

SO2 

Low Baseline 

SO2 

High Baseline 

Mean SO2 0.973 0.982 0.968 0.967 

SO2-Sh(q1) (%) 0.974 0.978 0.962 0.937 

SO2-Sh(q2) (%) 0.939 0.938 0.917 0.922 

SO2-Sh(q3) (%) 0.936 0.943 0.944 0.924 

SO2-Sh(q4) (%) 0.952 0.957 0.932 0.922 

SO2-Sh(q5) (%) 0.975 0.975 0.955 0.959 

Mean Temperature 0.985 0.984 0.986 0.974 

T<=25F (%) 0.934 0.927 0.950 0.908 

65 F<T<=85 F (%) 0.961 0.965 0.959 0.954 

 T>85 F (%) 0.919 0.820 0.925 0.811 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Air pollution data was sourced from 

the AQS. temperature data was sourced from Deschênes et al. (2009). Reported values correspond to the R-squared of a regression of each 

variable on county-year-race FE, county-quarter-race FE, and month-race FE. Regressions were weighted by the number of 

livebirths in each cell. 

 

 

 

 

Table 1.15 Intra-annual trend in Sulfur dioxide 

 

  (1) (2) (3) 

Trend -0.00485*** -0.00536*** -0.00242*** 

 (7.08e-05) (5.72e-05) (0.000213) 

Constant 9.302*** 9.394*** 8.865*** 

 (0.0148) (0.0119) (0.0388) 

Observations 1,548,981 1,548,980 1,548,979 

R-squared 0.003 0.373 0.443 

County-year FE No Yes Yes 

County-Qrter FE No No Yes 

Notes: Author’s calculations using air pollution data  from the AQS from years 1981-1991. The dependent variable is SO2 

concentration at the county-day level. The trend corresponds to a running variable from 1 to 365. 
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Table 1.16: Effect of sulfur dioxide (SO2) on fetal death 

 

  (1) (2) (3) (4) (5) (6) 

Baseline SO2 All Low High All Low High 

Mean (FR) 1.177 1.250 1.117 1.177 1.250 1.117 

Women 15-44 85.03 80.38 89.30 85.03 80.38 89.30 

Cells 180,217 86,550 93,667 180,217 86,550 93,667 

R-squared 0.660 0.637 0.633 0.660 0.638 0.633 

Mean SO2-39w -0.000902 -0.00158 -0.000665    

 (0.000788) (0.00152) (0.000873)    

SO2-39w-Sh(q1)    -0.0261 -0.0478 -0.0339 

    (0.0255) (0.0386) (0.0418) 

SO2-39w-Sh(q2)    -0.0273 -0.0647 0.0321 

    (0.0474) (0.0648) (0.0504) 

SO2-39w-Sh(q4)    -0.0523 -0.100* -0.0117 

    (0.0355) (0.0580) (0.0359) 

SO2-39w-Sh(q5)    -0.0438 -0.0923 -0.0172 

     (0.0285) (0.0562) (0.0272) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is FR(fertility 
rate) = 1000*(N live birth/ N women 15-44) by county and week-year of conception cells. LB (HB) corresponds to counties whose average SO2 

concentration during the first two years in sample is below (above) the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from 

a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution 
of SO2. The third quintile is the omitted category. All regressions include county-year FE, county-Quarter FE, and month FE.   Controls included:  

Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy. Regressions were weighted 

by  the number of women of reproductive age  in each county-year. Standard errors are clustered at the county level. Standard errors  in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1.  

 

 

Table 1.17:  Effect of sulfur dioxide (SO2) on the fetal death rate (FDR). 

 

  (1) (2) (3) (4) (5) (6) 

  FDR 20+ FDR 20+ FDR 20+ FDR All FDR All FDR All 

Baseline SO2 All Low High All Low High 

Mean (FDR) 0.0057 0.0055 0.0059 0.0114 0.0075 0.0146 

Women 15-44 (Thousands) 85.03 80.38 89.30 85.03 80.38 89.30 

Cells 180,217 86,550 93,630 180,217 86,550 93,630 

R-squared 0.214 0.194 0.234 0.737 0.565 0.786 

SO2-39w-Sh(q1) 0.000130 0.00123 0.000950 0.000459 0.00111 0.00404 

 (0.00102) (0.00141) (0.00171) (0.00110) (0.00167) (0.00259) 

SO2-39w-Sh(q2) 0.000759 0.00381 -0.00526* 0.00152 0.00402 -0.00254 

 (0.00241) (0.00245) (0.00290) (0.00220) (0.00270) (0.00236) 

SO2-39w-Sh(q4) 0.000275 0.00319 -0.00371* 0.00136 0.00498 -0.00291 

 (0.00189) (0.00314) (0.00213) (0.00202) (0.00341) (0.00220) 

SO2-39w-Sh(q5) 0.000907 0.00342 -0.00182 -0.00206 0.00799* -0.00573 

 (0.00124) (0.00224) (0.00149) (0.00387) (0.00468) (0.00435) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. FDR 20+ (fetal death rate ) = 1000*(N 
fetal death of 20 or more weeks/ N women 15-44).  FDR All (fetal death rate) = 1000*(N fetal death of all gestations / N women 15-44) by county 

and week-year of conception cells. LB (HB) corresponds to counties whose average SO2 concentration during the first two years in sample is below 

(above) the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in 
which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is kept as the omitted category. 

All regressions include county-year FE, county-Quarter FE, and month FE.   Controls included:  Temperature-39w(bins), precipitation-39w(bins), 

and the unemployment rate during the first trimester of pregnancy. Regressions are  weighted by  the number of women in reproductive age 
(thousands) in each county-year. Standard errors are clustered at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.18: Placebo test for SO2’s effect on fetal death 

 

  (1) (2) (3) (4) (5) (6) 

Year of data for SO2 Current Lagged Current Lagged Current Lagged 

Counties All All LB  LB HB HB 

Cells 160,683 160,683 75,041 75,041 85,642 85,642 

R-squared 0.666 0.666 0.644 0.644 0.639 0.638 

SO2-39w-Sh(q1) -0.0349 -0.00799 -0.0587 -0.0182 -0.0313 -0.0117 

 (0.0213) (0.0178) (0.0385) (0.0210) (0.0423) (0.0288) 

SO2-39w-Sh(q2) -0.0462 -0.0393 -0.0862 -0.0383 0.0170 -0.0523 

 (0.0477) (0.0280) (0.0675) (0.0334) (0.0332) (0.0401) 

SO2-39w-Sh(q4) -0.0626* -0.0184 -0.113** -0.0454 -0.0193 -0.0157 

 (0.0331) (0.0288) (0.0499) (0.0338) (0.0290) (0.0388) 

SO2-39w-Sh(q5) -0.0538* -0.0175 -0.0961* 0.0188 -0.0250 -0.0308 

  (0.0288) (0.0210) (0.0555) (0.0398) (0.0250) (0.0265) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is FR(fertility 
rate) = 1000*(N live birth/ N women 15-44) by county and week-year of conception cells. The baseline level of SO2 was computed for each county 

based on the average concentration during the first two years of data availability. LB (HB) corresponds to counties whose average SO2 concentration 

during the first two years in sample is below (above) the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week 
period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The 

third quintile is kept as the omitted category. All regressions include county-year FE, county-Quarter FE, and month FE.   Controls included:  

Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy. Columns (2), (4), and (6) 
correspond to the placebo tests in which prenatal exposure to all environmental variables (SO2, temperature, and precipitation) were computed for 

a standard 39-week pregnancy starting in the respective county but a year before its actual week-year of conception. Regressions were weighted by  

the number of women of reproductive age  in each county-year. Standard errors are clustered at the county level. Standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1.  
 
Table 1.19: Estimates of SO2 effects on birthweight across different methodologies to measure exposure  

Results using newborn-level data 

 

  (1) (2) (3) (4) 

Window to  
Measure exposure 

Conception- 
Birth  

Conception- 
Birth  

Conception- 
39 w 

Conception- 
39 w 

Mean SO2 -0.00238***  0.000152*  

 (0.000324)  (7.96e-05)  

SO2-Sh(q1)  0.00757  0.000646 

  (0.00958)  (0.00214) 

SO2-Sh(q2)  0.00553  0.00558 

  (0.00591)  (0.00392) 

SO2-Sh(q4)  -0.00466  0.00805** 

  (0.00752)  (0.00331) 

SO2-Sh(q5)  -0.0600***  0.00333 

  (0.00697)  (0.00255) 

Dep variable mean 8.10 8.10 8.10 8.10 

Observations 17,398,536 17,398,536 17,398,536 17,398,536 

R-squared 0.068 0.068 0.068 0.068 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is natural 

logarithm of birthweight. Pollution and weather (temperature and precipitacion) exposure  are computed using a window from conception to birth 
in cols 1-2 and from conception to 39 weeks in cols 3-4. Mean SO2 corresponds to sulfur dioxide’s mean concentration during each window. SO2-

Sh(q j) corresponds to the fraction of days, during the respective window, in which the county’s SO2 concentration lies in the j-th quintile of 

national distribution of SO2. The third quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and 
month-race FE.   Additional Controls: mother's demographics (high school dropout, marital status, pregnancy history, age), newborn’s gender, in-

utero weather (temperature and precipitation), and the state's unemployment rate during the pregnancy's first trimester. Standard errors are clustered 

at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  Individual observations for which SO2 data was missing more 
than 50% of the time were excluded.  
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Table 1.20: Estimates of SO2 effects on birthweight across different methodologies to measure exposure  

Results using data aggregated by county-conception week-race 

 

  (1) (2) (3) (4) 

Window to  

Measure exposure 

Conception- 

Birth  

Conception- 

Birth  

Conception- 

39 w 

Conception- 

39 w 

Mean SO2 0.000153**  0.000139*   

 (7.61e-05)  (7.67e-05)  

SO2-Sh(q1)  -0.00264  0.000374 

  (0.00264)  (0.00217) 

SO2-Sh(q2)  -0.00234  0.00131 

  (0.00378)  (0.00233) 

SO2-Sh(q4)  -0.00184  0.00563** 

  (0.00389)  (0.00236) 

SO2-Sh(q5)  0.00325  0.00182 

    (0.00267)  (0.00186) 

Dep variable mean 8.10 8.10 8.10 8.10 

Observations 17,506,986 17,506,986 17,506,986 17,506,986 

R-squared 0.725 0.725 0.725 0.725 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is natural 
logarithm of birthweight. Pollution and weather exposure are computed using a window from conception to birth in cols 1-2 and from conception 

to 39 weeks in cols 3-4.  Mean SO2 corresponds to sulfur dioxide’s mean concentration during each window. SO2-Sh(q j) corresponds to the fraction 

of days, during the respective window, in which the county’s SO2 concentration lies in the j-th quintile of national distribution of SO2. The third 
quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE.   Additional Controls: 

mother's demographics (high school dropout, marital status, pregnancy history, age), newborn’s gender, in-utero weather (temperature and 

precipitation), and the state's unemployment rate during the pregnancy's first trimester. Regressions are weighted by the number of births in each 
cell. Standard errors are clustered at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  Cells for which the average 

fraction of missings in SO2 was larger than 50% were excluded.  

 

Table 1.21: Placebo test for conception-birth window 

  (1) (2) (3) (4) 

SO2 Series Current  Current  Lagged Lagged 

Mean SO2 -0.00157***  -0.000745***  

 (0.000183)  (0.000179)  

SO2-Sh(q1)  0.00525  0.0107 

  (0.00621)  (0.00651) 

SO2-Sh(q2)  0.00470  0.00584 

  (0.00473)  (0.00503) 

SO2-Sh(q4)  -0.00414  -0.00142 

  (0.00485)  (0.00533) 

SO2-Sh(q5)  -0.0378***  -0.00491 

   (0.00427)  (0.00421) 

Observations 16,802,912 16,802,912 16,802,912 16,802,912 

R-squared 0.070 0.070 0.070 0.070 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable corresponds 

to the natural logarithm of birthweight. .  Mean SO2 corresponds to sulfur dioxide’s mean concentration over the conception-birth window. SO2-
Sh(q j) corresponds to the fraction of days, from conception to birth, in which the county’s SO2 concentration lies in the j-th quintile of national 

daily distribution of SO2. The third quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and 

month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  Temperature-(bins), precipitation-(bins),  
the unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, 

pregnancy history, Highschool dropout, Unmarried). Columns (3) and (4) correspond to the placebo tests in which prenatal exposure to all 

environmental variables (SO2, temperature, and precipitation) were computed from conception to birth, but  using each county’s 1-year lagged 
series. All regressions are weighted by the number of births in each cell. Standard errors are clustered at the county level. Standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 1.22: Placebo test for conception-39 week window 

 

  (1) (2) (3) (4) 

SO2 Series Current  Current  Lagged Lagged 

Mean SO2 0.000140*  -7.26e-05  

 (7.69e-05)  (7.46e-05)  

SO2-Sh(q1)  0.00108  0.000528 

  (0.00212)  (0.00186) 

SO2-Sh(q2)  0.00295  1.53e-05 

  (0.00228)  (0.00217) 

SO2-Sh(q4)  0.00687***  0.000751 

  (0.00249)  (0.00242) 

SO2-Sh(q5)  0.00244  -2.56e-05 

   (0.00192)  (0.00188) 

Observations 16,278,033 16,278,033 16,278,033 16,278,033 

R-squared 0.730 0.730 0.730 0.730 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable corresponds 

to the natural logarithm of birthweight. .  Mean SO2 corresponds to sulfur dioxide’s mean concentration over the 39-week window. SO2-39w-Sh(q 
j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in the 

j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. All regressions include county-year-race FE, county-

Quarter-race FE, and month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  Temperature-
39w(bins), precipitation-39w(bins),  the unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s 

gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, Unmarried). Columns (3) and (4) correspond to the placebo tests 

in which prenatal exposure to all environmental variables (SO2, temperature, and precipitation) were computed for a standard 39-week pregnancy 
using each county’s 1-year lagged series. All regressions are weighted by the number of births in each cell. Standard errors are clustered at the 

county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   

 

Table 1.23: Robustness test using 26-week window  

 

  (1) (2) (3) (4) 

Window to  

Measure exposure 

Conception- 

39 w 

Conception- 

39 w 

Conception- 

26 w 

Conception- 

26 w 

Mean SO2 0.000139*  6.67e-05  

 (7.67e-05)  (5.77e-05)  

SO2-Sh(q1)  0.000374  -0.00159 

  (0.00217)  (0.00173) 

SO2-Sh(q2)  0.00131  0.000801 

  (0.00233)  (0.00181) 

SO2-Sh(q4)  0.00563**  0.00171 

  (0.00236)  (0.00172) 

SO2-Sh(q5)  0.00182  0.000418 

   (0.00186)  (0.00154) 

Observations 17,506,986 17,506,986 17,506,986 17,506,986 

R-squared 0.725 0.725 0.725 0.725 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is natural 
logarithm of birthweight. Pollution exposure was computed using a window from conception to 39 weeks in Cols 1-2 and from conception to 26 

weeks in cols 3-4.  Mean SO2 corresponds to sulfur dioxide’s mean concentration during each window. SO2-Sh(q j) corresponds to the fraction of 

days, during the respective window, in which the county’s SO2 concentration lies in the j-th quintile of national distribution of SO2. The third 
quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE.   Additional Controls: 

mother's demographics (high school dropout, marital status, pregnancy history, age), newborn’s gender, in-utero weather (temperature and 

precipitation) through a 39-week window, and the state's unemployment rate during the pregnancy's first trimester. Regressions are weighted by 
the number of births in each cell. Standard errors are clustered at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 1.24: Effects of Sulfur dioxide (SO2) on birthweight. 

 

  (1) (2) (3) (4) (5) (6) 

  BW BW BW Log(BW) Log(BW) Log(BW) 

Baseline SO2  All Low High All Low High 

Observations 17,506,986 8,383,192 9,123,794 17,506,986 8,383,192 9,123,794 

R-squared 0.729 0.673 0.761 0.663 0.725 0.758 

SO2-39w-Sh(q1) 1.955 4.333 -1.157 0.00120 0.000374 -0.000468 

 (5.840) (7.380) (9.007) (0.00276) (0.00217) (0.00291) 

SO2-39w-Sh(q2) 3.776 6.697 2.508 0.00263 0.00131 0.000162 

 (6.741) (8.819) (11.39) (0.00304) (0.00233) (0.00409) 

SO2-39w-Sh(q4) 15.59** 27.37*** 11.80 0.00923*** 0.00563** 0.00424 

 (6.594) (10.09) (8.192) (0.00347) (0.00236) (0.00294) 

SO2-39w-Sh(q5) 4.903 8.823 2.124 0.00448 0.00182 0.000323 

 (5.329) (14.19) (6.393) (0.00473) (0.00186) (0.00228) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. BW  corresponds to the weight at 

birth (grams). Log(BW) corresponds to the natural logarithm of the birthweight. Low (High) Baseline SO2 correspond to counties in  the bottom 
(top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week 

period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The 

third quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three categories 
of maternal race were used (white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins),  the unemployment rate 

during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, high 

school dropout, and unmarried). newborn-level observations were collapsed into cells by county-week-year-race. All regressions are weighted by 
the number of livebirths in each cell.  Standard errors are clustered at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1.   

 

Table 1.25: Sulfur dioxide (SO2) effects on the fraction of adverse birth outcomes. 

 

  (1) (2) (3) (4) (5) (6) 

  LBW_r LBW_r SGA_r SGA_r PTB_r PTB_r 

Baseline SO2 All Low All Low All Low 

Mean (Y) 51.72 47.43 90.64 88.52 94.56 92.77 

Observations 17,506,986 8,383,192 17,506,986 8,383,192 17,506,986 8,383,192 

R-squared 0.452 0.358 0.146 0.117 0.526 0.451 

SO2-39w-Sh(q1) -0.534 -1.331 -1.580 -3.231 0.493 1.611 

 (1.501) (1.927) (2.002) (2.667) (2.428) (2.902) 

SO2-39w-Sh(q2) -1.695 -3.576 -5.474 -4.353 -1.850 -4.863 

 (2.243) (3.036) (3.990) (5.555) (4.901) (5.676) 

SO2-39w-Sh(q4) -4.428* -6.576** -5.626* -6.315 -2.152 -2.393 

 (2.534) (3.001) (2.828) (4.584) (3.667) (5.275) 

SO2-39w-Sh(q5) -3.610 -8.325 -3.826 -4.688 -6.034* -5.799 

 (2.327) (5.023) (3.137) (3.902) (3.135) (7.478) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. LBW: Low birthweight 

(birthweight<=2500g). SGA: Small for gestational age (birthweight < P10) where P10 is the 10th percentile of birthweight computed for every 

gestational age-gender-maternal race. PTB: preterm birth (gestational age<37 weeks).  All outcome variables correspond to the number of adverse 
cases per thousand livebirths. Low (High) Baseline SO2 correspond to counties in  the bottom (top) 5 deciles of SO2 concentration during the first 

two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in which 

the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is kept as the omitted category. All 
regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three categories of maternal race were used (white, black, 

and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins),  the unemployment rate during the first trimester of pregnancy, 

and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, High school dropout, and unmarried). 
newborn-level observations were collapsed into cells by county-week-year-race. All regressions are weighted by the number of livebirths in each 

cell.  Standard errors are clustered at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 1.26: Sulfur dioxide (SO2) effects on the number of adverse birth outcomes 

 (1) (2) (3) (4) (5) (6) 

  Lbw/w Lbw/w Sga/w Sga/w Ptb/w Ptb/w 

Baseline SO2 All Low All Low All Low 

Mean (Y) 0.075 0.074 0.135 0.136 0.102 0.102 

Women 15-44 (1k)  85.03 80.38 85.03 80.38 85.03 80.38 

Cells 343,023 160,124 343,023 160,124 343,023 160,124 

R-squared 0.525 0.430 0.297 0.259 0.608 0.54 

SO2-39w-Sh(q1) -0.00144 -0.00460 -0.00388 -0.00888* -0.00160 -0.00346 

 (0.00269) (0.00318) (0.00356) (0.00479) (0.00354) (0.00423) 

SO2-39w-Sh(q2) -0.00223 -0.00858* -0.00959* -0.0131 -0.00322 -0.0127 

 (0.00376) (0.00446) (0.00579) (0.00809) (0.00731) (0.00884) 

SO2-39w-Sh(q4) -0.00643* -0.0133** -0.0111** -0.0169** -0.00577 -0.0124** 

 (0.00372) (0.00630) (0.00507) (0.00790) (0.00428) (0.00619) 

SO2-39w-Sh(q5) -0.00605* -0.0152** -0.00890* -0.0142 -0.0108** -0.0164* 

 (0.00314) (0.00647) (0.00454) (0.00887) (0.00471) (0.00993) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. LBW: Low birthweight 

(birthweight<=2500g). SGA: Small for gestational age (birthweight < P10) where P10 is the 10th percentile of birthweight computed for every 

gestational age-gender-maternal race. PTB: preterm birth (gestational age<37 weeks).  All outcome variables in columns 3-8 correspond to the 
number of adverse cases per thousand woman of reproductive age (15-44) of the respective race. Low (High) Baseline SO2 correspond to counties 

in  the bottom (top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, 

from a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily 
distribution of SO2. The third quintile is kept as the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and 

month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-

39w(bins),  the unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age 
mother>=35, pregnancy history, Highschool dropout, and unmarried). Newborn-level observations were collapsed into cells by county-week-year-

race. All regressions are weighted by the number of women 15-44 yrs. old per county-race-year. Standard errors are clustered at the county level. 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   

 

Table 1.27: Addressing the livebirth bias using a bounding approach 
 

  (1) (2) (3) (4) 

Fraction of observations 

excluded on each tail  2% 2% 5% 5% 

Mean SO2 6.74e-05  8.25e-05*  

 (5.43e-05)  (4.87e-05)  

SO2-39w-Sh(q1)  0.00107  0.000488 

  (0.00160)  (0.00120) 

SO2-39w-Sh(q2)  0.00318  0.00223 

  (0.00258)  (0.00211) 

SO2-39w-Sh(q4)  0.00416*  0.00321* 

  (0.00232)  (0.00179) 

SO2-39w-Sh(q5)  0.00212  0.00196 

   (0.00180)  (0.00153) 

Observations 16,785,251 16,785,251 15,784,824 15,784,824 

R-squared 0.070 0.070 0.061 0.061 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. This table emulates the bounding 

approach used by Lee(2009). The dependent variable is  the natural logarithm of the birthweight. SO2-39w-Sh(q j) corresponds to the fraction of 

days, from a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily 
distribution of SO2. The third quintile is the omitted category. Cols 1-2 exclude the infants with birthweight below the 2nd percentile or above the 

98th percentile. Cols 3-4 exclude the infants with birthweight below the 5th  percentile or above the 95th percentile  All regressions include county-

year-race FE, county-Quarter-race FE, and month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  
Temperature-39w(bins), precipitation-39w(bins),  the unemployment rate during the first trimester of pregnancy, and a vector of demographics 

(newborn’s gender, teenage mother, age mother>=35, pregnancy history, high school dropout, and unmarried). Newborn-level observations were 

collapsed into cells by county-week-year-race. All regressions are weighted by the number of livebirths in each cell.  Standard errors are clustered 
at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 1.28: Addressing the livebirth bias using novel approach 

  (1) (2) (3) (4) (5) (6) 

  Nlbw/w Nlbw/w Nsga/w Nsga/w Nptb/w Nptb/w 

Baseline SO2 All Low All Low All Low 

Mean (Y) 1.363 1.386 1.303 1.325 1.336 1.359 

Women 15-44 (1k)  85.03 80.38 85.03 80.38 85.03 80.38 

Cells 343,023 160,124 343,023 160,124 343,023 160,124 

R-squared 0.652 0.643 0.660 0.645 0.627 0.619 

SO2-39w-Sh(q1) -0.0282 -0.0503 -0.0258 -0.0461 -0.0281 -0.0515 

 (0.0239) (0.0342) (0.0225) (0.0317) (0.0226) (0.0329) 

SO2-39w-Sh(q2) -0.0285 -0.0675 -0.0211 -0.0630 -0.0275 -0.0633 

 (0.0416) (0.0564) (0.0396) (0.0523) (0.0383) (0.0522) 

SO2-39w-Sh(q4) -0.0453 -0.0921* -0.0407 -0.0884* -0.0460 -0.0929* 

 (0.0326) (0.0528) (0.0311) (0.0517) (0.0321) (0.0548) 

SO2-39w-Sh(q5) -0.0487* -0.0781 -0.0458* -0.0791 -0.0440* -0.0769 

 (0.0258) (0.0512) (0.0242) (0.0482) (0.0246) (0.0491) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The novel approach consists of transforming the dependent 

variable and weighting the regressions by a variable that is not affected by the pollution shock (more details in section 1.4.4). Newborn-level observations were collapsed 

into cells by county-week-year-race. The regressions are weighted by the number of women 15-44 yrs. old per county-race-year.  Nlbw/w , nsga/w, and nptb/w  

correspond to the number of non-low birthweight (birthweight>2500g), non-small for gestational age (birthweight > P10) where P10 is the 10th percentile of birthweight 

computed for every gestational age-gender-maternal race, and non-preterm birth (gestational age>=37 weeks) per thousand woman of reproductive age (15-44 yrs. old) 

from the respective race, county, and year. Low Baseline SO2 correspond to counties in  the bottom 5 deciles of SO2 concentration during the first two years in the 

sample. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in 

the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, 

and month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins),  the 

unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, High 

school dropout, and unmarried). Standard errors are clustered at the county level.   Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   

 

Table 1.29 : Heterogeneous effects of  SO2 by maternal race 

  (1) (2) (3) (4) (5) (6) 

 Race White White Black Black Other Other 

Baseline SO2 All Low All Low All Low 

Mean Birthweight 3439.54 3445.87 3162.2 3178.15 3287.84 3299.73 

Mean (Y) 1.097 1.189 1.274 1.324 1.305 1.334 

Women 15-44 (1k)  73.58 72.37 21.39 15.69 7.10 9.64 

Cells 161,102 74,929 103,500 48,788 78,421 36,407 

R-squared 0.721 0.727 0.440 0.374 0.529 0.553 

SO2-39w-Sh(q1) -0.0182 -0.0281 -0.0344 -0.110 -0.157 -0.226 

 (0.0204) (0.0242) (0.0704) (0.0894) (0.163) (0.183) 

SO2-39w-Sh(q2) -0.0414 -0.0638 0.0377 -0.0785 0.0473 -0.0364 

 (0.0386) (0.0523) (0.0795) (0.0888) (0.154) (0.192) 

SO2-39w-Sh(q4) -0.0575** -0.0826* 0.0448 -0.0998 0.00526 -0.0643 

 (0.0265) (0.0422) (0.0738) (0.110) (0.164) (0.198) 

SO2-39w-Sh(q5) -0.0424* -0.0455 -0.0734 -0.218** -0.0405 -0.465* 

 (0.0241) (0.0470) (0.0484) (0.0940) (0.109) (0.269) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable, Nlbw/w , correspond to the number 

of non-low birthweight (birthweight>2500g) per thousand woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. Low Baseline SO2 

correspond to counties in  the bottom (top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, 

from a  39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third 

quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three categories of maternal race were used 

(white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins),  the unemployment rate during the first trimester of pregnancy, and a 

vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). newborn-level observations were 

collapsed into cells by county-week-year-race. All regressions are weighted by the number of women 15-44 yrs. old per county-race-year..  Standard errors are clustered 

at the county level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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1.9 Appendix A:  Methodology to create pollution measures at the county-day level. 

Algorithm:  

1. Start from the AQS database of pollutant X at the monitor-day level for year 1980 

2. Append the years 1981-1991 for the same pollutant.  

3. Drop the monitors with fewer than 10 months of data for the whole period (19080-

1991). 

4. The following steps (a-d) will select a basket of monitors and an initial and final 

month year for each county.   

a) For each monitor, define the initial month-year in which the pollutant starts being 

measured. At least 50% of the observations during the initial month must be non-

missing.  

b) For each monitor, define the last month-year in which the pollutant was measured 

c) For each county, define the length as the number of periods between the first and last 

month as defined in the previous two steps.  

d) Drop the monitors for which more than X% of the period (as a  fraction of the length 

defined in the previous step) must be forecasted. Three different thresholds were used: 

30%, 40%, and 50%.   

e) Repeat steps (b and c) until the basket of monitors is stable.   

Notes:   

1. Be aware that these steps are implemented for each county; therefore, the initial and 

final dates will  differ across counties.  

2. The previous steps could have generated up to 3 different baskets (and initial and final 
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dates) for each  county. one for each of the thresholds (30%, 40%, 50%)  

Note: Up to this point, a basket of monitors has been selected for each county and threshold (30,  

40% or 50%). The following part of the algorithm will fill the missings at the monitor-day level. A  

balanced panel at the monitor-day level will be created for each county with two or more monitors. 

Missings in counties with a single monitor are not filled-up. The observations corresponding to  

extraordinary events (e.g.: wildfires) have been kept in the database.  

5. For counties with 2 or more monitors, the missings are filled with the following  

algorithm:  

a. All the missing patterns of the remaining monitors within the county are identified  

for each county-monitor. For example: if there are three monitors in the county: a,  

b, and c; there will be four possible missing patterns for monitor a: (b non-missing,  

c non-missing), (b non-missing, c missing), (b missing, c-non-missing) , (b missing,  

c missing). The following regression is used to predict the missings in each monitor.  

 

∀ 𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑦′𝑠  𝑏𝑎𝑠𝑘𝑒𝑡: 

𝑦𝑑
𝑘 = 𝛼𝑜 + ∑ ∑ 𝛼𝑝𝑗

𝑘 (𝑑𝑝𝑗
𝑘 ∗ 𝑦𝑗)

𝑝

𝑁

𝑗 ≠𝑘

+ 𝜇𝑝
𝑘 + 𝜇𝑚𝑜𝑛𝑡ℎ−𝑦𝑒𝑎𝑟 

𝑘 + 𝜇𝑑𝑎𝑦
𝑘 +  𝑢𝑡

𝑘    

 

Where 𝑑𝑝𝑗
𝑘 =

{
1 𝑖𝑓 𝑦𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑝 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝜇𝑑𝑎𝑦
𝑘 : 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 𝑓𝑜𝑟 1 𝑢𝑝 𝑡𝑜 365 
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𝜇𝑝
𝑘: 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 

 

a. Now set bounds for the predictions:  

i. Any negative prediction is replaced by zero 

ii. For each county, find the maximum reading of any monitor. Any 

prediction 20% larger than the maximum is replaced by the maximum. 

 

The final step consists of creating a pollution measure at the county-day level:  A county-day 

measure is created for a given day only if all the monitors within the county’s basket are non-

missing on that day (or have been filled up) . Otherwise, a missing is imputed for the county-day 

average. Notice that three different series were created for each county: one for each of the 

thresholds described in step (4d). There may be identical in some cases. 

 

Final Note: The 50% threshold produces longer time series; however, the degree of imputation is 

higher. It is recommended to use the 50% threshold for the baseline empirical strategy and test the 

robustness of the results using the indices generated with the 40% and 30% thresholds. 
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1.10 Appendix B: Conceptual framework for the livebirth bias 

This methodological appendix introduces a conceptual model to analyze how livebirth bias (i.e., 

sample selection) affects the estimates of the polluntants’ effects in [1.2] and [1.3].  

 

The following equations model the effect of pollution on the incidence of low birthweight (LBW). 

However, the same framework can be applied to other adverse neonatal outcomes (e.g.,  preterm 

birth (PTB) and small for gestational age (SGA)).  

 

Definitions and nomenclature: 

 

There are three possible states: LBW and NLBW correspond to low birthweight and non-low 

birthweight and are observed in the data. In contrast, FD corresponds to fetal death and is 

unobserved in the birth certificate data.  By Aggregating LBW and NLBW we obtain the universe 

of livebirths (LB). 

 

Superscript “o” refers to the value of the respective variable absent the air pollution shock. 

 

 𝜏𝑙𝑏𝑤
𝑓𝑑

: Number of fetuses that would have been low birthweight but die due to air pollution shocks.   

𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

: Number of fetuses that would have been born non-low birth weight (i.e., healthy weight) 

but die due to air pollution shocks.   

 𝜏𝑛𝑙𝑏𝑤:
𝑙𝑏𝑤  Number of infants that would have been born non-low birth weight (i.e., healthy weight) 

but are born low birthweight due to air pollution shocks.  
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 𝜏𝐿𝐵
𝑓𝑑

= 𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

   

 

 

 

𝑙𝑏𝑤 = 𝑙𝑏𝑤𝑜 − 𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤  

𝑛𝑙𝑏𝑤 = 𝑛𝑙𝑏𝑤𝑜 − 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

− 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤  

 

Aggregating both states: 

 

𝐿𝐵 = 𝑙𝑏𝑤 + 𝑛𝑙𝑏𝑤 

𝐿𝐵 = (𝑙𝑏𝑤𝑜 + 𝑛𝑙𝑏𝑤𝑜) − (𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

) 

𝐿𝐵 = (𝐿𝐵𝑜) − (𝜏𝐿𝐵
𝑓𝑑

) 

 

 

 

 

As seen on the graph on the right, analyzing the effects of air pollution using the low birthweight 

rate is challenging because “LBW” state receives both outflows and inflows, and the magnitude 

of those inflows could be similar. Furthermore, both the numerator and denominator are affected 

by sample selection. Equation [B1] below shows the effect of pollution on the low birthweight 

rate; it shows that the marginal effect of an air pollution shock on the low birthweight rate can be 

negative when 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤  is small relative to 𝜏𝑙𝑏𝑤

𝑓𝑑
. 

 

FD 

LBW 

NLBW 

𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤  

𝜏𝑙𝑏𝑤
𝑓𝑑  

𝜏𝑛𝑙𝑏𝑤
𝑓𝑑  
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𝑙𝑏𝑤𝑟 =
𝑙𝑏𝑤

𝐿𝐵
=

𝑙𝑏𝑤𝑜 − 𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤

𝐿𝐵𝑜 − (𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

)
 

 

By taking the derivative of the previous equation with respect to the air pollution variable and 

manipulating the expression, we obtain [B1]:  

 

𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
=

𝐿𝐵 ∗ (−𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤 ) − 𝑙𝑏𝑤 (−(𝜏𝑙𝑏𝑤

𝑓𝑑
+ 𝜏𝑛𝑙𝑏𝑤

𝑓𝑑
))

𝐿𝐵2
 

 

𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
 =

1

𝐿𝐵
(−𝜏𝑙𝑏𝑤

𝑓𝑑
+ 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 + 𝑙𝑏𝑤𝑟(𝜏𝑙𝑏𝑤
𝑓𝑑

+ 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

)) 

 

𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
 =

1

𝐿𝐵
(𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 + 𝑙𝑏𝑤𝑟 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

+ (𝑙𝑏𝑤𝑟 − 1) 𝜏𝑙𝑏𝑤
𝑓𝑑

 ) 

  

 

𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
=

1

𝐿𝐵
(𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 + 𝑙𝑏𝑤𝑟𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

− 𝑛𝑙𝑏𝑤𝑟𝜏𝑙𝑏𝑤
𝑓𝑑

)     [𝐵1] 

 

As illustrated by the size of the arrows in the graph, this conceptual model assumes that 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

≪

𝜏𝑙𝑏𝑤
𝑓𝑑

. This makes sense because NLBW infants before the air pollution shock (𝑛𝑙𝑏𝑤𝑜)  should 

have better underlying health than LBW infants before the air pollution shock (𝑙𝑏𝑤𝑜). Hence, 

these infants should be more resilient to any shock. Thus, direct transitions from non-LBW to fetal 

death should be less frequent than from LBW. Consequently, a way to lessen this sample selection 

problem would be to analyze pollution’s effects on the number of non-low birthweight infants. 
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𝑑𝑛𝑙𝑏𝑤

𝑑𝑃
= (−𝜏𝑛𝑙𝑏𝑤

𝑓𝑑
− 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 )     [𝐵2] 

 

Notice that while 
𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
 could be positive or negative when air pollution has a negative effect on 

both the fetal survival rate (i.e., extensive margin) and neonatal outcomes (i.e., intensive margin), 

𝑑 𝑛𝑙𝑏𝑤

𝑑𝑃
 is unambiguously negative.  
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Essay 2 

Does free health care mitigate the effect of prenatal air 

pollution on birth outcomes? 

 

2.1 Introduction 

Prenatal exposure to air pollution has been linked to fetal56 and infant death,57 adverse birth 

outcomes,58 and worse outcomes in adulthood59 and across generations.60 Foremost, these impacts 

vary across social and economic factors. In particular, the health impacts vary by race and income 

(Chay & Greenstone, 2003a; Currie & Walker, 2011; Jayachandran, 2009; Arceo et al., 2016). 

Differences in pollution exposure and healthcare access have been proposed as sources of such 

disparities (Graff-Zivin & Neidell, 2013; Hsiang et al., 2019). Previous research has shown that 

higher pollution exposure contributes to larger marginal damages experienced by disadvantaged 

populations (Mohai et al., 2009; Banzhaf et al., 2019; Colmer et al., 2020; Currie et al., 2020), but 

there is little empirical evidence for the role of health care in mitigating the effects of air pollution. 

While previous research found evidence that medical care mitigates weather’s effects on infant 

health (Banerjee & Maharaj, 2020; Gunnsteinsson et al., 2019), no previous research has examined 

the causal impact of healthcare on the pollution-infant health relationship.  

 

 
56 Effect on fetal death per pollutant: PM2.5 (Ebisu et al., 2018; DeFranco et al.,2015), O3 (Mendola et al., 2017), NO2 (Green et al.,2015), and SO2 
(Faiz et al., 2012). 
57 See Chay & Greenstone., 2003a, 2003b; Currie & Walker (2011),  Currie & Neidell (2005),  Currie, Neidell & Schmieder (2009) 
58 See Currie & Walker (2011),  Bell et al. (2007),  Currie, Neidell & Schmieder (2009). 
59 See Isen, Rossin-Slater & Walker(2017), Almond & Currie (2011),  Almond, Currie & Duque (2017). 
60 See Colmer & Voorheis (2020) 
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This paper examines and quantifies the impact of free health care in reducing air pollution's effects 

on fetal death and birth outcomes. I empirically examine these effects using restricted-use vital 

statistics data from 1981-1991, daily air pollution monitoring data, and policy variation from 

Medicaid's expansion during the 1980s. This expansion provided free access to prenatal health 

care, and at least one year after birth, to low-income women who became pregnant. Ex-ante, the 

sign of the effect is ambiguous. Access to free nutritional supplementation (e.g., vitamins, iron, 

folic acid) during prenatal controls could make the fetus more resilient to pollution shocks. 

However, pollution avoidance could decrease when healthcare becomes free (Graff-Zivin & 

Neidell., 2013). If the latter effect dominates, pollution’s marginal damage would increase. 

Additionally, it is not clear how healthcare’s efficacy changes with the pollutant’s concentration. 

 

I utilize spatial-temporal variation in Medicaid’s expansion to estimate its impact on the effect of 

high pollution days on health outcomes. I build upon two empirical approaches: a panel-fixed 

effects model to identify the causal impact of air pollution on health and the empirical strategy 

used by East, Miller, Page, and Wherry (2023) to estimate the effect of Medicaid expansion on 

birth outcomes. Specifically, I interact Medicaid expansion, a binary variable at the state-year 

level, with exposure to the pollutant’s concentration level bins, which vary by county of residence 

and week of conception.61  Exposure was measured as the fraction of days during a 39-week 

window in which the county's daily concentration fell in each of the five quintiles of the pollutant's 

national distribution.62 The pollutant’s effects are identified using temporal variation in exposure 

through conception weeks within the same county and year, and controlling by county-quarter and 

 
61 Assumed to be two weeks after the last day of the Menstrual period. This date is reported on the birth certificates.   
62 Quintile cutoffs were generated using each pollutant’s concentrations at the county-day level for the set of counties that had monitoring data in 

the AQS during 1981-1991. The effects in the two highest and lowest concentration bins are estimated relative to the third one (i.e., omitted 

category). SO2 concentration range per quintile (parts per billion): q1 (0 ≤ SO2 < 1.84) q2 (1.84 < SO2 ≤ 4.39), q3 (4.39 < SO2 ≤ 7.66), 

q4 (7.66 < SO2 ≤ 13), q5 (SO2 > 13). 
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calendar-month seasonal effects, the unemployment rate during the pregnancy’s first trimester, in-

utero weather (temperature and rainfall), and mothers’ demographics.63  

 

The results from the previous chapter show that high SO2 concentrations during the prenatal period 

decreases the number of infants born with non-adverse outcomes per woman of reproductive age. 

In this chapter, I build upon those results and study if Medicaid’s expansion mitigated SO2 effects 

on fetal death and birth outcomes.  

 

As a first result, I find that Medicaid’s expansion decreased the fetal deaths caused by SO2 in low-

pollution counties but not in highly polluted ones, which is consistent with the previous chapter’s 

finding of an insignificant effect of SO2 on fetal death in highly polluted counties. The fertility 

rates associated with one additional day in the fourth and fifth quintiles of SO2 exposure were 

0.031% and 0.072% higher after Medicaid’s expansion, respectively. Consequently, Medicaid’s 

expansion increased a county’s annual number of infants surviving an additional day in SO2’s 

fourth and fifth quintiles by 1.62 and 3.73, respectively. These results suggest that Medicaid is 

more valuable (i.e., saves more lives) at higher pollution concentrations. The back-of-the-envelope 

calculation suggests that Medicaid's expansion reduced the number of fetal deaths linked to SO2 

by 143,462 during 1981-1991 in the US. These pregnancies would otherwise have ended in fetal 

deaths due to SO2. 

 

As a second result, I find that Medicaid’s expansion mitigated the effect of SO2 on birthweight; 

however, this result is only uncovered when analyzing the number of non-low birthweight infants 

 
63 Mother's age, pregnancy history, marital status, and educational attainment. Also, the fraction of male newborns.  
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per woman of reproductive age, which is robust to livebirth bias –a type of sample selection bias. 

The estimates of the interaction terms between Medicaid expansion and Pollution exposure, which 

answer this paper’s question, are potentially biased when traditional birth outcomes (e.g., 

birthweight, low birthweight64 rate) are used as dependent variables. In principle,  this bias can  

arise if access to prenatal healthcare reduces the fetal deaths caused by pollution, and the infants 

marginally saved are negatively selected.  

 

Conceptually, prenatal care can impact the effects of pollution through two margins: (i) on the 

extensive margin, by preventing fetal deaths linked to pollution, and (ii) on the intensive margin, 

by mitigating pollution’s effects on neonatal outcomes for the infants that would be born 

irrespective of the pollution shock. The bias arises when the infants marginally saved by 

Medicaid’s expansion are negatively selected (i.e., born with adverse birth outcomes). This bias 

was overcome by using the number of infants born with non-adverse outcomes per woman of 

reproductive age as dependent variables.65 Traditional bounding methodologies to address sample 

selection (i.e., adaptations of Lee (2009)) were ineffective in this context.  

 

Using the number of infants born with a weight above 2500 grams per woman of reproductive age 

(nlbw/w) as the outcome variable, I find that Medicaid's expansion mitigated the impact of high 

SO2 concentrations on birth outcomes in low-pollution counties and at the national level. For the 

national sample, Medicaid’s mitigation of one-additional day in the fourth and fifth quintile of SO2 

exposure led to increases of 0.027% and 0.028% in the number of infants born non-low birth 

weight per woman of reproductive age. These results suggest that the impact of health care on the 

 
64 An infant is considered low birth weight if it is less than 2500 grams at birth. 
65 Non-low birthweight (nlbw/w), non-preterm birth (nptb/w), Non-small for gestational age (nsga/w). 
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SO2 – birthweight relationship is homogeneous across high concentrations; however, in low-

pollution counties, the effect in the fifth quintile was about twice the size of the fourth one. Similar 

results were obtained for other neonatal outcomes (e.g., preterm birth, small for gestational age). 

In addition, the back-of-the-envelope calculation for the national sample suggests that Medicaid's 

expansion increased the annual number of non-low birthweight infants by 176 per county, 

corresponding to an increase of 40 infants born with a weight above 2500 grams per thousand 

births. This estimate is an upper bound because it implicitly assumes that one-day effects can be 

extrapolated to longer periods. 

 

Finally, I find that Medicaid's expansion contributed to closing the gap in the health effects of air 

pollution between blacks and whites. As Medicaid expanded, SO2's impact on the number of 

infants born with a weight above 2500 grams per woman of reproductive age (nlbw/w) decreased 

more for blacks than whites. For blacks, nlbw/w associated with one additional day in the fourth 

quintile increased by 0.064% after Medicaid’s expansion. For whites, the increase was 0.037% but 

linked to one additional day in SO2’s fifth quintile. These effects correspond to increases of 0.8 

and 0.37 in non-low birthweight infants (i.e., healthy infants) per thousand births for blacks and 

whites, respectively. 

 

This paper contributes to three sets of literature. The central contribution lies within the 

environmental literature attempting to identify the underlying mechanisms driving the link 

between environment and health. Previous research has exploited quasi-experimental variation in 

healthcare or income to study if they drive the heterogeneity in the effects of in-utero –or shortly 

after birth—environmental factors  on health  (Banerjee & Maharaj 2020; Gunnsteinsson et al., 
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2019) and educational attainment (Aguilar & vicarelli, 2011; Adhvaryu et al., 2018). My results 

add to this literature by showing for the first time, to the best of my knowledge, that health care 

mediates in-utero air pollution impacts on infants' health. In Hsiang et al. (2019)’s terminology, 

my results show that the air pollution-birthweight damage curve is heterogeneous across levels of 

healthcare access. Previous research has addressed this question with an observational research 

design and concluded that prenatal care did not affect the air pollution-birthweight relationship 

(Colmer et al., 2021). 

 

The second contribution lies within the health economics literature that studies the impacts of 

healthcare on infants’ health. Previous literature has established that providing low-income women 

with health insurance (e.g., Medicaid in the US) reduced fetal deaths (Currie & Grogger, 2002), 

improved birth outcomes (Currie & Gruber, 1996a, 1996b; East et al., 2022), and reduced infant 

and child mortality (Goodman-Bacon, 2018). However, poor birth outcomes can occur due to 

many types of shocks (e.g., nutritional, income, environmental (e.g., temperature, rainfall, 

pollution), maternal disease, and/or stress), and it is unclear if healthcare effectively mitigates all 

of them. My results suggest that healthcare access during the prenatal period mitigates the effects 

of in-utero air pollution on health at birth.  

 

The third contribution lies within the environmental justice literature. Previous environmental 

research has found larger air pollution effects on African Americans’ infant health than whites 

(Chay & Greenstone, 2003a; Currie & Walker, 2011). Additionally, previous literature on 

Medicaid has established that expanding access to free health insurance improved infant health 

outcomes of African Americans more than for other races (Fisher,1992; Bhatt & Beck-Sagué, 
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2018). My results link both literatures and suggest that unequal access to healthcare contributes to 

the gap in the health effects of prenatal exposure to air pollution between blacks and whites in the 

US. Furthermore, Medicaid's expansion improved environmental justice by reducing gaps. 

 

The remainder of the paper is laid out as follows: Section 2 reviews the background information 

about Medicaid and its effects on short and long-term outcomes.  Section 3 introduces the 

conceptual framework to analyze prenatal care’s potential in mitigating the impacts of in-utero air 

pollution. Section 4 describes the data. Section 5 explains the empirical strategy and robustness 

tests. Section 6 presents the results. Section 7 discusses the results and proposes desirable 

extensions. Finally, Section 8 concludes. 

 

2.2 Background 

This section provides background information about the policy variation I use to measure increases 

in healthcare access during the 1980s. Background information about sulfur dioxide and its impact 

on birth outcomes was provided in the previous chapter. 

 

Medicaid provides access to health insurance for low- and moderate-income families in the US. 

This program covers the financial cost of the delivery, but also provides pregnant women with 

access to prenatal controls—which includes free nutritional supplementation (e.g., vitamins, iron, 

folic acid, etc.). The federal government and the states jointly finance this program, representing 

the second largest form of public-sector investment in children after K–12 education (Isaacs & 

Edelstein, 2017). In the early 1980s few low-income pregnant women were covered by Medicaid. 

Medicaid coverage for pregnant women was linked to Aid to Families with Dependent Children 
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(AFDC).66 Only 4 out of 10 women of reproductive age with family income below the federal 

poverty line were covered by Medicaid in 1984 (Gold & Kenney, 1985). The expansions during 

the 1980s gave access to low-income women irrespective of family structure (i.e., marital status) 

and included childless pregnant women.  It is estimated that Medicaid funded about 32 percent of 

all deliveries in 1991, compared with only 15 percent in 1985 (Singh et al., 1994).  

  

Previous research has documented that increased Medicaid eligibility for low-income pregnant 

women during the 80s had positive effects on access to prenatal care (Currie & Gruber, 1996b, 

2001;  Dubay et al., 2001; Howell, 2001), birth outcomes (Currie & Gruber, 1996a, 1996b ), infant 

and child mortality (Goodman-Bacon, 2018), long-term outcomes (Miller & Wherry, 2019), and 

even inter-generational effects on health (East et al., 2023).  

  

Fertility was not affected by Medicaid's expansion during the 80s. Zadvoni & Bitler (2010) found 

no evidence that Medicaid affected birth or abortion rates, except for the birth rate among white 

women without a completed high school education. Similarly, DeLeire et al. (2011) concluded that 

no robust evidence indicates that Medicaid affected fertility. Lastly, Currie & Grogger (2002) 

found that higher income cutoffs for Medicaid and increased welfare caseloads reduced fetal 

deaths during the early 1990s in the United States. 

  

Different measures of the generosity of Medicaid have been used. Previous researchers have 

designed measures that isolate variation driven by each state’s changes in eligibility rules (i.e., 

policy variation) and exclude variation caused by social or economic shocks— potentially 

 
66 AFDC was a federal assistance program that provided financial assistance to children whose families had low or no income. Tying Medicaid 

coverage to being and AFDC beneficiary excluded low-income women who were married or first-time pregnant women in some states.   
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correlated with health outcomes. For example, seminal research on the effects of Medicaid on birth 

outcomes used simulated eligibility for Medicaid (Currie & Gruber, 1996a, 1996b). This 

continuous variable measures the fraction from a nationally representative sample of women 15-

44 years old that would be eligible for Medicaid if they got pregnant each year and state. On the 

other hand, East, Miller, Page & Wherry (2023) used a binary variable to measure Medicaid's 

expansion beyond AFDC. This binary variable identifies for each state the year in which simulated 

eligibility had the largest increase. The baseline empirical strategy of this paper uses this binary 

variable. Estimates using simulated eligibility (continuous variable) are used for robustness tests. 

 

2.3 Conceptual framework  

This section introduces a theoretical framework to determine the direction of Medicaid’s 

expansion impact on the pollution-birth outcome relationship. Three different channels were 

considered to determine, a priori, the sign of the interaction between Medicaid’s expansion and air 

pollution: medical-biological, information, and an optimal response channel. Since the channels 

suggest opposite directions ex-ante, it is impossible to determine whether the expansion of 

Medicaid will mitigate or worsen pollution’s health effects. However, the medical-biological 

channel, which suggests a decrease in the effect of pollution on neonatal outcomes, is believed to 

be the most relevant during the period analyzed.  

 

The medical-biological channel refers to the physiological effect of receiving medical attention 

(nutrition and drug counseling, immunizations, and early diagnosis) during the prenatal controls. 

Based on this channel, we expect healthcare access to lessen air pollution’s effect on birth 

outcomes via receiving free vitamins during the prenatal controls. First, several studies of 
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Medicaid's prenatal expansions document increased use or improved timing and adequacy of 

prenatal care (Currie & Gruber, 1996b, 2001; Dubay et al., 2001; Howell, 2001). Second, 

obstetricians routinely recommended nutritional supplementation to pregnant women during the 

1980s (Hemminki, 1988). Third, previous research has found evidence that nutritional 

supplementation mitigates the effects of air pollution on health. For instance, Gunnsteinsson et al. 

(2022) found that vitamin supplementation at birth reduced the damage caused by environmental 

factors on an infant’s health. Similarly, Zhong et al. (2017) found that ingesting vitamin B in 

adulthood attenuated air pollution’s impact on the epigenome.67 Therefore, it is reasonable to 

suspect that in-utero prenatal supplementation could mitigate pollution’s effects.  

 

Health care's effectiveness in mitigating pollution's health effects could also vary across the 

pollution distribution. For example, we do not know if health care is equally effective at high 

concentrations. There may be a threshold above which medical treatments are ineffective. 

Therefore, in the empirical analysis, I use different concentration bins to allow for potential non-

linearities in the impact of Medicaid’s expansion across the pollution concentration.   

 

It is hypothesized that prenatal iron prescription could reduce sulfur dioxide’s effect on the 

incidence of fetal death and adverse birth outcomes. The sulfate ion (SO4
-2), a particle derived 

from the oxidation of SO2, has been linked to the incidence of anemia during the third trimester of 

pregnancy68 (Xie et al., 2022). Therefore, we would expect newborns of women who received iron 

during the prenatal controls to be more resilient to SO2’s shocks. This pathway is presumed to be 

 
67 Previous research suggests that air pollution modulates the epigenetic mark. Specifically, it interferes with DNA methylation (DNAm), a 
biological process required to produce proteins. (Rider et al., 2019) 
68 PM2.5 has been linked to anemia in older adults in the US (Honda et al., 2017) and China (Elbarbary et al., 2020). 
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relevant for the US. For instance, during the early 2000s, it was estimated that 29.5% of pregnant 

women in the US had iron deficiency69 during the third trimester, and the prevalence was higher 

among Mexican Americans and non-Hispanic blacks (Mei et al., 2011). 

 

The information channel refers to the potential increase in pollution avoidance after receiving 

information about air pollution’s adverse effects on health. Based on this channel, we would expect 

Medicaid’s expansion to lessen the effect of air pollution on birth outcomes. For example, if 

pregnant women were unaware of air pollution’s health impacts on their offspring and the doctors 

informed them when they got access to Medicaid, they may have reduced their exposure to outdoor 

air pollution. Reduced exposure would lead to a decrease in pollution’s health impacts. 

Nevertheless, there is no evidence that obstetricians advised pregnant women to avoid pollution in 

the US during the 1980s (Hemminki, 1988).  

 

Furthermore, the information channel could play a role only if individuals have access to air quality 

information or could tell by environmental conditions. Previous research has shown that 

individuals react to pollution alerts (Neidell, 2009; Janke, 2014); however, there was no official 

air quality information for any pollutant, nor pollution alerts, except for smog, in the US during 

the 80s. Absent pollution information, avoidance relies on how salient the pollutant is. Sulfur 

dioxide has a strong, pungent smell, and particulate matter (PM) can cause haze (US EPA, 1982).  

However, only individuals who personally experienced poor health in response to those olfactory 

or visual stimuli in the past would engage in pollution avoidance (Bresnahan et al., 1997). 

 
69 Iron deficiency anemia is a risk factor for perinatal complications like pre-eclampsia, low birthweight, prematurity, and perinatal mortality; 
preventive iron supplementation during pregnancy reduces the incidence of anemia in mothers and low birth weight in neonates (Imdad & Bhutta, 

2012).  
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Therefore, we would not expect pregnant women to react to the smell of SO2 or haze caused by 

PM unless they were highly susceptible to these pollutants before pregnancy.  

 

Lastly, the optimal response channel refers to the theoretical model from Graff-Zivin & Neidell 

(2013). In this model, pollution avoidance and medical treatment can be substitutes in the health 

production function. Hence, pollution avoidance, which is costly to individuals, could decrease 

when medical treatment becomes cheaper. Consequently, pollution exposure could increase when 

individuals get access to free health insurance and eliminate the gains of the medical-biological 

channel. Nevertheless, the conditions required for this channel's feasibility are unlikely to hold 

during the 80s. Individuals must: (1) know that air pollution is bad for health, (2) be able to identify 

it, (3) rationally choose to avoid it—all of them before being granted access to Medicaid, and (4) 

re-optimize once they get access to free health insurance.  

 

2.4 Data  

The empirical analysis relies on multiple data sources. Section 1.3 (previous chapter) describes the 

sources and methodologies to build the health outcomes, measure SO2, weather (temperature and 

precipitation), and unemployment rate during pregnancy. In this section, I complete the 

information needed for the empirical strategy by explaining how I measured increased access to 

health care during the prenatal period. Additionally, I describe the county-level economic controls 

used in the robustness tests.    
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Two measures of Medicaid were used: Simulated prenatal eligibility for Medicaid, a continuous 

variable; and Medicaid expansion, a binary one. The baseline empirical strategy relies on the latter 

one. Simulated prenatal eligibility, the continuous variable, is used for robustness tests.   

 

Medicaid expansion, the binary variable, was taken from East, Miller, Page & Wherry (2023). This 

variable switches from zero to one when the states experience the largest jump in simulated 

prenatal eligibility for Medicaid. States with high levels of simulated eligibility before 1980 

correspond to the control group and are coded as one always. Treated states experienced Medicaid 

expansion in different years throughout 1980-1985. Table 2.1 shows the number of states in the 

control group and each expansion cohort for different samples. Figure 2.1 shows the states that 

belong to each expansion cohort and the control group, and Figure 2.2 shows the fraction of 

newborns conceived in states that had expanded Medicaid.  

 

Simulated prenatal eligibility for Medicaid was created using the methodology from Miller & 

Wherry (2019), which enhanced the seminal methodology designed by Currie & Gruber (1996a). 

Broadly, the methodology consists of two steps:  First, building national representative samples of 

women 15-44 years old for each year during 1980-1991 using the Current Population Survey 

Annual Social and Economic Supplement (CPS-ASEC), and second, computing the fraction of 

women eligible for Medicaid if they got pregnant each year and state. I created measures for all 

women 15-44 years old and separately by race (white, black, and other). Figure 2.3 shows the 

temporal variation in simulated eligibility for Medicaid in treated vs. control states for the 

aggregate US, and Figure 2.4 disaggregates by race. 
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County-level controls to proxy for local economic conditions and government transfers were built 

using Bureau of Economic Analysis (BEA) data. The unemployment rate is available at the state 

level with monthly frequency. Per-capita income was taken from the deflated annual county-level 

BEA series. Government transfers were computed using county-year series from the Regional 

Economic Information System (REIS) sourced from the BEA70. Per capita government transfers 

were divided into unemployment insurance and non-medical welfare programs. The latter was 

computed excluding government expenditure on medical care and supplemental security income, 

divided by the population 64 years old or older. The number of women 15-44 years old was taken 

from the Surveillance, Epidemiology, and End Results Program (SEER) in the respective county 

and year. The number of hospital beds per capita per county was built using raw data from the 

Annual Hospital Association Survey (AHA) following Hoynes et al. (2016). Finally, I used the 

1990 NCHS’s urban-rural county classification for robustness tests. 

 

2.5. Empirical strategy 

This paper’s empirical strategy aims to quantify the impact of Medicaid’s expansion on the effects 

of air pollution on fetal death and birth outcomes.  Two different empirical approaches have been 

proposed to test if a given factor (e.g., health care) mediates air pollution’s effect. First, Hsiang, 

Oliva & Walker (2019) propose a strategy to simultaneously estimate the health effects of pollution 

and how much a factor impacts it. Their method requires exogenous variation in air pollution and 

the potential source of heterogeneity (e.g., health care) and orthogonality between the two. On the 

other side of the spectrum, Barwick et al. (2019) propose a strategy to identify, under certain 

 
70 Current transfer receipts of individuals from governments consist of: Retirement and disability insurance benefits, medical benefits, income 
maintenance benefits, unemployment insurance compensation, veterans' benefits, education and training assistance, and other transfer receipts of 

individuals from governments. 



 

 

80 

 

assumptions, the impact of a given factor on the pollutant’s effects, even if the pollutant’s variation 

were endogenous or the estimate of the pollutant’s effect suffered from attenuation bias due to 

classical measurement error.  In this paper, I aim to achieve the goals of the former strategy. 

Nevertheless, for the analysis by race, the estimates for blacks may be biased due to  measurement 

error. This concern is further discussed in section 2.5.2. 

 

Broadly, the empirical strategy relies on the interaction term of two variables (Medicaid and air 

pollution) in a panel data model. Interpreting interaction terms in this setting is challenging, and it 

is generally necessary to include additional interaction terms or fixed effects to draw causal 

inferences rather than estimating heterogeneous effects. The following section presents this 

discussion, and the following two sections describe the regression models. 

 

2.5.1 Interaction terms in panel data models 

As previously mentioned, this paper follows the framework presented by Hsiang et al. (2019). In 

principle, this method could be used in any setting with exogenous and orthogonal sources of 

variation in the environmental hazard and the factor modifying it (e.g., health care). Nonetheless, 

careful consideration is needed when both variables are non-constant, and the empirical strategy 

uses fixed effects (FE) over longitudinal data. Methodological Appendix C derives the analytical 

decomposition of the interaction term in such a setting while including fixed effects over the cross-

sectional and temporal dimensions. From those derivations, we learn that the interaction term does 

not necessarily have a causal interpretation, even if each variable's remaining variation –net of all 

fixed effects— is exogenous. The interaction term can be analytically decomposed into five 

different terms in this general setting. Hence, when a single interaction term is included in the 
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regression model, identifying the source of variation driving the result is impossible. 

Consequently, neither is interpreting the coefficient. 

 

The intuition behind the problem discussed above could be understand with the following example. 

Suppose we have a panel with two counties and two time periods.  The counties have low and high 

baseline levels of healthcare access, and it increases in both of them in the second period. Suppose 

also that we run a regression model with a single interaction term between pollution and healthcare 

access and find a positive effect for the interaction term on birth outcomes. Two situations are 

possible: (a)  counties with a higher baseline have smaller pollution effects (i.e, heterogeneity 

driven by between variation), or (b) the effect of pollution declines when healthcare access increase 

(i.e, heterogeneity driven by the within variation). A single interaction model does not allows us 

to identify the source of variation driving the results, and, arguably, the latter is more suitable for 

a causal interpretation.  

  

I address this problem by making two changes from the baseline setting in Methodological 

Appendix C: (i) I use county-year FE instead of county and year FE to remove the potentially 

endogenous sources of variation from the interaction term. (ii) I used a binary variable to measure 

policy variation in Medicaid instead of simulated prenatal eligibility for Medicaid –which is 

continuous. Methodological Appendix D shows the analytical decomposition of the interaction 

term when these two changes are combined. Below, models [2.1] and [2.2] were estimated 

following this strategy.  
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Interacting a binary and a continuous variable is a standard method used by researchers analyzing 

the effects of an interaction term in a panel data model (Rossin-Slater & Wüst, 2015; Malamud et 

al., 2016; Gunnsteinsson et al., 2022; Mullins & White., 2020; Aguilar & Vicarelli., 2011; 

Adhvaryu et al., 2018). However, to the best of my knowledge, this is the first paper that zooms 

into the analytical decomposition of the interaction term and explicitly shows how to remove from 

the interaction term the variation that makes a causal interpretation infeasible.  

 

Lastly, it is worth mentioning that given the variation in the timing of Medicaid’s expansion (i.e., 

states expanded at different years), the interaction terms in models [2.1] and [2.2] could be subject 

to bias if Medicaid had heterogeneous effects across time or cohorts of expansion (Goodman-

Bacon, 2021; Sant’Anna & Callaway, 2020; Roth et al., 2023). These concerns could be addressed 

using an event study framework as the one East et al. (2023) used. I did not do so because EPA air 

pollution monitoring data started in 1981. Thus, I could not have a balanced panel for the pre-

period. However, East et al. (2023) reported that the estimates from Currie & Gruber (1996) fall 

within the 95 percent confidence interval of the event study’s estimate. This suggests estimates 

from simple Difference in Difference models as [2.1] and [2.2] would be unbiased. Furthermore, 

I also estimate model [2.3], which builds up on Currie & Gruber's (1996) empirical strategy. This 

model analyzes how the effects of air pollution vary in response to changes in prenatal simulated 

eligibility for Medicaid. 

 

2.5.2. Fetal death   

The impact of Medicaid’s expansion on SO2’s effect on fetal deaths is estimated using the 

following model. 
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𝐹𝑅𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑚𝑟 + 𝛼𝑐𝑄𝑟 + ∑ 𝜌
𝑗
 𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦

)

𝑗 1..5, ≠3

∗ 𝐷𝑠𝑦 + ∑ 𝛽
𝑗
 𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦

)

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑤𝑦

+ 𝜃𝑈𝑄1 𝑠𝑚𝑦 + 𝑣𝑐𝑤𝑦𝑟  [2.1] 

 

The previous model expands model [1.1] –described in section 1.4.1 in previous chapter— by 

adding the interaction term between SO2 and Dsy. Dsy equals 1 if state s expands Medicaid during 

conception year y or has already expanded Medicaid in the past, 0 otherwise. Intuitively, the impact 

of Medicaid’s expansion on the effect of a concentration bin on fetal death is identified by 

comparing the mean fertility rate associated with that concentration bin in treated states before the 

expansion with the mean fertility rate for the same concentration bin in control and treated states 

after the expansion. Robustness tests are discussed in section 2.6. 

 

Lastly, a critical property of interaction terms— that applies to model [2.1], above, and [2.2] 

below— is that under some conditions 𝜌  𝑖𝑛 [2.1] 𝑎𝑛𝑑 𝜙 𝑖𝑛 [2.2] can be consistently estimated 

even if 𝛽 is not (Barwick et al., 2019). For example, classical measurement error in pollution could 

bias 𝛽̂  towards zero, and   𝜌 𝑎𝑛𝑑 𝜙 could still be consistently estimated if the nature and degree 

of measurement error does not change before and after the expansion. Empirical evidence to 

support the orthogonality between meausurement error in pollution and Medicaid’s expansion is 

discussed in section 2.6.4. This property will be helpful in estimating heterogeneous effects by 

race because the effects of SO2 on black infants’ may be biased due to measurement error.  
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2.5.3 Neonatal outcomes. 

The impact of Medicaid’s expansion on SO2’s effect on neonatal outcomes is estimated using the 

following model. 

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑚𝑟 + 𝛼𝑐𝑄𝑟 + ∑ 𝜙
𝑗
 𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦

)

𝑗 1..5, ≠3

∗ 𝐷𝑠𝑦 + ∑ 𝛽
𝑗
 𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦

)

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑤𝑦

+ 𝜃𝑈𝑄1 𝑠𝑚𝑦 + 𝛾𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [2.2] 

 

The previous model expands model [1.3] –described in section 1.4.2 in previous chapter— by 

adding the interaction term between SO2 and Dsy.  

 

The main distinction between models [2.1] and [2.2] is that the interaction term coefficients, 𝜙𝑗, 

in [2.2] could be biased downward due to livebirth bias (i.e., sample selection). The impact of 

Medicaid's expansion on SO2’s marginal effect on neonatal outcomes can be analytically 

decomposed into two margins. First, the expansion could affect neonatal outcomes by changing 

the number of fetuses that survive pollution shocks (i.e., extensive margin). Second, Medicaid 

could change SO2’s effects by improving neonatal outcomes for the infants that would have 

survived pollution shocks irrespectively of Medicaid's expansion (i.e., intensive margin). This 

distinction is crucial because the extensive margin response, captured by 𝜌𝑗, in [2.1], can bias 𝜙𝑗  , 

in [2.2], downwards. Intuitively, this would happen if the fetuses marginally saved by Medicaid 

are born with poor birth outcomes.  

 

As discussed in methodological appendix F, the outcome variable for model [2.2] must be carefully 

constructed to obtain an estimate that can be interpreted easily. If the rate of adverse birth outcomes 
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were used (e.g., low birthweight rate), the coefficients 𝜙𝑗 in [2.2] would be described by equation 

[F1]. Thus, we would not be able to learn much from it because it is a non-linear combination of 

many parameters. On the other hand, if we use the number of non-adverse birth outcomes per 

woman of reproductive age (nlbw/w, nptb/w, nsga/w)  as the outcome variables in [2.2], the 

coefficients can be used to approximate the additional number of infants born with healthy (i.e., 

non-adverse) outcomes due to Medicaid’s mitigation of the effect of SO2 on infant health (equation 

[F2]).  

 

Intuitively, this strategy works because the intensive and extensive margin effects go in the same 

direction when nlbw/w is used as the dependent variable. For instance, suppose prenatal care 

prevents fetal deaths caused by air pollution and mitigates its effects through the intensive margin. 

Then, if the infants marginally saved by Medicaid’s expansion were positively selected, nlbw/w 

would increase through the response on both margins. On the other hand, if the infants were 

negatively selected, nlbw/w would increase due to the intensive margin effect and would be 

unaffected by the extensive margin response.  

 

Finally, in the spirit of Lee (2009)’s methodology to address sample selection, I attempted to find 

upper and lower bounds for Medicaid's impact on SO2's effect on birthweight. I used a three-stage 

method. First, I used model [1.1] to estimate the additional number of live births per woman of 

reproductive age in response to Medicaid’s expansion. Second, I did back-of-the-envelope 

calculations to find the percentage increase in live births, s% . Third, I sorted the observations by 

birthweight within each state-race-year, excluded the bottom (top) s% observations in the post-
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expansion period, and used those samples to estimate [2.2] using log birthweight as the dependent 

variable and find the upper (lower) bound effects.  

 

2.5.4 Robustness tests. 

This section presents seven robustness tests for models [2.1] and [2.2]. Additionally, I introduce 

model [2.3], which interacts simulated eligibility, a continuous variable instead of binary, and 

pollution.  

 

The first robustness test consisted of excluding control states. Models [2.1] and [2.2] rely on the 

(implicit) assumption that Medicaid’s impact on air pollution health effects is homogeneous across 

treated and control states. However, different states have different demographics and generosity 

in social welfare programs—which could also mediate the pollutant’s effect. Therefore, 

Medicaid’s expansion could affect the marginal effect of pollution differently in treated and control 

states. By restricting the sample to treated states, Medicaid’s impacts are identified by comparing 

the average effect of SO2 in treated states before and after the expansion.  

 

As a second robustness test, I allowed for heterogeneous effects of air pollution across states.  As 

discussed in methodological appendix E, the impact of Medicaid’s expansion on the marginal 

effect of pollution could be biased if Medicaid had heterogeneous impacts on the marginal effects 

of the pollutant across different expansion cohorts.  This concern could be addressed by allowing 

for heterogeneous effects of pollution across cohorts of Medicaid expansion in models [2.1] and 

[2.2]. However, I used heterogeneous effects by state because they provide an additional 

advantage: Medicaid’s impacts are identified by the average, across all treated states, of each 
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state’s change in the pollutant’s effect. In contrast, in [2.1] and [2.2], the impacts are identified by 

comparing only two effects: the pollutant’s effect in treated states before the expansion and the 

pollutant’s effects in control and treated states after the expansion. 

 

The third robustness test added interaction terms between air pollution and non-medical 

government transfers. Since other social welfare programs were in place during the 80s and some 

states may have expanded them, Medicaid’s impact could be overestimated. I constructed the 

transfer variable using county-level deflated annual series from the Bureau of Economic Analysis 

(BEA). Government transfers for medical care and Supplemental Security Income expenditures 

were excluded. I used the population of 0-64 years (sourced from SEER) to compute per capita 

values. 

 

The fourth robustness test added interaction terms between in-utero temperature bins and Medicaid 

expansion.  Since air pollution and temperature are correlated71 and Medicaid may simultaneously 

change their effects, any impact of Medicaid on the temperature-health relationship could be 

captured in the interaction term between Medicaid and pollution. Notice also that models [2.1] and 

[2.2] assume that the health effects of air pollution and temperature are independent (i.e., pollution 

and temperature bins do not interact in any model).  

 

The fifth robustness test used the SO2 balanced panel to estimate models [2.1] and [2.2]. Notice 

that interaction models rely on the implicit assumption that the pollutant’s effects are the same in 

counties entering the sample (i.e., counties with monitoring data) after the expansion and those 

 
71 High levels of SO2 (fourth and fifth quintiles) are positively correlated with low temperatures ( T<=45 F) and negatively correlated with high 

temperatures (T>=65 F). 
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already in the sample before the expansion. Using this balanced SO2 panel, the number of counties 

falls from 533 to 222. This sample consists of the counties whose fraction of missing during a 39-

week rolling window was less than 50% every week during 1981-1991.  

 

The following two robustness tests build upon the previous one (i.e., use the SO2 balanced panel) 

and add heterogeneous effects of pollution across time. Notice that Medicaid’s impact on the 

marginal effect of pollution could be overestimated if the effects of air pollution decrease over 

time. Such a trend could be caused by technological change (e.g., houses better insulated from 

outdoor air pollution) or behavioral changes (e.g., pollution avoidance could have increased). I ran 

two robustness tests:  I added heterogeneous effects of air pollution across years to [2.1] and [2.2]. 

I also used a less stringent version imposing a linear trend in the effects of air pollution. 

 

The final robustness check consists of using simulated eligibility for Medicaid (𝑆𝐸𝑀𝑠𝑦) , a 

continuous variable, instead of Medicaid’s expansion, a binary variable, to analyze how the effect 

of SO2 changes with healthcare access. In model [2.3], Ɛ𝑗 and ⍵𝑗  capture the change in the 

pollutant’s marginal effect when simulated eligibility is below or above each state’s median. 

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑚𝑟 + 𝛼𝑐𝑄𝑟 + ∑ Ɛ𝑗 𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦)

𝑗 1..5, ≠3

∗ 1(𝑆𝐸𝑀𝑠𝑦 < 𝑆𝐸𝑀𝑠̃) ∗ |𝑆𝐸𝑀𝑠𝑦 − 𝑆𝐸𝑀𝑠̃| + 

∑ ⍵𝑗  𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦)

𝑗 1..5, ≠3

∗ 1(𝑆𝐸𝑀𝑠𝑦 ≥ 𝑆𝐸𝑀𝑠
̃ ) ∗ |𝑆𝐸𝑀𝑠𝑦 − 𝑆𝐸𝑀𝑠

̃ | + ∑ 𝛽𝑗  𝑞𝑗 (𝑆𝑂2𝑐𝑤𝑦)

𝑗 1..5, ≠3

+ 𝛿𝑊𝑐𝑤𝑦 + 

         𝜃𝑈𝑄1 𝑠𝑚𝑦 + 𝛾𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [2.3] 
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In the previous equation, 𝑆𝐸𝑀𝑠̃ corresponds to the median simulated eligibility in state s and 

1(𝑆𝐸𝑀𝑠𝑦 < 𝑆𝐸𝑀𝑠̃) is a variable that indicates that simulated eligibility in state s and year y is 

below its median.  

 

2.6 Results. 

Sections 1 and 2 present the impacts of Medicaid’s expansion on the effects of SO2 on fetal death 

and birth outcomes, respectively. Section 3 presents the robustness tests, and the last section shows 

the results from estimating heterogeneous effects by race.  

 

2.6.1 Fetal death 

Table 2.2 shows the impact of Medicaid’s expansion on the SO2-fetal death damage function. 

Model [2.1] is estimated across different samples of counties based on the baseline concentration 

of SO2. The results in column (2) show that Medicaid’s expansion increased the number of infants 

surviving high prenatal exposure to SO2 in low-pollution counties. The fertility rates associated 

with one additional day in the fourth and fifth quintile were 0.031%72 and 0.072%73 higher after 

Medicaid’s expansion. Consequently, Medicaid’s expansion increased a county’s annual number 

of infants surviving an additional day in SO2’s fourth and fifth quintile by 1.6274 and 3.7375, 

respectively76. One important implication of these results is that health care saves more lives at 

higher pollution concentrations.  

 

 
720.031% =(0.106/273)/1.25 
73 0.072%=(0.244/273)/1.25 
74 1.62= (0.106/273)*80.38*52. 
75 3.73 =(0.244/273)*80.38*52. 
76 For comparison, for low-pollution counties, there were 4316 annual births per county (see Table 1.2). 
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The back-of-the-envelope calculation suggests that Medicaid's expansion reduced a county’s 

annual fetal deaths linked to SO2 from 90.177 to 39.578 in the fourth quintile and from 50.779 to 

12.380 in the fifth. Consequently, Medicaid's expansion would have reduced the number of fetal 

deaths linked to SO2 by 143,46281 during 1981-1991 in the US. These pregnancies would 

otherwise have ended in fetal deaths due to SO2. Nevertheless, since many of these marginally 

saved fetuses were negatively selected (results presented in the following section), how many 

survived their first year is unclear. Understanding the relevance of this number requires analyzing 

infant mortality as well.  

 

The results from Table 2.2 could be used for a cost-benefit comparison between mitigation (i.e., 

reducing ambient air pollution levels) vs. adaptation (i.e., expanding healthcare access) policies. 

For instance, fetal deaths linked to SO2 decreased by 206282 per 100 thousand live births as 

Medicaid Expanded; considering a 21 percentage point increase in simulated eligibility in treated 

states during this period, I estimate a decrease of 98 per 100 thousand live births for each 

percentage point increase in simulated eligibility. In contrast, Currie & Neidell (2005) estimated 

that each one-unit decline in CO83 led to 13 fewer infant deaths per 100 thousand live births. 

 
77 90.1 = 𝜏𝑏𝑟 ∗ 52 ∗ 1.25 ∗ 80.38  and  𝜏𝑏𝑟 = (

0.189

1.25
) ∗ 0.11. Where 0.189 corresponds to the coefficient SO2-39w-Sh(q4) on Col 2 of table 2.2. 

1.25 corresponds to the average birth rate per week per thousand women of reproductive age (see table 2.2). 0.11 corresponds to the fraction of a 

39-week pregnancy spent in the 4th quintile of SO2 in counties with a low baseline (see col 3 of  table 1.7). 80.38 corresponds to the average number 

of women of reproductive age (see table 2.2). 52 corresponds to the number of weeks in a year.  
78 39.5 = 𝜏𝑏𝑟

𝑝𝑜𝑠𝑡
∗ 52 ∗ 1.25 ∗ 80.38  and 𝜏𝑏𝑟

𝑝𝑜𝑠𝑡
= (

0.189−0.106

1.25
) ∗ 0.11. where 0.106 corresponds to the coefficient Medicaid Exp*SO2-39w-Sh(q4) 

on col 2 of table 2. 
79 50.7= 𝜏𝑏𝑟 ∗ 52 ∗ 1.25 ∗ 80.38  and  𝜏𝑏𝑟 = (

0.322

1.25
) ∗ 0.04. Where 0.322 corresponds to the coefficient SO2-39w-Sh(q4) on Col 2 of table 22. 0.04 

corresponds to the fraction of a 39-week pregnancy spent in the 5th quintile of SO2 in counties with a low baseline (see table col 3 of Table 1.3). 
80 12.3 = 𝜏𝑏𝑟

𝑝𝑜𝑠𝑡
∗ 52 ∗ 1.25 ∗ 80.38  and 𝜏𝑏𝑟

𝑝𝑜𝑠𝑡
= (

0.322−0.244

1.25
) ∗ 0.04. where 0.244 corresponds to the coefficient Medicaid Exp*SO2-39w-Sh(q5) 

on col 2 of table 2.2. 
81 143,462 =11*0.81*[ (90.1-39.5) +(50.7-12.3) ]*181. Where 181 corresponds to the number of counties with a low baseline level of SO2 in treated 

states. The expression is multiplied by 11 to account for the full period 1981-1991, and 0.81 corresponds to the average value of the dummy variable 
for Medicaid expansion to take into account the staggered nature of the treatment.  
82 2062=100,000*((90.1-39.5) +(50.7-12.3))/4,315. Where 4315 corresponds to the average number of livebirth per county-year for the sample of 

counties with a low baseline level of SO2. 
83 Their estimate is based on the effect of post-natal exposure to CO on the infant mortality rate (i.e., Number of newborns died during the first 

year of live as a fraction of the total number of livebirths) in California 
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Similarly, Chay & Greenstone (2003a) estimated that each one-unit decline in TSP decreased 

infant deaths by 4-784 per 100 thousand live births.  

 

Thus, the decrease in fetal deaths as a fraction of the live births caused by a one percentage point 

increase in Medicaid’s simulated eligibility was much larger than the decrease in the infant 

mortality rate caused by a one-unit decline in CO or TSP ambient levels. Previous estimates can 

be transformed into lives saved per thousand dollars using the average costs of a one-unit decline 

in the pollutant’s ambient levels or a one percentage point increase in Medicaid’s simulated 

eligibility. Nevertheless, applying this cost-benefit analysis would require analyzing the same 

outcome (e.g., infant death rate) and the same pollutant. This is a possible extension of this paper.  

 

2.6.2 Birth outcomes  

Table 2.3 shows the impact of Medicaid’s expansion on the SO2-birth weight damage function. 

Model [2.2] is estimated using log birthweight as the dependent variable. Column 3 shows that 

Medicaid’s expansion increased birthweight by 2.39% for SO2 concentrations between 8 and 13 

ppb (4th quintile) in highly polluted counties. Since the typical pregnancy is exposed to this 

concentration 30% of the time (Table 1.7), birthweight increased by 0.7%. The effects are an order 

of magnitude smaller in low-pollution areas and statistically insignificant. Nevertheless, based on 

the results from Table 2.2, the estimates for low-pollution counties could be biased toward zero to 

livebirth bias.  

 

 
84 Chay & Greenstone (2003b) estimated  a one-unit decrease in TSP led to 5-8 fewer infant deaths per 100 thousand live births. 
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Results in Tables 2.4 and 2.5 are consistent with the hypothesis that a significant fraction of the 

infants saved by Medicaid in low-pollution counties were negatively selected (i.e., born with poor 

neonatal outcomes). Table 2.4 shows that Medicaid increased the fraction of low birthweight 

infants in low-pollution areas (Col 2).  The estimate suggests that Medicaid’s expansion was 

associated with an increase in the marginal effect of the fifth quintile of SO2 on the low birthweight 

rate. Figure 2.7 repeats the regressions from Cols 2 and 3 of Table 2.4, changing the birthweight 

threshold. It shows the same story: As Medicaid expanded, the fraction of infants with low or very 

low birth weight increased in low-pollution counties. Similarly, Table 2.5 shows that the number 

of infants born with less than 2500 grams per woman of reproductive age increased in low-

pollution counties as Medicaid expanded. 

 

Table 2.6 shows the results from the bounding exercise to address the livebirth bias.  This table 

estimates model [2.2] using log birthweight as the dependent variable over two samples to find 

upper and lower bounds for Medicaid’s impacts on SO2’s effect on birthweight.  As discussed in 

section 2.5.3, this bounding exercise resembles the idea behind Lee (2009)’s method of addressing 

sample selection. First, I used the results from Table 2.2 to estimate that live births increased on 

average by 2% in low-pollution areas. Then, I excluded the 2% largest (smallest) observation by 

birthweight and used the sample to estimate the lower (upper) bounds. The result shows that both 

bounds are statistically insignificant in low-pollution areas and nationwide.85  Furthermore, the 

upper bound can be smaller than the lower bound for some ranges of SO2. Overall, the results from 

this table show that traditional bounding exercises are not effective in this context.  

 

 
85 The same 2% threshold was used for the national sample. 
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The livebirth bias in low-pollution counties’ estimates was addressed in Table 2.7. This table 

estimates [2.2] using the number of non-adverse cases per woman of reproductive age as the 

dependent variable. Results in all columns show that Medicaid’s expansion improved neonatal 

outcomes at the national level and in low-pollution counties. For instance, at the national level, 

estimates from Column 1 show that the rate of non-low birth weight (i.e., healthy) infants per 

woman of reproductive age associated with one additional day in the fourth and fifth quintiles 

increased by 0.027%86 and 0.028%87, respectively, after Medicaid’s expansion. Consequently, 

Medicaid’s expansion increased a county’s annual number of infants born with a weight above 

2500 grams by 3.32.88 For comparison, at the national level, there were 4423 annual births per 

county (see Table 1.2).  

 

The back of the envelope calculation for Column 1 of Table 2.7 suggests that every year 17689 

additional infants were born non-low birth weight per county due to Medicaid's expansion. 

Therefore, relative to 4423 annual births per county at the national level, the rate of non-lbw infants 

per thousand live births increased by 40. Considering the 21 percentage points (pp) increase in 

Medicaid’s simulated eligibility, the non-LBW rate increased by 1.9 per thousand live births for a 

one pp increase in simulated eligibility.  

 

Figure 2.8 summarizes the impact of Medicaid on the number of infants born with weight above a 

given threshold per woman of reproductive age. These estimates were obtained by using different 

 
86 0.027%=(0.0993/273)/1.363. where 1.363 corresponds to the dependent’s variable mean  
87 0.028%=(0.106/273)/1.363. 
88 3.325=((0.0993 + 0.106)/273)*80.38*52  
89 176 = 52 ∗ (0.0993 ∗ 0.21 + 0.106 ∗ 0.18) ∗ 85.03. where 0.0993 and 0.106 correspond to the coefficients Medicaid Exp*SO2-39w-Sh(q4) 

and Medicaid Exp*SO2-39w-Sh(q5) on col 1 of table 2.6.  0.21 and 0.18 correspond to the average fraction of a standard 39-week pregnancy 
spent in the fourth and fifth quintiles, respectively (see col1 of Table 1.7). 85.03 corresponds to the number of women of reproductive age (see 

table 2.7). 52 corresponds to the number of weeks in a year.  
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thresholds to construct the dependent variable. A threshold of 2500 grams is used in Columns 1-3 

of Table 2.7. For figure 2.8, I compute the number of infants born with weight above T per woman 

of reproductive age, where  T=1500, 1750 … 3500 grams. The results show that Medicaid’s 

expansion improved infant health, as measured by birthweight. This improvement came via 

mitigation of the impact of high concentrations of sulfur dioxide (fourth and fifth quintile) on 

birthweight. Notably, the effect came from high pollution episodes in low-pollution counties and 

was larger for the highest concentration quintile as shown for the second panel in the figure. 

 

2.6.3 Robustness tests 

This section presents the robustness tests in two sub-sections. The first one shows that SO2’s 

variance has not decreased as Medicaid expanded, a pre-requisite to interpret the interaction terms 

in [2.1] to [2.3] as the causal impact of Medicaid on the Pollution-health damage functions.  The 

second one implements seven different robustness tests, described in section 2.5.4, to show that 

the estimates in the baseline empirical strategy are unlikely to be biased.  

 

2.6.3.1 Orthogonality between Medicaid expansion and sulfur dioxide.  

In a model like [C1], described in Methodological Appendix C, the interaction term could be 

confounded if sulfur dioxide and Medicaid expansion were not orthogonal. For instance, the 

interaction term would be colinear with the non-interacted terms (Medicaid and SO2) if changes 

in access to Medicaid are correlated with changes in the concentration of SO2. In [2.1] – [2.3], this 

is not a concern because the effects of air pollution are identified from variation within each 

county-year and Medicaid varies at the state-year level.  
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However, a decrease in the variance of pollution would be a concern. For example, if the 

pollutant’s variance decreased when Medicaid expands, the interaction term’s estimate in [2.1] to 

[2.3] would suggest that Medicaid lessened the effects of air pollution even though there was no 

actual decrease in the pollutant’s effect. Figures 2.5 and 2.6 show that the variation in high levels 

of sulfur dioxide (fourth and fifth quintile) has remained stable over time. 

 

2.6.3.2 Robustness tests for Medicaid’s impact on the pollutant’s effect. 

Table 2.8 shows the robustness test for the estimate of Medicaid’s impact on SO2’s effects on fetal 

death, presented in Table 2.2. Seven robustness tests, described in section 2.5.4, were 

implemented. Col 1 restricts the sample to treated states only; hence, Medicaid’s impacts on SO2 

effects are identified by comparing average SO2 effects in treated states before and after the 

expansion. Column 2 allows for heterogeneous pollution effects across states; hence, Medicaid’s 

impacts on SO2 effects are identified by averaging within-state changes of SO2 effects in treated 

states. Column 3 interacts SO2 bins with non-medical per capita government transfers. Col 4 

interacts with temperature bins with Medicaid expansion. Column 5 restricts the sample to the SO2 

balanced panel. Column 6 adds heterogeneous pollution effects by year, and Column 7 allows for 

a linear trend in the effects of pollution. Medicaid's expansion impacts on high SO2 levels (fourth 

or fifth quintile) are generally robust; when Medicaid is interacted with in-utero temperature bins 

(column 4), the point estimate reduces by half and turns statistically insignificant. However, the 

estimate remains significant when SO2’s fourth and fifth quintiles are combined.90  

 

 
90 Results not show, available upon request.  
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Table 2.9 shows the robustness tests for the estimate of Medicaid’s impact on SO2’s effects on the 

number of infants born with non-adverse outcomes, presented in Table 2.7. The same robustness 

tests used in Table 2.8 were applied. The sample reduces significantly, standard errors increase, 

and Medicaid’s impacts turn insignificant when the balanced sample is used in Cols 5-6. By-year 

heterogenous SO2 effects in Col 6 may be too stringent and absorb part of Medicaid’s effect. On 

col 7, however, Medicaid’s impact on the fourth quintile reduces to half its original, although not 

statistically significant due to bigger standard errors.  

 

Table 2.10 shows how SO2 effects on birth outcomes change with prenatal simulated eligibility 

for Medicaid. Model [2.3] is estimated using non-LBW infants per woman of reproductive age as 

the dependent variable. The results show that lower values of simulated eligibility for Medicaid 

increase the marginal damage of SO2’s highest concentration bin; however, this model also shows 

a non-symmetric effect. Higher values of simulated Medicaid eligibility— as compared to each 

state’s median—do not mitigate the effects of SO2. These results are displayed visually in Figure 

2.9. 

 

2.6.4 Heterogeneous effects by maternal race. 

Table 2.11 shows the impact of Medicaid on the effect of SO2 on fetal death by race Model [1.1] 

is estimated separately for blacks and whites in columns 1-2 and model [2.1] in columns 3-4. The 

results in columns 3 and 4 show that Medicaid’s expansion increased the number of births 

surviving high-pollution shocks for both races. The expansion increased the annual number of 

black infants surviving an additional day in SO2’s 4th quintile by 0.75891 and the number of white 

 
91 0.758=(0.314/273)*12.667*52.  Where 12667 is the average number of black women of reproductive age per county  (Table 1.2).   
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infants surviving an additional day in the 5th quintile by 1.17792 per county. For comparison, at the 

national level, there were 802 and 3426 annual births per county from blacks and whites (see Table 

1.2).   

 

Table 2.12 shows the impact of Medicaid on the effect of SO2 on the number of infants born non-

low birthweight for white vs black. The results show that Medicaid’s expansion increased the 

number of infants born with non-adverse outcomes (i.e., healthy) for both races, although the effect 

was stronger for blacks. Figure 2.10 displays th estimates from cols 1-2 for different birthweight 

thresholds.  

 

The estimate of Medicaid’s impact on the effect of the fourth quintile of SO2 for blacks (column 

2) seems odd because the magnitude of the mitigation (0.268) is larger than the original effect 

before the expansion (-0.202). Thus, by adding both coefficients, we would conclude that SO2 

improves blacks’ birth outcomes after Medicaid’s expansion. Consequently, we should consider 

the possibility that the pre-expansion coefficients, 𝛽𝑗  in [2.2], for blacks are biased downward due 

to measurement error or omitted variable bias (e.g., income) and analyze the implications for the 

estimate of interest, 𝜙𝑗 in [2.2]. 

 

Let’s start with the possibility of measurement error. The pollution measures were built by county 

and week of conception; therefore, since blacks are a smaller fraction of the population, blacks’ 

exposure may be measured with more measurement error than whites. The larger standard errors 

for blacks in Tables 2.11 and 2.12 are consistent with this possibility. Nevertheless, as discussed 

 
92 1.177=(0.0918/273)*67.291*52.  Where 67291 is the average number of white women of reproductive age per county  (Table 1.2).   
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in section 2.5.2, an advantageous property of interaction terms is that if the nature and degree of 

measurement error did not change with Medicaid’s expansion, 𝜙 can be consistently estimated 

even though 𝛽 were biased (Barwick et al., 2019). To explore the relationship between Medicaid 

expansion and measument error in pollution, I computed the standard deviation of daily SO2 

readings per county and year; then, I found an insignificant estimate of Medicaid expansion when 

controlling by county and year fixed effects.93 There is also no correlation with the number of 

monitors per county-year. It must also be noted that I constructed pollution measures at the county-

day level using a fixed set of monitors for each county. Previous analysis are not a perfect proof 

that measurement error in pollution is not correlated with Medicaid expansion, but there is no 

better option with the available data for these years.  

 

Alternatively, suppose there remains some residual income variation in the error term of model 

[2.2] and it is correlated with the pollution level. Suppose that high (low) pollution concentrations 

are correlated with positive (negative) income shocks in the error term. Thus, in [2.2], 𝛽 would be 

biased towards zero and 𝜙 would capure the join impact of Medicaid on SO2 and income effects. 

Since we would expect Medicaid’s expansion to reduce the effect of income shocks on birth 

outcomes, we should expect 𝜙4 𝑎𝑛𝑑 𝜙5, the impacts on the fourth and fifth quintile effects, to be 

biased towards zero. On the contrary, we should expect 𝜙1 𝑎𝑛𝑑 𝜙2, the impacts on the first and 

second quintile, to be biased upwards. Therefore, we should interpret the estimate of Medicaid’s 

impact on the effect of the fourth concentration quintile on black infants’ health (Col 2 of Table 

2.12) as a lower bound. The same analysis can be applied to Cols 4 and 6.  

 

 
93 Results not shown, available upon request 
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Overall, the results indicate that Medicaid’s expansion mitigated the effect of SO2 on fetal death 

and birth outcomes for both races, but the effects were larger for blacks.  

 

2.7 Discussion  

Addressing the livebirth bias (sample selection) is critical to study how social welfare programs 

impact the marginal effects of environmental exposures during the gestational period on birth 

outcomes—the contrast between the estimates in tables 2.5 and 2.7 show it. More generally, the 

lessons from this paper apply to any case where the objective is studying how an intervention (T) 

changes the marginal effect of x on y, and 𝛽̂𝑥 is affected by sample selection. If T changes the 

degree of sample selection, the estimate of the impact of T on 𝛽𝑥 would be biased.  In this paper, 

we observe this situation: A naïve interpretation of Table 2.5 would lead us to conclude that 

Medicaid's expansion increased the marginal damage of air pollution on birth outcomes. However, 

the conclusion flips once the outcome variable is properly transformed (Table 2.7). This problem 

is particularly critical in a context where the (ex-ante) theoretical prediction of the impact of T on 

𝛽𝑥  is ambiguous.  

 

The results from this paper highlight that public health policy can be an effective instrument to 

mitigate the effects of air pollution on health, and it complements environmental policy to improve 

environmental justice. It is known that homogeneity in the air quality standard across 

heterogeneous populations results in heterogeneous marginal damages of air pollution on health. 

Furthermore, the marginal damages of air pollution are larger for the most disadvantaged 

households. This paper's results suggest that free health care for low-income households mitigates 
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the effects of prenatal air pollution on infant health; moreover, the impact was larger for blacks 

than whites. Thus, the program also improved environmental justice. 

 

The discussion in the theoretical framework in section 2.3 makes this paper's limitation evident. 

The empirical strategy estimates the aggregate effects of the three channels: the medical-

biological, the informational, and the optimal response channel. The first two suggest that 

Medicaid's expansion reduces the effect of air pollution on fetal death and birth outcomes. In 

contrast, the last one could lead to an increase in the marginal damages of air pollution. The second 

and third channels rely on the salience of air pollution, which is limited for SO2 during the 1980s. 

Thus, the medical-biological channel (e.g., prenatal prescription of vitamins) is believed to drive 

the decrease in the marginal damage of SO2. Nevertheless, we cannot assert that the other two 

channels were entirely irrelevant. 

 

There is also an alternative mechanism, not discussed in the theoretical framework, through which 

Medicaid's expansion could have impacted the marginal effects of air pollution on infant health. 

Access to Medicaid could have freed some resources that would have otherwise been used for 

healthcare expenditures (e.g., paying for prenatal controls out of pocket or private healthcare 

insurance). Thus, accessing Medicaid could be seen as a positive income shock. The empirical 

relevance of this channel is unclear. However, it could explain part of the decline in the marginal 

damage of air pollution. Importantly, this channel would not invalidate the conclusion that 

Medicaid’s expansion decreased the effects of air pollution. However, it raises questions as to what 

extent such a decrease can be attributed entirely to increased access to prenatal health care. 
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Finally, Medicaid could reduce prenatal air pollution health effects through compositional 

changes. For example, If Medicaid incentivized women ex-ante more resilient to pollution (e.g., 

higher income or educational attainment women) to get pregnant, the effects of ambient air 

pollution could decrease. Nevertheless, previous research has found no evidence of Medicaid on 

fertility, and I found no evidence of mothers’ demographics changing in response to Medicaid’s 

expansion, which mitigates this concern.  

 

2.8 Conclusion 

This paper aims to shed light on the effectiveness of health care as a tool to mitigate the impact of 

prenatal air pollution on infant health. The results suggest that the effect of prenatal air pollution 

on fetal death and birth outcomes decreased when low-income pregnant women gained access to 

free prenatal care. The number of live births and infants born with non-adverse neonatal outcomes 

(i.e., healthy) increased. Such improvements came via reductions in the health impacts of high 

SO2 concentrations. The prenatal prescription of vitamins and iron could have made the fetus more 

resilient to pollution shocks. Therefore, policymakers concerned with outdoor air pollution could 

increase low-income households’ access to prenatal health care to lessen the impacts of pollution 

in-utero. This strategy can be helpful when governments do not have the institutional capacity to 

regulate pollution, especially if households’ ability to avoid pollution is limited. 

 

The analysis by race revealed that free health insurance for low-income households contributed to 

closing the gap in the effects of air pollution on infant health between blacks and whites. Therefore, 

increasing healthcare access for low-income households improved environmental justice. 
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The results of this paper also contribute to the debate on why developing countries have higher 

marginal damages of air pollution on infant health: non-linear effects or healthcare access? The 

results from this chapter and the previous one suggest that both factors contribute to the larger 

marginal damages. The previous chapter demonstrates that the marginal damages increase as the 

pollutant concentration rises. This chapter reveals that the marginal damages decrease when 

healthcare access improves. Moreover, the impact of prenatal healthcare is more significant at 

higher concentrations when the underlying health impacts are substantial. 
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2.9  Figures 

 

 

Figure 2.1: Medicaid expansion during the 80s, treated vs. control states. 

 

 
Source: East, Miller, Page & Wherry (2023). Alaska (1982 Expander) and Hawaii (Control) are not pictured. Arizona is omitted due to the late start 

date of their Medicaid program (1988). 

 

Figure 2.2: Medicaid expansion (Binary variable)  

 

 
Note: Author’s calculations. This graph shows the share of conceptions occurring in states that have expanded Medicaid 
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Figure 2.3: Prenatal simulated eligibility for Medicaid (continuous) for treated vs control states.  

 

 
Note: Author’s calculations. This graph shows the average values of simulated eligibility for Medicaid as weighted by the number of conceptions 

per month and state.  
 

Figure 2.4: Prenatal simulated eligibility for Medicaid (Continuous) by Race. 

 

 
Note: Author’s calculations. This graph shows the average values of simulated eligibility for Medicaid dissagregated by race. I weighted by the 

number of conceptions per month, state, and race.  
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Figure 2.5: Standard deviation of the remaining variation in the fourth quintile of SO2 across 

years 

 
Note: Author’s calculations. US: Counties with SO2 data. LB=low baseline. HB=high baseline. This graph corresponds to the 

standard deviation of the residuals from regressing q4 (SO2) (i.e., fraction of a standard 39-week pregnancy spent in the fourth 

quintile of the national distribution) on county-year, county-quarter, and month FE.   

 

Figure 2.6: Distribution of remaining variation in the fifth quintile of SO2 across years. 

 

 
Note: Author’s calculations. US: Counties with SO2 data. LB=low baseline. HB=high baseline. This graph corresponds to the 

standard deviation of the residuals from regressing q5 (SO2) (i.e., fraction of a standard 39-week pregnancy spent in the fifth quintile 

of the national distribution) on county-year, county-quarter, and month FE.   
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Figure 2.7: Medicaid's expansion impacts on the fraction of infants born with weight below 

threshold T. 

 

 
 

Note: Author’s calculations. Each bar in this figure corresponds to a different regression of model [2.2] changing the birthweight 

threshold to build the dependent variable 
∑ 1(𝑖 𝑏𝑖𝑟𝑡ℎ𝑠<𝑇)

𝑁 𝑏𝑖𝑟𝑡ℎ𝑠
  The error bars correspond to the 95% confidence interval. The blue bars 

plot the impact of Medicaid on the fourth quintile of SO2, Medicaid Exp*SO2-39w-Sh(q4), in Column 2 of table 2.5 (low-pollution 

counties) and the orange bars plot the impact of Medicaid on the fifth quintile of SO2, Medicaid Exp*SO2-39w-Sh(q5), in Column 

3 of table 2.5 (high-pollution counties).  
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Figure 2.8: Effects of Medicaid’s expansion on the number of infants born with weight above 

threshold T. 
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Note: Author’s calculations. Each figure corresponds to a different sample (group of counties: all, low-pollution, high-pollution). 

Each pair of green and yellow bars correspond to a different regression. Each regression corresponds to [2.2] using the number of 

infants born with weight above threshold T (T=1500.. 3500) per woman of reproductive age. The green and yellow bars plot the 

impact of Medicaid on the effects of the fourth and fifth quintile of SO2, Medicaid Exp*SO2-39w-Sh(q4) and Medicaid Exp*SO2-

39w-Sh(q5) in Table 2.7. Notice that Table 2.6 only reports the estimates for a threshold of 2500 grams.  

 

The height of the bars was computed as ℎ𝑇
𝑔𝑗

= 1000 ∗ (
1

273
) (

𝛽̂𝑇
𝑔𝑗

∗𝑊𝑜𝑚𝑒𝑛15−44
𝑔

(𝑁𝑏𝑖𝑟𝑡ℎ𝑠𝑔)
) * 52.  

Where T indexes the birthweight threshold, g indexes the group of counties (all, low-pollution, high-pollution), and j indexes the 

concentration bin (4th quintile (8<SO2<13), or 5th (SO2>13 ppb)).  𝛽̂𝑇
𝑔𝑗

corresponds to the coefficient of Medicaid Exp*SO2-39w-

Sh(qj). The term (1/273) indicates that the impacts are estimated for 1 additional day in the jth quintile as compared to the third one 

(omitted category). 𝑊𝑜𝑚𝑒𝑛15−44
𝑔

 and 𝑁𝑏𝑖𝑟𝑡ℎ𝑠𝑔 corresponds to the average number of women of reproductive age and annual 

births in group county g. Since the model is estimated using weekly data, I multiply by 52 to estimate the average number of births 

per year. The error bars correspond to the 95% confidence interval.  

 

 

 

Figure 2.9: Marginal effect of one additional day in the highest concentration quintile of SO2 as a 

function of simulated eligibility for Medicaid. 

 

 
Notes:Author’s calculations.  This graph plots two estimates:  𝑎 (𝛽𝑆𝑂2

𝑞5
+ 𝛾𝑆𝑂2

𝑞5
) ∗ |x| when simulated eligibility is below the median 

(i.e, negative values on the x-axis) and 𝑎 (𝛽𝑆𝑂2
𝑞5

+ 𝜃𝑆𝑂2
𝑞5

) ∗ (x) when simulated eligibility is above the median (i.e, positive values 

on the x-axis).  Where 𝛽𝑆𝑂2
𝑞5

, 𝛾𝑆𝑂2
𝑞5

, and 𝜃𝑆𝑂2
𝑞5

 correspond to the coefficients  SO2-39w-Sh(q5),  I(SEM<𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-

39w-Sh(q5), and I(SEM>𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q5)  in Col 1 of Table 2.10. The term a is a factor to transform the 

units into infants per thousand births, 𝑎 = 1000 ∗ (
1

273
) (

𝑊𝑜𝑚𝑒𝑛15−44
𝑔

(
𝑁𝑏𝑖𝑟𝑡ℎ𝑠𝑔

52
)

). 
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Figure 2.10: Effects of Medicaid’s expansion on the number of infants born with weight above 

threshold T by race. 

 

 

  
 

 

Notes:Author’s calculations. The gray and black bars are estimated by running model [2.2] separately by birthweight threshold 

(T=1500.. 3500)  and race (black and white). The error bars correspond to the 95% confidence interval.  

The height of the bars was computed as ℎ𝑇
𝑟𝑗

= 1000 ∗ (
1

273
) (

𝛽̂𝑇
𝑟𝑗

∗𝑊𝑜𝑚𝑒𝑛15−44
𝑟

(𝑁𝑏𝑖𝑟𝑡ℎ𝑠𝑟)
) ∗ 52.  

Where T indexes the birthweight threshold, r indexes the race (black, white), and j indexes the concentration bin (fourth (8<SO2<13) 

, or fifth (SO2>13 ppb)).  𝛽̂𝑇
𝑟𝑗

corresponds to the coefficient of Medicaid Exp*SO2-39w-Sh(qj) in Columns 1 and 2 of Table 2.12. 

The term (1/273) indicates that the impacts are estimated for 1 additional day in the j-th quintile as compared to the third one 

(omitted category). 𝑊𝑜𝑚𝑒𝑛15−44
𝑟  and 𝑁𝑏𝑖𝑟𝑡ℎ𝑠𝑟 corresponds to the average number of women of reproductive age and annual 

births of race r. Since the model is estimated using weekly data, I multiply by 52 to estimate the average number of births per year.  
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2.10 Tables 

 

Table 2.1: Number of states and counties across cohorts of year of Medicaid expansion.  

 

 
States 

All 

Counties 

SO2 

UNB 

SO2  

LB 

SO2  

HB 

SO2 

BLN 

Control 22 1161 238 112 126 115 

1980 3 182 45 26 19 21 

1981 3 184 15 6 9 8 

1982 11 563 93 66 27 34 

1983 2 236 19 17 2 2 

1984 2 98 18 12 6 5 

1985 7 700 91 52 39 35 

1988 1 14 7 3 4 2 
Notes: Author’s calculations. UNB (Unbalanced SO2 panel), LB (Low baseline), HB (High baseline), BLN (SO2 Balanced panel) 

 

Table 2.2: Medicaid’s expansion impact on the effect of SO2’s on fetal death.  

 

  (1) (2) (3) 

Baseline SO2 All Low High 

Mean (FR) 1.177 1.250 1.117 

Women 15-44 (Thousands) 85.03 80.38 89.30 

Cells 180,217 86,550 93,667 

R-squared 0.660 0.638 0.633 

Medicaid Exp*SO2-39w-Sh(q1) 0.00266 0.0310 -0.0585 

 (0.0529) (0.0518) (0.105) 

Medicaid Exp*SO2-39w-Sh(q2) 0.0568 0.0803 -0.0138 

 (0.0756) (0.0864) (0.184) 

Medicaid Exp*SO2-39w-Sh(q4) 0.0675 0.106** -0.0209 

 (0.0533) (0.0421) (0.0744) 

Medicaid Exp*SO2-39w-Sh(q5) 0.0405 0.244* -0.0111 

 (0.0540) (0.123) (0.0964) 

SO2-39w-Sh(q1) -0.0316 -0.0785 0.0213 

 (0.0565) (0.0634) (0.108) 

SO2-39w-Sh(q2) -0.0780 -0.135* 0.0451 

 (0.0617) (0.0719) (0.192) 

SO2-39w-Sh(q4) -0.112** -0.189*** 0.00798 

 (0.0532) (0.0386) (0.0850) 

SO2-39w-Sh(q5) -0.0805 -0.322** -0.00660 

 (0.0564) (0.142) (0.103) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is FR (fertility 

rate) = 1000*(N live birth/ N women 15-44) by county and week-year of conception cells. Low (High) corresponds to counties whose average SO2 

concentration during the first two years in sample is below (above) the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from 
a 39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution 

of SO2. The third quintile is the omitted category. Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the 

current year or has been expanded in the past.  All regressions include county-year FE, county-Quarter FE, and month FE.   Controls included:  
Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy. Regressions were weighted 

by the number of women of reproductive age in each county-year. Standard errors are clustered at the state level. Standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1.  
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Table 2.3: Medicaid’s expansion impact on the effect of SO2 on birthweight. 

 

  (1) (2) (3) 

  Log (BW) Log (BW) Log (BW) 

Baseline SO2 All Low High 

Observations 17,506,986 8,383,192 9,123,794 

R-squared 0.725 0.663 0.758 

Medicaid Exp*SO2-39w-Sh(q1) 0.00515 0.000421 0.0148* 

 (0.00797) (0.00719) (0.00859) 

Medicaid Exp*SO2-39w-Sh(q2) 0.00500 0.000734 0.0107 

 (0.00865) (0.00968) (0.0190) 

Medicaid Exp*SO2-39w-Sh(q4) 0.0108 0.00374 0.0239** 

 (0.00699) (0.00346) (0.0105) 

Medicaid Exp*SO2-39w-Sh(q5) 0.00279 -0.00626 0.00648 

 (0.00689) (0.0149) (0.0101) 

SO2-39w-Sh(q1) -0.00435 0.000829 -0.0143 

 (0.00779) (0.00734) (0.00875) 

SO2-39w-Sh(q2) -0.00319 0.00209 -0.00984 

 (0.00819) (0.00822) (0.0190) 

SO2-39w-Sh(q4) -0.00414 0.00613** -0.0183* 

 (0.00691) (0.00273) (0.0101) 

SO2-39w-Sh(q5) -0.000657 0.0105 -0.00566 

 (0.00725) (0.0153) (0.0100) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is the natural 
logarithm of birthweight. Low (High) corresponds to counties whose average SO2 concentration during the first two years in sample is below 

(above) the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from a 39-week period started at the week of conception, in 

which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. 
Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past.  All 

regressions include county-year-race FE, county-Quarter-race FE, and month-race FE.   Three categories of maternal race were used (white, black, 

and other). Controls included:  Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy, 
and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). 

Regressions were weighted by the number of births in each cell. Standard errors are clustered at the state level. Standard errors in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1.  
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Table 2.4: Medicaid’s expansion impact on the effect of SO2 on the fraction of adverse birth 

outcomes 

 

  (1) (2) (3) (4) (5) (6) (7) 

  LBW_r LBW_r LBW_r SGA_r SGA_r PTB_r PTB_r 

Baseline SO2 All Low High All Low All Low 

Mean (Y) 51.72 47.43 55.62 90.64 88.52 94.56 88.52 

Observations 17,506,986 8,383,192 9,123,794 17,506,986 8,383,192 17,506,986 8,383,192 

R-squared 0.452 0.358 0.507 0.146 0.117 0.526 0.451 

Medicaid Exp*SO2-39w-Sh(q1) -9.450 -4.540 0.653 -9.434 -12.57 -10.31 1.714 

 (8.559) (6.175) (12.80) (10.51) (10.49) (8.497) (9.251) 

Medicaid Exp*SO2-39w-Sh(q2) -14.69 -11.36 -10.61 -21.02* -21.71 -17.25 -6.401 

 (11.66) (12.75) (18.27) (10.89) (12.93) (10.41) (8.472) 

Medicaid Exp*SO2-39w-Sh(q4) -12.17 -3.035 -26.08** -17.72 -13.47* -15.16 1.261 

 (8.997) (5.316) (12.63) (10.95) (7.996) (11.56) (10.25) 

Medicaid Exp*SO2-39w-Sh(q5) -5.640 31.42** -6.419 -21.91* -36.68 -5.325 39.57 

 (8.569) (12.53) (11.51) (12.16) (28.23) (8.705) (29.64) 

SO2-39w-Sh(q1) 8.108 2.622 0.00935 7.377 8.129 9.993 0.110 

 (8.258) (5.542) (12.74) (8.854) (9.332) (7.972) (7.765) 

SO2-39w-Sh(q2) 11.91 6.809 11.21 13.86 15.41 14.09 0.942 

 (11.35) (11.79) (18.15) (10.78) (12.28) (9.321) (8.726) 

SO2-39w-Sh(q4) 6.696 -3.632 21.71* 10.33 5.658 11.67 -3.500 

 (8.712) (4.727) (12.35) (10.40) (5.961) (9.782) (5.344) 

SO2-39w-Sh(q5) 1.542 -38.42*** 4.786 16.64 30.07 -1.240 -43.69 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. LBW: Low birthweight 

(birthweight<=2500g). SGA: Small for gestational age (birthweight < P10) where P10 is the 10th percentile of birthweight computed for every 
gestational age-gender-maternal race. PTB: preterm birth (gestational age<37 weeks).  All outcome variables correspond to the number of adverse 

cases per thousand livebirths. Low (High) corresponds to counties whose average SO2 concentration during the first two years in sample is below 

(above) the national median. SO2-39w-Sh (q j) corresponds to the fraction of days, from a 39-week period started at the week of conception, in 
which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. 

Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past.  All 

regressions include county-year-race FE, county-Quarter-race FE, and month-race FE.   Three categories of maternal race were used (white, black, 
and other). Controls included:  Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy, 

and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). 

Regressions were weighted by the number of births in each cell. Standard errors are clustered at the state level. Standard errors in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1.  
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Table 2.5: Medicaid’s expansion impact on the effect of SO2 on the incidence of adverse birth 

outcomes 

 

 (1) (2) (3) (4) (5) (6) 

  Lbw/w Lbw/w Sga/w Sga/w Ptb/w Ptb/w 

Baseline SO2 All Low All Low All Low 

Mean (Y) 0.075 0.074 0.135 0.136 0.102 0.102 

Women 15-44 (1k)  85.03 80.38 85.03 80.38 85.03 80.38 

Cells 343,023 160,124 343,023 160,124 343,023 160,124 

R-squared 0.525 0.430 0.297 0.259 0.608 0.54 

Medicaid Exp*SO2-39w-Sh(q1) -0.00824 -0.00176 -0.00478 -0.00726 -0.00838 0.00687 

 (0.0133) (0.00948) (0.0157) (0.0154) (0.0130) (0.0121) 

Medicaid Exp*SO2-39w-Sh(q2) -0.0121 -0.00987 -0.0149 -0.0159 -0.0140 -0.00338 

 (0.0176) (0.0199) (0.0160) (0.0195) (0.0183) (0.0176) 

Medicaid Exp*SO2-39w-Sh(q4) -0.00834 0.00403 -0.0107 -0.00294 -0.0108 0.00989 

 (0.0143) (0.00785) (0.0165) (0.0105) (0.0171) (0.0112) 

Medicaid Exp*SO2-39w-Sh(q5) -0.00181 0.0462*** -0.0168 -0.0251 0.00182 0.0663 

 (0.0109) (0.0157) (0.0143) (0.0368) (0.0102) (0.0398) 

SO2-39w-Sh(q1) 0.00605 -0.00319 0.000807 -0.00226 0.00610 -0.00966 

 (0.0134) (0.00947) (0.0148) (0.0161) (0.0132) (0.0118) 

SO2-39w-Sh(q2) 0.00906 0.000595 0.00414 0.00165 0.00983 -0.00956 

 (0.0168) (0.0176) (0.0177) (0.0211) (0.0146) (0.0135) 

SO2-39w-Sh(q4) 0.00130 -0.0164** -0.00143 -0.0140 0.00421 -0.0210** 

 (0.0143) (0.00693) (0.0171) (0.00986) (0.0162) (0.00784) 

SO2-39w-Sh(q5) -0.00445 -0.0595*** 0.00684 0.00982 -0.0127 -0.0801* 

 (0.0113) (0.0168) (0.0155) (0.0379) (0.00994) (0.0400) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. LBW: Low birthweight 

(birthweight<=2500g). SGA: Small for gestational age (birthweight < P10) where P10 is the 10th percentile of birthweight computed for every 

gestational age-gender-maternal race. PTB: preterm birth (gestational age<37 weeks).  All outcome variables correspond to the number of adverse 
cases per thousand woman of reproductive age (15-44) of the respective race. “Low” sample corresponds to counties whose average SO2 

concentration during the first two years in sample is below the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-

week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. 
The third quintile is the omitted category. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three 

categories of maternal race were used (white, black, and other). . Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is 

expanded in the current year or has been expanded in the past. Controls included:  Temperature-39w(bins), precipitation-39w(bins), the 
unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, 

pregnancy history, Highschool dropout, and unmarried). Newborn-level observations collapsed into cells by county-week-year-race. All regressions 

are weighted by the number of women 15-44 yrs. old per county-race-year. Standard errors are clustered at the state level. Standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 2.6: Bounding exercise for Medicaid’s expansion impacts on the effect of SO2 on 

birthweight. 

 

  (1) (2) (3) (4) 

  Log (BW) Log (BW) Log (BW) Log (BW) 

Baseline SO2 All All Low Low 

Bound Lower Upper Lower Upper 

Observations 17,505,957  17,506,647  8,382,696  8,383,043  

R-squared 0.735 0.673 0.146 0.704 

Medicaid Exp*SO2-39w-Sh(q1) 0.00577 0.00560 0.00106 0.000354 

 (0.00802) (0.00788) (0.00708) (0.00687) 

Medicaid Exp*SO2-39w-Sh(q2) 0.00511 0.00643 0.000288 9.85e-05 

 (0.00910) (0.00818) (0.0102) (0.00833) 

Medicaid Exp*SO2-39w-Sh(q4) 0.0108 0.00790 0.00379 -0.000771 

 (0.00699) (0.00747) (0.00373) (0.00324) 

Medicaid Exp*SO2-39w-Sh(q5) 0.00178 0.00272 -0.00970 -0.00657 

 (0.00696) (0.00675) (0.0153) (0.0149) 

SO2-39w-Sh(q1) -0.00479 -0.00423 0.000437 0.000958 

 (0.00793) (0.00755) (0.00738) (0.00687) 

SO2-39w-Sh(q2) -0.00320 -0.00459 0.00233 0.000994 

 (0.00861) (0.00804) (0.00856) (0.00779) 

SO2-39w-Sh(q4) -0.00436 -0.00352 0.00535* 0.00737*** 

 (0.00686) (0.00756) (0.00271) (0.00254) 

SO2-39w-Sh(q5) 0.000332 -0.00107 0.0141 0.00816 

 (0.00743) (0.00690) (0.0155) (0.0149) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is the natural 

logarithm of birthweight. “Low” sample corresponds to counties whose average SO2 concentration during the first two years in sample is below 

the national median. SO2-39w-Sh(q j) corresponds to the fraction of days, from a 39-week period started at the week of conception, in which the 
county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. Medicaid Exp is 

a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past.  All regressions include 

county-year-race FE, county-Quarter-race FE, and month-race FE.   Three categories of maternal race were used (white, black, and other). Controls 
included:  Temperature-39w(bins), precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy, and a vector of 

demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). Regressions were 

weighted by the number of births in each cell. Standard errors are clustered at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1.  
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Table 2.7: Medicaid’s expansion impact on the effect of SO2 on the incidence of non-adverse 

birth outcomes 

 

  (1) (2) (3) (4) (5) (6) (7) 

  Nlbw/w Nlbw/w Nlbw/w Nsga/w Nsga/w Nptb/w Nptb/w 

SO2 Baseline All Low High All Low All Low 

Mean(Y) 1.363 1.386 1.342 1.303 1.325 1.336 1.359 

Women 15-44 yr. old 85.03 80.38 89.3 85.03 80.38 85.03 80.38 

Cells 343,023 160,124 182,899 343,023 160,124 343,023 160,124 

R-squared 0.652 0.643 0.622 0.660 0.645 0.627 0.619 

Medicaid Exp*SO2-39w-Sh(q1) 0.0515 0.0697 -0.0526 0.0480 0.0752 0.0516 0.0611 

 (0.0483) (0.0482) (0.0835) (0.0509) (0.0473) (0.0511) (0.0501) 

Medicaid Exp*SO2-39w-Sh(q2) 0.120 0.139 -0.0583 0.122 0.145 0.121 0.132 

 (0.0934) (0.104) (0.170) (0.0980) (0.108) (0.0917) (0.103) 

Medicaid Exp*SO2-39w-Sh(q4) 0.0993* 0.109** 3.97e-05 0.102* 0.116** 0.102* 0.103* 

 (0.0534) (0.0494) (0.0709) (0.0567) (0.0514) (0.0551) (0.0545) 

Medicaid Exp*SO2-39w-Sh(q5) 0.106** 0.219** 0.0273 0.121** 0.290*** 0.103** 0.199** 

 (0.0469) (0.0956) (0.0740) (0.0485) (0.0926) (0.0500) (0.0860) 

SO2-39w-Sh(q1) -0.0773 -0.115** 0.0218 -0.0720 -0.115** -0.0773 -0.108** 

 (0.0498) (0.0500) (0.0840) (0.0506) (0.0440) (0.0530) (0.0516) 

SO2-39w-Sh(q2) -0.139 -0.193** 0.0888 -0.134 -0.194** -0.139 -0.183* 

 (0.0866) (0.0945) (0.177) (0.0869) (0.0905) (0.0883) (0.0968) 

SO2-39w-Sh(q4) -0.135*** -0.187*** -0.000405 -0.133*** -0.190*** -0.138*** -0.183*** 

 (0.0454) (0.0295) (0.0760) (0.0462) (0.0279) (0.0463) (0.0302) 

SO2-39w-Sh(q5) -0.148*** -0.286** -0.0493 -0.159*** -0.355*** -0.139*** -0.265*** 

  (0.0440) (0.111) (0.0805) (0.0429) (0.107) (0.0483) (0.0925) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Nlbw/w , Nsga/w, and Nptb/w  

correspond to the number of non-low birthweight (birthweight>2500g), non-small for gestational age (birthweight > P10) where P10 is the 10th 
percentile of birthweight computed for every gestational age-gender-maternal race, and non-preterm birth (gestational age>=37 weeks) per thousand 

woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. Low (High) Baseline SO2 corresponds to counties in  the 

bottom (top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  
39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of 

SO2. The third quintile is the omitted category. Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the current 

year or has been expanded in the past. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three categories 
of maternal race were used (white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins), the unemployment rate 

during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, 

Highschool dropout, and unmarried). newborn-level observations collapsed into cells by county-week-year-race. All regressions are weighted by 
the number of women 15-44 yrs. old per county-race-year.  Standard errors are clustered at the state level. Standard errors in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1.   
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Table 2.8: Robustness tests for Medicaid’s expansion impact on the effect of SO2 on fetal death. 

 

  (1) (2) (3) (4) (5) (6) (7) 

  FR FR FR FR FR FR FR 

SO2 Balanced panel No No No No Yes Yes Yes 

States Treated All All All All All All 

Het effects SO2 q4-q5-by-states No Yes No No No No No 

Interact SO2-Goverm Transfers No No Yes No No No No 

Interact Temperature bins* ME No No No Yes No No No 

Het effects SO2-q4-q5-by-year No No No No No Yes No 

Trends in SO2  No No No No No No Yes 

Cells 49,877 86,550 85,940 86,550 42,108 42,108 42,108 

R-squared 0.540 0.638 0.637 0.638 0.666 0.667 0.666 

Medicaid Exp*SO2-39w-Sh(q1) 0.0544 0.0565 -0.00623 0.0217 0.0640 0.0686 0.0699 

 (0.0689) (0.0486) (0.0640) (0.0378) (0.104) (0.118) (0.120) 

Medicaid Exp*SO2-39w-Sh(q2) 0.0742 0.0981 0.108 0.106 -0.0123 -0.0377 -0.0219 

 (0.134) (0.0872) (0.119) (0.0814) (0.178) (0.216) (0.210) 

Medicaid Exp*SO2-39w-Sh(q4) 0.163** 0.239*** 0.0719 0.0418 0.205** -0.0500 0.124 

 (0.0602) (0.0428) (0.0864) (0.0475) (0.0765) (0.157) (0.138) 

Medicaid Exp*SO2-39w-Sh(q5) 0.254** 0.230 0.258** 0.0678 0.449** 0.464* 0.332* 

 (0.101) (0.149) (0.116) (0.0962) (0.180) (0.239) (0.171) 

SO2-39w-Sh(q1) -0.0753 -0.0975* -0.0900 -0.0639 -0.161 -0.161 -0.170 

 (0.0605) (0.0561) (0.0749) (0.0388) (0.128) (0.134) (0.123) 

SO2-39w-Sh(q2) -0.124 -0.153** -0.0904 -0.156*** -0.132 -0.115 -0.165 

 (0.0743) (0.0667) (0.0904) (0.0516) (0.200) (0.220) (0.199) 

SO2-39w-Sh(q4) -0.170***  -0.194*** -0.126*** -0.365***  -0.458*** 

 (0.0420)  (0.0635) (0.0328) (0.0798)  (0.107) 

SO2-39w-Sh(q5) -0.270**  -0.320* -0.153* -0.527**  -0.566*** 

 (0.122)  (0.165) (0.0873) (0.196)  (0.193) 
 Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. FR (fertility rate) = 1000*(N live 

birth/ N women 15-44) by county and week-year of conception cells. The balanced panel corresponds to counties for which the fraction of missing 
in SO2 was less than 50% for every week-year during 1981-1991. SO2-39w-Sh (q j) corresponds to the fraction of days, from a 39-week period 

started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third 

quintile is the omitted category. Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has 
been expanded in the past.  All regressions include county-year FE, county-Quarter FE, and month FE.   Controls included:  Temperature-39w(bins), 

precipitation-39w(bins), and the unemployment rate during the first trimester of pregnancy. Government transfers correspond to the county’s 

transfer payments excluding medical care and supplemental security income divided by the population of 64yrs old or younger.  For model (7), 
separate trends were allowed for each of the quintiles of SO2 (q1,q2,q4,q5). Regressions were weighted by the number of women of reproductive 

age in each county-year. Standard errors are clustered at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 

 

 

 

 

 

 

 

 

 



 

 

117 

 

 

 

Table 2.9: Robustness tests for Medicaid’s expansion impact on the effect of SO2 on the number 

of non-low birthweight infants. 
 

  (1) (2) (3) (4) (5) (6) (7) 

  Nlbw/w Nlbw/w Nlbw/w Nlbw/w Nlbw/w Nlbw/w Nlbw/w 

SO2-Balanced panel No No No No Yes Yes Yes 

States Treated All All All All All All 

Het effects SO2 q4-q5-by-states No Yes No No No No No 

Interact SO2-Goverm Transfers No No Yes No No No No 

Interact Temperature bins* ME No No No Yes No No No 

Het effects SO2-q4-q5-by-year No No No No No Yes No 

Trends in SO2  No No No No No No Yes 

Cells 100,125 343,023 340,775 343,023 233,366 233,366 233,366 

R-squared 0.653 0.652 0.651 0.652 0.677 0.677 0.677 

Medicaid Exp*SO2-39w-Sh(q1) 0.0854 0.0488 -0.00797 0.0666** 0.00231 0.0135 -0.00232 

 (0.0914) (0.0587) (0.0510) (0.0287) (0.0888) (0.0905) (0.0927) 

Medicaid Exp*SO2-39w-Sh(q2) 0.00797 0.129 0.100 0.170** -0.0188 -0.0134 -0.0111 

 (0.150) (0.0901) (0.103) (0.0756) (0.164) (0.177) (0.180) 

Medicaid Exp*SO2-39w-Sh(q4) 0.140* 0.167** 0.0575 0.0819* 0.106 -0.00930 0.0467 

 (0.0789) (0.0696) (0.0529) (0.0485) (0.101) (0.129) (0.122) 

Medicaid Exp*SO2-39w-Sh(q5) 0.139** 0.0801 0.0963* -0.00712 0.0906 -0.0118 0.0214 

 (0.0504) (0.0582) (0.0551) (0.0449) (0.0593) (0.0678) (0.0734) 

SO2-39w-Sh(q1) -0.0322 -0.0681 -0.121** -0.0893*** -0.0474 -0.0554 -0.0549 

 (0.0895) (0.0597) (0.0512) (0.0222) (0.0943) (0.0951) (0.0928) 

SO2-39w-Sh(q2) -0.0192 -0.142 -0.168* -0.187*** -0.0181 -0.0340 -0.0353 

 (0.175) (0.0855) (0.0917) (0.0592) (0.173) (0.184) (0.172) 

SO2-39w-Sh(q4) -0.127  -0.167*** -0.119*** -0.151  -0.200* 

 (0.0797)  (0.0493) (0.0359) (0.0979)  (0.103) 

SO2-39w-Sh(q5) -0.119*  -0.127** -0.0390 -0.133**  -0.166** 

 (0.0587)  (0.0530) (0.0385) (0.0587)  (0.0629) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Nlbw/w , Nsga/w, and Nptb/w  
correspond to the number of non-low birthweight (birthweight>2500g), non-small for gestational age (birthweight > P10) where P10 is the 10th 

percentile of birthweight computed for every gestational age-gender-maternal race, and non-preterm birth (gestational age>=37 weeks) per thousand 

woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. Low (High) Baseline SO2 corresponds to counties in  the 
bottom (top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-39w-Sh(q j) corresponds to the fraction of days, from a  

39-week period started at the week of conception, in which the county’s SO2 concentration lies in the j-th quintile of national daily distribution of 

SO2. The third quintile is the omitted category. Medicaid Exp is a dummy variable at the state-year level =1 if Medicaid is expanded in the current 
year or has been expanded in the past. All regressions include county-year-race FE, county-Quarter-race FE, and month-race FE. Three categories 

of maternal race were used (white, black, and other).  Controls included:  Temperature-39w(bins), precipitation-39w(bins), the unemployment rate 

during the first trimester of pregnancy, and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, 
Highschool dropout, and unmarried). newborn-level observations collapsed into cells by county-week-year-race. Government transfers correspond 

to the county’s transfer payments excluding medical care and supplemental security income divided by the population of 64yrs old or younger.  For 

model (7), separate trends were allowed for each of the quintiles of SO2 (q1,q2,q4,q5). All regressions are weighted by the number of women 15-
44 yrs. old per county-race-year.  Standard errors are clustered at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 2.10: Effect of simulated eligibility for Medicaid on the effect of SO2 on the number of 

non-low birthweight infants. 

 

  (1) (2) (3) (4) (5) 

  Nlbw/w Nlbw/w Nlbw/w Nlbw/w Nlbw/w 

SO2 Baseline All Low High All All 

Race All All All White Black 

Mean (Y) 1.363 1.386 1.342 0.977 1.540 

Cells 343,023 160,124 182,899 161,102 103,494 

R-squared 0.652 0.643 0.623 0.722 0.440 

I(SEM>𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q1) 0.137 0.0443 0.563 0.204 -1.167 

 (0.719) (0.998) (0.886) (0.731) (1.635) 

I(SEM>𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q2) 0.311 0.354 0.382 0.377 -0.341 

 (0.558) (0.745) (0.961) (0.546) (1.254) 

I(SEM>𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q4) 0.421 0.248 0.853 0.637 -1.701 

 (0.700) (0.964) (0.924) (0.709) (1.692) 

I(SEM>𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q5) 0.0188 1.016 -0.00186 0.168 -1.349 

 (0.825) (0.837) (0.924) (0.831) (0.984) 

I(SEM<𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q1) 0.279 -0.155 0.522 0.200 1.769 

 (0.732) (0.722) (0.665) (0.698) (2.235) 

I(SEM<𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q2) -0.182 -0.709 0.937 -0.269 1.674 

 (0.712) (0.985) (0.957) (0.747) (1.407) 

I(SEM<𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑠̃|*SO2-39w-Sh(q4) -1.097 -2.228** 0.131 -1.080 -1.934 

 (0.747) (0.949) (0.720) (0.756) (1.991) 

I(SEM<𝑆𝐸𝑀𝑠̃)*|SEM-𝑆𝐸𝑀𝑆̃|*SO2-39w-Sh(q5) -1.916*** -1.516 -1.557*** -1.576*** 0.805 

 (0.481) (1.260) (0.530) (0.472) (1.633) 

SO2-39w-Sh(q1) -0.0376 -0.0500 -0.0443 -0.0261 -0.0546 

 (0.0324) (0.0483) (0.0460) (0.0264) (0.0884) 

SO2-39w-Sh(q2) -0.0321 -0.0637 0.0174 -0.0421 0.0103 

 (0.0473) (0.0600) (0.0504) (0.0409) (0.101) 

SO2-39w-Sh(q4) -0.0286 -0.0399 -0.0119 -0.0409 0.120 

 (0.0394) (0.0542) (0.0416) (0.0344) (0.0984) 

SO2-39w-Sh(q5) -0.0166 -0.0643 0.00389 -0.0130 -0.0665 

  (0.0289) (0.0619) (0.0244) (0.0286) (0.0649) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Nlbw/w corresponds to the number 

of non-low birthweight (birthweight>2500g per thousand woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. 

Low (High) Baseline SO2 corresponds to counties in the bottom (top) 5 deciles of SO2 concentration during the first two years in the sample. SO2-

39w-Sh(q j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in which the county’s SO2 concentration 

lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. SEM corresponds to simulated eligibility for 

Medicaid, and 𝑆𝐸𝑀̃𝑠 corresponds to the median simulated eligibility for Medicaid in state s. All regressions include county-year-race FE, county-

Quarter-race FE, and month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  Temperature-
39w(bins), precipitation-39w(bins), the unemployment rate during the first trimester of pregnancy, and a vector of demographics (newborn’s 

gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). newborn-level observations collapsed into cells 

by county-week-year-race. All regressions are weighted by the number of women 15-44 yrs. old per county-race-year.  Standard errors are clustered 
at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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Table 2.11: Medicaid’s expansion impact on the effect of SO2 on fetal death by race. 

 

  
(1) 

FR 

(2) 

FR 

(3) 

FR 

(4) 

FR 

Maternal race White Black White Black 

Cells 161,155 103,632 161,155 103,632 

Mean Y 1.011 1.672 1.011 1.672 

R-squared 0.732 0.465 0.732 0.465 

Medicaid Exp*SO2-39w-Sh(q1)   0.0531 0.183 

   (0.0494) (0.1130) 

Medicaid Exp*SO2-39w-Sh(q2)   0.0375 0.056 

   (0.0771) (0.1650) 

Medicaid Exp*SO2-39w-Sh(q4)   0.0442 0.314* 

   (0.0556) (0.1670) 

Medicaid Exp*SO2-39w-Sh(q5)   0.0918** 0.0203 

   (0.0382) (0.1630) 

SO2-39w-Sh(q1) -0.0183 -0.0535 -0.0653 -0.218* 

 (0.0220) (0.0743) (0.0468) (0.1240) 

SO2-39w-Sh(q2) -0.0555 0.00701 -0.0902 -0.039 

 (0.0476) (0.0980) (0.0696) (0.1810) 

SO2-39w-Sh(q4) -0.0682** 0.0174 -0.109** -0.272 

 (0.0319) (0.0836) (0.0505) (0.1780) 

SO2-39w-Sh(q5) -0.0523* -0.102* -0.139*** -0.117 

  (0.0279) (0.0575) (0.0360) (0.1680) 

Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. The dependent variable is FR (fertility 
rate) = 1000*(N live birth/ N women 15-44) by county, race and week-year of conception cells. Model was estimated using all counties with 

available SO2 data. SO2-39w-Sh(q j) corresponds to the fraction of days, from a 39-week period started at the week of conception, in which the 

county’s SO2 concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. Medicaid Exp is 
a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past.  All regressions include 

county-year FE, county-Quarter FE, and month FE.   Controls included:  Temperature-39w(bins), precipitation-39w(bins), and the unemployment 

rate during the first trimester of pregnancy. Regressions were weighted by the number of women of reproductive age in each county-year. Standard 
errors are clustered at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 2.12: Medicaid’s expansion impact on the effect of SO2 on the number of infants born with 

non-adverse outcomes by race. 

 

  (1) (2) (3) (4) (5) (6) 

 Nlbw/w Nlbw/w Nsga/w Nsga/w Nptb/w Nptb/w 

Maternal race White Black White Black White Black 

Cells 161,102 103,500 161,102 103,500 161,102 103,500 

Mean Y 0.977 1.540 0.912 1.522 0.964 1.501 

R-squared 0.721 0.440 0.719 0.450 0.699 0.423 

Medicaid Exp*SO2-39w-Sh(q1) 0.0657 0.139 0.0560 0.158 0.0624 0.139 

 (0.0439) (0.0931) (0.0473) (0.0984) (0.0431) (0.109) 

Medicaid Exp*SO2-39w-Sh(q2) 0.0665 0.0905 0.0722 0.0703 0.0641 0.118 

 (0.0705) (0.145) (0.0754) (0.142) (0.0653) (0.185) 

Medicaid Exp*SO2-39w-Sh(q4) 0.0592 0.268** 0.0586 0.299** 0.0530 0.327** 

 (0.0495) (0.121) (0.0511) (0.135) (0.0501) (0.133) 

Medicaid Exp*SO2-39w-Sh(q5) 0.0982** 0.0226 0.111*** 0.0387 0.0973** 0.00336 

 (0.0370) (0.138) (0.0373) (0.148) (0.0369) (0.158) 

SO2-39w-Sh(q1) -0.0770* -0.160* -0.0648 -0.182* -0.0754* -0.163 

 (0.0400) (0.0879) (0.0409) (0.100) (0.0405) (0.112) 

SO2-39w-Sh(q2) -0.103 -0.0423 -0.0979 -0.0233 -0.0985 -0.0855 

 (0.0629) (0.150) (0.0618) (0.140) (0.0603) (0.192) 

SO2-39w-Sh(q4) -0.112*** -0.202* -0.102** -0.243* -0.108** -0.262** 

 (0.0398) (0.113) (0.0390) (0.133) (0.0401) (0.120) 

SO2-39w-Sh(q5) -0.135*** -0.0912 -0.143*** -0.105 -0.130*** -0.0705 

  (0.0339) (0.143) (0.0305) (0.150) (0.0338) (0.165) 
Notes: Author’s calculations from CDC public birth files 1982-1988 and restricted-use birth files 1989-1991. Nlbw/w , Nsga/w, and Nptb/w  
correspond to the number of non-low birthweight (birthweight>2500g), non-small for gestational age (birthweight > P10) where P10 is the 10th 

percentile of birthweight computed for every gestational age-gender-maternal race, and non-preterm birth (gestational age>=37 weeks) per thousand 

woman of reproductive age (15-44 yrs. old) from the respective race, county, and year. All counties with SO2 data were included in the sample. 
SO2-39w-Sh(q j) corresponds to the fraction of days, from a  39-week period started at the week of conception, in which the county’s SO2 

concentration lies in the j-th quintile of national daily distribution of SO2. The third quintile is the omitted category. Medicaid Exp is a dummy 

variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past. All regressions include county-year-
race FE, county-Quarter-race FE, and month-race FE. Three categories of maternal race were used (white, black, and other).  Controls included:  

Temperature-39w(bins), precipitation-39w(bins), the unemployment rate during the first trimester of pregnancy, and a vector of demographics 

(newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). newborn-level observations 
collapsed into cells by county-week-year-race. All regressions are weighted by the number of women 15-44 yrs. old per county-race-year.  Standard 

errors are clustered at the state level. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.   
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2.11 Methodological Appendix C:  Interaction terms in panel data models 

 

This methodological appendix shows the analytical decomposition of the interaction term of two 

continuous variables in a panel data model. The baseline model consists of a two-way fixed effects 

balanced panel. 

 

Suppose we estimate the following linear regression model: 

 

𝑌𝑖𝑡 = 𝜇𝑖 + 𝜇𝑡 + 𝛿𝑀𝑖𝑡 + 𝜃𝑃𝑖𝑡 + 𝜙𝑀𝑖𝑡𝑃𝑖𝑡 + 𝑢𝑖𝑡       [𝐶1] 

Where 𝑌𝑖𝑡 is a health outcome in county i and period t.   Medicaid (M) and Pollution (P) are two 

continuous variables and can be accurately described by a mean, a trend, and a shock as 

equations [C2] and [C3] show.  

 

𝑀𝑖𝑡 = 𝑀̅𝑖 + 𝑀̅𝑡 + 𝑚𝑖𝑡 [𝐶2]  

  𝑃𝑖𝑡 = 𝑃̅𝑖 + 𝑃̅𝑡 + 𝑝𝑖𝑡 [𝐶3] 

 

Suppose the air pollution and Medicaid shocks are orthogonal:     𝐶𝑜𝑣(𝑚𝑖𝑡, 𝑝𝑖𝑡) = 0  [𝐶4]  

 

Also, since the panel is balanced, we expect: 

 𝐶𝑜𝑣(𝑀̅𝑖, 𝑀̅𝑡) = 0, 𝐶𝑜𝑣(𝑃̅𝑖, 𝑃̅𝑡) = 0, 𝐶𝑜𝑣(𝑀̅𝑖, 𝑃̅𝑡) = 0,    𝐶𝑜𝑣(𝑃̅𝑖, 𝑀̅𝑡) = 0  [𝐶5] 

 

Using [C2] and [C3], the interaction term can be expressed as: 
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𝑀𝑃𝑖𝑡 = 𝑀𝑖𝑡 ∗ 𝑃𝑖𝑡

= 𝑀̅𝑖𝑃̅𝑖 + 𝑀̅𝑡𝑃̅𝑡 + 𝑀̅𝑖𝑃̅𝑡 + 𝑀̅𝑡𝑃̅𝑖 + 𝑝𝑖𝑡𝑀̅𝑖 + 𝑝𝑖𝑡𝑀̅𝑡 + 𝑚𝑖𝑡𝑃̅𝑖 + 𝑚𝑖𝑡𝑃̅𝑡 + 𝑚𝑖𝑡𝑝𝑖𝑡 [𝐶6] 

 

The first and second terms in [C6] are absorbed by county (𝜇𝑖) and time (𝜇𝑡)  fixed effects, 

respectively.   

 

The third and fourth term will converge to zero by [C5]. Hence, after adding county and fixed 

effects to the model, the remaining terms in the interaction are: 

 

𝑚𝑝𝑖𝑡  = 𝑝𝑖𝑡𝑀̅𝑖 + 𝑝𝑖𝑡𝑀̅𝑡 + 𝑚𝑖𝑡𝑃̅𝑖 + 𝑚𝑖𝑡𝑃̅𝑡 + 𝑝𝑖𝑡𝑚𝑖𝑡  [𝐶7] 

 

In this setting, the term  𝑚𝑝𝑖𝑡 is composed of five different terms. Therefore, its interpretation 

should be done carefully depending on the objective of the analysis.  

 

If the objective is describing heterogeneity of pollution estimates, it would be enough to remove 

the third and fourth terms in [C7]. In the other hand, if the objective is testing if Medicaid changed 

pollution’s effects, it would be better to keep only the last term in [C7] 

 

Isolating this last term can be done by adding heterogeneous effects across both panel dimensions: 

(1) The terms 𝑝𝑖𝑡𝑀̅𝑖 and 𝑝𝑖𝑡𝑀̅𝑡 can be removed by estimating heterogeneous effects of  𝑝𝑖𝑡 across 

counties and time, respectively. (2) the terms 𝑚𝑖𝑡𝑃̅𝑖 𝑎𝑛𝑑 𝑚𝑖𝑡𝑃̅𝑡 can be removed from the 

interaction by estimating heterogeneous effects of Medicaid across counties and time. 

Consequently, it would be sufficient to augment the regression model in [C1] to: 
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𝑦𝑖𝑡 = 𝜇𝑖 + 𝜇𝑡 + 𝛿𝑖𝑀𝑖𝑡  + 𝛿𝑡𝑀𝑖𝑡 + 𝜃𝑖𝑃𝑖𝑡 + 𝜃𝑡𝑃𝑖𝑡 + 𝜙𝑀𝑃𝑖𝑡 + 𝑣𝑖𝑡  [𝐶8]  

Now, once the term 𝑝𝑖𝑡𝑚𝑖𝑡 has been isolated in [C8], the challenge is its interpretation. Both 𝑚𝑖𝑡 

and 𝑝𝑖𝑡 can be either positive or negative. In consequence, there are four different cases embedded 

into a single coefficient: 

 

a) 𝑚𝑖𝑡 > 0 , 𝑝𝑖𝑡 > 0  

b) 𝑚𝑖𝑡 > 0 , 𝑝𝑖𝑡 < 0 

c) 𝑚𝑖𝑡 < 0 , 𝑝𝑖𝑡 < 0  

d) 𝑚𝑖𝑡 < 0 , 𝑝𝑖𝑡 > 0 

 

The interpretation of this term is not straightforward. There are many possible paths to disentangle 

and interpret this term; a clever one is to make one of the variables categorical. In this paper, 

simulated eligibility for Medicaid is turned into a binary variable; hence, 𝑚𝑖𝑡 can only take on two 

values for each county (before and after the expansion of Medicaid). Doing so,  𝜙, the coefficient 

of the interaction term, can be interpreted as the change in pollution’s estimate when Medicaid 

expands. 

 

A final remark: Turning one of the variables (M or P) into binary in [C1] does not necessarily grant 

a causal interpretation.  The single interaction term’s estimate in [C1] may be driven by either of 

the first four terms in [C7]. Ultimately, the researcher must decide which terms they want to keep 

in the interaction and interpret the estimate accordingly.  
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2.12 Methodological Appendix D: Modifying interaction terms in panel data models to 

guarantee a causal interpretation. 

 

This methodological appendix informs the empirical strategy in models [2.1] and [2.2]. This 

framework is still a simplified version of those models because it omits the monthly nationwide 

seasonal fixed effects, the race dimension in the fixed effects, and the non-linear formulation in 

the effects of pollution; however, including them does not change the conclusions.  

 

Objective: Derive, analytically, the residual variation contained in the interaction term when 

equations [2.1] and [2.2] are estimated to verify that only the plausibly exogenous variation in 

pollution is used to estimate the interaction term. This Methodological appendix builds upon 

Methodological appendix C.  

 

Starting from the model in [C1]: 

i. Suppose the outcome variable and pollution are measured at the county level with a weekly 

frequency. 

ii. Medicaid is Measured as a binary variable, 𝐷𝑠𝑦, that varies at the state-year level.  

 

In order to isolate the plausibly exogenous variation in pollution: 

 

iii. Use county-year (𝜇𝑐𝑦) instead of county (𝜇𝑐) and year (𝜇𝑦) fixed effects.  

iv. Add by-county-quarter seasonal effects to the model. 
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 Hence the new model, analogous to models [2.1] and [2.2] is: 

 

𝑌𝑐𝑤𝑦 = 𝜇𝑐𝑦 + 𝜇𝑐𝑄 + 𝜃𝑃𝑐𝑤𝑦 + 𝜙𝐷𝑠𝑦𝑃𝑐𝑤𝑦 + 𝑢𝑐𝑤𝑦     [𝐷1] 

Notice that Medicaid cannot be estimated in this model because it varies at the state-year level and 

we have imposed county-year fixed effects. 

 

Additionally, suppose that Medicaid (M) and Pollution (P) are two continuous variables and the 

identifying assumption for a causal interpretation of the estimates rest of the exogeneity of 𝑑𝑠𝑦, 

and 𝑝𝑐𝑤𝑦  in equations [D2] and [D3] below.  The term 𝑃̅𝐶𝑄 denotes seasonal effects by county-

quarter. 

𝐷𝑠𝑦 = 𝐷̅𝑠 + 𝐷̅𝑦 + 𝑑𝑠𝑦 [𝐷2]  

  𝑃𝑐𝑤𝑦 = 𝑃̅𝑐 + 𝑃̅𝑦 + 𝑃̅𝑐𝑄 + 𝑝𝑐𝑤𝑦 [𝐷3] 

 

Now, strictly from an algebraic point of view, equations [𝐷2] and [𝐷3] can be represented more 

flexibly with the following equations: 

 

𝐷𝑠𝑦 = 𝐷̅𝑠𝑦 + 𝑑𝑠𝑦 [𝐷4]  

  𝑃𝑐𝑤𝑦 = 𝑃̅𝑐𝑦 + 𝑃̅𝑐𝑄 + 𝑝𝑐𝑤𝑦 [𝐷5] 

 

Hence, the interaction term, the product of  [𝐷4] and  [𝐷5], corresponds to: 

 

𝐷𝑃𝑐𝑤𝑦 = 𝐷𝑠𝑦 ∗ 𝑃𝑐𝑤𝑦 = 𝑃̅𝑐𝑦𝐷̅𝑠𝑦 + 𝑃̅𝑐𝑄𝐷̅𝑠𝑦 + 𝑝𝑐𝑤𝑦𝐷̅𝑠𝑦 [𝐷6] 

 



 

 

126 

 

The first term in [D6] is absorbed by 𝜇𝑐𝑦.  

 

If the local seasonality in pollution is not affected by Medicaid, as has been implicitly assumed, 

the second term will be absorbed by the county-quarter seasonal fixed effects.  

 

Thus, for a large enough time series, so that 𝑃̅𝑐𝑄 ⟶ 𝜇𝑐𝑄 , we should expect:  

 

(𝑃̅𝑐𝑄𝐷̅𝑠𝑦 − 𝑃̅𝑐𝑄) ⟶ 0 

 

Nevertheless, the second term in [D6] can be fully removed by adding interaction terms between 

the county-quarter seasonal effects and  𝐷𝑠𝑦. In this paper, adding interaction terms between 

seasonal effects and Medicaid does not change the results, but it may be relevant in other cases.   

 

In conclusion, only one term remains in the interaction term in models [2.1] and [2.2] and 

corresponds to the interaction of two plausibly exogenous sources of variation.  

  

𝐷𝑃𝑐𝑤𝑦 = 𝑝𝑐𝑤𝑦𝐷̅𝑠𝑦 [𝐷7] 

 

This variation corresponds to the changes in air pollution across weeks of conception within the 

same county and year interacted with a binary variable (Medicaid’s expansion).  In this model, 𝜙 

is identified by comparing the average effect of pollution when 𝐷̅𝑠𝑦 = 0 (pre-expansion) vs 𝐷̅𝑠𝑦 =

1 (post-expansion). 
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2.13 Methodological Appendix E: Refining the estimation of interaction terms in panel data 

models 

 

This methodological appendix explains why it is desirable to allow for heterogeneous effects of 

air pollution across states in models [2.1] and [2.2].  

 

Given the staggered nature of Medicaid’s expansion, there is one last caveat with model [D1]. The 

coefficient of the interaction, 𝜙, will not necessarily converge to the desire estimand if Medicaid’s 

expansion has heterogeneous effects across states. Consider the following, over-simplified, 

example:  Suppose we have a balanced sample of two counties belonging to different states and 

ten periods.  Medicaid’s expansion happened in year 4 in county A and year 6 in county  B. 

Suppose that air pollution’s effects  before the expansion were  0.5 in county A and 0.7 in county 

B. After the expansion, they decreased to 0.3 and 0.4  in county A and  B, respectively. Hence, the 

effects were 𝜏𝐴 = −0.2 , 𝜏𝐵 = −0.3 

 

For ease of explanation, suppose that the total number of births in county A and B during the 10 

years is the same in both counties, and it was not affected by Medicaid’s expansion. In 

consequence, the average effect of Medicaid expansion on the air pollution-birth outcome 

relationship is 𝜙 =
1

2
(𝜏𝐴 + 𝜏𝐵) = −0.25. However, since model [D1] identifies the coefficient of 

the interaction from the comparison of the average effects of air pollution before and after the 

expansion, the estimate94 would be 𝜙̂ = −0.2875.  

 
94 Notice that the weight of county A (B) in the pre-period is 3/8 (5/8) and 5/8 (3/8) in the post period. Then, the average effect of air pollution 

was (3/8)*0.5+(5/8)*0.7=0.625 in the pre-period, and (5/8)*0.3+(3/8)*0.4=0.3375 in the post-period. Thus 𝜙̂ = −0.2875 
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The true estimate, 𝜙 = −0.25, can be recovered by allowing heterogeneous effects of air pollution 

across states (𝜃𝒔) in [D1]. The model would be: 

 

𝑌𝑐𝑤𝑦 = 𝜇𝑐𝑦 + 𝜇𝑐𝑄 + 𝜃𝒔𝑃𝑐𝑤𝑦 + 𝜙𝐷𝑠𝑦𝑃𝑐𝑤𝑦 + 𝑢𝑐𝑤𝑦     [𝐸1] 

One remark: if the effect of Medicaid on pollution’s health effect was homogeneous (i.e., 𝜏𝐴 =

 𝜏𝐵 = −0.25), we would not need heterogeneous effects of pollution across states to recover 𝜌 =

−0.25. 

 

Finally, in [D1] 𝜙 is identified by comparing the average effect of pollution when 𝐷̅𝑠𝑦 = 0 (pre-

expansion) vs 𝐷̅𝑠𝑦 = 1 (post-expansion). However, some states did not experience an expansion 

throughout the period analyzed. The control states had expanded Medicaid before 1981, for them  

𝐷𝑠𝑦 = 1 ∀𝑦.  If we want to estimate 𝜙 using only the variation from the treated states before and 

after the expansion, we need to use model [𝐸1] or exclude the control states from the sample. 
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2.14 Methodological Appendix F: Livebirth bias in health care’s impact 

 

This methodological appendix is a continuation of Methodological Appendix B. 

 

The conceptual model in Appendix B can be used to analyze how the interaction term between 

Medicaid’s expansion and pollution in [2.2] is affected by sample selection. For this, we need to 

take the derivative of 
𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
 with respect to Medicaid’s expansion (ME):  

 

𝜕 (
𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
)

𝜕𝑀𝐸
=

1

𝐿𝐵2
(

𝜕 𝜏𝐿𝐵
𝑓𝑑

𝜕𝑀𝐸
(𝑙𝑏𝑤 − 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 + 𝜏𝑙𝑏𝑤
𝑓𝑑

) + (
𝜕 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤

𝜕𝑀𝐸
−

𝜕𝜏𝑙𝑏𝑤
𝑓𝑑

𝜕𝑀𝐸
) (𝐿𝐵 + 𝜏𝐿𝐵

𝑓𝑑
)

+ 2
𝜕 𝜏𝐿𝐵

𝑓𝑑

𝜕𝑀𝐸
(

𝑑𝑙𝑏𝑤𝑟

𝑑𝑃
)  (𝐿𝐵))  [𝐹1] 

 

We can observe in [F1] that if air pollution shocks cause fetal deaths ( 𝜏𝑙𝑏𝑤
𝑓𝑑

> 0 or 𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

> 0), 

interpreting the interaction term in [1.2] is challenging. 

 

The interaction term in model [2.1] gives us the impact of Medicaid expansion on pollution’s effect 

on fetal deaths  
𝜕 𝜏𝐿𝐵

𝑓𝑑

𝜕𝑀𝐸
.  On the contrary, the interaction term in model [2.2] is a combination of 

𝜕 𝜏𝐿𝐵
𝑓𝑑

𝜕𝑀𝐸
, 

𝜕 𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤

𝜕𝑀𝐸
, 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤 , 𝑎𝑛𝑑 𝜏𝑙𝑏𝑤
𝑓𝑑

. 
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Ideally, we would want to isolate the impact of Medicaid on pollution effects through the intensive 

margin, 
𝜕 𝜏𝑛𝑙𝑏𝑤

𝑙𝑏𝑤

𝜕𝑀𝐸
. We can get close to this goal by using the number of non-low birthweight infants 

-as opposed to the low birthweight rate- as the outcome variable in model [2.2].  

 

Thus, we can take the derivative of 
𝑑 𝑛𝑙𝑏𝑤

𝑑𝑃
 with respect to Medicaid’s expansion. 

 

𝜕 (
𝜕 𝑛𝑙𝑏𝑤

𝜕𝑃
)

𝜕 𝑀𝑒𝑑 𝐸𝑥𝑝
= −

𝜕𝜏𝑛𝑙𝑏𝑤
𝑓𝑑

𝜕 𝑀𝐸
−

𝜕𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤

𝜕 𝑀𝐸
   [𝐹2] 

 

If  
𝜕𝜏𝑛𝑙𝑏𝑤

𝑓𝑑

𝜕 𝑀𝐸
 in [F2] is close to zero, we would effectively capture Medicaid’s impacts through the 

intensive margin.   

 

If  
𝜕𝜏𝑛𝑙𝑏𝑤

𝑓𝑑

𝜕 𝑀𝐸
 in [F2] were similar to 

𝜕𝜏𝑛𝑙𝑏𝑤
𝑙𝑏𝑤

𝜕 𝑀𝐸
, the interaction term would capture Medicaid’s impacts 

through the extensive and intensive margin; however, the effects of both margins go in the same 

direction.  
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Essay 3 

 

Mitigating the impacts of extreme temperature on birth 

outcomes: Free prenatal care or air conditioning?  

 

3.1 Introduction 

Extreme temperatures during the gestational period have adverse short and long-term 

consequences that vary across socioeconomic factors. Since extreme-heat episodes are becoming 

more frequent due to climate change, understanding the causal mechanisms driving such 

heterogeneity is critical for designing policies that reduce climate change's health impacts cost-

effectively. Besides increasing fetal death (Wilde et al., 2017) and deteriorating maternal health 

(Kim et al., 2021), extreme heat has also been linked to adverse pregnancy outcomes such as 

preterm birth (Basu et al., 2010; Dadvand et al., 2011; Andalón et al., 2016; Smith & Harderman, 

2020), low birth weight (Deschênes et al., 2009; Molina & Saldarriaga, 2017), and infant mortality 

(Banerjee & Maharaj, 2020). Furthermore, it affects economic outcomes in adulthood (Isen et al., 

2017). Importantly, previous research has documented heterogeneous impacts by mothers’ race, 

age, and education (Banerjee &  Maharaj, 2020; Anadalon et al., 2014; Deschênes et al., 2009; 

Basu et al., 2010; Smith & Harderman, 2020). However, the causal mechanisms behind such 

heterogeneity are poorly understood. For example, income, healthcare, access to air conditioning, 

or maternal behavior could be the drivers of such heterogeneity. Unveiling this is essential to 

identifying interventions that effectively mitigate the effects of extreme temperatures (Hsiang et 
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al., 2019) and lessen the health impacts of climate change cost-effectively (Mullins & White, 

2020). 

 

This paper examines and quantifies the extent to which prenatal care and air conditioning mitigate 

the adverse effects of extreme temperatures on birth outcomes in a developed country context. I 

examine the effects empirically using publicly available vital statistics data,  daily temperature and 

rainfall data, spatial-temporal variation in residential air conditioning ownership, and spatial-

temporal policy variation from Medicaid's expansion during the 1980s. This expansion to 

Medicaid gave free access to prenatal health care – and at least one year after birth— to low-

income women who became pregnant. Recent experimental evidence by Shankar et al. (2023) 

suggests that the effects of heat on birth length were partially mitigated in women randomized to 

a comprehensive nutritional supplementation (e.g., vitamins, iron, calcium) program before 

pregnancy in Pakistan. Thus, nutritional supplementation received during prenatal care could 

offset the negative impacts of heat on birth outcomes. 

 

I use spatial-temporal variation in Medicaid’s expansion to estimate its impact on the effect of 

extremely hot and cold days on birth outcomes. I build upon the panel-fixed effects approach 

similar to the one used by Deschênes et al. (2009) to identify the causal impact of extreme weather 

on birth outcomes. Then, I expand the model by adding interaction terms between a binary variable  

to measure Medicaid expansion,95 and each temperature bin— which varies by county of residence 

and week of conception.96 Exposure was measured as the number of days during each trimester 

(i.e., 13-week window) in which the county's daily temperature falls in each bin (<25 F, 25-45 F, 

 
95 This variable varies at the state-year leven and was created by East, Miller, Page & Wherry (2023) 
96 Assumed to be two weeks after the last day of the menstrual period. This date is reported on the birth certificates   
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45-65 F, 65-85 F, and >85 F). The effects of temperature are identified using temporal variation 

in exposure through conception weeks within the same county and year and controlling by county-

week-race fixed effects, in-utero rainfall by trimester, and mothers’ demographics. 

 

To estimate the impact of Air Conditioning (AC) on the temperature-birth outcome damage 

function, I build upon the empirical strategy used by Barreca et al. (2016) to study the impact of 

AC on the temperature-mortality relationship.  I interact exposure to each temperature bin during 

the pregnancy with the state’s mean residential air conditioning ownership rate.  

 

The empirical analysis starts by finding evidence of a negative impact of extreme temperatures on 

birthweight in the US for the 1974-1988 period. As Deschênes et al. (2009) reported for the US 

during the 1972-1988 period, I also found negative impacts of days in the 65-85 F and T>85F 

range during the second and third trimesters. Additionally, I find that extreme cold and heat during 

the first trimester reduce the duration of the pregnancy. This first step sets the base to test if 

increased access to healthcare lessens the impact of extreme temperatures during the prenatal 

period on an infant’s health.  

  

As this paper’s central result, I find that Medicaid’s expansion did not mitigate the effects of 

extreme temperatures during the gestational period on birth outcomes. This result may be relevant 

for other developed countries or urban areas. As a second result, I found that increased access to 

residential air conditioning mitigated the effects of extreme heat on birthweight and gestational 

age.   
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This paper contributes to a growing literature that explores which interventions effectively help 

society adapt to climate change. Previous literature has suggested air conditioning (Barreca et al., 

2016), health care (Mullins & White, 2020; Banerjee & Maharaj, 2020; Cohen & Dechezleprêtre, 

2022), cash transfers (Garg et al., 2020), and access to banks (Burgess et al., 2017)  as strategies 

that effectively lessen the health impacts of extreme temperatures. This paper expands this 

literature by evaluating the effectiveness of health care and air conditioning in mitigating the 

impacts of in-utero temperatures on birth outcomes (birthweight and gestational age) in a 

developed country context.  

 

Banerjee & Maharaj (2020) found that medical care lessens the impacts of extreme heat during the 

gestational period on infant mortality in rural India, but no evidence exists for developed countries. 

The distinction is important because there are multiple channels through which temperature may 

affect health in developing countries (e.g., changes in real income, increased incidence of maternal 

disease, conflicts, or crime). On the other hand, in developed countries, physiological stress is the 

primary mechanism of temperature affecting fetuses’ health, and air conditioning (AC) is more 

widely available. 

 

This paper also explores the types of adverse prenatal shocks that Medicaid mitigates. Previous 

research shows that pregnancy outcomes improved when low-income women gained access to free 

prenatal care through Medicaid (Currie & Gruber, 1996a, 1996b; East et al., 2023; Goodman-

Bacon, 2018). Many types of shocks could cause such poor outcomes (e.g., income, nutrition, 

pollution, temperature, rainfall, maternal disease, or stress). However, previous research has not 

established which of them are mitigated by prenatal care. Based on evidence from a developing 



 

 

135 

 

country, this paper’s result suggests that Medicaid does not mitigate the negative impacts of 

extreme temperatures on birth outcomes. 

 

The remainder of the paper is laid out as follows: Section 3.2 reviews previous research on the 

impacts of in-utero temperatures on pregnancy outcomes and presents the mechanisms through 

which prenatal care and air conditioning could mitigate the health impacts of extreme 

temperatures. Section 3.3 describes the data. Section 3.4 explains the empirical strategy. Section 

3.5 presents the results and robustness tests. Finally, Section 3.6 concludes. 

 

3.2 Background and Conceptual framework. 

This section presents background information regarding the effects of prenatal temperature on 

pregnancy outcomes, as well as the potential impact of healthcare and air conditioning on the 

temperature-birth outcome relationship. First, section 3.2.1 reviews the background information 

about the impacts of in-utero temperature on fertility, fetal death, and birth outcomes. Next, section 

3.2.2 analyzes the potential mechanisms through which prenatal care could impact the effects of 

temperature on birth outcomes. Finally, section 3.2.3 reviews previous research that suggests that 

air conditioning is an effective strategy to mitigate the health impacts of extreme heat. The 

background on Medicaid was presented in section 2.2 (previous chapter). 

 

3.2.1 In-utero temperature and pregnancy outcomes  

Extreme temperatures during conception and in-utero adversely impact short- and long-term 

outcomes. Extreme heat impacts reproductive health (Barreca et al.,2018),  increases fetal death 

(Wilde et al., 2017), and deteriorates maternal health (Kim et al., 2021). Infants’ health is also 
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affected. Extreme temperatures during pregnancy increase the incidence of preterm delivery (Basu 

et al., 2010; Dadvand et al., 2011; Andalón et al., 2016; Smith & Harderman, 2020),  

low birth weight (Deschênes et al., 2009; Andalón et al., 2016; Molina & Saldarriaga, 2017), and 

infant mortality (Banerjee & Maharaj, 2020). Furthermore, these impacts go beyond the infant’s 

health and affect economic outcomes in adulthood (Isen et al., 2017). 

  

Multiple channels could drive these effects. In developed countries, physiological stress is the 

primary concern. In agricultural economies, extreme heat could, in addition, (i) increase the 

likelihood of disease, (ii) decrease real income, and (iii) increase conflicts and crimes. 

Physiological stress is caused by a failure in the body’s thermoregulatory mechanisms. Under 

extreme heat, blood flow is redirected from organs to the skin to keep a normal body temperature 

(Bouchama & Knochel, 2002). Pregnant women are particularly susceptible to extreme 

temperatures because their bodies’ temperature is higher than usual. Animal studies have shown 

that extreme temperatures during the gestational period worsen birth outcomes and can cause 

congenital malformations (Edwards et al.,  2002; Edwards et al., 2003 ). In addition, medical 

research suggests that blood flow to the uterus decreases under extreme temperatures, leading to 

reduced fetal nutrient uptake (Soultanakis-Aligianni, 2003).   

 

In rural areas of the developing world, the relationship between weather and pregnancy outcomes 

is even more complex because the weather can affect health directly through physiological 

channels and indirectly through its effects on crop yields and increased food prices (Banerjee &  

Maharaj, 2020). Furthermore, the effects of temperature on infants’ health may depend on local 

sensitivity to other environmental factors like rainfall and diseases linked to weather, such as 
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malaria (Kudamatsu et al., 2012). Additionally, extreme weather shocks could affect health 

indirectly through increased risk of conflict.97 Extreme temperatures increase the onset of conflicts 

(Burke et al., 2015), and conflict-induced maternal stress may worsen birth outcomes. An 

advantage of this paper is that all these alternative mechanisms through which temperature can 

affect health are not present for the US during the 1980s.  

 

The effects of in-utero temperature on birth outcomes differ over socioeconomic dimensions, but 

the sources of such heterogeneity are poorly understood. In India, the effects are large in rural 

areas but insignificant in urban ones; they are also larger for less educated mothers and in colder 

districts –although imprecisely estimated (Banerjee &  Maharaj, 2020). In Colombia, the effects 

are larger for younger and less educated mothers (Andalon et al., 2014). In the US, the effects of 

extreme heat on birthweight are larger for blacks (Deschênes et al., 2009). Similarly, the impacts 

on preterm delivery are larger for young, black, and Asian mothers in California (Basu et al., 2010) 

and educated black mothers in Minnesota (Smith & Harderman, 2020). Nevertheless, the sources 

of such heterogeneity by race and education are poorly understood. Income, health care, or access 

to air conditioning could be the drivers behind them, among others.   

 

3.2.2  Prenatal care as an adaptation to extreme temperatures. 

The climate-change-driven increase in the frequency of extreme weather has stimulated a growing 

literature exploring the effectiveness of interventions in attenuating the temperature-health 

relationship.    Such adaptation strategies consist of behavioral changes or interventions that reduce 

 
97 From a biological point of view, high temperature affects serotonin neurotransmission in the brain, which makes people prone to aggression 

and violent crimes (Dell et al., 2014). In contrast,  non-biological mechanisms are derived from heat-induced lower economic growth.  Including 
a lower opportunity cost of violence or protest, reduced state capacity to maintain security, higher food prices leading to food riots, and weather-

induced migration (Dell et al., 2014). 
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the impacts of extreme weather events. For example, Mullins and White (2020) find that access to 

primary care services provided by community health centers lessened the heat-mortality 

relationship but did not mitigate the effects of cold in the US through the 60s and 70s. Similarly, 

Garg et al. (2020) find that cash transfers mitigate the effects of same-day temperatures on 

homicides in Mexico. 

 

The effectiveness of interventions in mitigating the health-at-birth impacts of extreme in-utero 

temperatures has yet to be widely studied. The most comprehensive study, to my knowledge, 

comes from Banerjee and Maharab (2020), who found that a community healthcare worker 

program mitigates the impact of extreme temperature on infant mortality in rural India while an 

employment-guarantee program was ineffective in mitigating it. However, there is no previous 

research on the effectiveness of prenatal care in mitigating the effects of temperature in-utero on 

birth outcomes in developed countries. The distinction between developed and developing 

countries is essential because the predominant mechanism in developed countries is physiological. 

In developing countries, indirect effects through real income or increased incidence of disease and 

conflict are also significant (Banerjee &  Maharab, 2020).  

 

Previous evidence suggests that medical attention during prenatal care (nutrition and drug 

prescriptions, immunizations, screening and early diagnosis) could mitigate the physiological 

impact of extreme temperature on birth outcomes. As previously mentioned, extreme temperatures 

are believed to reduce the fetuses’ nutritional uptake (Soultanakis-Aligianni, 2003); Thus, 

nutritional supplementation could counteract this effect. Furthermore, experimental research by 

Shankar et al. (2023) found that the negative impacts of heat on birth length were partially 
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mitigated in women randomized to a comprehensive maternal nutritional supplementation 

program (micronutrients plus balanced energy supplement98), before pregnancy in Pakistan. 

 

Lastly, as discussed in section 2.3 (previous chapter), besides the medical-biological channel, there 

are two potential channels through which increased access to health care could impact the 

temperature-birth outcome relationship. (i) the information channel, and (ii) the optimal response 

channel. Nevertheless, there is no evidence that obstetricians recommended women avoid 

exposure to heat during pregnancy in the US during the 1980s (Hemminki, 1988). The optimal 

response channel is unlikely to apply for temperature because individuals avoid extreme 

temperatures not just to mitigate the possible impacts on health but also to avoid the discomfort 

caused by them. 

 

3.2.3 Air conditioning as an adaptation to extreme heat 

Air conditioning (AC) has been identified as an effective technology to mitigate the impacts of 

extreme heat on health. The seminal paper in this literature found that the diffusion of residential 

air conditioning explains the decline in the temperature-mortality relationship in the US during the 

1960s (Barreca et al., 2016). In a similar line of research, Deschênes and Greenstone (2011) found 

that electricity consumption increased for daily temperatures above 90° F. One extra such day, 

relative to a day in the 50°–60°F range, leads to a 0.4 percent increase in annual consumption in 

the US during 1968-2002. 

 
98 The nutritional supplement consisted of a daily 20 g small quantity-lipid-based nutritional supplement (sqLNS) with 22 micronutrients in amounts 

appropriate for pregnancy and lactation. In addition to the multiple micronutrients and polyunsaturated lipids (linoleic 4.9 g and α-linolenic 0.59 

g), the composition included dried skimmed milk, soybean and peanut extract, sugar, maltodextrin stabilizers, and emulsifiers (Nutriset, Malauney, 

France). An additional lipidbased balanced protein/energy supplement (300 kcal/d; 12% calories from protein and no added micronutrients; 
Nutriset, Maluaney, France) was provided to women with low BMI (≤20) or low gestational weight gain. 
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Both of these findings suggest that households in the US have used air conditioning to mitigate the 

discomfort caused by heat, and its use mitigated the impact of extremely hot days on the mortality 

rate. Therefore, AC could also have mitigated the impact of in-utero heat on birth outcomes. 

Nevertheless, to the best of my knowledge, no previous research has evaluated its effectiveness on 

birth outcomes. 

 

3.3 Data  

The empirical analysis relies on multiple data sources. Section 1.3 (previous chapter) describes the 

sources and methodologies to build the health outcomes and measure temperature and 

precipitation) in-utero. However, in this paper, the study period is 1974-1988. Table 3.1 presents 

the summary statistics for these years. Section 2.4 (previous chapter) describes the measures of 

access to prenatal care. This chapter’s empirical strategy also uses the binary measure of Medicaid 

expansion created by East et al. (2023).   

 

County-level controls proxying for local economic conditions and government transfers were built 

using Bureau of Economic Analysis (BEA) data. The unemployment rate is available at the state 

level with monthly frequency. Per-capita income was taken from the deflated annual county-level 

BEA series. Government transfers were computed using county-year series from the Regional 

Economic Information System (REIS) sourced from the BEA. Per capita government transfers 

were divided into unemployment insurance and non-medical welfare programs. The latter was 

computed excluding government expenditure on medical care and Supplemental Security Income 

(SSI) and dividing by the population 64 years old or younger. Population counts came from the 
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Surveillance, Epidemiology, and End Results Program (SEER) data. Air conditioning ownership 

rates by state, race, and year were computed using decennial Census data and following the 

methodology used by Barreca et al. (2016). For years prior to 1980, linear interpolation was used. 

After 1980, they linearly extrapolated state-year ownership rates between using the annual rate of 

change between 1970 and 1980 censuses  and bounded AC rate ownership at 100%. Finally, I used 

USDA’s 1986 county typology to characterize urban vs. rural counties. Summary statistics are 

presented in Table 3.1. 

 

Figure 3.1 presents the mean birthweight during 1974-1988 with a monthly frequency. Figure 3.2 

summarizes the distribution of in-utero temperature across different samples. Lastly, Figure 3.3 

presents the fraction of households that had access to air conditioning from 1974 to 1988 in the 

US and separately by race. 

 

3.4. Empirical strategy 

This paper’s empirical strategy aims to establish whether healthcare access for low-income 

pregnant women and air conditioning mitigate the effect of in-utero temperature on birth weight. 

To do so, I build upon the strategy proposed by Hsiang, Oliva & Walker (2019), whose framework 

corresponds to the state of the art to identify, empirically, the sources of heterogeneity of 

environmental damages. The following example explains the intuition behind the challenge of 

identifying the causal mechanisms driving heterogeneous environmental damages. Suppose an 

environmental factor, x (e.g., temperature), has heterogeneous effects across a given dimension, z 

(e.g., health care). This could be caused by: (i) a correlation between the baseline exposure 
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to x and z and a non-linear damage function99 or (ii) a heterogeneous damage function 

across z.100 z is the causal mechanism behind x’s heterogeneous effects across z only under the 

latter. Their method requires exogenous variation in weather, the potential source of heterogeneity 

(e.g., health care), and orthogonality between the two. The research design used in this paper 

guarantees that temperature shocks are orthogonal to Medicaid and air conditioning penetration 

rates.101 

  

The empirical strategy is presented below in three sections. First, I introduce the model used to 

estimate the effects of in-utero temperature on birthweight. Second, I present the interaction and 

event study models to estimate how Medicaid’s expansion changed the temperature-birthweight 

relationship. Third, I present the interaction model to estimate how residential air conditioning 

penetration rates contributed to mitigating temperature impacts on birth outcomes.  

 

3.4.1  Effect of in-utero temperature on birthweight 

Broadly, the empirical strategy relies on using unexpected temporal variation in temperature. To 

do so, I exploit temperature variation in the county of residence across weeks of conception within 

the same calendar year net of each county’s seasonal variation per calendar week. The model 

presented below estimates the effects of in-utero temperature on birth outcomes. 

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑐𝑤𝑟 + ∑ ∑ 𝛿𝑗𝑘𝑇𝑐𝑤𝑦
𝑗𝑘

5

𝑗=1,𝑗≠3 

3

𝑘=1

+ 𝜃𝑇𝑐 𝑤−𝑘 𝑦 + 𝛾𝑅𝑐𝑤𝑦 + 𝛽𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [3.1] 

 
99 For example, access to healthcare could be negatively correlated with the mean temperature, and temperature’s damage function could be 

convex. 
100 For example, the health impacts may be lower when individuals access health care. 
101 Explained in greater detal below. Since Medicaid and Air conditioning penetration rates vary at the state-year level in [3.2], the variation used 

to identify the effects of temperature is orthogonal to both of them.   
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Where 𝑦𝑐𝑤𝑦𝑟 corresponds to the mean birth outcome in county c, for a pregnancy started during 

calendar week w of year y from women of race r. 𝛼𝑐𝑦𝑟 corresponds to county-race-year fixed 

effects. Thus, the effects are identified using in-utero weather variation across weeks of conception 

in the same county, year, and race. In addition, relative to county-race fixed effects, using 𝛼𝑐𝑦𝑟 

limits the potential bias caused by migration driven by environmental quality concerns.102 𝛼𝑐𝑤𝑟 

corresponds to seasonal effects by county, week, and race. Thus, the estimates won’t be biased by 

any temporal sorting in conceptions along the year. This is a crucial concern in this literature, 

because temperature variation is higly stational and previous research has documented seasonal 

patterns in mother’s demographics (Buckles & Hungerman, 2013;Wilde et al., 2014); furthermore,  

other unobservables determinants of health could also be correlated with the season of conception 

(Bodnar & Simhan., 2008; Currie & Schwandt., 2013).   

 

𝑇𝑐𝑤𝑦
𝑗𝑘

 corresponds to the number of days during the k-th trimester (13-week window) in which a 

county’s daily temperature fell in the j-th bin. Five bins, described in section 3.2,  were used. The 

number of days in the 45-65 F range of temperaure corresponds to the omitted category. In-utero 

rainfall vector, 𝑅𝑐𝑤𝑦, was defined analagously, but using five bins- each of them corresponding to 

a quintile. Similar models have been widely used to estimate the causal impact of temperature on 

health outcomes (e.g., Deschênes et al., 2009;  Dell et al., 2014). 𝑇𝑐 𝑤−𝑘 𝑦 corresponds to a vector 

of lagged mean temperatures; I used the mean weakly average for the first four lagged weeks 

relative to the week of conception, and the monthly average from (lagged) months 2- 7.103 This 

 
102 Previous research has shown that higher-income households migrate in response to environmental quality in the US (Crowder & Downey, 
2010; Pais, Crowder & Downey, 2014). 
103 Disaggregating the means from the 2nd-6th months into weekly means does not change the results.  
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vector was included because previous research suggests that lagged temperature affects fertility 

(Barreca et al., 2018) and first-trimester estimates were sensitive to includding temperature lags.  

 

Lastly, some additional controls by county, race, and week of conception cells are included to 

improve the precision of the estimates. 𝑋𝑐𝑤𝑦𝑟 correspond to the mean of a vector of individual-

level controls from the birth certificates (age of the mother, pregnancy history, marital status, high 

school dropout, newborn’s gender).104 The standard errors are clustered at the county level, and 

regressions are weighted by the number of births in each cell.  

 

3.4.2 Impact of access to prenatal care on  the effects of temperature. 

This section describes the empirical strategy to estimate the impact of Medicaid’s expansion on 

temperature’s effects on birth outcomes. The empirical strategy relies on the interaction term of 

two non-constant variables in a panel data model. The interpretation of the effects of such 

interaction can be challenging because the coefficient(s) of interest could contain multiple sources 

of variation (e.g., between and within variation). While describing heterogeneous effects could be 

done by simply interacting the variables of interest (i.e., Medicaid and temperature),  drawing 

causal inferences may require adding multiple interaction terms to isolate the variation with a 

causal interpretation. Section 2.5.1 (previous chapter) discusses this in greater detail. 

 

The impact of Medicaid’s expansion on the effects of temperature on birthweight is estimated by 

𝜙  in the following model. 

 

 
104 These demographics were not affected by weather. Results not shown, available upon request. 
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𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑐𝑤𝑟 + ∑ ∑ (𝜙
𝑗𝑘

𝑇𝑐𝑤𝑦
𝑗𝑘

∗ 𝐷𝑠𝑦)

5

𝑗=1,𝑗≠3 

+

3

𝑘=1

𝜂(𝑇𝑐 𝑤−𝑘 𝑦 ∗ 𝐷𝑠𝑦) + ∑ ∑ 𝛿𝑗𝑘𝑇𝑐𝑤𝑦
𝑗𝑘

5

𝑗=1,𝑗≠3 

3

𝑘=1

+ 𝜃𝑇𝑐 𝑤−𝑘 𝑦 + 𝛾𝑅𝑐𝑤𝑦 + 𝛽𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [3.2] 

 

The previous model expands model [3.1] by adding: (i)  interaction terms between in-utero 

temperature bins (𝑇𝑐𝑤𝑦
𝑗𝑘

) and Medicaid expansion  (Dsy),  and (ii)  lagged temperature (𝑇𝑐 𝑤−𝑘 𝑦) and 

Medicaid expansion (Dsy). Dsy is a binary variable equal to one if state s expands Medicaid during 

conception year y or has already expanded it;105 zero otherwise. In this model, the impact of 

Medicaid’s expansion on the temperature-health damage function is identified by comparing the 

effect associated with a given temperature bin in treated states before the expansion with the effect 

for the same bin in control and treated states after the expansion. Standard errors are clustered at 

the state level, and regressions are weighted by the number of births in each cell.  

 

In order to add heterogeneous effects of temperature across years while keeping the number of 

parameters to be estimated tractable, I switched to temperature bins during the entire pregnancy 

(𝑇𝑐𝑤𝑦
𝑗

) instead of by trimesters.  The following equation describes the new model.  Model [3.3] 

uses the same cutoffs for temperature and precipitation bins as in [3.2] but uses a single window 

from conception to 39 weeks. Other control variables are identical. 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑐𝑤𝑟 + ∑ (𝜙
𝑗
𝑇𝑐𝑤𝑦

𝑗
∗ 𝐷𝑠𝑦) 

5

𝑗=1,≠3 

+ 𝜂(𝑇𝑐 𝑤−𝑘 𝑦 ∗ 𝐷𝑠𝑦)

+ ∑ ∑ (𝛿𝑗𝑙𝑇𝑐𝑤𝑦
𝑗

)

5

𝑗=1,𝑗≠3 

+ 𝜃𝑇𝑐 𝑤−𝑘 𝑦

1988

𝑙=1974

+ 𝛾𝑅𝑐𝑤𝑦 + 𝛽𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [3.3] 

 
105 In particular, Dsy=1 always for control states (i.e, stated that had expanded Medicaid before 1980) 
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Lastly, equation [3.4] presents the event study for Medicaid’s impact on the temperature-

birthweight relationship by trimesters.  Control states (i.e., states that did not expand Medicaid 

during the 1980s) were excluded from the sample to estimate this model. 

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑐𝑤𝑟 + ∑ ∑ ∑ (𝜙
𝑗𝑘𝜏

𝑇𝑐𝑤𝑦
𝑗𝑘

∗ 1(𝑦 − 𝑒𝑠
∗ = 𝜏)  )

5

𝑗=1,𝑗≠3 

+

3

𝑘=1

𝜏=5,

 𝜏=−5,𝜏≠−1

𝜂(𝑇𝑐 𝑤−𝑘 𝑦 ∗ 𝐷𝑠𝑦)

+ ∑ ∑ 𝛿𝑗𝑘𝑇𝑐𝑤𝑦
𝑗𝑘

5

𝑗=1,𝑗≠3 

3

𝑘=1

+ 𝜃𝑇𝑐 𝑤−𝑘 𝑦 + 𝛾𝑅𝑐𝑤𝑦 + 𝛽𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [3.4] 

 

Following the empirical strategy from East et al., (2023), 1(𝑦 − 𝑒𝑠
∗ = 𝜏)  correspond to a series of 

dummy variables that take on a value of one for each event time year, where event time is defined 

for each treated state relative to the year in which it first experienced a discrete jump in eligibility 

(𝑒𝑠
∗ ). The year before each state’s large expansion (𝜏 = −1 ) is omitted, so the estimated 𝜙s are 

relative to the effects of each temperature bin in the year before the expansion occurred (𝛿). For 

example 𝜙65−85,𝑘,1 corresonds to  the effect of days between 65 and 85 F during the k-th trimester 

one year after the discrete change in eligibility, relative to one year before the jump. Similarly,  

𝜙65−85,𝑘,0 corresponds to the effect on the year of the jump in eligibility, relative to one year before 

the jump106.  

 

 

 

 
106 Event time obeservations that are more than five year before or after the event were binned together. I estimate but do not report these 

estimates, because they are based on an unbalanced sample. Binning allows to separately identify treatment effects from secular time trends even 

when control states are not included in the model (Schmidheiny & Siegloch, 2019). 
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3.4.3 Impact of air conditioning on  the effects of temperature. 

This section presents the empirical strategy to analyze how the effects of temperature change with 

residential air conditioning (AC) ownership.  

 

In model [3.5], 𝜖𝑗 and ⍵𝑗  capture the change in the effects of  temperature’s j-th bin when 

residential air conditioning ownership is below or above each state’s median. 

 

𝑦𝑐𝑤𝑦𝑟 = 𝛼𝑐𝑦𝑟 + 𝛼𝑐𝑤𝑟 + ( ∑ 𝜖𝑗𝑇𝑐𝑤𝑦
𝑗

 

5

𝑗=1,𝑗≠3 

+ 𝜂𝑇𝑐 𝑤−𝑘 𝑦) ∗ 1(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠̃) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠̃) 

+ ( ∑ 𝜔𝑗𝑇𝑐𝑤𝑦
𝑗

5

𝑗=1,𝑗≠3 

+ 𝜙𝑇𝑐 𝑤−𝑘 𝑦) ∗ 1(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠
̃ ) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠

̃ ) + ∑ ∑ (𝛿𝑗𝑙𝑇𝑐𝑤𝑦
𝑗

)

5

𝑗=1,𝑗≠3 

+ 𝜃𝑇𝑐 𝑤−𝑘 𝑦

1988

𝑙=1974

+ 𝛾𝑅𝑐𝑤𝑦 + 𝛽𝑋𝑐𝑤𝑦𝑟 + 𝑢𝑐𝑤𝑦𝑟  [3.5] 

 

In the previous equation, 𝐴𝐶𝑠̃ corresponds to the median residential air conditioning ownership in 

state s. 1(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠̃) and 1(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠̃) are  dummy variable equal to one when residential air 

conditioning ownership in state s and year y is below and above the state’s median, respectively.  

 

The previous model builds upon the empirical strategy used by Barreca et al. (2016) to estimate 

the impact of air conditioning on the temperature-mortality relationship in the US  during the 

twentieth century. As discussed by these authors, the variation in  AC diffusion is not experimental. 

It may not be orthogonal to the temperature-health relationship. For instance, AC diffusion may 

be higher in places where temperature has a more significant health impact. For this model, the 

biggest threat to identification would be AC diffusion to increase in years where the impacts of 

temperature on health are also increasing. It would lead to underestimating the impacts of AC on 
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the temperature-birth outcome relationship. However, as Barreca et al. (2018) argued, this concern 

is mitigated by allowing for heterogeneous effects of each temperature bin across years. 

 

3.5 Results 

Table 3.2 shows how the estimates of the effects of temperature on birthweight change when 

controls (rainfall, demographics, lagged temperatures, and lagged rainfall) are sequentially added 

to the regression model. Column 4 in Table 3.2 corresponds to the baseline empirical strategy 

described in model [3.1]. The contrast between columns 3 and 4 in Table 3.2 shows that controlling 

for lagged temperature is important for the first trimester estimates. On the other hand, controlling 

for lagged precipitation has no impact on the estimates. 

 

Table 3.3 estimates temperature’s effects on birthweight, the low birthweight rate, weeks of 

gestation, and preterm birth rate using model [3.1]. The results show that high temperatures during 

the second and third trimesters decrease birthweight and increase the fraction of infants born with 

less than 2500 grams. The impacts are larger for exposures during the second trimester and increase 

with temperature. One additional day above 85 F during the second and third trimester reduces 

birthweight by 0.013% and 0.00865%, respectively, relative to days between 45-65 F. Deschenes 

et al.(2009) study temperature’s impacts with a similar empirical strategy for the US during 1972-

1988 and find impacts on birthweight between 0.003% and 0.009% for hot days. On the other 

hand, the gestational age and preterm birth rate are affected mainly by extreme temperatures, both 

heat and cold, during the first trimester. Days above 85 F during the third trimester also decrease 

the pregnancy’s duration. One additional day in this range decreases the weeks of gestation by 
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0.39%. The birthweight and gestational age estimates are displayed graphically in Figures 3.4 and 

3.5, respectively. 

 

Table 3.4 estimates the effects of temperature on birthweight separately for whites, black, cold and 

warm counties, and metropolitan counties.107 These estimates correspond to model [3.1] across 

different samples. The effects of extremely hot days (i.e., T>85 F) are larger for blacks than whites. 

For moderately hot days (i.e., 65-85 F), the impacts are larger in cold counties compared to warm. 

This result is consistent with the idea that warmer counties are better adapted to heat. However, 

the impacts are larger for days above 85 F in warm counties. Lastly, we observe that metropolitan 

counties drive the effects in the US. Therefore, the mechanism behind these effects is most likely 

physiological. Indirect income shocks through the agricultural sector are significant in developing 

countries or rural areas.   

 

Table 3.5 estimates the effects of temperature on birthweight and gestational age separately for 

whites, black, cold and warm counties, and metropolitan counties. However, the effects are 

estimated for the entire pregnancy (i.e., from conception to 39 weeks) instead of by trimesters. The 

estimates are consistent with the findings in Table 3.4 except for the estimate of the effect of days 

with T>85 F on the gestational age. This counterintuitive sign should not be believed because the 

average pregnancy is exposed to this temperature range for only 0.26 days in cold counties (See 

Figure 3.2). Table 3.5 is a baseline for the empirical strategy to estimate the impacts of Medicaid 

and air conditioning on the temperature-birth outcome relationship. Both strategies require 

 
107 Cold (Warm) counties corresponds to counties whose average temperature during 1970-1988 belongs to the bottom (top) 33% of the 

distribution. Metropolitan counties corresponds to Metropolitan counties according with USDA’s 1986 County Typology Codes. 
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heterogeneous effects of temperature bins across years. However, the number of parameters to be 

estimated is vast when the effects of temperature are disaggregated by trimester. 

 

Table 3.6 estimates  Medicaid’s impact on the temperature-birthweight and temperature-

gestational age damage functions. The table shows the estimates of 𝜙 𝑎𝑛𝑑 𝛿 in [3.2].These results 

suggest that Medicaid’s expansion increased temperature damage on birth outcomes. For instance, 

the impact of days between 65-85 F during the second trimester on birthweight would have 

increased by 0.0057%. These counterintuitive results could be caused by another factor not 

included in [3.2]. For instance, suppose another factor mediates the impact of temperature on birth 

outcomes (e.g., income shocks). If, by coincidence, Medicaid changes  are correlated with changes 

in this unobserved factor,  𝜙 would be biased. To account for this possibility, we should include 

heterogeneous effects of temperature across years. However, the number of parameters grew too 

much, and the model could not be estimated due to computational constraints.  

 

Nonetheless, in Table 3.7, I present the results of model [3.3], which estimates the impacts on 

temperature bins during the entire pregnancy instead of by trimesters, and it includes 

heterogeneous effects of each temperature bin across years. Medicaid’s impact is close to zero and 

statistically insignificant. Table 3.8 presents the estimates model [3.3]  across different samples 

(whites, blacks, cold, warm, and metropolitan counties). The results show that Medicaid did not 

mitigate the effects of extreme temperatures on any demographic or subset of counties. The 

estimates for blacks and warm counties turn statistically insignificant when the sample is restricted 

to treated states only108. The results for the gestational age are qualitatively similar.109  

 
108 Results not shown, available upon request. 
109 Results not shown, available upon request. 
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Figure 3.6 presents the results from an event study of Medicaid’s impact on the temperature-

birthweight damage function. This event study corresponds to model [3.4]. In line with previous 

results, this event study shows no robust evidence that Medicaid’s expansion mitigated the impacts 

of extreme temperatures on birth weight. Additionally, there seems to be a negative trend in the 

effects of days between 65 and 85 F during all trimesters before Medicaid’s expansion;  Therefore, 

allowing for heterogeneous effects of temperature bins across years, as done in [3.4], is a critical 

piece of this paper’s empirical strategy. Similar results were obtained for the gestational age; these 

graphs were not presented but are available upon request. 

 

Finally, Table 3.9 and Figures 3.7 and 3.8 present the estimates of the impact of air conditioning 

on the temperature-birthweight and temperature-gestational age relationships. These results 

suggest that increased access to air conditioning mitigates the impacts of extreme heat on birth 

outcomes. This result is consistent with research suggesting that AC diffusion in the US after the 

1960s mitigated the impact of extreme heat on the mortality rate (Barreca et al., 2016) and with 

research showing that US electricity consumption increases with daily temperatures above 90 F 

(Deschênes & Greenstone, 2011) 

 

The first graph of Figure 3.7 shows the impact of AC on the temperature-birthweight relationship 

for the entire US. We observe that an increase in AC was associated with an increase in the effect 

of temperature on birthweight (i.e., a reduction of temperature’s negative effect), although not 

statistically significant at standard levels. However, for whites, the impact is statistically 

significant. An increase of 30 percentage points (pp) in AC is associated with an increase in 
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birthweight of about 0.1%. This increase is caused by a  reduction in the effect of days with T>85 

F. For blacks, AC mitigates the impacts of days between 65 and 85 F, a 30 pp increase in AC leads 

to an increase in birthweight of about 0.033%.  

 

Figure 3.8 plots the estimates of AC diffusion on the temperature-gestational age relationship. For 

the entire US, the first graph shows that a 35 pp increase in AC is associated with an increase of 

about 0.02 weeks in the duration of the pregnancy. This increase is caused by a reduction in the 

impact of days with T>85. For whites and blacks, the impact of a 35 pp point increase is about 

0.02 and 0.03 weeks, respectively. Both are associated with mitigation in the effects of days with 

T>85F. There is, however, an important difference between the estimates for blacks and whites. 

For whites, the impact is associated with years in which the AC penetration rate was below the 

state’s median; for blacks, it is associated with years in which it was above. This suggests that the 

pattern of AC diffusion may be quite heterogeneous across races. The population of whites most 

affected by extreme heat may have gotten access to AC at lower aggregate penetration rates. In 

contrast, the blacks most affected by heat may have gotten access only after high aggregate 

penetration rates were achieved. 

 

3.6 Conclusions 

The results from the empirical analysis show that extreme temperatures worsen birth outcomes. 

Increased access to prenatal health care (i.e., prenatal eligibility for Medicaid)  did not mitigate its 

effects, but increased access to air conditioning did. 
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Birthweight is affected primarily by extreme heat during the second and third trimesters. In 

contrast, gestational age is affected mainly by extreme temperatures, both hot and cold days, during 

the first trimester. These effects hold strongly in urban areas, which suggests that physiological 

impacts are the mechanism behind these effects. In contrast, previous research suggests that 

income shocks through agricultural output may be a mechanism in other settings in developing 

countries. 

 

As a first result, I found no evidence that Medicaid’s expansion mitigated the effects of temperature 

on either birthweight or gestational age. Previous experimental medical research found that 

improved nutrition before pregnancy mitigated in-utero extreme heat's effects on birth outcomes. 

Thus, ex-ante Medicaid’s expansion could make the fetus more resilient to extreme temperature 

shocks. However, this is not the case for the US. Interestingly, the event study showed an 

increasing pattern in the effects of temperature between 65 and 85 Fahrenheit (F). Failing to 

account for this pattern causes the estimate of Medicaid’s impact to be biased. When 

heterogeneous effects of temperature across years are excluded from the empirical strategy, I find 

that Medicaid’s expansion increased the marginal damage caused by days between 65-85 F or 

above 85 F.   

 

The heterogeneity analysis revealed that Medicaid did not mitigate temperature effects for either 

whites or blacks. It was also ineffective in Mitigating these effects in counties with cold or warm 

climates or metropolitan counties. 
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As a second result, I found that the diffusion of residential air conditioning during this period 

contributed to reducing the effects of extreme heat on birthweight and the duration of the 

pregnancy. This result is consistent with research suggesting that AC diffusion in the US after the 

1960s mitigated the impact of extreme heat on the mortality rate (Barreca et al., 2016) and 

increased electricity consumption with days above 90 F (Deschênes & Greenstone, 2011). 

 

The findings from this paper suggest that expanding access to free prenatal care to low-income 

women did not help to mitigate the impact of extreme temperatures in a setting where physiological 

mechanisms drive the impacts of extreme temperatures on birth outcomes (i.e., in a developed 

country and urban setting). In contrast, increased access to air conditioning effectively mitigated 

the effects of extreme heat on birth outcomes. These findings can guide policymakers in designing 

strategies to adapt to climate change.   
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3.7 Figures 

 

Figure 3.1:  Birthweigth 

  
Notes: Author’s calculations from CDC public birth files 1975-1988. 

 

Figure 3.2: Distribution of in-utero temperature across different samples 

 
Notes: Author’s calculations from CDC public birth files 1975-1988. 
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Figure 3.3 : Residential Air Conditioning Ownership 

 

 
Notes: Author’s calculations from Census data. 

 
 

Figure 3.4: Effects of temperature on birthweight 

 

 
Notes: Author’s calculations from CDC public birth files 1975-1988. This graph plots the effects of 1 additional day during the 

first, second, and third trimester in each temperature bin with respect to the 45-65 F range. These estimates are reported in Col 1 of 

Table 3.3. 
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Figure 3.5: Effects of temperature on the gestational age 

 

 
Notes: Author’s calculations from CDC public birth files 1975-1988. This graph plots the effects of 1 additional day during the 

first, second, and third trimester in each temperature bin with respect to the 45-65 F range. These estimates are reported in Col 3 of 

Table 3.3. 

 

Figure 3.6: Event study for Medicaid’s expansion impact on the temperature-birthweight 

relationship 
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Notes: Author’s calculations from CDC public birth files 1975-1988. These graphs plot the impact of Medicaid’s expansion 

on the effects of 1 additional day during the first, second, and third trimester in each temperature bin with respect to 

the 45-65 F range. All event study estimates are relative to t=-1. Estmates for 𝑡 ≤ −6 , 𝑡 ≥ 6 were included in the 

regression model but are not displayed. Control states (i.e. states who expaned Medicaid prior to 1980) were excluded 

from the sample.  Only states from cohorts of expansion between 1980-1983 were included in the event study. 
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Figure 3.7: Impact of Air Conditioning on the temperature-birthweight relationship 

 

 

 

 
Notes: Author’s calculations from CDC public birth files 1975-1988. These figures plot the impact of residential air 

conditioning ownership (AC) on the effects of temperature on birthweight. For the US and whites, the figures plot the 

95% confidence intervals (CI) for AC impact on days with T>85 F. For blacks, the figure plots the 90% CI for the impact 

on days with 65<T<85 F. These graphs plot the estimates from columns 1-3 of Table 3.9. 

 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4p

er
ce

n
ta

ge
 c

h
an

ge
 

Change in Air Conditioning penetration rate

US

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

p
er

ce
n

ta
ge

 c
h

an
ge

 

Change in Air Conditioning penetration rate

White

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4p

er
ce

n
ta

ge
 c

h
an

ge
 

Change in Air Conditioning penetration rate

Black



 

 

160 

 

Figure 3.8: Impact of Air Conditioning on the temperature-gestational age relationship 

 

 

 

 
Notes: Author’s calculations from CDC public birth files 1975-1988.These figures plot the impact of residential air conditioning 

ownership (AC) on the effects of temperature on the gestational age. All  figures plot the 95% confidence intervals (CI) for AC 

impact on days with T>85 F. These graphs plot the estimates from columns 4-6 of Table 3.9. 

 

  

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4w

ee
ks

Change in Air Conditioning penetration rate

US

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4w

ee
ks

Change in Air Conditioning penetration rate

White

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

w
ee

ks

Change in Air Conditioning penetration rate

Black



 

 

161 

 

3.8 Tables 

 

Table 3.1: Summary statistics 
 

  
US White Black 

Cold 

County 

Hot 

County 

Metropolitan  

County 

N births 42,039,568 34,415,283 6,329,139 13,235,743 16,448,708 31,532,601 

      
 

Birth Outcomes  

Birthweight (grams) 3349.46 3396.10 3108.12 3368.82 3327.60 3345.15 

Log birthweight 8.10 8.11 8.01 8.10 8.09 8.09 

Low birthweight infants  

per thousand births 
66.74 55.97 126.08 62.33 71.42 67.46 

Gestational age (weeks) 39.44 39.60 38.62 39.53 39.34 39.42 

 
     

 
Demographics of the mother 

race white (%) 81.86% 1.00% 0.00% 88.48% 74.71% 80.67% 

race black  (%) 15.06% 0.00% 1.00% 9.26% 21.26% 16.07% 

race other  (%) 3.08% 0.00% 0.00% 2.25% 3.68% 3.26% 

share age<=19  (%) 14.45% 12.41% 26.48% 12.39% 16.65% 13.58% 

share 20<=age<=35  (%) 81.65% 83.66% 70.34% 83.79% 79.54% 82.32% 

share age>=36  (%) 3.91% 3.92% 3.18% 3.82% 3.82% 4.10% 

Marital status      

Married 68.11% 73.73% 36.41% 69.36% 67.12% 67.74% 

Unmarried 16.03% 10.33% 47.25% 13.49% 18.65% 16.82% 

Not Reported 15.86% 15.94% 16.34% 17.15% 14.23% 15.43% 

Highschool dropout  (%)      

No 61.15% 63.15% 55.27% 77.82% 41.60% 58.97% 

Yes 17.79% 15.48% 30.71% 18.00% 16.79% 15.89% 

Not Reported 2.53% 2.67% 1.41% 0.48% 4.72% 3.12% 

Not Answered 18.54% 18.70% 12.61% 3.70% 36.89% 22.02% 

Pregnancy history (%)      
First delivery 36.10% 36.66% 33.24% 34.41% 37.24% 36.43% 

2nd delivery & fetal death rate =0 26.23% 26.82% 23.15% 25.70% 26.74% 26.10% 

delivery>=3 & fetal death rate =0 18.67% 17.76% 23.13% 18.35% 20.00% 18.27% 

delivery>=3 & fetal death rate <0.5 10.58% 10.40% 11.71% 12.26% 8.89% 10.45% 

delivery=2 & fetal death rate =1 4.58% 4.66% 4.34% 5.16% 3.75% 4.71% 

delivery>=3 & fetal death rate>0.5 3.17% 3.16% 3.30% 3.61% 2.49% 3.35% 

Missing 0.66% 0.54% 1.14% 0.51% 0.89% 0.68% 

       
Controls at the county-year level 

       

Gov transfers (Exc Medical & SSI) per 

population 0-64 yr. old 
127.61 120.43 162.46 140.49 121.34 131.49 

UI transfers per population 0-64 yr. old 81.55 82.01 79.11 100.71 62.35 81.87 

Notes: Author’s calculations from CDC public birth files 1975-1988. 
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Table 3.2: Selecting model to estimate the effects of temperature on birth outcomes. 

 

  (1) (2) (3) (4) (5) 

Precipitation controls No Yes Yes Yes Yes 

Demographic controls No No Yes Yes Yes 

Lagged Temperature No No No Yes Yes 

Lagged precipitation No No No No Yes 

R-squared 0.382 0.382 0.392 0.392 0.393 

Observations 42,001,350 42,001,350 42,001,350 42,001,350 42,001,350 

Temp-Q1( T<25F) -2.52e-06 -1.13e-05 -4.94e-05*** -1.50e-05 -1.43e-05 

 (1.33e-05) (1.37e-05) (1.42e-05) (1.81e-05) (1.85e-05) 

Temp-Q1( 25<T<45F) -4.05e-05*** -4.28e-05*** -5.03e-05*** -3.25e-05*** -3.15e-05*** 

 (9.45e-06) (9.56e-06) (9.75e-06) (1.14e-05) (1.15e-05) 

Temp-Q1( 65<T<85F) 1.04e-05 7.00e-06 2.82e-05*** 5.28e-06 4.60e-06 

 (7.44e-06) (7.56e-06) (7.74e-06) (1.09e-05) (1.10e-05) 

Temp-Q1( T>85F) 3.77e-06 -9.32e-06 1.69e-05 -2.53e-05 -2.68e-05 

 (2.89e-05) (3.01e-05) (2.84e-05) (3.13e-05) (3.17e-05) 

Temp-Q2( T<25F) 3.09e-05** 2.18e-05* -1.66e-05 1.56e-05 1.82e-05 

 (1.21e-05) (1.23e-05) (1.27e-05) (1.73e-05) (1.73e-05) 

Temp-Q2( 25<T<45F) -2.32e-05** -2.61e-05*** -2.42e-05** -7.78e-06 -7.06e-06 

 (9.57e-06) (9.88e-06) (1.02e-05) (1.26e-05) (1.27e-05) 

Temp-Q2( 65<T<85F) -4.31e-05*** -4.77e-05*** -4.30e-05*** -6.15e-05*** -6.09e-05*** 

 (7.77e-06) (8.24e-06) (8.49e-06) (1.03e-05) (1.03e-05) 

Temp-Q2( T>85F) -0.000109*** -0.000122*** -9.83e-05*** -0.000133*** -0.000136*** 

 (3.05e-05) (3.28e-05) (3.04e-05) (3.26e-05) (3.35e-05) 

Temp-Q3( T<25F) 2.00e-05 1.34e-05 -3.60e-05*** -3.40e-05** -3.02e-05* 

 (1.26e-05) (1.33e-05) (1.37e-05) (1.60e-05) (1.60e-05) 

Temp-Q3( 25<T<45F) 4.80e-06 2.61e-06 -1.14e-05 -1.27e-05 -1.18e-05 

 (9.97e-06) (9.94e-06) (1.02e-05) (1.16e-05) (1.16e-05) 

Temp-Q3( 65<T<85F) -2.86e-05*** -3.30e-05*** -2.24e-05*** -2.64e-05*** -2.63e-05*** 

 (7.33e-06) (7.57e-06) (7.79e-06) (8.30e-06) (8.50e-06) 

Temp-Q3( T>85F) -9.20e-05*** -0.000107*** -7.87e-05*** -8.65e-05*** -8.94e-05*** 

  (2.44e-05) (2.48e-05) (2.56e-05) (2.59e-05) (2.65e-05) 
Notes: Author’s calculations from CDC public birth files 1975-1988.The dependent variable corresponds to Log(bw): Natural logarithm of 

birthweight. Temp-Qj(x<t<y) corresponds to the number of days during the j-th pregancy trimester in which the county’s temperature is between x 
and y. The omitted category corresponds to days with temperatures between 45-65F . All regressions include county-year-race FE and county-

week-race FE. Three categories of maternal race were used (white, black, and other). Controls included: Current week’s mean temperature, lagged 

weekly mean temperature for up to four weeks, lagged monthly mean temperature from t-2 to t-7, Rainfall-Q1(bins), Rainfall-Q2(bins), Rainfall-
Q3(bins), and a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and 

unmarriedIndividual-level observations were collapsed into cells by county-week-year-race. All regressions are weighted by the number of births 

in each cell. ). Standard errors are clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.3: Effects of temperature on birth outcomes. 

  (1) (2) (3) (4) 

 Log(bw) LBW Gestational age PTB 

Observations 42,001,350 42,001,350 41,907,577 41,907,577 

R-squared 0.392 0.244 0.291 0.268 

Temp-Q1( T<25F) -1.50e-05 0.0211 -0.00203*** 0.0843*** 

 (1.81e-05) (0.0204) (0.000364) (0.0298) 

Temp-Q1( 25<T<45F) -3.25e-05*** 0.0328** -0.00148*** 0.0976*** 

 (1.14e-05) (0.0130) (0.000202) (0.0175) 

Temp-Q1( 65<T<85F) 5.28e-06 -0.00968 -0.000785*** 0.0402*** 

 (1.09e-05) (0.0123) (0.000210) (0.0146) 

Temp-Q1( T>85F) -2.53e-05 0.0406 -0.00304*** 0.143*** 

 (3.13e-05) (0.0356) (0.000481) (0.0378) 

Temp-Q2( T<25F) 1.56e-05 0.0155 -0.000311 -0.0273 

 (1.73e-05) (0.0192) (0.000406) (0.0318) 

Temp-Q2( 25<T<45F) -7.78e-06 0.0155 0.000179 0.00876 

 (1.26e-05) (0.0139) (0.000210) (0.0180) 

Temp-Q2( 65<T<85F) -6.15e-05*** 0.0268** -0.000384* 0.0180 

 (1.03e-05) (0.0131) (0.000208) (0.0148) 

Temp-Q2( T>85F) -0.000133*** 0.103*** -0.000313 0.0662 

 (3.26e-05) (0.0314) (0.000865) (0.0546) 

Temp-Q3( T<25F) -3.40e-05** 0.0458** -0.000405 -0.0139 

 (1.60e-05) (0.0188) (0.000351) (0.0274) 

Temp-Q3( 25<T<45F) -1.27e-05 0.0278** -2.93e-05 -0.00544 

 (1.16e-05) (0.0129) (0.000177) (0.0158) 

Temp-Q3( 65<T<85F) -2.64e-05*** 0.0107 -0.000852*** 0.0154 

 (8.30e-06) (0.0114) (0.000161) (0.0138) 

Temp-Q3( T>85F) -8.65e-05*** 0.0726*** -0.00389*** 0.162*** 

  (2.59e-05) (0.0254) (0.000646) (0.0368) 
Notes: Author’s calculations from CDC public birth files 1975-1988. Log(bw): Natural logarithm of birthweight. LBW corresponds to the number 

of low birthweight infants per thousand births. Gestational age corresponds to the newborn’s weeks of gestation at birth. PTB corresponds to the 
number of infants born premature (i.e., gestational age<37 weeks) per thousand births. Temp-Qj(x<t<y) corresponds to the number of days during 

the j-th pregancy trimester in which the county’s temperature is between x and y. The omitted category corresponds to days with temperatures 

between 45-65F . All regressions include county-year-race FE and county-week-race FE. Three categories of maternal race were used (white, black, 
and other). Controls included: Current week’s mean temperature, lagged weekly mean temperature for up to four weeks, lagged monthly mean 

temperature from t-2 to t-7, Rainfall-Q1(bins), Rainfall-Q2(bins), Rainfall-Q3(bins), and a vector of demographics (newborn’s gender, teenage 

mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). Individual-level observations were collapsed into cells by 
county-week-year-race. All regressions are weighted by the number of births in each cell. Standard errors are clustered at the county level in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.4: Heterogeneous effects of temperature by trimester on birthweight 

 

  (1) (2) (3) (4) (5) 

Sample Whites Blacks Cold counties Warm counties Metro counties 

Observations 34,414,304 6,316,941 13,221,099 16,438,735 31,525,162 

R-squared 0.194 0.181 0.405 0.391 0.536 

Temp-Q1( T<25F) -2.94e-05 4.14e-05 -4.36e-05* 0.000222** 2.41e-05 

 (1.91e-05) (5.99e-05) (2.65e-05) (9.29e-05) (2.23e-05) 

Temp-Q1( 25<T<45F) -4.68e-05*** -3.15e-05 -7.62e-05*** -6.83e-06 -8.36e-06 

 (1.19e-05) (3.68e-05) (1.99e-05) (2.11e-05) (1.36e-05) 

Temp-Q1( 65<T<85F) 7.51e-06 3.26e-05 1.22e-05 -1.32e-05 -4.35e-06 

 (1.29e-05) (3.15e-05) (2.30e-05) (2.06e-05) (1.40e-05) 

Temp-Q1( T>85F) 1.04e-05 -8.96e-05 5.73e-05 -5.97e-05 -4.42e-05 

 (3.05e-05) (7.80e-05) (0.000294) (4.09e-05) (3.79e-05) 

Temp-Q2( T<25F) 1.85e-05 -3.03e-05 -6.73e-05*** 0.000262** 3.99e-05* 

 (1.80e-05) (6.00e-05) (2.38e-05) (0.000111) (2.12e-05) 

Temp-Q2( 25<T<45F) -1.31e-05 -5.62e-05 -7.97e-05*** -3.26e-06 9.85e-06 

 (1.33e-05) (3.89e-05) (1.73e-05) (2.78e-05) (1.52e-05) 

Temp-Q2( 65<T<85F) -6.12e-05*** -2.11e-05 -0.000118*** -7.91e-05*** -6.89e-05*** 

 (1.11e-05) (3.21e-05) (2.85e-05) (1.63e-05) (1.21e-05) 

Temp-Q2( T>85F) -0.000102*** -0.000193*** 0.000322 -0.000172*** -0.000156*** 

 (3.19e-05) (7.17e-05) (0.000299) (4.03e-05) (3.91e-05) 

Temp-Q3( T<25F) -3.32e-05** -5.06e-05 -0.000102*** 1.23e-05 -9.67e-06 

 (1.69e-05) (5.14e-05) (2.25e-05) (0.000103) (1.96e-05) 

Temp-Q3( 25<T<45F) -2.33e-05** -1.24e-05 -8.43e-05*** -2.82e-06 6.08e-06 

 (1.18e-05) (4.18e-05) (1.84e-05) (2.94e-05) (1.39e-05) 

Temp-Q3( 65<T<85F) -1.70e-05* -4.41e-05 -6.33e-05*** -4.70e-05*** -3.41e-05*** 

 (9.26e-06) (2.99e-05) (1.75e-05) (1.53e-05) (9.83e-06) 

Temp-Q3( T>85F) -5.24e-05* -0.000205*** 2.02e-05 -0.000117*** -0.000107*** 

 (2.70e-05) (6.17e-05) (0.000136) (3.41e-05) (3.13e-05) 
Notes: Author’s calculations from CDC public birth files 1975-1988. The dependent variable corresponds to Log(bw): Natural logarithm of 
birthweight. Cold (Warm) counties corresponds to counties whose average temperature during 1970-1988 belongs to the bottom (top) 33% of the 

distribution. Metro corresponds to Metropolitan counties according with USDA’s 1986 County Typology Codes.  Temp-Qj(x<t<y) corresponds to 

the number of days during the j-th pregancy trimester in which the county’s temperature is between x and y. The omitted category corresponds to 
days with temperatures between 45-65F . All regressions include county-year-race FE and county-week-race FE. Three categories of maternal race 

were used (white, black, and other). Controls included: Current week’s mean temperature, lagged weekly mean temperature for up to four weeks, 

lagged monthly mean temperature from t-2 to t-7, Rainfall-Q1(bins), Rainfall-Q2(bins), Rainfall-Q3(bins), and a vector of demographics 
(newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). Individual-level observations were 

collapsed into cells by county-week-year-race. All regressions are weighted by the number of births in each cell. Standard errors are clustered at 

the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.5: Heterogeneous effects of temperature during entire pregnancy  on birthweight 

 

  (1) (2) (3) (4) (5) (6) 

Sample All White Black Cold county Warm county Metro county 

Log(birthweight) 

Observations 42,001,350 34,414,304 6,316,941 13,221,099 16,438,735 31,525,162 

R-squared 0.392 0.194 0.181 0.405 0.391 0.536 

Temp- EP(T<25F) 4.51E-06 2.35e-06 4.18e-06 -2.95e-05* 0.000173** 3.58e-05** 

 -0.0000236 (1.43e-05) (4.39e-05) (1.73e-05) (8.60e-05) (1.68e-05) 

Temp-EP(25<T<45F) -1.00E-05 -1.98e-05** -2.11e-05 -5.64e-05*** -1.37e-06 1.04e-05 

 -1.21E-05 (9.53e-06) (3.00e-05) (1.35e-05) (2.06e-05) (1.12e-05) 

Temp-EP(65<T<85F) -2.58e-05** -2.33e-05*** -2.57e-06 -1.27e-05 -4.22e-05*** -3.22e-05*** 

 -1.08E-05 (7.64e-06) (2.32e-05) (1.21e-05) (1.45e-05) (8.45e-06) 

Temp-EP(T>85F) -8.92e-05** -5.91e-05** -0.000165*** 3.30e-05 -0.000116*** -0.000107*** 

 -4.32E-05 (2.39e-05) (5.05e-05) (0.000108) (3.27e-05) (3.00e-05) 

Gestational Age 

Observations 41,907,577 34,378,277 6,275,780 13,201,016 16,391,763 31,498,781 

R-squared 0.291 0.170 0.179 0.279 0.297 0.386 

Temp- EP(T<25F) -0.00106 -0.000857*** -0.00219** -0.000765* -0.00245* -0.000600 

 -0.000909 (0.000309) (0.000920) (0.000417) (0.00144) (0.000435) 

Temp-EP(25<T<45F) -0.000642 -0.000440*** -0.00245*** -3.24e-05 -0.00163*** -0.000111 

 -0.000395 (0.000165) (0.000519) (0.000232) (0.000388) (0.000206) 

Temp-EP(65<T<85F) -0.00121*** -0.00116*** -0.00161*** -0.00167*** -0.00117*** -0.00128*** 

 -0.000401 (0.000181) (0.000493) (0.000288) (0.000393) (0.000244) 

Temp-EP(T>85F) -0.00342*** -0.00291*** -0.00540*** 0.00278* -0.00378*** -0.00376*** 

  -0.00124 (0.000540) (0.00105) (0.00153) (0.000852) (0.000695) 
Notes: Author’s calculations from CDC public birth files 1975-1988. Log(BW): Natural logarithm of birthweight.. Gestational age corresponds to 

the newborn’s weeks of gestation at birth. Temp-EP(x<t<y) corresponds to the number of days during the entire pregancy in which the county’s 
temperature was between x and y . The omitted category corresponds to days with temperatures between 45-65F. All regressions include county-

year-race FE and county-week-race FE. Three categories of maternal race were used (white, black, and other). Controls included: Current week’s 

mean temperature, lagged weekly mean temperature for up to four weeks, lagged monthly mean temperature from t-2 to t-7, Rainfall-EP(bins)), a 
vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried). Individual-

level observations were collapsed into cells by county-week-year-race. All regressions are weighted by the number of births in each cell. Errors are 

clustered at the state level . Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 

Table 3.6 Correlation between Medicaid’s expansion and temperature-birthweight 

relationship 

  (1) (2) (3) (4) 

 Log(bw) LBW Gestational Age PTB 

Observations 42,001,350 42,001,350 41,907,577 41,907,577 

R-squared 0.393 0.244 0.291 0.268 

Temp-Q1(T<25F)*ME -5.36e-06 0.0176 0.00205 -0.140 

 (6.37e-05) (0.0528) (0.00132) (0.107) 

Temp-Q1(25<T<45F)*ME -1.95e-05 0.0173 0.00109 -0.0226 

 (4.33e-05) (0.0397) (0.000890) (0.0824) 

Temp-Q1(65<T<85F)*ME -3.67e-05 0.0392* -0.00172** 0.126*** 

 (2.27e-05) (0.0208) (0.000678) (0.0458) 

Temp-Q1(T>85F)*ME -9.05e-05* 0.0323 -0.00287*** 0.248*** 

 (5.05e-05) (0.0483) (0.000987) (0.0730) 

Temp-Q2(T<25F)*ME 2.79e-06 0.0120 -2.76e-05 -0.0539 
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 (6.57e-05) (0.0606) (0.00205) (0.116) 

Temp-Q2(25<T<45F)*ME -8.16e-06 0.0157 -0.000818 0.0736 

 (4.13e-05) (0.0370) (0.00157) (0.0907) 

Temp-Q2(65<T<85F)*ME -5.73e-05** 0.0522* -0.00159** 0.125** 

 (2.71e-05) (0.0283) (0.000647) (0.0591) 

Temp-Q2(T>85F)*ME -0.000139 0.118 -0.00609*** 0.423*** 

 (8.64e-05) (0.0773) (0.00203) (0.142) 

Temp-Q3(T<25F)*ME 3.65e-05 -0.0300 0.00134 -0.118 

 (5.56e-05) (0.0532) (0.00138) (0.0716) 

Temp-Q3(25<T<45F)*ME 2.51e-05 -0.00446 0.000614 -0.0455 

 (3.48e-05) (0.0324) (0.000792) (0.0373) 

Temp-Q3(65<T<85F)*ME -1.20e-05 0.0106 -0.00110 0.0735** 

 (2.14e-05) (0.0205) (0.000739) (0.0357) 

Temp-Q3(T>85F)*ME -2.81e-05 -0.0207 -7.95e-05 0.0416 

 (6.06e-05) (0.0554) (0.00135) (0.0870) 

Temp-Q1(T<25F) -8.07e-06 0.00901 -0.00348** 0.180* 

 (5.82e-05) (0.0524) (0.00134) (0.106) 

Temp-Q1(25<T<45F) -2.00e-05 0.0242 -0.00222*** 0.110 

 (3.50e-05) (0.0335) (0.000803) (0.0710) 

Temp-Q1(65<T<85F) 3.94e-05** -0.0482** 0.000740 -0.0691* 

 (1.94e-05) (0.0194) (0.000453) (0.0370) 

Temp-Q1(T>85F) 6.49e-06 0.0265 -0.00151 0.0229 

 (4.60e-05) (0.0535) (0.00101) (0.0807) 

Temp-Q2(T<25F) 1.57e-05 0.00627 -0.000230 0.00773 

 (5.89e-05) (0.0521) (0.00206) (0.111) 

Temp-Q2(25<T<45F) -6.37e-06 0.00881 0.000658 -0.0368 

 (3.59e-05) (0.0310) (0.00135) (0.0774) 

Temp-Q2(65<T<85F) -1.32e-05 -0.0182 0.00102* -0.0881* 

 (2.18e-05) (0.0223) (0.000558) (0.0487) 

Temp-Q2(T>85F) -7.69e-05 0.0555 0.00176 -0.0942 

 (5.05e-05) (0.0426) (0.00209) (0.119) 

Temp-Q3(T<25F) -6.27e-05 0.0736 -0.00156 0.0800 

 (5.10e-05) (0.0472) (0.00139) (0.0705) 

Temp-Q3(25<T<45F) -3.45e-05 0.0373 -0.000610 0.0314 

 (3.24e-05) (0.0293) (0.000641) (0.0300) 

Temp-Q3(65<T<85F) -1.80e-05 0.00264 3.00e-05 -0.0396 

 (1.88e-05) (0.0187) (0.000525) (0.0273) 

Temp-Q3(T>85F) -5.94e-05 0.0627 -0.00316* 0.0935 

 (6.31e-05) (0.0450) (0.00182) (0.0866) 
Notes: Author’s calculations from CDC public birth files 1975-1988. Log(bw): Natural logarithm of birthweight. LBW corresponds to the number 

of low birthweight infants per thousand births. Gestational age corresponds to the newborn’s weeks of gestation at birth. PTB corresponds to the 

number of infants born premature (i.e., gestational age<37 weeks) per thousand births. Temp-Qj(x<t<y) corresponds to the number of days during 
the j-th pregancy trimester in which the county’s temperature is between x and y. The omitted category corresponds to days with temperatures 

between 45-65F. Medicaid Expansion (ME) is a dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been 

expanded in the past . All regressions include county-year-race FE and county-week-race FE. Three categories of maternal race were used (white, 
black, and other). Controls included: Current week’s mean temperature, lagged weekly mean temperature for up to four weeks, lagged monthly 

mean temperature from t-2 to t-7, Rainfall-Q1(bins), Rainfall-Q2(bins), Rainfall-Q3(bins), a vector of demographics (newborn’s gender, teenage 

mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried), and interactions between lagged temperature and Medicaid 
expansion (ME). Individual-level observations were collapsed into cells by county-week-year-race. All regressions are weighted by the number of 

births in each cell. Errors are clustered at the state level . Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.7: Impact of Medicaid’s expansion on the temperature-birthweight relationship 

 

  (1) (2) (3) (4) 

  Log(bw) Log(bw) Gestational Age Gestational Age 

Observations 42,001,350 42,001,350 41,907,577 41,907,577 

R-squared 0.392 0.393 0.291 0.291 

Heterogeneous effects 

of temperature across years No Yes No Yes 

Temp- EP(T<25F)*ME 1.65e-05 -6.10e-05 0.000749 -0.000842 

 (5.76e-05) (3.99e-05) (0.00163) (0.00136) 

Temp-EP(25<T<45F)*ME 4.24e-06 -2.34e-05 0.000597 -5.51e-05 

 (3.46e-05) (2.67e-05) (0.000990) (0.000802) 

Temp-EP(65<T<85F)*ME -2.17e-05 -4.44e-08 -0.000831 4.43e-06 

 (1.88e-05) (1.46e-05) (0.000617) (0.000559) 

Temp-EP(T>85F)*ME -8.26e-05* -4.53e-05 -0.00255*** -6.63e-06 

 (4.26e-05) (5.16e-05) (0.000856) (0.000974) 

Temp- EP(T<25F) -3.91e-06  -0.00154  

 (5.39e-05)  (0.00168)  

Temp-EP(25<T<45F) -1.54e-05  -0.00114  

 (2.99e-05)  (0.000916)  

Temp-EP(65<T<85F) -6.86e-06  -0.000498  

 (1.59e-05)  (0.000359)  

Temp-EP(T>85F) -5.15e-05  -0.00223*  

 (4.82e-05)  (0.00130)  
Notes: Author’s calculations from CDC public birth files 1975-1988. Log(bw): Natural logarithm of birthweight.. Gestational age corresponds to 

the newborn’s weeks of gestation at birth. Temp-EP(x<t<y) corresponds to the number of days during the entire pregancy in which the county’s 
temperature was between x and y . The omitted category corresponds to days with temperatures between 45-65F. Medicaid Expansion (ME) is a 

dummy variable at the state-year level =1 if Medicaid is expanded in the current year or has been expanded in the past . All regressions include 

county-year-race FE and county-week-race FE. Three categories of maternal race were used (white, black, and other). Controls included: Current 
week’s mean temperature, lagged weekly mean temperature for up to four weeks, lagged monthly mean temperature from t-2 to t-7, Rainfall-

EP(bins)), a vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried), 

and and interactions between lagged temperature and Medicaid expansion (ME). Individual-level observations were collapsed into cells by county-
week-year-race. All regressions are weighted by the number of births in each cell. Errors are clustered at the state level . Standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 3.8: Heterogeneous impacts of Medicaid’s expansion on the temperature-birthweight 

relationship 

  (1) (2) (3) (4) (5) 

Sample White Black Cold county Warm county Metro county 

Observations 34,414,304 6,316,941 13,221,099 16,438,735 31,525,162 

R-squared 0.194 0.181 0.406 0.391 0.537 

Temp- EP(T<25F)*ME -6.02e-05 -0.000139* 4.32e-06 -0.000523* -5.19e-05 

 (4.10e-05) (7.12e-05) (5.14e-05) (0.000267) (4.76e-05) 

Temp-EP(25<T<45F)*ME -2.57e-05 -3.34e-05 2.99e-05 -5.67e-05 -2.40e-05 

 (2.63e-05) (6.18e-05) (3.11e-05) (7.24e-05) (3.13e-05) 

Temp-EP(65<T<85F)*ME -4.92e-06 7.45e-05 8.62e-06 2.64e-05 -1.20e-06 

 (1.67e-05) (5.43e-05) (2.51e-05) (2.89e-05) (1.85e-05) 

Temp-EP(T>85F)*ME -4.99e-05 0.000149 -0.000238 1.81e-06 -6.15e-05 

 (5.01e-05) (9.51e-05) (0.000700) (7.07e-05) (5.13e-05) 
Notes: Author’s calculations from CDC public birth files 1975-1988. The dependent variable corresponds to Log(bw): Natural logarithm of 

birthweight. Temp-EP(x<t<y) corresponds to the number of days during the entire pregancy in which the county’s temperature was between x and 
y . The omitted category corresponds to days with temperatures between 45-65F. Medicaid Expansion (ME) is a dummy variable at the state-year 

level =1 if Medicaid is expanded in the current year or has been expanded in the past . All regressions include county-year-race FE and county-
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week-race FE. Three categories of maternal race were used (white, black, and other). Controls included: Current week’s mean temperature, lagged 
weekly mean temperature for up to four weeks, lagged monthly mean temperature from t-2 to t-7, Rainfall-EP(bins), a vector of demographics 

(newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried), interactions between lagged 

temperature and Medicaid expansion (ME), and heterogeneous effects of each temperature bin across years. Individual-level observations were 
collapsed into cells by county-week-year-race. All regressions are weighted by the number of births in each cell. Errors are clustered at the state 

level . Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 3.9:  Impact of air conditioning on the temperature-birthweight relationship 

 

  (1) (2) (3) (4) (5) (6) 

  Log(bw) Log(bw) Log(bw) 

Gestational  

Age 

Gestational  

Age 

Gestational 

 Age 

Sample All White Black All White Black 

Observations 42,001,350 34,414,304 6,316,941 41,907,577 34,378,277 6,275,780 

R-squared 0.393 0.194 0.181 0.292 0.171 0.181 

Temp- EP(T<25 F)*𝐼(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) -6.64e-07 -0.000400 0.00140 -0.000620 -0.00572 0.0481 

 (0.000458) (0.000473) (0.00131) (0.0154) (0.0151) (0.0347) 

Temp- EP(T<25 F)*𝐼(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) -0.000725 3.00e-05 -0.00244 -0.00941 0.00126 -0.0607 

 (0.00105) (0.00118) (0.00181) (0.0142) (0.0151) (0.0431) 

Temp- EP(25<T<45 F)*𝐼(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) 0.000233 0.000339 9.60e-05 0.0111 0.00507 0.0286 

 (0.000453) (0.000539) (0.000949) (0.0124) (0.0135) (0.0194) 

Temp- EP(25<T<45 F)*𝐼(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) 0.000241 0.000461 0.000545 -0.00532 0.00697 -0.00610 

 (0.000335) (0.000369) (0.000719) (0.0106) (0.0113) (0.00867) 

Temp- EP(65<T<85 F)*𝐼(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) -0.000384 -0.000277 -0.000681 -0.00939 -0.00320 -0.0363 

 (0.000408) (0.000520) (0.000719) (0.0213) (0.0208) (0.0228) 

Temp- EP(65<T<85 F)*𝐼(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) 0.000452 0.000359 0.00110* 0.0167 0.0193 0.0255** 

 (0.000448) (0.000465) (0.000573) (0.0217) (0.0233) (0.0126) 

Temp- EP(T>85 F)*𝐼(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) 0.000170 0.000992 -0.00272 0.0574*** 0.0653** -0.00975 

 (0.000823) (0.00107) (0.00182) (0.0212) (0.0306) (0.0324) 

Temp- EP(T>85 F)*𝐼(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠) 0.00305 0.00314** 0.00379 0.0464 0.0495 0.0852** 

 (0.00187) (0.00143) (0.00252) (0.0351) (0.0316) (0.0351) 
Notes: Author’s calculations from CDC public birth files 1975-1988. Log(bw): Natural logarithm of birthweight.. Gestational age corresponds to 
the newborn’s weeks of gestation at birth. Temp-EP(x<t<y) corresponds to the number of days during the entire pregancy in which the county’s 

temperature was between x and y . The omitted category corresponds to days with temperatures between 45-65F. 𝐼(𝐴𝐶𝑠𝑦 ≤ 𝐴𝐶𝑠) is an indicator 

variable equal to one when air conditioning ownership in state s and year y  is below or equal to the state’s median. All regressions include county-
year-race FE and county-week-race FE. Three categories of maternal race were used (white, black, and other). Controls included: Current week’s 

mean temperature, lagged weekly mean temperature for up to four weeks, lagged monthly mean temperature from t-2 to t-7, Rainfall-EP(bins)), a 
vector of demographics (newborn’s gender, teenage mother, age mother>=35, pregnancy history, Highschool dropout, and unmarried), interaction 

terms between lagged temperature and 𝐼(𝐴𝐶𝑠𝑦 > 𝐴𝐶𝑠) ∗ (𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠),  interaction terms between lagged temperature and 𝐼(𝐴𝐶𝑠𝑦 < 𝐴𝐶𝑠) ∗

(𝐴𝐶𝑠𝑦 − 𝐴𝐶𝑠), and heterogeneous effects of each temperature bin across years. Individual-level observations were collapsed into cells by county-

week-year-race. All regressions are weighted by the number of births in each cell. Errors are clustered at the state level . Standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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